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A. INTRODUCTION AND HisTORY

ECENT theoretical developments explaining

the nature of the forces between molecules
have produced a variety of successful applica-
tions so numerous and extensive as perhaps to
call for a more detailed review of the relevant
basic facts than has previously been given. An
excellent and authoritative summary of the
essentials of both theory and applications has

been presented at a meeting of the Faraday
Society by F. London,! and many points of
interest have arisen in the subsequent discussion
of that paper.2 The present article, while mainly
limited in its scope to the theory, is intended to
be a more comprehensive and analytic account
of the elements of this important field, and to
include material which has come to light since
the publication of London’s report.



2 H. MARGENAU

The term ‘“‘van der Waals force” is not one of
very precise usage. A definition which seems to
reflect its most widely adopted meaning, and to
which the present discussion will adhere, is this:
Van der Waals force is that force which gives
rise to the constant a in van der Waals equation.
It will be recalled that the latter equation con-
tains a volume constant, b, which is related to
the ‘‘size’’ of the molecules or, in a more refined
statistical theory, to the intermolecular distance
at which the attractive forces become strongly
repulsive; in addition to this it involves the
pressure constant ¢ which measures the specific
strength of the interactions with which we are
here concerned. Our definition sets them apart
on the one hand from chemical forces arising out
of interpenetration of electron clouds and the
resulting rearrangements governed by the Pauli
principle, on the other hand from ionic inter-
actions, both of which are sometimes included
under the more general heading of intermolecular
forces. The latter two are here excluded from
consideration, not because they are unimportant,
but for methodical reasons. The manner of
calculating them is quite different from that
employed for van der Waals forces, and as to
the repulsive forces, the general methods avail-
able are not sufficiently accurate at present to
make their review worth while.

The existence of van der Waals forces was
known long before the famous work of Diderik
van der Waals. They first entered the scene of
physical investigation in connection with the
work of Borelli and Jurin on capillary action.
To explain their findings, they postulated at-
tractive forces between the molecules of the tube
walls and of the liquid. But it was soon pointed
out by Clairault?® that if these forces were the
cause of surface tension their action must be
general, embracing all molecules, though mole-
cules of different kinds with different intensities.

From there on the development of the subject
bears a close and fascinating resemblance to the
present groping after an explanation of nuclear
forces. First, general theories not specifying the
exact form and nature of the forces are developed.
Then specific assumptions as to their range and
their dependence on distance are tried, without
very definite conclusions: the exact form of the

forces did not appear to matter greatly, experi-
mental facts were not precise enough to distin-
guish. All through this period, lasting from the
beginning to the end of the nineteenth century,
investigators were convinced of the novelty and
essential uniqueness of these forces which existed
in addition to the Coulomb law of gravitational
attraction and had a much smaller range but
greater strength within that range. The final
solution was in a sense an anticlimax; the forces
were ultimately stripped of their uniqueness and
shown to be of the nature of simple electric
interactions.

Laplace’s* genius provided the mathematical
theory by which it was possible to show that if
the forces acted along the lines joining the
molecules and had a short range, they would
produce a surface tension depending on curva-
ture in the way observed. Gauss® refined and
extended Laplace’s theory. Maxwell® was the
first to attempt specification of the law of
interaction. On analyzing the none-too-accurate
experimental data on viscosity and diffusion
velocities of gases, particularly their dependence
on temperature, he concluded (1) that the forces
are repulsive, and (2) that they are proportional
to 1/R5. Later developments have substantiated
neither of these conclusions which, even at the
time, stood in definite contradiction to the porous
plug experiment of Joule and Kelvin, performed
in 1853. Next, van der Waals,” without specifying
his forces any more than to regard them as
attractive, succeeded in deriving his equation of
state and in deepening, through his conception
of these forces, the understanding of many
phases of physical chemistry.*

Speculations as to the exact nature of van der
Waals forces arise again when Boltzmann,?
taking up Maxwell’s researches, investigates
their range and space dependence. Though his
work on this particular problem has not proved
as fruitful as his other achievements, it is of
some interest today because of its close alignment
with present inquiries. One of Boltzmann's
models for van der Waals attraction is indeed the
three-dimensional potential pot with vertical
walls, at present of nuclear fame. He concludes

* It may be of interest to theorists in nuclear physics
that van der Waals, in some of his researches, used a
potential of the form V=A4e3/r.
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that it, among others, is capable of explaining
the then known facts.

The most extensive work on a special force
law has been done by W. Sutherland.? His en-
deavor was to apply the law of attraction,
F=Amms/R*, which was suggested to him
originally by a study of Laplace's work, to as
many different experimental data as possible.
In his formula, m; and m; are the masses of the
two interacting molecules, and A4 is a parameter
varying from substance to substance. With his
force law he succeeds in explaining the Joule-
Kelvin effect and, of course, capillary action.
Later, and this fact is very interesting in view
of modern evidence (cf. Section C-I), he estab-
lishes a general correlation between the param-
eter A and the atomic polarizabilities of the
substances involved, and even attempts an
analysis of intermolecular forces in terms of
molecular structure. The singularity at R=0,
inherent in Sutherland’s formula, is not trouble-
some in his investigations because he never
permits his molecules to come very close to
each other.

This general line of attack, which starts from
a force law assumed ad hoc and analyzes experi-
mental data in terms of its parameters, has been
continued, with refinements and generalizations,
by Lennard-Jones!® and his pupils. By means of
a law of the form

F=AR-"—uR~™, (1)

in which the first term represents a repulsive
and the second the van der Waals force (n>m,
so that the range of the repulsive forces is smaller
than for the attractive), he penetrates the field
of statistical mechanics and correlates such
different fields as virial coefficients and viscosi-
ties. Useful as this procedure has proved to be,
its detailed discussion is beyond the scope of
this article, for Eq. (1) is now known to be
unsuited as an accurate theoretical expression for
intermolecular forces.

The quest for an explanation of van der Waals
forces in terms of more basic matters seems
to have been initiated by Reinganum! who
points out that neutral molecules carrying local-
ized charges repel or attract each other with
forces varying more rapidly with distance than
1/R. This force is on the average attractive

because of the torques tending to rotate the
molecules into attractive positions. The elabora-
tion of this idea is due to Keesom.? He con-
siders as his simplest case molecules bearing
dipoles. The forces between dipoles, which will
be studied in greater detail below, are well
known from electrostatics; their average over all
orientations is zero. Thus if all molecules were
rotating without regard for each other, and with
random phase relations, no mean attraction for
the bulk of them would result. As a matter of
fact, however, the molecules do feel each other’s
presence ; attractive relative orientations, having
smaller potential energies and hence greater
statistical weight, predominate and thus produce
on the whole attraction. Looking at this effect
more closely, we observe it to be the consequence
of two conflicting tendencies, one of which out-
weighs the other. Molecules having sufficient
rotational kinetic energy will rotate faster, and
hence spend less time in attractive positions,
than in others. This reduces the statistical weight
under discussion. It will frequently happen,
however, that a molecule, as a result of a
collision, will be caught in an attractive position,
i.e., in a position of dipole alignment with another
molecule, with so little rotational energy that it
can no longer rotate but must oscillate. This
state of affairs continues until another impact
occurs, and it is this possibility of temporary
alignment which endows attractive forces with
their greater weight. This effect is often referred
to as Keesom'’s effect of alignment (Richteffekt)
or orientation effect. It produces a mean inter-
action energy between two molecules of dipole
moments p; and p, proportional to pi%p.?/RS,
where R is the distance between the molecular
centers.

Obviously, this effect cannot provide a general
explanation of van der Waals forces for two
simple reasons. First, many molecules, exhibiting
attractive forces, are known to possess no dipole
moments ; second, the orientation effect becomes
inappreciable at high temperatures because the
trapping of molecules with high kinetic energy
is unlikely; but van der Waals forces persist.
Keesom attempted to remove the first difficulty
by applying his theory to quadrupoles (cf.
below for an exact definition), i.e., to charge
distributions of greater symmetry than dipoles,
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yet not spherically symmetrical and hence pro-
ducing an external field. Quadrupole moments
cannot be measured directly, but it is to be
inferred from their known structure that many
molecules must possess quadrupole distributions.
Putting his theory in reverse, Keesom was then
able to compute for various molecules certain
constants characterizing the quadrupole distri-
bution which would produce the observed van
der Waals forces. We note in this connection a
rather remarkable coincidence, well fitted to
asperse the significance of exact numerical agree-
ment in computations: Keesom, using a theory
now regarded as inadequate, arrived at a value
of 2.03X1072% e.s.u. for the constant in question
for H,, while Burger,”® using the now equally
obsolete Bohr-Debye model for H,, had calcu-
lated the value 2.05X10-2% e.s.u. for the same
constant. The Heitler-London theory leads to
0.39X 1072 e.s.u.4

Keesom's theory gave reasonable values for
the quadrupole moments of molecules according
to contemporary standards; it was in need of
extension only because of its failure to produce
van der Waals forces at temperatures for which
the effect of alignment is negligible. This defect
was removed by Debye,!® who called attention
to the fact that molecules are not rigid structures
but deformable distributions of charge. If placed
in an external field, they will become polarized,
and forces of attraction will be called into play
if the field is non-uniform, as in the case of soft
iron placed near the pole of a magnet. This fact
at once accounts for the universal character of
van der Waals forces and for their persistence at
high temperatures, for polarization forces are
always attractive, and their magnitude is inde-
pendent of the molecule’s state of motion. The
only question is: what produces the polarizing
field? Here again, quadrupoles had to be postu-
lated. Debye first calculates the field, F, at a
distance R from a quadrupole molecule. A mole-
cule with polarizability «, if placed in this field,
will suffer a change in energy given by

V=—}aF". (2)

To obtain the mean energy of interaction it is
necessary to integrate V over all orientations of
the field-producing molecule, and this procedure
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leads to
Vaw=3ar?/2R?, 3

in which r is related to the quadrupole moments,
©;;* thus,

=02+ 0.2+ 05— (0,0:40,0;+ 0:03). (4)

Of interest is the fact that the interaction energy
due to the present effect, often termed the
induction effect, varies with 1/R® (for quadru-
poles as polarizing structures).

In order to connect his theory with observa-
tions Debye supposes that each field-producing
molecule contributes an energy of interaction
given by (3), and hence integrates that ex-
pression over the positions of all molecules. By
comparing the result with experiments on devia-
tions from Boyle's law he is then enabled to
calculate the needed values of 7. These range all
the way from 2.8 to 60X 10~2% e.s.u. for different
molecules. Debye’s theory of the induction effect
was extended to dipole gases by Falkenhagen,!®
who worked out the second virial coefficient, and
included in his calculation also the effect of
alignment.

It will be observed from Eq. (4) that 7 is zero
if the three principal quadrupole moments of a
molecule are equal. This will certainly be the
case when its charge distribution is nearly
spherical. It is now well known that molecules
possessing closed shells, and in particular rare
gas atoms, possess this high degree of symmetry,
and hence should display no van der Waals
attractions. Yet they do, indeed so strongly that
Debye was led to postulate 7=18.9 X102 e.s.u.
for Xe. An equally serious difficulty with the
alignment theory comes to light when we con-
sider that the phenomenon of alignment con-
cerns essentially no more than two molecules.
If three are interacting closely, the forces will not
in general have the property of additivity.
(Cf. Section C-IV.) Forces caused by the in-
duction effect are additive as one may see as
follows.

If the field is due to » molecules distributed at
random, V is no longer given by (2), but by

V=—1a(3 F)2
i=1

* A definition of the @; is given in Section B-I.
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In the next step, when a mean is taken over all
orientations of the polarizing molecules, terms
like (F;- F;)a will vanish and the sum reduces to n
squares all of which are equal. Hence, finally,
if (V1)a is the energy due to one molecule,

V= "( Vl)Av

and this implies additivity. It is true that the
molecules will not be oriented quite at random,
but this lack of randomness is temperature-
dependent. Hence the slight nonadditive part of
the induction forces is also temperature-de-
pendent. It is usually neglected in the theory.

Up to this point, then, the situation may be
described briefly thus : Keesom’s alignment effect
is capable of explaining van der Waals forces in
dipole and quadrupole gases at low temperatures;
Debye’s induction effect introduces an additional
attraction for such gases, an attraction which
persists at high temperatures. Neither effect
throws any light on the forces between rare gas
atoms. In fact, if both effects are treated on the
basis of our present knowledge of molecular
structure, they may be shown to contribute
jointly only a fraction of the observed van der
Waals force even for dipole gases.*

It is thus apparent that an essential effect is
missing, a general effect present also for spherical
molecules, and possessing the property of addi-
tivity. A first suggestion of it appeared in a
paper by Wang,'” who calculated by quantum
mechanical methods the interaction between two
H atoms for large separation. His method is
somewhat indirect and his result numerically
inexact, but it shows that, in first approximation,
these forces vary with R~7, and that they are
attractive. In 1930 London!® recognized the
fuller meaning of these forces, derived formulas
for their calculation, and pointed out an inti-
mate connection between their nature and the
process of optical dispersion. For this reason the
effect was termed by London the dispersion
effect, a designation which is now common in
the literature. Together with the numerous re-
searches for which its discovery has opened the

* The value of the second virial coefficient of NH;,
for instance, computed on the basis of these two effects,
is less than half of the observed value at all temperatures
for which observations exist.

field, it will form the object of our discussions
below.

The physical meaning of the dispersion effect
may be described as follows. Consider two H
atoms, sufficiently far apart so that their electron
clouds do not overlap. These clouds are known to
have spherical symmetry about the protons.
Hence, if they represented static distributions of
charge, one would have no influence on the
other. But the electrons move, for they have
kinetic energy even in their lowest ‘‘stationary”
state. This means that each atom is momentarily
a dipole, capable of inducing in the other an
additional dipole moment parallel to itself. If the
classical picture were permitted, one would say
that the two electrons have a tendency to rotate
in phase, and that this tendency competes with
the disorganizing effect of the zero-point kinetic
energies. And although the average dipole mo-
ment over a large number of revolutions is zero,
the tendency of alignment persists and causes
attractive forces. Those who can still read
mechanical pictures into mathematical develop-
ments will perceive that the derivation in Section
C rests upon this intuitive situation.

Though the dispersion effect is of greater
interest in most applications, alignment and
induction among polar molecules are also of
importance. In the following section we shall
develop the theory of specific interactions be-
tween polar molecules, but shall omit the dis-
persion effect. The first part is a more mathe-
matical presentation of matters already discussed
qualitatively in this introduction, the second
deals with the modifications brought about in
classical results by an application of quantum
mechanics.

B. ForcEs BETWEEN PoLAR MOLECULES

I. Classical theory of interactions

Since the meaning of multipoles is funda-
mental to the entire analysis we begin by dis-
cussing it in some detail. Let us consider a
system of point charges, e; distributed at
various points r;. The potential at an external
point, a distance R from the origin, is given by
¢=2:e;/|R~—r;|. If this expression is expanded
in a Taylor series in which the coordinates of all
r; are considered smaller than R, the result is
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Ee.
= Rz(——f‘_e‘x.-{- —2eyi+— Ze.z,)
+—1~F gj—l)z ,x.2+- ii/—2—1)29.31.
R3L2\ R?
322
—_— I)Ze,z. Zeixiyi
3XZ Yz
+——~—Ze.x1z +——)’_‘,e,y.z ] (1*
This may be written in more compact form:
1 d 1
p=q- "‘+pran 'R
a a4 1
+ E,m XL 9X. 2 (2)
if we define X=X, X,=Y, X3=2
g=Xei; pr=Deixi D=2 ey etc.; 3)
Ou=72ex:?, O1a=73 exyy;, etc.

q is the total charge, p a vector known as the
dipole moment; @ is a tensor of the second rank
called the quadrupole moment. The best defini-
tion of the latter is in terms of the present
analysis: it represents a certain set of coefficients
appearing in the expansion of the potential of an
arbitrary distribution of charges. Eq. (3) shows
that the quadrupole moment is analogous to the
moment of inertia of a mass distribution. Higher
multipole moments would be defined by an
extension of (2). The characteristic feature of
dipoles is that their potential is proportional
to 1/R?; quadrupoles produce a potential pro-
portional to 1/R?; octupoles, to 1/R¢, etc., as is
seen from (1). The first term of (1) is zero, of
course, if the charge distribution is on the whole
neutral.

To understand the choice of names we observe
that if two point charges of opposite signs are
placed a certain distance apart, the first term of
the potential vanishes but all others remain.
If the distance between them is made infinitesimal
while the charges increase correspondingly, all
higher terms are small compared to the second,

* The equations of each section, A, B, C, etc. are
numbered independently.

and this alone represents the potential. Such a
distribution is a dipole. A way to make the first
two terms of (2) (and no others) vanish is to
arrange four charges on the corners of a parallelo-
gram, with the signs of the charges alternating as
one goes around the parallelogram, for this
insures that the centroid of the positive charges
coincides with that of the negative charges.
On shrinking the dimensions of the figure while
increasing the charges, the third term remains
dominant; this arrangement is known as a
quadrupole. Eight point charges on the corners
of a parallelepiped, alternating in sign as one
goes around any face of it, constitute an octupole.
Such a structure has the property that the
“moment of inertia” of the positive charges is
equal to that of the negative charges about any
axis, and this means that all components of the
quadrupole moment vanish; the fourth term in
(2) (not written) is the first to remain, and it is
the only one if the octupole has very small
dimensions.

© has in general six components, but it be-
haves like an ordinary moment of inertia inas-
much as it is always possible to choose the
coordinate system in such a way that 0;;=0 if
25%j. This fact reduces O to three principal com-
ponents, 0;, @, and 03, to which attention may
always be restricted.

It is frequently forgotten that the vanishing
of the quadrupole moments is not a mecessary
condition for the absence of a quadrupole poten-
tial. Inspection of Eq. (1) shows the term in R3
to be zero if only the three principal quadrupole
moments are equal. This case is of far greater
interest in molecular physics than that of charge
distributions, like the octupole, which have no
quadrupole moments. Thus one should properly
say that an atom with closed shells possesses
quadrupole moments, but produces no quadru-
pole potentials. The terminology relating to this
point is not always precise.

For some purposes it is convenient to write
Eq. (2) in terms of surface spherical harmonics,
so that it reads

o= 2

e;r:"P,(cos 0;).
I o ‘é (cos 69

Here 6; is the angle which r; makes with R.
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However, we shall not have occasion to make
use of this expression.

To obtain the basic expression for the classical
interaction of two molecules it is necessary to
calculate the energy which results when a second
distribution of charges is put at the place where
the potential is ¢(R). Let this distribution be
characterized by charges ¢;, placed at distances
o; from a new origin which is itself displaced a
distance R from the origin with respect to which
the r; were reckoned. The interaction energy is
then given by

V=73 ieie(R+0,). 4

This expression in its expanded form is in general
quite complicated ; we will simplify it at once by
introducing some obvious conditions. First, we
suppose that both charge distributions are
neutral ; second, that one kind of charge, say
the positive, is all localized at a point, and this
point will be taken as origin for each distribution;
third, that all p;<R as was already supposed

1
T= _E(;‘ Z ei€j(22:¢;—x:E—yim;)
17

for the ;. The last assumption permits a develop-
ment of (4) in a Taylor series:

de de de
V=2¢: ¢+}:6i(5r——+ n—+i&—
i i 0X 34 aZ

+T (s2a2¢+ 2t F )+
2 - €\ S/ 3% LIS, 2y

d
={q +;P»6—X:

1 7]
+—2 0,/

21%

d
— e }¢(R). 70
30X, 0X,

In the last row we have used the same symbolism
as in (2), but the primed quantities now refer to
the second molecule. If (1) is inserted in (4’)
and the differentiations are carried out, there
results the following expression!? which is at the
basis of the entire theory of van der Waals
forces:

3
+;]‘€4 2 eiei[r¢i—zip + (20iki+ 2yimi — 32:85) (30— )]

3
+;}“5 2 eiei[r?p? — 52202 — Sr20 2 — 1522 2+ 2 (4 +xiki+yam) 1+ - ()
17

In writing V in this form, both the 2z; and ¢;
axes are taken along the intermolecular distance
R. The three rows of (5) represent, respectively,
the dipole, dipole-quadrupole, and quadrupole
energy. Higher terms have not been considered.
If they are of importance, the present mode of
approach through Taylor series is best abandoned.
It is to be noted that (5) is valid only if all #;
and p; are smaller than R, and rapid convergence
will occur only if they are considerably smaller.
This means that none of the charges of the two
molecules may overlap. It is this condition which
sets off the treatment of van der Waals forces
from that of chemical forces, and makes the
former relatively simple.

(a) Dipole alignment

A particularly interesting example is the inter-
action between molecules in which the charges
may be regarded as fixed, so that the molecules

can only move and rotate as wholes. Further-
more, let us assume the molecules to be linear
structures. If we specify the directions of the
two axes with respect to R by 61¢1 and 60,
then, for instance, }.e:s:=p1 cos 6y if p; is the
dipole moment of molecule 1 along its axis, and
> 3= O, cos? 0, etc., if B; is the component
of quadrupole moment of molecule 1 along its
axis. Note that here each molecule can be
characterized by a single component of 0, and
that the subscripts 1 and 2 now refer, not to
different components as before, but to the two
molecules. A simple model of a linear molecule
having both p and © is represented in Fig. 1.
(If 7y =7, p vanishes but O remains.) Under these
conditions, then, Eq. (5) takes the form

+ 4+
n 1§

FiG. 1. Linear molecule.
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V= — (p1p2/R®[2 cos 6; cos 62—sin 8, sin 83 cos (¢1— ¢2) ]
+(3/2R*) { ©,1ps[cos 02+2 cos 6, sin 8, sin 82 cos (¢1— ¢2) —3 cos? 6; cos 6]

— @yp1[cos 8;+2 cos 0, sin 8, sin 8, cos (¢1— ¢2) — 3 cos® 8, cos 6;]}
+(3/4R%)©,02{1 —5 cos? 6; —5 cos? 6,— 15 cos? 8; cos? 8,
+2[4 cos 8, cos 02+sin 6, sin 05 cos (g1 —@2) J*}+---. (6)

This formula was used in the calculations of
Keesom.!?

It will be noticed that the mean of (6) taken
over all orientations of either one of the mole-
cules is zero, if all orientations are considered as
equally likely. Were it not for the effect of the
Boltzmann factor, which favors the lower
energies, no mean van der Waals attraction
would arise from the interaction of multipoles.
Thus we must compute, not Vi, but (Ve V/*T),,
in which the average is taken over all orientations
of both molecules. This quantity may be written
on expansion of the exponential :

VAV"' <V2)Av/kT+ ctt.

Thus, since Vy is zero, we see that the mean
potential energy is negative and hence the force
attractive; also that it vanishes for large 7.

The computation of (V?), is easy if we re-
member that

(cos? ) =1; (sin? On=2; (cos? (¢1—2)n=13;
{sin? @ cos? ), =2/15; {(cos* )a=1/5;
(sin* O)n=8/15; (cos* (¢p1—d2))n=1%.

We find
(V2>Av__ 17‘[2 P12P22L@12P22+ 0,2p,*
- =] B
kT kETL3 RS R3
56129224_ ]_ [ ] (7)
5 R (RT)?

This expression is the first approximation to the
weighted mean of V, i.e., to (Ve V/kT),,

If a molecule has a dipole moment of sufficient
magnitude, one may usually neglect all but the
first term of (7); if it has no dipole moment, the
third term is the first to be finite. The second
term is either zero or, if finite, of secondary
importance. For this reason it has always been

neglected in the literature on polar molecules.
But there are undoubtedly many cases, perhaps
not of interest at the moment, for which the
second term should be considered.

Clearly, Eq. (7) is correct only as long as
the expansion e~V/*T may be restricted to the
first two terms. For temperatures of the order of
Vmax/k and smaller it has no validity at all.
The physical reason for its failure is the pre-
ponderance at low temperatures of states of
impeded rotation (libration). It would be possible,
of course, to calculate (Ve V/*T),, for this case
also, but the result would have no meaning.
For the impeded motion, being quantized, differs
so strongly from its classical description that the
present methods may not be employed in
studying it.

(0) Induction effect

Having discussed Keesom’s alignment theory,
let us now consider the Debye-Falkenhagen in-
duction effect. The potential due to a single
molecule at R is given by (1) which may be
written conveniently for the present purpose

if we introduce two convenient vectors M
and ® whose components are defined by
M.=R?*—-3X? etc.,, ©,= 0, etc.; 0,;=0 if 75%;.
The field at R is

p 3 N 5
F=-V¢=——+—R-pR+————M-0OR, (8)
R? RS Rs 2R7

where N is a new vector having components
N.=(0,40,—-20.)X,etc. N,and N, are formed
by cyclical permutation of x, y and 2. The
induced energy is

V=—%aF

The mean energy in which we are interested is
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obtained by taking the mean of F? over all
orientations of the molecule. But we may equally
well calculate it by keeping the molecule fixed
and taking a similar average over all orientations
of R. In this process we can treat p and @ as
constant vectors. Squaring (8) and omitting
quantities which vanish in the mean, we get

p* 3 N?
Fr=—+4—R-p)'+—
RS RB Rl()

25

4R

+

5
(M-@)z—E(M-O)(N-R).

But
(R-p)Iw=Rp2/3; (NDW=2R?;

QVI~@)2)M=4R472/5; ((M-@®)(N-R))y=4R472/5,

Hence (F2),=2p? Ré+372 R, 9)

Here 7 is the quantity already introduced in the
previous section :

=024 0s24+ 02— 0,0, — 0,0;— 0,0,

The mean interaction energy due to polarization
of one molecule by another is thus seen to be

—a(p?/Ré+372/2R3+ - - ) (10a)

In general, an electric moment will also be in-
duced in the polarizing molecule by the one at R.
If the two are of the same kind, the total energy
is twice as great; otherwise the quantities
referring to the different molecules must be
distinguished, and the total potential energy
becomes

P22 3 1.22
Vi= —m(*+——+- : )
R¢ 2 R®

2%

'—a2(-E;+
In this approximation, the effect is independent
of the temperature. Strictly speaking, it would
have been necessary to calculate again (Ve~V/kT),,.
Eq. (10) is the first term of this. The second,
which introduces the temperature, is (— V*/kT)u.
It is proportional to R~'? and higher powers of
R~ and need not be considered. But this con-
sideration shows that (10), too, loses its validity
at temperatures not satisfying 77> V/k.

3T12
—_—t
2 RS

(10)

II. Quantum mechanical theory

The theory which we are about to present is
in large part due to London?® who studied the
interaction of dipoles by means of what he
called the method of unscharfe Resonanz. This
seemingly unfamiliar method, however, is simply
a form of ordinary perturbation theory which
may equally well be used in the treatment of
the problem.

The general procedure is this: If it is desired
to find the potential energy between two mole-
cules, the first step is to determine their classical
interaction. This is always given by Eq. (5).
But it may not be needed in this general form.
For instance, if the structures are rigid dipoles,
one may employ (6), and if they have no quadru-
poles, only the first line of that expression need
be retained. The next step is to find the quantum
mechanical mean of V, and this usually differs
from the classical mean. It is done by what is
known as a perturbation (or sometimes by a
variation) calculation.

Let y: be the state function describing the
two molecules in their unperturbed state. If it
is nondegenerate, the perturbation energy is
given (in familiar notation) by

AE=AE,+AEs+ -

Vil

| 3
i

=Vt T +oon (1)

kT L5

In this connection, a remark on the relation
between this and the classical V, may be
illuminating. In the case of rotating dipoles, the
classical V is a function of orientation; there is
no unique value of V associated with a given
state of rotation. In quantum mechanics, how-
ever, every (nondegenerate) state k of rotation
has associated with it a definite interaction
energy, and this is AE;. The calculation of AE,
as seen above, involves features reminiscent of
the classical averaging process, in which |y|?
takes the place of the constant classical weight
factor. Statistically, the quantity AE e AE/kT
corresponds to the classical (Ve~V/*T),. At this
stage of the calculation, there is frequently very
little resemblance between the two corresponding
quantities. But when, in further pursuits of the
matter not included in this review, the quantities
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AEe2EXT and (Ve V/*T),, are summed and
integrated, respectively, over all possible states of
motion, the results show a general similarity.?!
In fact it may be shown that for sufficiently high
temperatures they are exactly equal in all cases.
In this article we shall rarely go beyond the
stage of calculating AE, the rest being a concern
of statistical mechanics to be dealt with in
applications of van der Waals forces.

When the function y representing the unper-
turbed state is degenerate, and has » com-
ponents ¥;, AE is no longer given by (11) but
by the % roots of the determinant

| Vii—AE$;;| =0, (12)
in which V;; are the matrix elements of V
between the various ¢;. The diagonal elements
Vir appearing in (11) usually vanish when V), is
zero, but there are exceptions to this rule.

a. Rigid linear dipoles.—For this case, V is
given by the first term of (6);

V= (PIPZ/RS) [Sin 01 sin 02
X (cos ¢ cos ga+sin ¢; sin ¢g) —2 cos 8 cos 6 ].

The two molecules are in states characterized by
quantum numbers lym; and lwms, and the state
function representing the two in their unper-
turbed condition (far apart) is a product of two
surface spherical harmonics*

e =y(lym,, lams) = P(lym,, cos 6,)

xP(lzmz, cos az)ei(mxm'*'mwz),

where the P functions are associated Legendre
polynomials. This state is degenerate with all
others having the same value of /; and I, but
different m, and m,. Hence our problem is to
calculate the roots of

(13)

One may easily show, however, that all the
matrix elements of V occurring here are zero,
so that we get no first-order effect. The second-

| Qymalsms| V| Lprlaps) — AES,m| =0.

*To avoid double subscripts quantum numbers will
frequently be written in parenthesis, together with argu-
ments, It will be convenient to deal similarly with matrix
elements: the Dirac notation is used interchangeably with
the more common one; thus

(ijk| V|imn) = Vijr, lan.

order energy, in accordance with (11), is

ll 112 2 V 1MIN2M2 2
MEae T | Gymidams| V[ Npihaus) | e
LSTR T E(ll) +E(12) —E()\l) "E()W)

Unless an external magnetic field is applied
there is no way of specifying the values of m,
and ms. One is therefore rarely interested in
AE; as it stands, but rather in its average over
all magnetic quantum numbers. Since all values
of m; and m, are equally probable and there are
(2l,+1)(2l,4+1) of them, the quantity to be
computed is

(AE2)AV= (2ll+ 1)_‘(212—}— 1)‘1 Z AE,.

mymy

(14a)

It involves a summation over all magnetic
quantum numbers, both in the initial and final
states of the matrix elements, and this circum-
stance simplifies the result very much.

We first turn our attention to the calculation
of the elements (J;-«-| V|- --u2). They involve
the matrix elements of trigonometric functions
between the states of a rotator, which are well
known and will be listed here to facilitate
reference.

Eim, au=(sIn 6 COS @) im, Ap
=3A(m)8u, mi1—5A(=m)dy, my,
Nim, A= (SIN 0 SIN @) 1, Au
=(1/24)A(m)8dy, mi1
+(1/2)A(=m)byu, m,
Cim, au=(COS ) 1m, \u=Bb,, m;
where

(15)

(xm+2)(Em+1)7
(21+1)(2143) ] .
(H=m—1)(l=Fm)]38
[ +n@-n 1"

(I+m+1)(—m+1)7
B=[ ] A, I41
(21+1)(21+3)
+[ (I+m)(l—m) ]* .
(2+1)2—-1) )

A(:i:m)=[
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In terms of these,
(limalama| V| Npihaue)

pip
=31}?2{ (Fyma | E| Nagsr) (lama | £ Aass)

+ (Loma | | Napr) (Tema| m | Nowe)

=20y | £ M) (Dama | & [ Napa) §.

On squaring this, there will arise cross terms like
(Lo | £ Map) (im0 [ Napn) ¥, ete.

These may be dropped at once for they vanish
when the summation, indicated in (14), is per-
formed over w; and wet and finally an average
over all m,; and m. in accordance with Eq. (14a)
is taken. This can be seen from Egs. (15).
Moreover,

2l e |t = i, 2| =LA M) + AN (=m) ];

2| im, au| =B

Simple calculation, and use of the fact that
(= QI+ ) Emt= 0+, (152)

leads to

(AHn=(214+1)"13 A2

T3+

CE+1)6n, 141416, 11 ];

(B2 = 54w
Because of these relations

2 [ @midame| V[ NpiNous) |2

2 pi2ps? 1

T3 R (QLt1)Q2ht1)
XL+, Lh+1)+06(0N\, 1 —1)]
XL(2+1)8(Ng, lo+1)+126(Ng, I.—1)].

(16)
Thus far the summation could be performed

* See footnote p. 10.
t Note that the denominator of (14) does not depend
on u.

without considering the denominator in (14).
The energy of a single rotator is

E;=3I(14+1)e (17)

with e=#%/I, and I its moment of inertia. The
presence of four é-functions in (16) indicates
that the sum in (14) reduces to four terms. If
the energies in the denominator are inserted in
accordance with (17), the result will be

2[712p22 1
(AEg)n=——
3 Rt (2L+1)(2l:+1)
(h+1)(a+1) (h+1)l,
(ll+1)61+(12+1)62 (ll+1)€1""l2€2
ll(l2+1) lllz ]
—hea+(at1)e: Liertloes
2 pi2pe? 1
© 3 RS (2h+1)(2a+1)
€1 €2 -1 € =7 €2 -1
Gt +Grn)
la+1 I;+1 ly L+1

€1 €2\ ! €1 e\!
() ) ) o
L+1 I ly o
This expression is valid for any two molecules
having different p’s and €'s. If the two molecules
are of the same kind, (18) reduces to?°
2 piI
(AEo)n =~
3 h2RS
x L(h+1)+1a(l+1)
(h+l) (h+l+2)(h—l—1) (I —1s+1)

Clearly, (18) and (19) do not hold under two
conditions: (1) when les=(l1;4+1)ex; (2) when
(la+1)ea=11e;; for then the interaction becomes
infinite. These cases are interesting for the
following reason. Under condition (1) molecule 2
has a quantum number** l;= (/;+1)e;/eaand may
therefore emit a quantum of energy 2(l;41)
X (e1/€3) - €2, which is precisely the quantum that
molecule 1 would absorb if it passed from the
state /; to /;41. The two are capable of ex-

. (19)

** This can be exactly true only if /e or its reciprocal
is an integer; but even if it is nearly true (18) becomes
invalid, for (AE;)x may then be so large that the perturba-
tion method must be suspected.
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changing energy, much like two pendulums in a
state of resonance, and this terminology is
generally applied to the present situation. Simi-
larly, condition (2) amounts to the existence of
resonance between the two molecules, but with
molecule 1 in the “‘excited’’ and 2 in the absorbing
state. If, however, such interchange of energy
were actually to take place, it would be im-
possible for us to say in general which molecule
contains the quantum and which is about to
receive it, except perhaps at a given instant.
Therefore our initial undertaking of allotting
quantum numbers to the individual interacting
partners was unwarranted, and that is the reason
for the failure of (18) and (19). The case of
resonance will be treated in the next section.

In terms of quantum mechanics, inability to
specify individual quantum numbers implies
degeneracy (of the state concerned!) and this is
found in connection with conditions (1) and (2),
for if the two molecules have quantum numbers
I, and I, given in terms of a fixed !/ by the rela-
tions /y=1—1, and le,= (/1+1)e1, they have the
same total energy as for Li=l; (la+1)e2=le,
namely, *(e;+es)e;/es. To be consistent, (AEsz)a
should, in the case of resonance, be averaged not
only over all orientations (over m; and m,) but
over these two cases of resonance as well. When
this is done, however, the singular terms having
opposite signs in the two cases cancel out, and a
finite answer results. Eq. (19) then takes the
form

1 p*I 414 —12+1
(resonance){AEq)y= —— —— ————. (19a)
6 #2R6 (412—1)?

Of greatest practical importance is the inter-
action of similar molecules. Let us see when it is
attractive and when repulsive. We find (19a) is
always negative, (19) only when Il;=I, (the
resonance condition |l;—I;| =1 being barred).
Hence the rule: The average force (average over
all magnetic quantum numbers) between dipoles
is repulsive if their rotational quantum numbers
differ by 2 or more, otherwise it is attractive.

For large differences |lo—1I;| =4, (19) may be
written

1 p 1

(AE,)A,,—>— .
3 h?R% A?2—1

MARGENAU

TABLE 1. (After London). Coejgicient of 2p*I/3k2R® in Egs.
(19).

b l2=0 1 2 3 4

0 -0.5 —-0.111 0.25 0.100 0.0555
1 —-0.111  —0.5 —0.0678 0.194 0.0786
2 0.25 —0.0678 —0.5 —0.0645 0.181
3 0.10 0.194 —0.0645 —0.5 —0.0336
4 0.0555 0.0786 0.181  —0.0336 —0.5

Table I, taken from London’s paper, gives the
coefficients of 2p*I/3h*R® occurring in (19).

In using the expressions for (AE,) consider-
able caution is necessary. Perturbation theory
fails when the perturbation becomes comparable
to the zero-order energies or their differences, as
formula (11) clearly shows. But the rotational
energy differences of molecules are small, and
this fact sets a definite limit to the applicability
of the expressions thus far derived. Rarely are
they to be trusted for intermolecular distances
smaller than 7A. What happens as the molecules
approach more closely?

The answer to this question is of interest
chiefly for situations in which the interaction is
strong, for otherwise the validity of Eq. (19)
extends to sufficiently small values of R. A glance
at Table I shows this to be true for pairs of
molecules having identical rotational quantum
numbers. Now if l;=1,>0, there will be attrac-
tion, but the unperturbed energy may not be
lowered beyond bounds even for very small R
because the levels below /; will not permit it.*
But when l;=1,=0interesting things may happen
since there is then no such limitation.

Let us, then, investigate the interaction for
l;=1y=0. To treat this case it is necessary to
use a method free from the limiting conditions
of the perturbation theory. The variational
method is well suited to the present purpose.
We include in our calculation, besides the func-
tion representing the state in question (yq), all
those with which it will combine. Thus we take

¥=copotc1¥1+cadetcays

with
Vo= Y"(1) ¥o*(2),
1= Y1) ¥,°(2),

Vo= Y,1(1) ¥1'(2),
¥vs=Y,'(1) ¥,71(2),

* A fuller discussion of this effect is given by London.
Its mathematical meaning is simply that the roots of the
secular equation to which a variational treatment leads,
will repel since they may not cross over each other.
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where Y;(1)=P(lm, cos 8,)e"¢* as previously
defined. The total energy operator H=H,+ V,
in which V is the dipole part of Eq. (6). Now it
is well known that E= S y*Hydr/ fy*ydr is
equal to or greater than the true energy of the
problem, and if we minimize E with respect to
Co* * * c3, we shall have obtained the best approxi-
mation attainable with the above functions, and
in the present instance that is rather good.
Minimization of E leads to the secular equation

|Hij— Edi;| =0, (20)
of which E;, is the lowest root. H;;, of course,
is flp,'*Hllljd‘)’:E;oa;j—{— V,',', and Eu =0, while
E=E=E®=2¢ (cf. Eq. (17)). Furthermore,

the V;;, calculated from Egs. (15), are easily
seen to be 0, with the exception of

Vm= —%d, V02= V03= —%a; V.','= V,‘,'; a=p2/R".

Since E®=0, E is the same as AE, the inter-
action energy we wish to compute. With these
results, Eq. (20) takes the form

—AE  —1ia —3a —3a
—24 2—AE 0 0 |_,
~1a 0 2—AE 0 |
-l 0 0  2-—AE

The determinant reduces at once by suitable
addition of rows and columns, and yields the
equation

4a2/9 2a*/9
(AE+ +
2¢—AE 2¢—AE

)(25—AE)3=0,

2 2
whence AE+- =0,
32¢e—AE
so that
2 a%\}
AE=6[1-—(1+——— ]
3 €
h? 2?412 3
L A U
I 3%4R6

For large values of R the radical in this formula
may be expanded, and

AE—— p*I/3h2R®.

This agrees with (19) for l,=I,=0. For suff-
ciently small R, however,

AE——(2/3)4p?/R5. (22)

The interesting feature in this result is the
dependence of AE on R-3. It recalls at once the
fact that two dipoles, each in perfect alignment
along R, have a classical potential energy
—24*/R%. One may therefore interpret the
transition from an R~% law to an R~3 law as the
setting in of impeded rotation. The factor (%)}
in (22) may be too small since the latter is a
variational result, but the correct factor is
certainly smaller than 2 as is evident from the
fact that the classical potential energy, — 2p*/R3,
is partly canceled by the zero-point kinetic
energy of the oscillations. Analogy with the case
of simple harmonic vibrations would lead one to
expect a value near 1 for this factor; hence the
limiting value AE given by (22) cannot be very
much in error.

Resonance; general theory.—When the condi-
tion of resonance prevails between two inter-
acting dipoles, an additional type of degeneracy
is present and it becomes necessary to reinvesti-
gate the first-order perturbation effect. It was
seen in Section Ila that Eq. (13) was satisfied by
AE=0 because all (};---|V|---us) vanish. The
degenerate functions there included all those
having fixed /; and /,, but different m{ and m..
In the case of resonance (of like dipoles), where
lLi=141, ly=1, the class of degenerate functions
is made up of those just mentioned plus all those
with I;=1, I,=141 and all different m, and m..
The degree of degeneracy is now twice as great,
and we can no longer be sure that all V;; are
zero. Inspection will show that this is indeed
not the case, and we expect a first-order effect,
AE;, to be superposed on the (AE,)y calculated
in ITa. This first-order effect will be proportional
to R~ and therefore predominate at large
distances of separation.

We wish to solve the equation | V;;—AE,d;,|
=0 under these more general conditions. The
elements V;; divide into four groups in accord-
ance with the classification above:

(I, my, 141, mo| VI, py, 141, o),
(41, my, 1, mz] Vll+1, #1, Ly pa),
(l, my, l+1, M2[ V|l+1, M1, l, #z),
(l+1, m;y, l, "I2] Vll, M1, l+1, /‘2)-

The first group arises from states [,=1, ly=1I14+1
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combining with each other; the second from
states I+1, I combining with each other; the
third and fourth from intercombinations between
the two classes. The first two groups vanish, as
before. This, of course, also implies the vanishing
of all diagonal terms V;;, which will be of
interest later. The last two groups of V;; are
equal in pairs, and attention will at the moment
be concentrated on the first of these.

We omit writing the fixed indices and ab-
breviate (I, mi, I4+1, mq| V|I+1, w1, I, ue) into
(m1, ma| V|u1, us). Using again formulas (15) we
find

2 1
(my, ma| V]uy, pg) =—

R (241)(2I+3)

X{=2[0+m+1)(—mi+1)(I+m21)

X (I—ma+1) 1o (uymy) 6 (pams)

+3L0—mi1+2)((—mi+1)@—ma) (I —ma+1) ]}

X 8(u1, m1—1)8(us, mo+1)

+3[(+mi+2)(C+mi+1)(C+ms) I+ ma+1) ]F
X 8(u1, mi+1)8(ug, me—1)}---. (23)

The problem now is to solve the secular equation
after insertion of the above matrix elements.
The result of this procedure cannot be general-
ized, for the roots turn out to be often irrational
and exhibit little obvious regularity. A detailed
investigation of special cases would have to start
at this point. Our interest will be confined to
the simple case: [=0. There are, however, a few
general features of the first-order energy which
may be derived on the basis of (23).

The total number of degenerate functions
involved in the problem is 2X(2/41)(2/+3).
This is the number of roots of the secular
equation and hence the maximum number of
levels into which a given state (J,/+1) of the
two molecules may split. Since most, though
not quite all, of the roots may be shown to be
double, the actual number of levels is about half
as great. It is possible without difficulty to
compute the mean value of all the levels, as well
as their root-mean-square displacement. To see
how this is done consider the equation

| Vii=—vdi;| =0; 4,j=1,2---n.  (24)

The determinant may be expanded as follows:

| Vii—véi;] = (—o)"+ (=) 1T Vi

F(=o)" L (ViVi— Vi) + - .

>7

(25)

On the other hand, we observe that Eq. (24)
may also be written in terms of its roots, vy, vs,
Ut

I'i (v—2:;)=0,

=1

and this may be expanded
I @wi—v)=(—v)"+(—v)" 12 vi+(—2v)"?
i=1 :
Ao~ TodT+---. (26)

By equating coefficients of like powers of —v in
(25) and (26) we are at once led to the following
useful relations:

To=E Vi, @7)

2vwi— 2t =22(VuVy— V).  (28)
[%} 7 ]

i>7

The first of these allows us to compute the
mean of all the roots of our present problem.
The »; are now to be identified with the AE,, the
first-order energies. Since, as was already re-
marked, every V;; vanishes, the mean of all AE,
is zero. There is no resultant shift of the levels.
This result is of importance because it means
that the forces are just as likely to be attractive
as repulsive, so that the resonance effect averages
out in macroscopic situations involving dipoles
in all possible states of interaction. A weighted
average would retain only the squares of the
roots and thus destroy the characteristic de-
pendence on R3.

On substituting zero for Y w@: and also for
every Vi in Eq. (28) we find immediately

Zviz =23 Vii%
1

i>7

(29)

a relation which allows us to calculate the sum
of the squares of the roots.
According to (23)
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23 Vi2=2 % (my, ma| Vi, pa)

> mymappg

P! 2
T RS (204+1)2(2143)?
> L+ 1) =m 2L+ 1)2—me*]

+ 1[0 —2lm 14314+ mi>—2m 1 +-2]
X (12— 2lma+14me? —my]

+ 1[4 2lm 431+ mi2+2m,+2]
X[ 124 2lma+1+ma2+ms]}.

The summation on the right of the first line is
unrestricted although, on the left, half the V;;
are excluded. This results from the fact that on
the right we are summing only over elements of
the type [, I4+1—l+1, I; the other half of the
contribution to the sum comes from I+1, -,
I+1. When the summation is carried out in the
last expression above, all terms having m; or m,
as a factor drop out and we get, in view of
Eq. (15a), and after combining terms,

7.2 4 P4 2
2E Vit= (D

>

This, according to (29), is the sum of the
squares of the roots AE;. If we divide by
2(2141)(2143) and extract the square root we
obtain the root mean square of the interaction
energy:

o (B) AL
H(AE ] _(5) [QI+DQI+3)T RS

Resonance, special case.—To consider a special
case, let us compute the first-order forces between
two dipoles with 1,=0, l;=1. In forming the
matrix elements according to (23) we observe
that m; and ps are now permitted only the value
zero, and we get

2

1p
(0, mzl V‘Ml» 0)'—3“R‘;
+6(1’Vl2, _1)6(”1) _1)+6(m21 1)6(#17 1)]'

In forming the secular equation it must be

remembered that the above element is an
abbreviation for (001ms| V|14,00) in our com-
plete notation (cf. Eq. (13)). If the functions are
labeled ;- - -ys in the following order: (001-1),
(1-100), (0010), (1000), (0011), (1100), this
equation takes the simple form

—AE, ja 0 0 0 0
3¢ —AE; 0 0 0 0
0 0 —AE, —%a 0 0 ~0
0 0 —2%2a —AE, O 0 -
0 0 0 0 —AE, ja
0 0 0 0 ja —AE,
and its roots are evidently
1 p? 2 p‘.!
AE = 4——, - — 31)
3R3 3R3

The question now arises as to the relation
between this first-order effect and the second-
order effect expressed in Eq. (19). The latter
already represents an average and therefore
includes the present result whose mean is zero.
If one were interested in the interaction of two
dipoles in a definite magnetic state beyond the
first-order approximation here derived, one would
have to use a variational procedure and include
in the formation of the secular determinant not
only degenerate functions, as we have done, but
also functions representing different energy
states. If this were done we should find, for
instance, that for small R the roots with positive
sign in (31) would grow less rapidly than the
others because there are roots corresponding to
higher levels above but none below them.

London,?® in his treatment of resonance,
simplified the problem by including only a
limited number of degenerate functions. He used
only the functions (I, m,, I4+1, m2), ((+1, m;—1,
l, M2+1), (l+1, my, l, mz), (l+1, m1+1, l, Mo — 1)
and in that way obtained an expression for all
the roots in closed form (+as/R? in his notation
(cf. p. 274 of his paper)). That expression does
not yield the correct positions of the roots of the
complete secular equation, but may allow in
many cases a useful approximation, for it has
the same ‘root mean square’” as the true
solution.

The forces between rotating dipoles in indi-
vidual quantum states have not been of wide
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interest because as a rule they are small in
comparison with the dispersion forces, at least
for the simpler molecules. One application to
which the theory has lent itself thus far is the
variation of line widths of HCN bands with
rotational quantum number.?

b. Symmetric tops carrying dipoles

In classical theory, a rotating linear dipole
molecule spreads its two charges over a com-
plete circle and thereby annuls, in first approxi-
mation, its dipole moment. This is not necessarily
true for a symmetrical top carrying a dipole
along its figure axis. Thus one finds in that case
a first-order interaction proportional to R—? even
though the two tops may not be in resonance
states. Mathematically this ¢omes about because
the secular Eq. (13) corresponding to the case of
tops contains nonvanishing elements V;; The
details of the theory will not be presented here;
they have been discussed in a paper by Warren
and the author.?? The y-functions are in this
instance Jacobi polynomials, and the matrix
elements V;; can be computed easily from the
known coordinate matrices of these functions.
It turns out that the secular equation is rather
similar in its structure to the one encountered
with resonant dipoles. The forces are sometimes
attractive and sometimes repulsive and have a

vanishing mean. The root mean square is given
by

[(AEW] = (E) i v
3] T\ D)Ta(Jat 1) B3

a formula which presents considerable similarity
with Eq. (30). K and J are the usual quantum
numbers of the symmetric top. It is interesting
to note that the effect is zero when K, or K»=0.
All this is quite in line with what is known about
the linear Stark effect.

The second-order energy, corresponding to

(32)
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Eq. (19) was given by K. G. Carroll; ? it reads
2 I((J1+1)2—K,?
(AEm __P__[(_l__l__'_
3R R2U(J1+1)(2J:+1)
[ (J2+1)2—K,?
(Je+1) 2T+ 1) (14 T2+2)
K,? J2—K,?
+ + —]
Jo(Jo+1)(J141)  J2(2T:41)(J1—To+1)
K 2K ,?
+
Ji(J1+ 1) T2 (J+1)2
" Jr12—I<12 r (Jz+1)2—'K22
LA+ 1) @4+ 1)(Te= T+ 1)
K»? T2 —K,?
s ) @
JiJo(Ja+1)  Jo(2T2+1)(J1+T2)

where I is the moment of inertia about an axis
transverse to the figure axis. This, too, reduces
to (19) when K;=K,=0. But the effect (33) is
generally smaller than (32).

¢. Ruigid linear quadrupoles

Two linear quadrupoles have a potential
energy

V=(3/4R%©:0:[1—35 cos? 6,
—5 cos? 0,417 cos? 8, cos? 0,
+16 cos 8, sin 6, cos 8 sin 82 cos (¢1— ¢2)

+2 sin? 6, sin? 85 cos? (e1—¢2)], (34)

as may be seen from Eq. (6). The state functions
are again spherical harmonics. In contradistinc-
tion to the case of linear dipoles, the present V
gives rise to first-order energies, and makes an
investigation of the secular equation necessary.
Let us consider a state (lym:; loms), which is,
of course, degenerate with all other values of

TABLE II. Values of ((Os)a, (O1)as)/er? for rotating linear dipoles.

I me=—4 -3 -2 -1 0 1 2 3 4

0 (13, 14)

1 ) (44, 2¢) (3%, 1%) (1%, 25)

2 (34, 34) (34,24) (1154, 351) (%4, %) (14, 349)

3 (16, %) (13, 13) (U5, %5) (2345, 1}5) (U5 ¥s) (13, 1) (14, %6)

4 | M1 %) G H1) CMq, 2347) (3044, 2% 1) (3%, 1%7) (3%, 2%7) (31, 2347) (1, 41) (Gdu, 340)
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m, and m,. Through the first four terms of (34)
this state will combine only with itself; through
the fifth with (I, m,+1; l;, me—1) and with
(h,, mi—1; Iy, ma+1); through the last term it
combines with itself, with (l;, m,+2; I, m:—2)
and with (J;, m,—2; Iy, ma+2). Thus the secular
equation contains both diagonal and nondiagonal
elements, all of which must be considered in a
complete treatment of the problem. But as is
usual with the solution of secular equations,
there is no general answer in closed form. We
shall forego the rigorous task and present a
simple approximate treatment, based on the
observation that, after all, we find diagonal terms
in this case and hence an opportunity to neglect
the others. As a matter of fact the result thus
derived is in general fairly reliable.

The problem is to calculate (I1, m, by, m2| V|14,
mi, ls, ms). If we remember that the fifth term
contributes nothing and that cos? (¢;— ¢2) may
be replaced by 3, the whole diagonal element
may be written

(ll, my, l2y m2l Vllly my, l?v m?)
30,0,
4R

{2—6Z,2—6Z,2+182:2Z:2}, (35)

provided Z*= (I,, m1|cos? 6,|1,, m;) and a similar
definition holds for Z,®. Now one may easily
show that

| 22— 1—2m?
C@+3)@-1)

and if this expression is substituted in (35) with
subscripts properly attached, there results after
a bit of algebraic simplification :

60,0,

1=

R5

[ll(ll+ 1) - 3m12][12(12+ 1) - 3MQ2]
(20, +43) (2l — 1) (20+3) (2l —1)

36)

The main features of this result were stated by
London.!® Two points are to be observed in
connection with (36): first, AE; vanishes if one
or both of the molecules are in the lowest
rotational state (!=0); second, if summed over
all values of m, or of m,, the expression for AE,

vanishes. Hence there is no mean interaction in
first order between two quadrupoles. Both of
these characteristics are shared by the result of
a complete treatment in which the nondiagonal
terms are retained.

In addition to AE, there is also the second-
order contribution AE; which is proportional to
R, To our knowledge this has never been
calculated although for the case /=0 it is the
only one present. But we shall see below that
these quadrupole effects are in general (to be
specific: for simple molecules) subordinate to
other attractions, and for that reason they have
attracted but little attention.

Effect (36) decreases with distance less rapidly
than the second-order dipole effect (19). This
becomes significant when we observe that rigid
dipoles exhibit not only the attraction given by
(19), but (36) as well. For a linear molecule is
never truly a dipole, because its charges are not
an infinitesimal distance apart and infinite, but
separated by an amount not always inappreciable
compared to the distance of approach of two
molecules. Let us then investigate at what
approximate distance of separation effect (36)
begins to predominate for an ordinary rigid
molecule.

The molecule may be idealized as two opposite
point charges e a fixed distance r apart. For
h=l=1 and m;=m;=0 as an example we
obtain from (19) and (36)

|AE, |
IAE2|AV

@2 h?

23—
pt I

We wish to find the value of R for which this

expression is unity. Now ©2/pt=1/e? and

m/I=3 or 4X107% ergs for actual simple

molecules. Thus, if

(1074/e)R>1,  R>2.5X10~5 cm.

But at these large distances one is rarely inter-
ested in the van der Waals forces. Besides, the
quadrupole forces would be overshadowed by
purely magnetic forces at these large distances.
(Cf. Section C-V.)

It is interesting to note that interactions of
the type (36) are present also between atoms
whose normal states are not S states. As such
they have been the subject of detailed treatment
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in a recent paper by Knipp.?> He finds binding
energies amounting to a sizeable fraction of a
volt for interatomic distances of twice the
atomic radii, which indicates a possibility of
molecule formation (‘‘L valences.”)

A question to which we want to refer briefly
is why the dipole-dipole energy vanishes in first
order, whereas the quadrupole-quadrupole energy
does not. Classically, a rotating linear dipole
has no average dipole moment, and if its axis of
rotation were equally likely to point in any
direction, its quadrupole moments would be
equal and produce no field. In quantum me-
chanics, the latter condition is true only if /=0,
for then the y-function is a constant, and
equal weight is assigned to all axes of rotation.
If /0, that is no longer the case. Indeed one
may easily show that in general a rotating linear
dipole has different quadrupole moments along
different directions.

The calculation merely involves the study of

<®1>Av=f(Ylm)26'x2d(COS 0),

and of (®z)w and (@j)p, constructed similarly
but with y? and 2? in place of x% One finds that
(O1)w=(0B2)» in general, but (Osz)a= (O )
except in special cases. In Table II we list the
values of (@3)a and (©,)s (in parentheses) for
various / and m. The cross-elements 0, etc.
vanish automatically with the customary choice
of axes. The symbol 7 in the table represents the
(fixed) displacement of the charges.

2 po? , [(0ery| k) [2L(la+1)6(Ne, Lo+ 1) +120(Ng, Lo—1)]

The average dipole moments computed in a
similar manner, are clearly all zero. This explains
why there is a first-order interaction with
quadrupoles, but not with dipoles.

d. Induction effect

To treat the induction effect it becomes
necessary to shift attention from rigid to de-
formable molecules. It will be shown that
quantum mechanics leads to essentially the same
formula as does classical physics. The matter is
best discussed in connection with a simple
model : two interacting dipoles, one of which is
deformable (1), the other (2) rigid. The analysis
then proceeds exactly as in Section (a) as far as
Eq. (16). From there on, two things must be
remembered : first, molecule (1) has, in addition
to the closely spaced rotational energy levels,
certain widely spaced levels which correspond
to different vibrational or electronic states;
second, p; is the same for all rotational levels
belonging to one vibrational or electronic state,
but must be treated as a variable, er, in general.
The sum, X/ | Vi;|?/(E;—E;), may be split into
two, the first extending over all levels of molecule
(2) and all rotational levels of molecule (1)
associated with its lowest electronic or vibra-
tional state in which we suppose it to be; the
second extending over all other levels of molecule
(1) and, of course, again over all levels of
molecule (2). In the first sum, .2 may be factored
out as in (16), the sum yielding Eq. (19); but
the second sum becomes :

(37)

3 RS«

Here the index «; labels all states of molecule (1)
belonging to different electronic or vibrational
levels than the lowest one, and F(x;) — F(0) are
the energy differences corresponding to these
levels. These differences are in general much
larger than E(l;) —E(\;); hence the latter may
be neglected against them. When this is done,
however, the summations referring to the two
molecules may be carried out independently in
(37), and it is seen that the one over A; yields 1.
Eq. (37) thus becomes

[F(0) — F(xy) +E(l2) —E(\2) ](21:+1)

2 P22

3 RS «

 Tenal®

Fx—FO'

If now we recall the well-known expression for
the polarizability

,(enac?

F.—F,

(38)

2
a=-
3 «
we see immediately that the effect in question
produces
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<AE2>M = - alpzz/RG (39)

which is identical with the first term of (10a).
The entire expression (10a) would have followed
if a quadrupole moment also had been ascribed
to molecule (2), as the reader may verify by
the same method. This result is of course quite
general. Suppose, for instance, that molecule (2)
has no dipole moment in its normal state. Then
the entire first sum would have been absent, but
Eq. (39) is unaltered.

C. ForcEs BETWEEN NONPOLAR MOLECULES
(D1sPERSION FORCES)

I. Perturbation theory of dispersion forces
a. London’s general formula

The second-order forces between polar mole-
cules encountered so far are all caused by one or
the other of the following two mechanisms: The
rotating charges in the interacting molecules
have a tendency to rotate in phase; or there is
a momentary distortion of one molecule by the
other, and this distortion is in phase with the
motion of the charges in the mclecule producing
it. It is clear that these two causes are not
limited in their operation to polar molecules but
affect nonpolar ones as well.

Before presenting London’s theory it is well
to recall a few simple facts of radiation theory
and atomic structure. The usual expression for
the intensity of a spectral line corresponding to
a transition from a state (k) to a state («x), and
also the dispersion formula, involve certain
numerical constants known as f wvalues or
oscillator strengths, whose classical meaning is
the number of electrons taking part in that
particular transition. In quantum mechanics,
this number is not usually integral. Let us first
describe the transition (k)—(k) more exactly.
Among the quantum numbers denoted by (&)
there is at least one, m, on which the energy of
the state does not depend, except when an
external field is applied. A similar quantum
number, pu, exists for (k). The f value, however,
will in general depend on m and u. It will also
be different for different components of polar-
ization of the light originating in the transition,
or undergoing dispersion. Hence we define

2 M
f(z)km. xuzg';z]ka. xu[2(Ex_Ek)' (1)

Here X =3 ;x;, the sum being extended over the
positions of all electrons in the atom; M is the
electron mass. f® and f¢ are defined similarly.

These f values are of interest only in Zeeman-
effect observations. Usually one confines atten-
tion to the sum of the f's connecting a given
state (km) with all the degenerate states of «;
moreover, since the m value of the initial state
cannot be ascertained either, one takes a mean
over all m. This leads to the definition

1
FOr = X fPkm, (2)
2L41m, s

where L is the quantum number of angular
momentum for state k.. Now one may show that
in this process of summing, the dependence on
polarization is lost :

@ =V o= v =5k«

3

These relations are needed for the development
which follows. We wish to point out that they
are not restricted to one-electron atoms but are
perfectly general. To be sure, spin effects have
been neglected. They may, however, be included
without changing the result we desire. In the
following we treat multiplet states as a single
state.

The classical interaction between two atoms
or molecules is given by B (5). For the present
only the first row of V will be retained since it
yields the leading term at large distances. It
may be written

V=(e/R) (X, X+ Y Y,—22,2Z,), 4

the subscripts 1 and 2 referring to the two
molecules in question. They are considered
to be in states k; and ks. The elements
(kymikema| V| Bipskope) will in general not vanish,
as we know from the last section. For atoms in
S states, however, they are zero. Whether they
are or not, the average over all degenerate
states m, and m,, in which we are chiefly inter-
ested at present, is always zero. Turning then
to the second approximation of the perturbation
theory, we find
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i(kl» mlleKh #1)(}32, 7”‘2|X[K2v #2)+(‘ o l YI )((Yl o )

ed

AE,=— 3

=20+ |Z] )2

RS xipixeps

The summation over u; and u; may be performed
without regard for the denominator, which does
not depend on these quantum numbers. This is
fortunate, for the summation over u; and u:
annuls the cross terms arising when the numer-
ator of (5) is squared. To see this, we consider
3 uXkmoxw Y*im,u- For X we write R sin 6 cos ¢,
where the important factor is cos ¢. Now the
state function for the molecule, complicated as
it may be, depends on ¢ only through the factor
e™¢. The sufficient condition for this dependence
is axial symmetry of the Hamiltonian, and this
will here be assumed. Hence

1 peieteiv
ka, xp = (R Sin o)km. ‘“-——fme‘("‘”‘ﬂ)\"dﬁp
2w 2
= (R Sin o)lsm, n&'%[éu, m+l+6p, m—l]~
Similarly, one finds

1
Ykm, k= (R Sin 0)1.'1", Kﬂ';[ay, m+l~5u, m—l:]-
1

1 1 1 1
<AE2>A\: = AEz = —
2L,+12L,+1

>
2L1+1 2L2+1 myms
I (klml’X!"lHl) l 2] (kzmzfxf Kzl-tz) ! 2

)

E(k1)+E(k2) — E(x1) — E(xe)

The product of these two quantities obviously
vanishes when summed over pu.

Thus far will the simplification of Eq. (5)
proceed without further assumptions. If it is
assumed that the molecules have spherical
symmetry in states k; and «,

| 1
Z?ka, Kug"’:Zl Yim. wal
M H
=Z:Z1;m, xu}eE?l}le‘, xi.-)
»

and these sums also become independent of m,
so that

=3f“_ [ (k1| R|Kk1)|?| (k2| R|k2)|®
3 RS ues E(ky) +E(ks) — E(x)) — E(xs)

(6)

When this symmetry does not exist, a simple
formula may be derived for the mean of AE,
over all values of m, and m..

34_ ) I D I D I A IR AREDIE
RS cxems E(ky)+E(ks) — E(x1) — E(x2) '
When relations (1), (2) and (3) are used here, the result is
3 4 ﬁ4 kl 1 kK
(AEum o ¥ Sbue)/ e @)

2 RS M? fres [E(ky) — E (k1) [LE(k2) — E (ko) ILE(ky) +E(ks) — E(x1) — E(x2) ]

This formula is quite general ; it was first derived
by London.® It is applicable, of course, to the
case where 1 and 2 are different kinds of mole-
cules if E(k1) and E(k,) refer to the two different
sets of levels and a similar distinction is made
with respect to f(kik1) and f(kexe).

One interesting feature of van der Waals
forces is at once apparent from (7). Suppose

k1 and k,; denote the normal states of the mole-
cules. Both f’s are then positive, and E(x) > E(k).
(AE;)w is then negative. Hence the general
theorem regarding dispersion forces: Molecules
in their normal states attract each other. The
dominant part played in formula (7) by the
“dispersion f values’’ has given the forces their
name.
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There is no essential difference between the
forces here under discussion and other second-
order van der Waals forces, for instance those
expressed in Eqs. B(18), (19) and (33). They
may all be written in the form (7). One can
easily show with the use of Egqs. B(15) et seq.
that for a rigid rotator

2 1
f(l, )‘) =_—““—:(l+1)25x. z+1"‘l25x. 1—1}'
321+1

If this expression is substituted into (7), there
results Eq. B(18). Even B(39) may be regarded
as-a special case of (7). To be consistent, there-
fore, we should apply the name ‘‘dispersion
forces” to all second-order interactions, whether
they refer to polar or nonpolar molecules.

The usefulness of the formulation in terms of
f values lies in the circumstance that these are
sometimes known from empirical dispersion
formulas, whereas the matrix elements appearing
in (6) etc. are usually difficult to calculate.

b. Spectal case: atomic hydrogen

For atomic hydrogen an exact theoretical
evaluation of Eq. (7) is possible. f values have
been calculated by Sugiura.?® In performing the
indicated summations the continuous energy
states beyond the series limit must be included.
When dealing with the nondegenerate normal
state of H one may replace (AE;)s by AE,, and
x may be taken to be the principal quantum, ».
Also, E(x) —E(k)=(1—1/n?)(e*/2a). Then

12 ¢?
AEQ = — —_—
(R/a)® a

f(ny) f(1ny)

e (L= 1) (1= m9 ) 2 — 2 — ng~?)

On evaluating this sum numerically, Eisenschitz
and London!®* obtained

6.47 e?
(R/a)* a’

2= =

Later calculation by a variation method?” (cf.
Section III) indicates that a more exact value
of the constant is 6.499.

c. Approximate formulas

The f values needed in Eq. (7) can often be
obtained from the empirical relation between
index of refraction and frequency of light. The
index of refraction, 7, is expressible in terms
of the polarizability «, in a familiar way:
(r+1)/(r*+2)=(4r/3)(N/V)a. On the other
hand, a is related to molecular constants through
the dispersion formula:

e2h? Fex
gp=— . (8)
M T (E—E)*—h»?

The index (k) specifies the state of the molecule
to which the polarizability refers. Eq. B(38),
which defines the static polarizability for the
ground state, is the special case of (8) for »=0.
Much work has been done to correlate measure-
ments of 7 for the entire range of visible fre-
quencies with values of fi, and of E,— E;.”® The
tendency is, of course, to fit the data with as
few terms in (8) as possible. In many instances
this can indeed be done with sufficient accuracy
in the measured range of r by using only a
single f. This implies one of two things: either
the f value corresponding to a single transition
is very much greater than all others, or there is
a small range of energies E,— E; to which the
most intense transitions are confined. At any
rate, one must not lose sight of the fact that the
use of a single term dispersion formula is always
an approximation valid only in a limited fre-
quency range. All empirical material relating to
Eq. (8) has reference to the normal state.

Suppose, then, that (8) contains but one term
for which the energy difference is A. Let o be
the static polarizability. From (8),

f=(M/e*h*) A%, )

If both molecules have one-term dispersion
formulas, (7) may be written

3 A,
(B = ———
2R% A +-A,

(10)

a10a201

the subscripts here refer to the different mole-
cules. In actual cases the quantities A are often
nearly equal to the ionization energies of the
molecules. For that reason formula (10) is
sometimes used to estimate dispersion forces
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even when no dispersion data are known, by
substituting ionization energies for the A's.
Table IIT contains numerical values obtained
with the use of (10) for a number of substances.
It often happens that a one-term dispersion
formula is valid for one of the interacting
partners, but not for the other. One is then
entitled to substitute (9) in (7) for one of the
molecules:
e*h?
<AE2>AV= e —-—Aloq“
2R¢ M

Skaks)

X . 11
"“-} [E(Ka)“E(kz)][E(Kz)—E(kz)"f'A] ( )

This formula is useful when it is desired to com-
pute the forces between Hg and rare gas atoms
which give rise to loosely bound van der Waals
molecules,'® and also in the calculation of the
displacement of Hg spectrum lines by pressure
of a foreign gas.?

The validity of Eqs. (7)—-(11) is limited to
large values of R. They are never correct at
distances smaller than the sum of the gas kinetic
diameters of the molecules, and indeed at this
distance the terms corresponding to the last two
lines of Eq. B (5) must be considered. A very
exact treatment of these interactions is hardly
warranted at present, however, because of the
uncertainty in our knowledge of the exchange
forces and of interpenetration which also be-
come effective at these distances. We turn now
to a simple consideration of dipole-quadrupole
and of quadrupole-quadrupole contributions to
the dispersion forces, first computed for H—H
and for He—He interactions.?°

d. Contribution of quadrupole interaction to dis-
persion forces

It is to be noted that the higher terms in
B (5) give an effect not only in the case of mole-
cules with quadrupole symmetry, but generally,
even for spherical distributions of charge, and
this for the same reason that the first term con-
tributes when there is no permanent dipole
moment. The present considerations are limited
to the forces between two H and two He atoms
in their normal states. Denoting now the whole
of B (5) by V we have

sy yy VI W) (12)
: K1K2 2E(0)"‘E(K1)-’E(K2)’

the index 0 here refers to the ground state.
Being interested in an approximate answer, we
make use of the following simplifying circum-
stance. For H, the first excited level lies (1 —1/22)
times 13.5 volts above the normal state, hence all
discrete excited levels lie between 10 and 13.5
volts. The continuous states beyond this limit,
to be sure, extend to «, but their weight rapidly
diminishes. For He, the case seems even more
favorable, all discrete levels due to excitation of
one electron lying between 20.5 and 24.5 volts
above the ground state. Above these are doubly
excited and continuous states of low weight.
It seems plausible, therefore, to replace the
denominator of (12) by a mean, (—E),, which
one would expect to be in the neighborhood of
twice the ionization potential. Thus

1
AE,= —

2'[(00] V]ky, x2) |

Av K1K2
( ]'/2)00. 00— ( ]/,00, 00)2

= 13)
2EAv (

the last step by matrix algebra.* But (V2)g0, 0o
involves only the state function for the ground
state of this system, and this can be computed
with relative ease. On the other hand, we already
know that Voo, 0o is zero. In computing V2,
cross terms which are odd in the coordinates of
either atom 1 or 2 may at once be omitted for
they would wvanish in the integration over
[¥o(1)¥o(2)]. When use is made of the spherical
symmetry of ¥, and also of the separability of
Yo (for He) into factors, one for each electron
(we shall use Slater functions in the calculation;
cf. below), Eq. (13) turns into

2N? ¢t o 3 \
= e— — — —_— 4
AE, IR [(f oo+ 2(7 )o0(72) 00

21

— (2. L
Yt + (14)
A distinction between the two atoms is here no

* This is valid because the state functions with which
the matrix elements are formed are a complete set.
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longer necessary because they are assumed alike.
The symbol N in this formula stands for the
number of electrons in each atom.

For H, ¢, is known exactly; it is 2a~te"/s,
The matrix elements are easily computed:
(") o0=3a% (r%)e=22.5a*. We define R'=R/a,
with a=0.528A, and we also recall that the
ionization potential of H is — Eq=¢?/2a. Eq. (14)
then reads, for hydrogen,

24 Ey? 22.5 236
{ TR
R? R
We have already pointed out that E, should be
about —2E,. If this were substituted, the factor
outside the brace would be 12E,/R’®=6e?/R’%a.
We know from Section (b) that the correct
numerical factor is 6.5. This shows the extent to
which our simple method is in error.

The van der Waals minimum for two H atoms
comes at about R'=6.5. At this interatomic
distance, the dipole-quadrupole term contributes
about %, the quadrupole-quadrupole term about
1/7 as much as the first term alone.

Pauling and Beach,?”” using a much more
elaborate variational method, obtained for the
bracket expression

19.14 1747

AEy= —— —

R'S E,,

(15)

These coefficients, while more exact than (15),
may be a little too small because they were
derived variationally.

For He, ¢, may be approximated by Slater
functions® of the type

r\ "! Z—s\r
() ()
a n Ja

for each electron. Here, Z—5=1.688, n=1, and

(1’2) 00= 1.05&2, (f‘) 00= 2.79(14.

On introducing these values into (14) we find
4 et 5.86 21.8
AE,=— [0.739+———+ +}
R'S a?E,, R'? Rt
If again we put E, =twice the ionization energy
of He, we obtain

0.70
el

79 30
1+—4——+ - ] X107 ergs,
R'* Rt (

AEy= —

16)

A variational method (cf. Section C III) yields
0.68 in place of the factor 0.70, which shows that
the replacement of E, by 2E, is not quite per-
missible. The other terms, too, are affected by
this error, but not necessarily in the same way.
Page’? has made a careful study of the dipole-
quadrupole term in He. Using a variational
method he calculated AE, without resorting to a
Taylor expansion of the classical perturbation
theory, and showed that its use is proper. His
numerical dipole-quadrupole term is 6.26/R’ in
place of the 7.9/R". The last term in (16) rarely
matters. Buckingham,® also using a variational
method, finds 7.76/R’? for the ratio of the second
to the first term in braces.

At the van der Waals minimum for He, which
occurs at about R’=35.5, the second term con-
tributes  as much as the first.

II. Interaction between two oscillators

A good deal of qualitative and semi-quantita-
tive information can be derived from considera-
tion of a simple molecular model: the simple
harmonic oscillator. This example has already
been treated several times,!: 18 3¢ but attention
has always been confined to the dipole-dipole
term. We wish to present briefly a more com-
prehensive treatment which allows us to estimate
the relative magnitudes of the higher contribu-
tions in many instances.

Let us represent the two interacting molecules
by two isotropic three-dimensional oscillators.
The state function describing this system in its
unperturbed state is a product of six factors,
one for each coordinate, (x;- - - 22), of the form

Hy(Bx)le Pt =y,

H, here stands for the nth Hermite polynomial,
and each coordinate is supposed to refer to the
center of mass of its molecule. The parameter 8
measures the stiffness of the oscillators. It is
related to the polarizability « and the classical
frequency » as follows:

B=e*/ahv. an

As before, we regard the V of Eq. B (5) as the
perturbation and calculate X_'| Vi:|?/(E.—E;).
The function for the lowest state is

Yo=(8/m)} exp [—3B(r*+72") ],
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and E;=hvY (n+%), the sum extending over the
six quantum numbers associated with the six
coordinates. The calculation of V), involves
nothing but the elementary formulas for the
oscillator matrix elements. It will be found that
the first line of V causes ¥, to combine only with
doubly excited states, the second line with triply
and the third with quadruply excited states;
the corresponding values of E,—E; are 2k,
3hv, 4hv. When the computation is carried out,
one finds

3et 1 45 1
AEy= — = — o .
2 RS 2hy-B2 4 R 3hy-g
315 ¢ 1
8 R 4}y

or, by use of (17)
3athy 15 a3(hv)? 315 of(hv)?

AEy= —— —— —
4R 4 RS 32 RV

. .(_1 9

This result is not sufficiently significant be-
cause we have assumed that each oscillator con-
tains but a single charge. Suppose now that
there are f charges, all vibrating with the same
frequency ». One can then see easily that (17)
must be replaced by

B=fe/ah,

and all terms in the equation preceding (18) are
multiplied by f2. The result will then be, in
place of (18),

B 3athy 15 ad(hv)? 315 at(hv)?
A — —— —— S —_— .,
* 4 feRS 32 f'RO (19)

If it is desired, » may be eliminated from this
equation by the relation

e/ f\*
= —) ,
2w \aM

which is valid for oscillators, so that it reads

3 fad\} 15 «?
AE2=————he(— vl
4RS M 4R®* M
315 Ay af \!
- — ) —--+. (19a)
32RYW ¢ \ fM?

M is here, of course, the electron mass.
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The model with whose aid this formula, re-
cently proposed by the author,?® was derived is
indeed a highly idealized one. Its chief charac-
teristic is that it possesses a single frequency.
Now there are many molecules and atoms which
absorb one frequency with overwhelming in-
tensity in their normal state, namely those
having a one-term dispersion formula. In a crude
approximation their vibrating charges may per-
haps be said to be bound by simple harmonic
forces in their normal state. For these molecules
the (single) f value may at once be obtained
from the dispersion formula. Eq. (19) is of course
not accurate even when applied to them; un-
doubtedly the errors in the second and third
terms are greater than in the first because they
involve higher moments of the frequency dis-
tribution. But knowledge of the rough magni-
tudes of these higher terms is often useful. In
Table III are listed a number of coefficients com-
puted with its use. In cases where the dipole-
quadrupole coefficients are known from other
sources, the second term of (19) agrees sufh-
ciently well with them.

The first term of Eq. (19) amounts to London’s
formula (10) with which it agrees when A there
is replaced by its equivalent, hv. The first term
of (19a) has a great resemblance to a formula
given by Slater and Kirkwood ;¢ we shall return
to it in the next section.

II1. Variation theory of dispersion forces

Shortly after the appearance of London’s
work, an entirely different attack was made
upon the problem of dispersion forces by Slater
and Kirkwood.?®* Employing a variational method
due chiefly to Hassé®” they calculated the
coefficients of R~® for a number of molecules
having spherical symmetry. Similar methods
have been used frequently afterwards in con-
nection with the problem of van der Waals
forces; because of their fruitfulness we wish to
discuss the essentials of Slater and Kirkwood's
method in this review.

The general problem to which the present
formalism provides an answer is the same as
that of the perturbation theory: We are given a
system with a Hamiltonian operator Hy, and we
know the function ¥, describing its state, as well
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as its energy E, in that state; for
Holpo:Eolpo. (20)

A known perturbation is applied to H,, changing
it to Hy+ V. The question is: what is the effect
of this perturbation upon ¢ and E? Or, in
symbols, what are the solutions and eigen-
values of

Hy=Ey? (21)

The answer given by perturbation theory is
often unwelcome, for unless the first-order per-
turbation is finite—which is not the case in the
problem of dispersion forces—the answer in-
volves all Vy; and hence requires a knowledge of
all ¥, besides y,. This knowledge is rarely avail-
able. The method to be described avoids this
difficulty.

It makes use of the basic fact that the integral

(Hyw=N? f PHodr=E, (22)

where N=[f¢*¢dr]

and this is true if ¢ is any continuous function.
If it were chosen identical with the ¢ satisfying
Eq. (21), the equality sign would hold. In the
Hassé method, one arbitrarily takes

e=vo(1+v), (23)

where v is a function to be specified later, and so
adjusted that the integral (H)\, becomes a
minimum. Let us first calculate (H ), using (23).

Hy=Tun+ Uy, in which U is the potential
energy. But Tw=23_ (T )n, where

(T = — (h%/2M;){3?%/9x:*)n. (24)

The summation here extends over all coordinates
of the problem, and the M, are the masses of
the particles involved. Now it happens to be
advantageous for our present purpose to trans-
form (82/3x2)a. If we denote differentiations with
respect to x by primes, we have

<«9x1 > f —_—"’dT“f%*(1+v2)¢/o"

+f¢o*(1+U)[2‘l),¢o'+¢loi)”:)d‘r. (25)

v is understood to be a real function. We now
wish to prove that the last integral on the right
reduces to — S Yo*yow'?dr. To do this, we expand

f Yoty *dr = f Yordo(140)"

. f (14+0)[¥ebo(1+0)' Tdr.

The last step follows by partial integration in
which the integrated term vanishes. When the
differentiations indicated in the final integral are
carried out, it is clear that

f Yopo'dr = — f (140) QUe¥'v + ¥ty
Hence Eq. (25) may be written

N-@/oxin= [ ttapadn— [ovarar,
and as a consequence of this and of (24),

N"(HO)A,,=f¢o"‘(1+v)2H¢z0dr

+— f WE— ( )d

Now we recall that H=H,+ V, and that y,
satisfies Eq. (20). With this substitution,

<I{)AV=E()+N2{ [(1 +v)2 V]oo

SE G L) e

The two subscripts, 00, indicate as before matrix
elements calculated with the function ..

Thus far our development has been perfectly
general and free from approximations. (H) is
indeed an upper limit to the energy we seek.
We can go another step further, and say that
(H)w—E, is an upper limit to the perturbation
energy due to V. But this depends very clearly
on the supposition that E, is the true eigenvalue,
and ¢, the true eigenfunction of the unperturbed
problem. In most applications of the present
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method, ¢, is only an approximate solution of
Eq. (20). In that case the quantity (H)u—E,,
computed from (26), loses its character as an
upper limit; it may be in error either way, but
is still in general a good approximation. We
shall put

AE-—"—‘(H)AV-EO

and make the further supposition that 2® is
negligible as compared with ». This may further
impair the limit character of the result. Eq. (26)

now yields
h? 1 v \?
Voo+2@V)go+— 22 ““[ "‘) ]
2 i Ml \ox; 00

AE=

(27)
14vq0

(a) Polarizability

Calculation of the static polarizability is not
only an instructive and simple application of the
present method, but its result will also be
needed in establishing a relation between van der
Waals forces and polarizabilities. We consider
an atom containing only closed shells of electrons
and we simplify the problem at once by ignoring
the contribution of the inner shells to the
polarizability. This will introduce an unknown
error with the heavier rare gases, but the error
is small because the internal electrons are rigidly
bound with respect to small perturbing forces.
Let the number of electrons in the outer shell be
N. When a constant electric field F is applied
along the z axis, the additional potential energy is

N
V= FeZz,-

=1

zi, the coordinate of the 7th electron, is measured
from the nucleus as origin.

Yo will be very much idealized : we shall take
it to be a product of individual electron functions,
each of which has spherical symmetry. This is a
good assumption for He, and not unreasonable
for closed shells of electrons in general. As a
consequence of it, (x:®)oo=¥:®oo=(2:)0s, for
every 1. Besides, it is true, of. course, that
(x.')oo= (yi)00= (Z,‘)oo=0 for every 1.

In calculating the quantities which appear in
(27) one observes that V4=0. v is an arbitrary
function, to be fixed in accordance with the

nature of the problem. The trick in Hassé’s
method is to let v be proportional to V and to
fix the constant of proportionality by making E a
minimum. In the present case, somewhat greater
generality may even be achieved by putting

V= Z)\iz,-

in which the N’s are variation parameters. A few
steps below, it will appear that every \; is pro-
portional to F, the perturbing field, and there-
fore small. Hence it is proper, for small fields,
to neglect (2%)oo against 1, which was done in
arriving at Eq. (27). At the same time it is
evident that the polarization energy in strong
fields is not correctly given by that equation.
There are indeed saturation effects which appear
in the calculation when (2?)y is retained.

(@V)oo= Fe2Ni(2:2;) 00= FeX_N\i(2:) 0.
[%) 1

Furthermore, dv/92;=X\;, v00=0; hence Eq. (27)
takes the form '

AE=2F€Z)\5(Z,‘2)oo+(ﬁz/zM)Zki2. (28)

If this expression is to be a minimum
Ni=—(2M Fe/ %) (2:%) o0,
and this reduces Eq. (28) to
AE=—(2M/m*) Fe* L (2:%) 00

Finally, because AE= —1aF?, we find

a=(4Me*/h?) Z(z.’) 002 (29)

(b) Dispersion forces

The dispersion forces between two molecules
whose yo-functions satisfy the conditions dis-
cussed are easily calculated by the same method.
We now append subscripts to refer to the two
molecules; ¢, is understood to be the product
Yo(1)¥0(2). Limiting ourselves to the dipole-
dipole energy, we have

V=ZV:‘;';
if

Vii=(€?/R)(x1:* Xaj+y1:* Vaj — 2215 89)) ;
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¢ runs from 1 to N;, the number of electrons in
the outer shell of 1, j from 1 to N,, the number
in the outer shell of 2. Observe that again
Veo=0. We now put

v=2_Nij(x1%9;+ Y1iy2i — 281:22)
ij

in complete analogy with the former example.
Then Voo =
eZ

(@V)oo =E‘ Z [(xuxzy‘f'ynyz;

7kl

221:32) Nkt .

X (x1xX20FY16Y2r — 221x221) Joo

e2

= }3‘3 - NijLxxe 2 y12ye 0 +421:%22;% Joo
1

6e?
= —R—" Z Nii(21:2) 00(2272) 0.
]

The element (21:%)¢o refers to the first atom alone
and is the same quantity as that appearing in
Eq. (29). Thus, to use (27), there remains only
the calculation of > ;[(8v/0x:)?Jos. The summa-
tion index in this expression runs over all
electron coordinates, 3(N1+XN,) in number. We
first consider the sum over all coordinates of
molecule 1. Since dv/9x1;=Y_ jAijx2;, and similarly
for y and z, we find

2 (o) * G + ()

=Z Z Niihin(xoX o+ V2iyor+422;20k).

=1 j,k=1

The 0-0-element of this quantity is simply
N1 Ng

2 2N (2D 00t (252 00+4(22i%) 00
i=1 j=1
=6Z)\i;‘2(22;‘2)oo-

The remainder of the summation yields the
matrix element 6 ;;\i2(21:%)0, and it is the sum
of these two expressions which appears in Eq.
(27). This now reads:

e?

AE=12%" { —N:i(21:%) 00(227%) 00
ii |R3

h2
+W)\i,~2[(zliz) oo+ (221'2) 00]} .

If it is to be a minimum, every
2e2M (21;2) 00(22,'2) 00
R3p? (zli2)00+(22j2)00,

so that
N 12M et “5 (21:%) 00%(22;2) 00® (30)
h* R® i (21:%) 00+ (22 )00

In going on from here toward numerical evalua-
tion of the matrix elements the y,-functions
have to be specified completely. For heavier
atoms, the Pauli principle has to be taken into
account; i.e., the yYo-functions must be written
in determinantal form. Details may be found in
the work of Hellmann and Buckingham dis-
cussed below.

It is perhaps more interesting to seek a rela-
tion between (30) and (29) from which the matrix
elements are eliminated. This can be done if we
make one further simplifying assumption, indeed
one which is strongly suggested by those already
made: that all matrix elements (21:%)g0 be equal,
regardless of 7; and similarly for the (22:2)q0.
Restriction to a single closed shell was necessary
chiefly to make this assumption plausible. Eq.
(29) now reads

a=4NMe2(z?) o/ h? (31)
and (30) becomes
3 eh o0
2R® (M)} (as/N1)t+(aa/ N2)b
or, if the molecules are similar,
3 el yNo?
L S
4 RS

This formula is due to Slater and Kirkwood.36- 38
In Table III may be found values of the dipole
coefficient computed from it. Agreement between
these and the results of London’s formula (10)
is not always good, even when a one-term dis-
persion formula describes the index of refraction
quite well. It seems that it is impossible to
assign general superiority to either (10) or (32),
for both contain uncontrollable errors due to
simplifications. Only for atomic hydrogen does
(30) carry assurance of representing an upper
limit.
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An interesting side light falls on the Slater-
Kirkwood formula from the developments of the
preceding section. Eqs. (19) and (19’) show that,
for a simple oscillator, the latter formula be-
comes identical with London’s. They remain
identical for molecules with a single absorption
frequency if N in the Slater-Kirkwood formula
is replaced by f. The reason why the latter gives
larger results than Londen’s is simply that f is
always smaller than N. Now N is a rather
doubtful quantity, as the derivation of Eq. (32)
has shown, and one wonders whether the in-
sertion of an experimentally determined f might
not represent a better approximation.

The analysis leading to Eq. (32) has been
entirely without refinements, and stands defi-
nitely in need of generalization. In the first
place, one should include the inner shells of the
molecules. This, according to Hellmann,?® leads
to the formula

3 eh

2 (M)} % (ai/mi)* 4 (o, m))}

(e 21 53

in place of (32), where ¢ Jabels the subshells of
molecule 1, j those of molecule 2, and #; and n;
are the numbers of electrons in each subshell.
The result is obtained in the same manner as
(32), the only change being the use of one varia-
tion parameter \; for every shell, \;; for every
pair of shells. Hellmann did not permit exchange
between the electrons in different shells, but
Buckingham,* in a more complete analysis,
showed that inclusion of exchange does not alter
the final result, though it gives better numerical
values for the polarizability.

Another atomic property, the atomic dia-
magnetic susceptibility, is sometimes drawn into
the discussion.?’- ¢t The advantage gained there-
by lies in the fact that the resulting expression
for the dispersion forces no longer contains the
ambiguous number N. A simple procedure is the
following. x, the diamagnetic susceptibility, is
given by the formula:

x=(e2/2Mc*) 3 i(2:) 00 (a)
Under the assumptions of our analysis, therefore,
(28 wm=(2Mc*/Ne?)x. (b)

Since, from (31),
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(29 00=Ha/4MNe*, (c)

we can form an expression for (z%)g, which is
free from N by combining (b) and (c):

(2% 00 =h2a/8 M?c?x. (d)
But Eq. (30) may be written
12MN1N2e* (212)002(22%) 00°
AE=— (e)

(212 00+ (22?) oo.

We express the elements in the numerator by
relation (c) and in the denominator by (d),
obtaining

KRS

6Mc? a1y
AE=— . (f)
RS ai/x1+az/x2

One can see that this result is not likely to be
very precise. Eq. (a) is an exact expression,
Eq. (e), however, very approximate. Thus can-
cellation of errors is impossible. But partial
cancellation of errors takes place when an
approximate expression for «, like (29), derived
by the same method as (e), is substituted in (e),
and that is the reason why (32) represents a
better approximation than Eq. (f) here deduced.
London! shows that the use of (f) leads to values
which disagree very much with those derived
with the use of his formula C (10). The reason for
the discrepancy is the fact that the physical
mechanism to which dispersion forces owe their
existence is quite different from the interaction
of electrons with a magnetic field, and that the
use of empirical matrix elements of the type
(X z:)m?, i.e., f values, is therefore more natural
to the problem than the emphasis on 3 :(2:2)00,
i.e., susceptibilities.

IV. Additivity of dispersion forces

Many applications of van der Waals forces, in
particular to the problems of surface tension of
liquids, heats of sublimation of crystals, require
them to be additive. Attention has been called
in the introduction to the additivity of forces
due to the induction effect. This property is not
shared entirely by the alignment forces between
polar molecules, and it is absent in all first-order
interactions between them. The dispersion effect,
however, is additive,'®c as one may easily show:
by the perturbation method.
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Forces are said to be additive when the total
energy of interaction of 7 particles is composed
from the energy of pairs, AE;;, as follows:

AE= ZAE ij.

i>7

(33)

We shall show that this relation holds for all
interactions derivable by second-order perturba-
tion theory, provided the classical interaction
has the property of additivity.

Consider #n molecules, sufficiently far apart so
that the state function may be written

Vi=y(k)¥(k2) - - -¥(kn),

in which k& is the set of all quantum numbers
of the pth molecule. They are subject to a per-

turbation
V=3 V().

i>7

1 and j here denote all coordinates pertaining to
the sth and jth molecules. In our case V(3j) is
the Coulomb energy between molecules 7 and j,
and these, as we know, add in the manner (33).
We wish to calculate

f‘l’k* V‘I’;d‘r
AE,= ¥

Kjooe

(34)
" E(k,)—E(x,)

p=1

But because of the orthogonality of the y(k,)
for different p, and because V(ij) contains only
the coordinates of two molecules,

f‘l’k* V‘I’AdT“—-‘Z (k‘k,] V!K,‘K,‘) H B(k,K,).
> s, j
If this expression is inserted in (34) the result is

AE,=Y ¥ [ ik V] ki) |2
S E(k)+E(k) — E(x) — E(x;)

The sum Y/, however, is simply the interaction
energy AE;;, hence the proof of Eq. (33) is
completed. It amounted merely to showing that
the property of additivity, possessed by the
classical potential, is not lost in the quantum-
mechanical manipulations. .

It is clear at the outset that first-order

interactions do not share the simplicity expressed
by Eq. (33). For they are the roots of secular
equations which are in general irrational.

V. Relative magnitudes of effects

Brief comment should be made about the
relative magnitudes of the various effects treated
so far. It is already clear that atoms possessing
no permanent asymmetry of charge distribution
exhibit only the dispersion effect; if these atoms
exist in states other than the S states a weak
first-order force of the type B(36) is superposed
on the latter. But molecules having permanent
moments are subject in general to dispersion,
alignment and induction effects. This distinction
is really historical, for we have seen that all
three spring from the same root: The dispersion
effect is obtained if, in the second-order perturba-
tion formula, the summation is extended only
over matrix elements corresponding to large
(electronic and vibrational) energy differences;
the alignment effect, by summing only over small
(rotational) energy differences; the induction
effect involves summing over large differences
in one and small differences in the other mole-
cule.!¢ To the extent that rotational energies
may be neglected against electronic energies,
the three effects may simply be added when
occurring simultaneously. Tables of numerical
values may be found elsewhere.!: '8* (Cf. also
Table IV.) Of the molecules for which data are
available, those having dipole moments=10-!%
e.s.u. exhibit induction and alignment effects so
weak that they are practically negligible in
comparison with the dispersion effect. The
induction effect is insignificant in all known
cases. For-NHj alignment and dispersion effects
are about equal in magnitude; for HO and
HCN the former predominates strongly.

The question finally arises as to the magnitude
of purely magnetic interactions. The electron
spins produce first-order forces proportional to
R unless they are paired within a molecule.
A simple example will suffice to show their order
of magnitude. An H-atom in its normal state
exerts dispersion forces upon a similar atom,
given approximately (C-Ib) by

|AE]| = 3p*/E,R¢,

where p=ea, the instantaneous dipole moment
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of the atom, and E,= —e?/2a. The magnetic
interaction energy

[AE,| ~u*/R3,

where p=73ap, and a=1/137, the fine structure
constant. The ratio

|AE,| o E, az"’(R)3
=— —R3=—(—).
|AE| 12 p? 24\ a

This is greater than unity if R>75a=40A. But
at these large distances one is rarely interested
in van der Waals forces. It is also to be remem-
bered that these forces vanish on the average
over all orientations.

Forces due to orbital magnetic moments are
of the same order of magnitude and hence may
also as a rule be ignored.

D. ForcEs BETWEEN EXCITED MOLECULES

The weak quadrupole forces between molecules
and atoms not in states of spherical symmetry
have already been discussed (B, Ilc). They
properly belong in this section as well. In
addition, there are two much stronger kinds of
interaction to be considered when one or both
of the molecules are in excited states. They are:
(1) resonance between electronic states and
(2) dispersion forces of the type discussed above,
but with new and interesting properties.

I. Resonance forces

The condition of resonance between rigid
dipoles has already been studied (B-IIa). It
arises when one molecule is capable of emitting
a quantum of energy which may be received by
the other. In the case of rigid dipoles the quan-
tum is of infra-red frequency, but the situation
of resonance may clearly be much more general.
Its most interesting example is the interaction
of two molecules or atoms, one of which is in its
normal state, the other in an excited state which
combines strongly—by emission of radiation—
with the normal state, for instance the state
from which the ‘“resonance line’’ can be emitted.

Let us consider the case of two similar atoms,
one in its normal state (with L=0), the other
one in an excited state (with:L=1). There will

then be resonance degeneracy between the two
functions

Vi=¢o(1)¥1(2) and Wa=y1(1)¢e(2).

The perturbing potential is taken at present in
the form C(4), and the matrix elements between
¥, and ¥, are at once seen to be

Vii=Ve=0;

Vie= Vo= (e?/R*) [ | Xo1|*+ | Y01|2—2|Z01|?},
the subscripts on X, Y and Z referring now to
the states of a single atom. On referring back to

the definition of f values, Eq. C(1), we observe
that the V elements may be written

3 U etiw—2hel. (1)
2RS M(E;— Eyo) Jo ot = 2fur’}.

The secular equation reads

—AE Vi

Vie —ae| =0
and its solutions are
AE= + V12. (2)

To evaluate Eq. (1) explicitly it is necessary to
know the value of the magnetic quantum number
associated with ¢;. If m=41 or —1, f*=fv and
f7=0;if m=0, f*=fr=0. A glance at the matrix
elements of X, ¥, Z [1I, (15)] shows that the
resonance forces are twice as strong when m=0
as when m=41, a fact easily connected with
the charge distribution of the excited atom : when
m=0, the long axis of the distribution points
toward the unexcited atom: when m=+1 it
stands across the line connecting the atoms.

The mean of AE over all three values of m
vanishes, because the mean of Vj, is zero as
Eq. C(3) shows.

Assignment of definite values of 7 has meaning
only when a magnetic field is present. Strictly
speaking, therefore, the degeneracy with respect
to space quantization should have been con-
sidered in setting up the secular equations. We
have not done so here, for the result would be
the same.

An extension of the present analysis to more
complicated cases is hardly necessary. The main
features of resonance forces are: (1) they are
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proportional to 1/R*; (2) their strength is
proportional to the f value of the transition
connecting the two resonance states; (3) they
vanish in the mean over all m wvalues and
(4) numerically, they are of the order 100 times
as strong as the dispersion forces near the
closest distance of approach. Resonance forces
are not additive, which is at once apparent when
an attempt is made to solve the secular determi-
nant for more than two atoms.

II. Dispersion forces between excited atoms,
anisotropy

Forces between excited atoms are of primary
interest in connection with the problem of
pressure effects on spectral lines. As might well
be expected, they are of a complicated nature and
not amenable to general treatment.

| (1mey | oen ] kapn) | 2] (00 ] 20| kope) | 24| (- -

et

AE2=-—“ Z’

Ay
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We recall first that London’s formula, C(7),
is applicable to excited states as well as normal
states. But it gives only the mean of all inter-
actions, taken over all quantum numbers m, and
ms. This mean interaction is not always negative
as it was found to be for the normal states; in
general the denominators will change signs
irregularly, and the forces may well become
repulsive. But the forces depend also on the
orientation of the excited atom.

To see the main features of the situation we
calculate in detail the dispersion effect between
an atom in an S state and another one in a
P state, each having a single valence electron.
The calculation will be restricted to dipole-
dipole forces. As in C-I, we are led to Eq. C(5).
In expanding it, the cross terms in the square
may be omitted for the same reason as before;
hence

l‘-’!(...lyﬂ... i:’
F4[C ol )2 C om0

RS xypm

Kapy

Here the P state of atom 1 is designated by
(1,m), the values of I and m; the S state of
atom 2 by (0,0); the energies of one are labeled
E, the others F. In carrying out the summation
over p; and ps we observe the following relations,
easily derived with the use of B(15):

21000 x| kp) [2=2 ] (00] y|kp)|?
=2[(00]z]kp) | 2= §rolo(led),

Zl(Um|xlkw) *=2 ] (Im]y|xu)|?

m? 6+ m?
=rlx2[—6_6(lx0)+ 6(1,2)],
—_ l? 4_ 2
£t sl #=rad] o000+ 000 |
u 5

lc is the [ value associated with state x. When
these are substituted,

E(1)+ F(0) — E(x1) — F(xs)

et(4—3m? (1] 71| k1) %(0] 72| k2)?
TRl 0 S E() = E(k)+ F(0) — F(xe)
22 —3m? (Ifnin)?(OIrg{xg)Z
+- 3)

45 o E() = E(x)+ F(0)— F(xe))

Two different summations are here written;
> 1 extends over all states k, for which I=1,
and all states «; for which I=0; Y, extends over
states kg with I=1, «; with /=2. These sums are
independent of m, the space quantum number
of the excited atom. To evaluate Eq. (3) for a
real atom would require a considerable amount
of labor which is hardly worth while. What
might happen can be seen by applying it to the
oscillator model already discussed in C-II.

In that case each sum reduces to a single
term, and simple calculation gives in place of
Eq. (3)

et ht
AE,= —— +
R® M?hvy-hval hve—hv,

1—3m?

1L 1y }

kll2+hll1
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TasLe IIL. Dispersion forces. Values in () are uncertain.
AEy=— R %—¢R™3—¢3R™10— ...

hy 1 X 1060 c2 X107 €3 X 1092
(ev) a X102 M3 1’ (ERG *CM6) (ERG *CM?) (FRG *CM10) REFERENCE
H 6.098 32.60 83.09 1
He 24.5 0.205 1.49 2
1.23 3
1.63 3.53 4
1.52 3.35 5
0.205 1.1 1.23 1.89 1.65 6
Ne 7.97 2
7.48 10.9 4
25.7 0.39 2.37 4.67 6.9 5.3 6
A 69.5 2
63.5 190 4
17.5 1.63 4.58 55.4 120 136 6
Kr 129 2
136 420 4
14.7 2.46 4.90 107 275 370 6
Xe 273 2
12.2 4.0 5.61 233 710 1,120 6
H, (14.5) 0.81 (1.5) 11.4 31 45 6
N, 15.8 1.74 4.61 57.2 120 130 6
(o28 13.6 1.57 3.11 39.8 96 120 6
CO. 15.5 2.86 5.70 152 410 590 6
CH, 14.1 2.58 4.60 112 310 440 6
NH; 11.7 2.24 2.72 70 236 410 6
Cl, 12.7 4.60 6.55 321 1,000 1,630 6
HCI 13.4 2.63 4.25 111 320 480 6
HBr 12.1 3.58 4.71 185 600 1,000 6
HI 10.5 5.4 5.30 370 1,360 2,700 6
Na 2.08 29.7 1 2,190 47,600 530,000 6
K 1.60 (49) (1) 4,600 127,000 1,800,000 0
! L. Pauling and J. Y. Beach, Phys. Rev. 47, 686 (1935). 4 R. A. Buckingham, Proc. Roy. Soc. 160, 94 (1937).
2 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931). 5 Eq. C(16).
3 . London, Zeits. f. Physik 63, 245 (1930). 6§ Eq. C(19).

v; and vy are the classical frequencies of the
oscillators. The first term here reminds again of
the possibility of resonance for which the present
theory breaks down. It also shows that if the
frequency of the unexcited is smaller than for
the excited atom the first term in braces is
negative; since it depends rather strongly on m,
a change in m from 0 to 41 may cause the forces
to change from repulsion to attraction. This
represents an approach to the condition of
resonance discussed under I. The entire behavior
also shows that dispersion forces are not to be

thought of as central forces; indeed they are
central only when the attracting molecules have
spherical charge distribution and behave other-

TaBLE IV. Induction and orientation effects (after London).

ALIGNMENT
# X108 | (ORIENTATION) INDUCTION DISPERSION
CO 0.12 0.0034 0.057 67.5
HI 0.38 0.35 1.68 382
HBr | 0.78 6.2 4.05 176
HCI 1.03 18.6 5.4 105
NH; | 1.5 84 10 93
H.O | 1.84 190 10 47
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wise very much like polar forces superposed on
central ones. The anisotropy of dispersion forces
for complex molecules having different polariza-
bilities along different axes is discussed by
de Boer and Heller.#

Of course it is possible to write Eq. (3) in
terms of f values, also. It then becomes

X{(4—~3m2) 3 F(L, k1) £(0, x2)
K1K2 E(l) —E(K1)+F(O) — F(Kg)

22 —3m? f(1, k1) f(O, k2)
10 awE1)—E@)+FO0)—Fis)l  (4)

When the mean over the three values of m is
taken, the factors of the sums both become 2,
and London’s formula results.

Inaccurate knowledge of the f values associ-
ated with excited states prevents us at present
from making exact use of the formulas developed
in this section. Rough estimates for various cases
of interest have been made by the author and
may be found in reference 43. It would be easy
to obtain formulas similar to (4) for the inter-
action of two molecules both of which are
excited. But the use which could be made of
them is so limited that we shall forego writing
them down.

E. TABLES OF CALCULATED CONSTANTS

Table III represents a list of constants calcu-
lated for dispersion forces. Multiple entries are
made wherever the coefficients have been com-
puted by different methods, the intention being
mainly to show what numerical discrepancies
remain among the various methods. It will be
observed that the variational results (Slater and
Kirkwood, Buckingham) are always greater than
those based on empirical f values (London and
Eq. C(19)). It seems likely that the true values
lie between the two. We also expect the coeffi-
cients ¢p and ¢, as deduced from Eq. C(19), to
be smaller than the correct ones.

For the sake of convenience we list the
conversion factors from the absolute units
employed in Table III to Hartree (atomic) units.

¢y (erg-cm®) =9.38X10~% (atomic units),
¢y (erg-cm?®) =2.62X10-77 (atomic units),
cs (erg-cm!?) =7.32X10~% (atomic units).

It should be noted that the coefficients ¢, and
¢s for Na and K are abnormally large. Dipole-
quadrupole forces are equal to the dipole-dipole
forces at approximately R=35A. Consequently,
convergence fails even at these relatively large
distances, and the usual formalism cannot be
employed.

Finally, we wish to point out that the ratio,
cs/c1, which determines the value of R beyond
which quadrupole forces may be neglected, does
not fluctuate as widely among the different
theories as do the coefficients themselves. The
quantity ce/c; in the units of Table III, inci-
dentally, is the ratio of dipole-quadrupole to
dipole-dipole energy at a hypothetical distance
of 1A.

Table IV is taken from London’s article.!
It shows the relative magnitudes of the three
main effects contributing to the van der Waals
forces. The column labeled ‘‘Alignment (Orienta-
tion)”’ contains the coefficient of R~¢ in formula
B(7) for T=293°; the next gives the correspond-
ing coefficient, 2ap?, in formula B(10); the last
c1. All coefficients are in units: 10% erg cm®.
¢, differs slightly from the values in Table III
because of different choices for Av.

F. SUMMARY OF APPLICATIONS

As stated in the introduction, our concern in
this article was with the fundamental theory of
van der Waals forces. This limitation has forced
us to omit from consideration many matters
dealing primarily with applications, but having
an essential bearing on theory. Notable among
these is the work of Mayer# who, in dealing
with the binding energies of ionic crystals,
calculated the dispersion forces between a num-
ber of ions having closed shells of electrons. His
method is based on Eq. C(7), but the procedure
is interesting inasmuch as it involves an integra-
tion over the frequencies of the continuous
spectrum whose contribution for ions is large.
A similar procedure had been used in a determi-
nation of the dispersion forces between He
atoms.*
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To aid the reader who wishes to inform
himself of the many applications which the
theory has induced or by which it has been
corroborated, we append here a list of references

to articles of relevance in this connection.
Though this list is meant to be fairly complete,
one can hardly dare hope that no important
papers have been omitted.

G. BIBLIOGRAPHY

I. General reviews

G. Briegleb, Zwischenmolekulare Krifte und Molekiil-
struktur (Ferdinand Enke, Stuttgart, 1937). A compre-
hensive review of all questions of particular interest to
chemists.

K. F. Herzfeld, M. Born and M. Géppert-Mayer, R.
DeL. Kronig. Three articles in Handbuch der Physik 24/2
(1933), dealing with applications to molecular structure,
lattice theory of crystals.

H. Hellmann, Esnfiihrung in die Quantenchemie (Franz
Deuticke, Leipzig, 1937). Critical resumé of applications,
with emphasis on theory.

The following references are arranged according to
topics, otherwise chronologically.

1. Equation of state

a. Fundamentals and quantum corrections

J. G. Kirkwood, Physik. Zeits. 33, 39 (1932).

H. Margenau, Proc. Nat. Acad. 18, 56, 230 (1932).

E. Wigner, Phys. Rev. 40, 749 (1932).

F. Bloch, Zeits. f. Physik 74, 295 (1932).

G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79
(1932).

J. G. Kirkwood, Phys. Rev. 44, 31 (1933).

G. E. Uhlenbeck, J. Math. Phys. 14, 10 (1935).

G. E. Uhlenbeck and E. Beth, Physica I1II, 8, 729 (1936).

E. Beth and G. E. Uhlenbeck, Physica IV, 10, 915 (1937).

L. Gropper, Phys. Rev. 51, 50 (1937); 51, 1108 (1937).

B. Kahn, Diss. Utrecht, 1938.

b. Numerical comparisons of theory and experiment

H. Margenau, Phys. Rev. 36, 1782 (1930).

J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682
(1931), (He).

J. G. Kirkwood and F. G. Keyes, Phys. Rev. 37, 832
(1931); 38, 576 (1931), (He).

K. Wohl, Zeits. f. physik. Chemie (B) 2, 77 (1929); 14, 36
(1931).

G. Briegleb, Zeits. f. physik. Chemie (B) 23, 105 (1933).

J. E. Lennard-Jones, Physica IV, 10, 941 (1937).

¢. Dipole gases

H. Margenau, Zeits. f. Physik 64, 584 (1930). (The
quantum correction here derived is in error. See next
reference.)

J. G. Kirkwood, J. Chem. Phys. 1, 597 (1933).

d. Liguid state

J. E. Mayer, J. Chem. Phys. 5, 67 (1937).
J. E. Mayer and Ph. G. Ackermann, J. Chem. Phys. 5, 74
(1937).

M. Born, Physica IV, 10, 1034 (1937).

J. E. Mayer and S. F. Harrison, J. Chem. Phys. 6, 87
(1938).

S. F. Harrison and J. E. Mayer, J. Chem. Phys. 6, 101
(1938).

2. Lattice energies

F. London, Zeits. f. physik. Chemie (B) 11, 222 (1930).

J. E. Mayer, Zeits. f. Physik 61, 798 (1930).

M. Born and J. E. Mayer, Zeits. f. Physik 75, 1 (1932).

J. E. Mayer and L. Helmholz, Zeits. f. Physik 75, 19
(1932).

F. V. Lenel, Zeits. f. physik. Chemie (B) 23, 379 (1933).

Th. Neugebauer and P. Gombas, Zeits. f. Physik 89, 480
(1934).

Th. Neugebauer, Zeits. {. Physik 90, 693 (1934).

P. Gombas, Zeits. f. Physik 92, 375, 796 (1934).

H. Sponer and M. Bruch-Willstitter, J. Chem. Phys. 5,
745 (1937).

3. Polarization molecules

O. Oldenberg, Zeits. f. Physik 47, 184 (1928); 55, 1
(1929).

H. Kuhn, Zeits. f. Physik 63, 458 (1930).

F. London, Zeits. f. physik. Chemie (B) 11, 222 (1930).

H. Kuhn and O. Oldenberg, Phys. Rev. 41, 72 (1932).

W. M. Preston, Phys. Rev. 51, 298 (1937).

4, Effects on spectral lines

H. Margenau, Phys. Rev. 40, 392 (1932).

M. Kulp, Zeits. f. Physik 79, 495 (1932). (Pressure shifts
derived in these two papers refer to the mean of the
intensity distribution, not to the maximum. The necessity
for the distinction was first pointed out by Kuhn, cf.
below.)

H. Kuhn and F. London, Phil. Mag. 18, 983 (1934).

H. Kuhn, Phil. Mag. 28, 987 (1935).

R. Minkowski, Zeits. f. Physik 93, 731 (1935).

H. Margenau, Phys. Rev. 48, 755 (1935).

Review articles: H. Margenau and W. W. Watson, Rev.
Mod. Phys. 8, 22 (1936); P. Schulz, Physik. Zeits. 10, 412
(1938).

5. Surface energy of liquids
R.S. Bradley, Phil. Mag. 11, 846 (1931).
H. Margenau, Phys. Rev. 38, 365 (1931).
6. Joule-Thomson coefficients

J. O. Hirschfelder, R. B. Ewell and J. R. Roebuck, ]J.
Chem. Phys. 6, 205 (1938).



II.

W N

10.

1.

12.
13.
14.
15.

16.
17.
18.

19.

20

VAN DER WAALS FORCES

References
. F. London, Trans. Faraday Soc. 33?, 8 (1937).
. Reference 1, pp. 40-45.
. A. C. Clairault, Théorie de la figure de la terre (Paris,
1743).
. P. S. Laplace, Théorie de Vaction capillaire (Paris,
1806).
C. F. Gauss, Principia generalia, etc. (Goettingen,
1830).

. C. Maxwell, Phil. Mag. (4) 35, 129, 185 (1868).
. D. van der Waals, Die Kontinuitit des gasformigenund
Aiissigen Zustandes (Amsterdam, 1881).

. L.. Boltzmann, Wied. Ann. 24, 37 (1885).

. W. Sutherland, Phil. Mag. 22, 81 (1886); 24, 113
(1887); 35, 211 (1893); 36, 507 (1893).

For references to J. E. Lennard-Jones’ contribution, cf.
Chapter 10 in Fowler's Statistical Mechanics.

M. Reinganum, Ann. d. Physik 10, 334 (1903); 38, 649
(1912).

W. H. Keesom, Physik. Zeits. 22, 129 (1921).

J. M. Burger, Diss. Leyden, 1918.

F. London, Zeits. f. Physik 63, 245 (1930).

P. Debye, Physik. Zeits. 21, 178 (1920). To be chrono-
logically exact, we should observe that Debye's
work preceded that of Keesom.

H. Falkenhagen, Physik. Zeits. 23, 87 (1922).

S. C. Wang, Physik. Zeits. 28, 663 (1927).

(a) R. Eisenschitz and F. London, Zeits. f. Physik 60,
491 (1930); (b) F. London, Zeits. f. Physik 63, 245
(1930); (¢) F. London, Zeits. f. physik. Chemie (B)
11, 222 (1930).

Details here omitted are given in a paper by the
author, Phys. Rev. 38, 747 (1931).

. F. London, Zeits. f. Physik 63, 245 (1930).

21
22

23

24
25
26
27
28

29

30
31
32
33
34

35
36

37
38

39
40
41
42
43
44
45

35

. J. C. Slater, Phys. Rev. 38, 237 (1931).

. W. W. Watson and H. Margenau, Phys. Rev. 51, 48
(1937); S. D. Cornell, Phys. Rev. 51, 739 (1937);
E. Lindholm, Zeits. f. Physik 109, 223 (1938).

. H. Margenau and D. T. Warren, Phys. Rev. 51, 748
(1937).

. K. G. Carroll, Phys. Rev. 53, 310 (1938).

. J. K. Knipp, Phys. Rev. 53, 734 (1938).

. Y. Sugiura, J. de phys. et rad. 8, 113 (1927).

. L. Pauling and J. Y. Beach, Phys. Rev. 47, 686 (1935).

. Tabulations and an excellent survey of data on
dispersion may be found in Handbuch der Physik,
Vol. 20, (1928); article by K. L. Wolf and K. F.
Herzfeld.

. Among the earlier papers see H. Margenau, Phys. Rev.
40, 387 (1932); H. Kuhn, Phil. Mag. 28, 987 (1935).

. H. Margenau, Phys. Rev. 38, 747 (1931).

. J. C. Slater, Phys. Rev. 36, 57 (1930).

. C. H. Page, Phys. Rev. 53, 426 (1938).

. R. A. Buckingham, Proc. Roy. Soc. 160, 94 (1937).

. S. Dushman, Elements of Quantum Mechanics (Wiley
and Sons, 1938).

. H. Margenau, J. Chem. Phys. 6, 896 (1938).

. J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682
(1931).

. H. R. Hassé, Proc. Camb. Phil. Soc. 26, 542 (1930).

. J. G. Kirkwood, Physik. Zeits. 33, 57 (1932); J. P.
Vinti, Phys. Rev. 41, 813 (1932).

. H.Hellmann, Acta Physicochimica 2, 273 (1935).

. R. A. Buckingham, Proc. Roy. Soc. 160, 94 (1937).

. A. Miiller, Proc. Roy. Soc. A154, 624 (1936).

. J. H. de Boer and G. Heller, Physica 4, 1045 (1937).

. H. Margenau, Phys. Rev. 40, 387 (1932).

. J. E. Mayer, J. Chem. Phys. 1, 270 (1933).

. H. Margenau, Phys. Rev. 37, 1425 (1931).



