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$1. INTRGDUcTIDN

1
~~F the many perennial problems absorbing

the attention of the physicist, one of the
most appealing is certainly that of the nature of
the elementary particles of matter. The rapid
extension of our experimental knowledge of their

*The authors wish to express their appreciation of a
grant from the Graduate School of the University of
Minnesota under which a portion of this work was
completed.

properties has been accompanied by an equally
rapid alteration in the ideas and methods used
by theoretical physicists in the attempt to ~eave
a comprehensive mathematical theory which will
accurately picture the results of the experi-
mentalist. The discoveries of the neutron and of
the positron, as we11 as the rapidly expanding
6eld of nuclear physics have already opened, up
many fascinating avenues for speculation. At the
same time, the imminent probability of further
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discoveries of new particles' in the cosmic rays
which bombard the earth and the possibility of
the appearance of entities such as the neutrino
in nuclear disintegration processes make it
abundantly clear that the time is not yet ripe
for the crystallization of a fundamental theory of
matter. The theorist can only approach these
problems in the spirit of the experimentalist who

must learn not only the nature of the problem
which he wishes to study, but also the character-
istics of the tools with which he must work.

The most fundamental theoretical advance in

the field in recent years has been the discovery
of the relativistic wave equation of Dirac. Since
its publication' in 1928 it has occupied a central
position in quantum-mechanical theory, and has
been the starting point for theories of the posi-
tron, ' the photon, ' P-ray disintegrations, ' nuclear
forces, ' "heavy particles, " ~ etc.

In this article we propose to review the prin-
cipal properties of the Dirac equation and of its
solutions. In order not to expand our discussion
out of all bounds, we must assume that our
readers have a reasonable familiarity with the
Schrodinger theory and the general principles of
quantum mechanics.

As a preliminary to the discussion of the Dirac
equation, we have given a rather lengthy treat-
ment of the nonrelativistic theory of Pauli. It
has been our aim to develop this more familiar

' S. H. Neddermeyer and C. D. Anderson, Phys. Rev. 51,
884 (1937). J. C. Street and E. C. Stevenson, Phys, Rev.
51, 1005 (1937);52, 1003 (1937).Y. Nishina, M. Takeuchi,
and T. Ichimiya, Phys. Rev. 52, 1198 (1937).D. R. Corson
and R, B. Brode, Phys. Rev. 53, 215 (1938). A. J. Ruhlig
and H. R. Crane, Phys. Rev. 53, 266 (1938).L. Nordheim,
Phys. Rev. 53, 694 {1938).' P. A. M. Dirac, Proc. Roy. Soc. A11T, 610 {1928);
A118, 351 (1928).'P. A. M. Dirac, Proc. Roy. Soc. A125, 360 (1931).
Cf. $23.

4 L. de Broglie, "Une Nouvelle Conception de la
Lumiere, "Actualites Scientihques et Industrielles, No. 181
(1934); "Nouvelles Recherches sur la Lumiere, " No. 411
(1936). Cf. also P. Jordan, Zeits. f. Physik 93, 464 (1935).
R. de L. Kronig, Annales de 1'Institut Henri Poincare 6, 213
(1936}.P. Jordan, Zeits. f. Physik 105, 114 and 229 (1937).

5 E. Fermi, Zeits. f. Physik 88, 161 (1934).E. Konopinski
and G. E. Uhlenbeck, Phys. Rev. 48, 7 (1935). I. Tamm,
Physik. Zeits. Sowjetunion 10, 567 (1936).H. A. Bethe and
R. Bacher, Rev. Mod. Phys. 8, 82 (1936).' G. Breit, Phys. Rev. 53, 153 (1938) and the references
in footnotes 5 and 7.' H. Yukawa, Proc. Phys. Math. Soc. Japan 1'7, 48
(1935).H. Yukawa and S. Sakata, Proc. Phys. Math, Soc.
Japan 19, 1084 (1937). H. Yukawa, S. Sakata, and M.
Taketani, Proc. Phys. Math. Soc. Japan 20, April (1938}.
R. Serber, Phys. Rev. 53, 211 (1938).%. E. Lamb, Jr, and
L. I. SchiE, Phys. Rev. 53, 651 (1938).

theory in a manner which would bring out the
transition from the Schrodinger to the Dirac
equations more clearly than is done by the cus-
tomary procedure of simply "tacking on" the
spin to the Schrodinger theory. KVe have at-
tempted to minimize the use of formal symbolic
techniques insofar as it seems reasonable to do so,
but naturally a compromise must be struck, since
the clarity of straightforward computations may
well be undermined by their laboriousness. From
similar considerations we have not made explicit
use of the spinor notation (cf. Appendix H).

The question of notation is always a worrisome
one, and a word of justification may be offered
for our choice. The point of departure has been
the explicit use of symbols for the vectors in
"spin space, " with g written as a linear sum in
terms of them. This avoids the writing of g as
a one-column matrix. For the components of Q,
which are the Pauli functions, or the four Dirac
functions as the case may be, we have ventured
to use the symbol x, instead of P. The reason for
this decision is, that after the matrices have been
explicitly chosen for the spin operators, the
results of operations with these matrices are
slightly different depending on whether the
matrices are defined as operators on the "unit
vectors" or on the components. Ke have here
chosen to consider them as operatcrs on the unit
reference vectors rather than as operators on the
components. It is hoped that this choice will not
be considered merely as an irritating deviation
from the literature.

f2. THE ELECTRON SPIN HYPOTHESIS

The modern phase of the theory of the ele-

mentary particles of matter may be said to have
begun in 1925—26 with the discovery of Uhlen-

beck and Goudsmit' that the electron should be
considered not purely as a point particle, but
also as possessing an intrinsic angular momen-

tum, now universally referred to as the electron

spin. The development of this idea in the suc-
ceeding years has produced incontrovertible
evidence for its validity, so that today we take
it as axiomatic in our discussions.

Since it is an angular momentum, the spin

G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953
(1925); Nature 117, 264 {1926).Cf. also F. R. Bichowsky
and H. C. Urey, Proc. Nat. Acad. Sci. 12, 80 (1926).
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exhibits the characteristics of a vector quantity. '
We shall designate it by the symbol s; its car-
tesian components in any convenient set of axes
by s„s„, s, . The electron also has a magnetic
moment which, according to the hypothesis of
Uhlenbeck and Goudsmit, is related to the spin
angular momentum, by the equation"

p = (p/mpc) s,

where p is the (algebraic) value of the charge,
and neo is the rest mass of the electron.

The absolute magnitude of the spin is supposed
to be a constant, independent of the external
fields in which the electron may be moving, and
for this reason is one of the most characteristic
properties of the electron. Its numerical value is
found to be"'

where k=h/2w(=1. 05X10 'gem'sec. ') and k
is Planck's constant.

During the last several years, it has been
found that the other "elementary" particles of
matter, the proton, the neutron, and the positron
also have intrinsic spin angular momenta of the
same magnitude as that of the electron. On the
other hand, for the proton and the neutron, the
simple relation (1) connecting magnetic moment
and spin is not valid. On the basis of present
experimental evidence for the proton, the factor
is approximately. "

+2.85(p„/M„c),

where e~ and M„are the charge and mass of the

' More properly, the angular momentum in Newtonian
mechanics is an antisymmetrical tensor of rank 2, but it
behaves like a vector under rotations of the coordinate
axes.

1o Throughout this article we treat the electrical charge
as an algebraic quantity. For the electron ~= —e= —4.80
X10 "e.s.u."'Ordinarily one makes the rough statement that "the
spin of the electron is -', k." The correct formulation is that
the projection of the spin along any fixed axis can take the
values &-',k. The determination of the square of the
magnitude of the spin from the projections depends on
quantum mechanical theory as given here. %e assume the
reader to have a preliminary acquaintance with calcu-
lations of this type. Cf. Kemble, rhe Fundamental I'rinci-
p/es of Quantum 3fechanics (McGraw-Hill, 1937)."This value is that found by I. I. Rabi, J. B. M. Kellogg,
and J. R. Zacharias, Phys. Rev. 50, 472 (1936) who used
atomic beams. The value obtained by I. Estermann, O. C.
Simpson, and O. Stern, Phys. Rev. 52, 535 (1937) who used
molecular beams is 2.46 (e~/M„c). The exact origin of the
discrepancy is not clear. Cf. also L. A. Young, Phys. Rev.
52, 138 {1937).

proton. For the neutron"' the present experi-
mental evidence sets the factor at about

—2.0(p„/3l„c)

even though the neutron has no resultant electric
charge.

These facts point very strongly to the possi-
bility that the proton and the neutron are not
elementary particles, but are probably complex
structures of some sort. Other lines of evidence
based on the theory of the P-ray disintegration
of nuclei lead to the same conclusion, though at
the present time no satisfactory picture of the
nature of these structures has been found.

For this reason it is scarcely possible, in the
present state of our knowledge, to present any
definitive considerations on the proton and the
neutron as fundamental particles, and most of
our discussion will be confined to the electron,
and its counterpart, the positron.

$3. THE NONRELATIVISTIC THEORY OF PAULI

After the preliminary discussion of Uhlenbeck
and Goudsmit, the first treatment of the electron
spin was given by Heisenberg and Jordan, "who

employed the formal methods of the then newly
discovered matrix mechanics.

The first systematic attempts to develop
a technique applicable to wave mechanical
methods were made by Darwin" and Pauli. "

The method proposed by Pauli soon became
standard for the discussion of all ordinary
problems of atomic and molecular structure, and
has been employed almost without change in the
treatment of nuclear problems involving only
protons and neutrons. None of these authors
pretended to oRer a theory of the origin of the
electron spin, but tried only to find a suitable
procedure for the mathematical description of
the physical ideas proposed by Uhlenbeck and
Goudsmit. Since their methods do not conform
to the requirements of the special theory of rela-

"'O. R. Frisch, H. von Halban, Jr., and J. Koch, Phys.
Rev. 53, 719 (1936).The magnetic moment of the deuteron
which was determined by I. I. Rabi, J. B. M. Kellogg, and
J. R. Zacharias, Phys. Rev. 46, 163 (1934), and by Farkas
and Farkas, Proc. Roy. Soc. 152, 152 {1935) leads to the
same value.

'2 W. Heisenberg and P. Jordan, Zeits. f. Physik 37, 263
(1926).' C. G. Darwin, Proc. Roy Soc. A115, 1 (1927); A116,
227 (1927).

"W. Pauli, Zeits. f. Physik 43, 601 (1927).
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tivity we cannot consider them as ultimately
satisfactory from the point of view of general
theory, and must apply them with caution when

discussing problems involving high speed par-
ticles. However, as wi11 be shown in a later section
of this report, the Pauli theory is a valuable hrst
approach to the more complex theory based on
the Dirac equation. Ke shall present this theory
in a form which is actually a compromise between
the treatment of Pauli and Darwin, with a view
to paving the way for the discussion of the Dirac
theory. This may serve as our excuse for devoting
more attention to it than would otherwise be
necessary, in view of the many discussions avail-
able in the literature.

fj4. THE PAULI SPIN OPERATORS

The 6rst necessary point is to hand suitable
quantities in terms of which a mathematical dis-
cussion of the properties of the electron spin may
be given. If one follows the general procedure of
the Schrodinger method, it is natural to consider
that the components of the electron spin, s„s„,
s, should be represented by means of linear
operators which operate on the wave functions
for the system. As no attempt is made to present
a theory of the origin of the spin itself, the search
for suitable operators can be made only by
analogy with other known operators already
available in the Schrodinger theory. Since the
spin is to have the physical characteristics of an
angular momentum, we start with the consider-
ation of the operators used for the representation
of the orbital angular momentum. These are:

or vectorially:

Sgsy SySg SASzI
~ $

Sysz Szsy &ASgI

SzSg SgSz = lASy,

s Xs=ihs.

(4)

In addition to these relations, we assume that
the following equations are also satis6ed

The orbital angular momentum operators do not
satisfy this latter set of relations. It will be
shown that they are valid also in the Dirac
theory (II16). They embody the fact that the
square of the magnitude of the spin is given by

s'=sg'+s„'+s. '=-', (-', +1)k'=-'h' (6)

L,L„—Lg, =ihL„
L„L,—L,Ly =ikL„
L,L —L L,=ihLy.

These equations may be symbolized by the single
vector operator equation:

~XL=ihL.

Since this last set of equations contains ex-
plicitly only the operators L, L„, and L, them-
selves, they are more suited to formal generaliza-
tion than are Eqs. (2).

By analogy let us assume that the spin angular
momentum can be characterized by three spin
operators s„s„, and s„corresponding, respec-
tively, to the components of the spin, and satis-
fying the same formal equations as do L, L„,
and L.: i.e.

I.,= ih(y8/Bz z8/By), — —
L,= its(zrI/r—lx xB/8z),—
L.= i'(xB/B—y y8/Bx)—

(2)

in agreement with the hypothesis of Uhlenbeck
and Goudsmit From .Eqs. (4) and (5) the fol-

lowing operator relations can be readily derived

In these explicit de6nitions, the expressions on
the right-hand sides refer directly to the space
coordinates of the particles. Since we do not
have any idea of what internal coordinates of
the electron might be supposed to be related to
the spin angular momentum in the same way
that the space coordinates are related to the
orbital angular momentum, it would be dificult
to generalize these expressions directly to the
spin operators. But it follows at once from these
equations that the following operator relations
are satis6ed identically:

'1+
Sgsy = Sysg =Z2nsz,

~ ]
SySz = —SzSy =Zgnsg,

e g J
SzS*= Sgs z = Z g Asy.

The spin operators thus aeticommute with each
other.

II5. THE PAULI WAVE FUNCTION WITH SPIN

In the Schrodinger theory, as exemplihed in

the problem of the hydrogen atom, it is shown

that if the orbital angular momentum L is
visualized as a vector, and if a given direction in

space is chosen as reference, then the component
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of L along this direction can assume only a dis-
crete set of values. These values are all integral
multiples of A, and may be expressed in the form:

m)fs, m) ———/, —l+1, , +l
where l is the azimuthal or orbital angular mo-
mentgm quantum numbers' which determines the
magnitude of the orbital angular momentum by
the equation:

I
L

I

' = l(i+ 1)0'.

mt is called the axial or magnetic quantum
number: For the various states of the hydrogen
atom, l assumes the values 0, 1, 2, .

In physical parlance we say that the com-
ponent of angular momentum along the field is
quantized, and has the qlantized values m~k.

If we apply this idea to the spin, we observe
that from Eq. (6) the spin quantum number is:

S =—.12'

In contrast with the orbital angular momentum,
the spin quantum number assumes but the one
value +-,'for all states.

It will be convenient to choose one of the axes
of the coordinate system used for the space
variables, say the z axis, as the axis of quan-
tization of the spin. The z component of the spin
then assumes only the quantized values ~-,'Il."'
This interpretation has been foreshadowed in

Eqs. (5) which show that the square of any com-
ponent of the spin must have the value (-,'h)'.

It should perhaps be emphasized that one of
the implications contained in this argument is
that the behavior of the spin can be completely
described in terms of its two orientations with
respect to any particular axis which we may
choose. If, after having chosen one axis we desire
to change to another axis of quantization for the
spin, we can do it in a perfectly definite way
which will be discussed in $8. The important
point is that after the change has been made,
the quantized values of the spin, along the new

axis, will also be ~-', A. This preserves the physical
meaning of spin quantization for an arbitrary
choice of the axis of quantization. More par-

'4' Experimental evidence for the truth of this theory is
supplied by the observations on the Stern-Gerlach effect in
which a beam of hydrogen or other atoms with one valence
electron which is in an s state is passed through an inhomo-
geneous magnetic 6eld. The orbital angular momentum of
these atoms is zero, so that only the spin is effective. One
obtains a splitting into the two allowed components.

ticularly, it assures us that if it were possible to
send a beam of electrons through one Stern-
Gerlach apparatus, " and then to take one of
the separated beams of electrons, say that in
which the electrons had their spins oriented in
the direction of the field, and analyze these
electrons in a second Stern-Gerlach apparatus
with its field in a different direction from the
first, we should expect to find a resolution into
two further beams, corresponding, respectively,
to electrons with their spins oriented parallel
and anti-parallel to the direction of the field in
the second apparatus.

These considerations show us that there are only
two independent quantized states for the spin We.
introduce two spin symbols" ("spin functions")
a j, and a2 to represent, respectively, the states in
which s, has the values +-',k and ——,'k.

The complete wave function, inclusive of both
orbital and spin variables, will be written in the
form:

g =g &(xyst) a&+ x2(xyst) a2.

In order that we may keep as close contact as
possible with the methods commonly used in
wave mechanical theory, we introduce the con-
jugate" spin symbols a& and a2, such that the
complex conjugate wave function is written as:

=xx at+xm a2

where p&* and p2* are the ordinary complex con-
jugate functions to y1. and y~.

The spin symbols will be assumed to have the
properties:

a&a& ——1, a2a2 ——1, a~a2 ——ama& ——0. (10)

It follows from these definitions that a~ and
a& are linearly independent; i.e.

ciay+c2a2 =0

We ignore here the obvious practical experimental
difBculties in trying to perform a Stern-Gerlach experiment
on free electrons. As a matter of fact, according to the
Dirac theory, the electron spin in principle cannot be
determined in a Stern-Gerlach experiment. ($21.) Cf. also
N. F. Mott, Proc. Roy. Soc. A124, 425 (1929); C.
Darwin, Proc. Roy. Soc. A130, 632 {1930); W. Pauli,
Handblch der Physi&, second edition, Vol. 24, p. 241; W.
Pauli, Solvay Congress report in Ie Mageetisme (Gauthier-
Villars, 1932) p. 220.

"For lack of a better notation we use bold-face type
both for space vectors (e.g. L and s), and for the spin
symbols.

"We distinguish between the terms "conjugate" and
"complex conjugate. " The distinction is discussed at
greater length in $18.
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if, and only if, c~ ——c~=0. This is seen at once by
multiplying this equation by a& and a2, respec-
tively, and by using Eqs. (10).

A word on the interpretation of the spin symbols
al, a2, a1, a2 may be appreciated by those unaccustomed to
the symbolic methods so useful in general discussions of
quantum-mechanical theory. It might seem more natural
to introduce a variable o representing the numerical
magnitude of the s component of the electron spin, and to
treat a1 and a2 as ordinary (complex) functions of 0, and to
put a1=a1, a2=a2*. Using the same formal interpretation
as for ordinary wave functions in the Schrodinger theory,
one might assume that: Ia&(o) I'do and Ia&(o) I'do are the
probabilities that 0. lies between a. and 0.+do in the states
represented by a1(a) and a2(0); i.e., in the states in which
the s' component of the spin is known to have the values
+ &A and ——,'b, respectively. These functions would then be
considered to be normalized and orthogonal in the sense

J Ia&(a) I'do J=Ia2(o) I'do =1,

a1*(IT}a2{'cr)do=0

if we let cr range formally from —~ to + oc.
Such an interpretation would require that

a, (~) =0 if ~q+-,'h,
a2(~) =0 if ~ y —-', h.

It is clear that there exist no ordinary continuous
functions, integrable in the Riemannian sense, which
satisfy all of these conditions. Consequently, this treatment
of the spin functions could have only a formal significance.

A more correct, and indeed quite satisfactory, method
would be to treat 0. as a discontinuous variable which
assumes only the two values +-,'k, and to assign to a1(0)
and a2(o) the properties

I&~(+~)t) I
=I I&~(—l&) I

=o,
Iam(+i&) I

=0, Ia.(—o&) I
= I.

This procedure seems quite natural in the Pauli theory,
where the variable 0- has a simple physical interpretation,
but its extension to the Dirac theory where four instead of
only tuo a functions must be used, seems more artificial,
since the physical intepretation of the four "states"
represented by the a's is not at once so obvious.

For this reason we have preferred to retain a certain
measure of symbolic treatment for the spin functions even
in the Pauli theory.

The physical interpretation of the wave func-
tion g is based on the following hypothesis,
which is an immediate generalization of the cor-
responding statement in the Schrodinger theory:

From Eqs. (8), (9) and (10) we find:

In case
I

ttt I' is an integrable function of x, y, s
over the allowed range for these coordinates we
can multiply g by an appropriate constant such
that

in which case
I
ttiI' may be considered as an ab-

solute, rather than merely as a relative prob-
ability density.

It would be possible, in fact, to go even further
by interpreting

I
xi I'AxAyAs as the (relative)

probability that, at the time t, the electron is in
the volume element AxAyAs at (x, y, s) with its
s component of spin equal to +-', 5, with a similar
interpretation of

I
x2I' when the s component of

spin is —~k. Such an interpretation is often con-
venient in problems in which no spin terms are
introduced in the energy operator. In case the
hamiltonian (energy) operator does not commute
with the spin operators, as in the Dirac theory,
such an interpretation loses much of its value,
but may still be useful on occasion.

siai ——ai (1 st. 1)+at (2 st. 1),
stae ——ai (1 sa 2)+am (2 si 2),

(12)

where the expressions (1Is&I1), etc. , are merely
complex numbers. These equations can be sym-
bolized more succinctly by arranging the coef-
ficients in the form of a matrix,

(1I» I1) (1I» I 2)

(2
I
»

I
1) (2

I
»

I
2)

Ia6. THE PAULI SPIN MATRICES

We must now consider the manner in which
the spin operators s„s„,s, are to be defined in
terms of their operations on the spin functions
aI and a2. Our first assumption will be that the
results of the operation of any one of them (or of
any spin operator) on either spin function can be
written as a linear sum in ai and a2 i.e. ,

is the (relative) probability that, at the time I,
the electron is in the volume element AxAy5s
at the point (x, y, s).

The coefficients are called the matrix elements of sI„..
According to our considerations, the spin

functions a& and a2 by definition represent the
states in which s, is quantized, and has the
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quantized values ~-',k. The appropriate mathe-
matical expression of this is that

s,a1= +2ka1, s,a2 = —2ka2. (13)

For the modus operandi of s, and s„on ai and

a2, we can now appeal to Eqs. (7). It will be
found that these equations do not completely
determine the matrix elements of s, and s„;
minor adjustments of phases are possible. For
our future work, we adopt the following solutions
as most suitable:

We interpret this in terms of operators by saying
that the four operators o-i, ~ ~ ~, ~4 form a com-
plete set such that any other operator depending
on spin quantities only can be expressed as a
linear sum in terms of them. This will be of use
to us in $8.

From the definition of o 4 we find from Eq. (19)
that

04

from which

$~1———,'ka2,
s„a1——i-,'ka2,

$~2 ———,'ka„
s„a2= —i2ka1.

By virtue of this equation we shall refer to cr4

(14) as the probability density operator

The matrices for s, s„, s, are now:

0 -'k
s

f-2'l2 0

2k

0 —i

i-,'k 0

0 1 0 —i 0
0 1~ 0'2~ 0'3~ (17)

0 i 0 0

These are known as the Pauli operators (or
matrices). They satisfy the relations

0 —-'k
2

The quantization of s, is expressed by the diago-
nality of its matrix.

It mill be convenient in later work to introduce
three operators defined by

oi 2s,/|2——, o2 ——2s„/It, a2 ——2s./5 (16)

having the matrices

f7. THE TQTAL ANGULAR MoMENTUM AND ITS
QUANTIZATION IN THE PAULI THEORY

As a simple example of the application of the
Pauli theory we shall study the quantization of
the total angular momentum, for a single par-
ticle. This is of importance in many problems,
particularly those dealing with motion in a
central field. This calculation, including spin, is
a generalization of the corresponding analysis
in the Schro*d.inger theory in which one orders
the states (and wave functions) of the electron
as s, p, d, f, by a classification of the wave
functions in terms of the orbital angular mo-
mentum.

The operators for the components of the total
angular momentum vector J are assumed to be
simple sums of those for the components of L
and s.

J,=I.,+s„J„=L„+s„, J,=I.,+s, (21).
f71f72 = —0.2o.1=i0.3, etc.

The operator representing "unity"
unit transformation on ai and a2) is

(18) They satisfy the relations J&& J=iIIJ, etc. The
operator for the square of the total angular
momentum is~i.e. the

1 0
(19)

J2 —J 2+J 2+J 2

= L'+ s'+ 2(I,s,+L„s„+L,s,)
= L'+s'+(I.+s +L s++2I.,s,)

(22)

It is easily seen that the four matrices for
g1, .

, o-4 form a complete set, in the sense that
any two-dimensional matrix can be written as a
linear sum in terms of them. Thus if

with L~ =L,&iL„, s~=s &is„(23).
In the discussion of central field problems, it

is usually preferable to introduce spherical polar
coordinates by

T 1 1 T 12~ x=r sin 8 cos q, y=r sin i9 sin p, s=r cos 8.

+21 'lt'22

2 (r 12+721)ol+22 (Y12 r21)P2

+ 2 (T11—y22) o2+ 2 (T11+T22)o4. (20)

The orbital angular momentum operators in

polar form are tabulated in Appendix A.
Our problem now is to find the particular
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functions for x~(r, 8, q) and x~(r, 8, p) which
must be put in Eq. (8) in order that Q may
represent a state in which the square of the
total angular momentum J' and one of the
components, say J'„are quantized, i.e. , Q must
satisfy the di6erential equations

where A and j3 are constants.
Now

(J.—A)&= (—~h&/~q+~. —A)(xiai+x2a2)
= ( ~h—B/8 y+ ', h -A—)xiai

+ ( i hB/8 (p ——-', h —A) xgam.

Since this expression must vanish identically,
the coefhcient of each spin function must be
zero. (a& and a~ are linearly independent!)

This yields the two equations:

( ih8—/8 qr+ ,'h A-) x—g 0, ——

(—ih8/8 y —-', h —A) xm ——0. (25)

In a similar manner, the second equation of (24)
yields the two differential equations:

(L'+-,'h'+hl. ,—B)xg+hl. xp
——0,

( )hI.~x,+ (L'+-'h' —hL. —3)x2 ——0.

We shall not carry out all of the steps in the
solution of these equations, which can be done

by an analysis very similar to that used in the
solution of the corresponding differential equa-
tion for the angular function in the Schrodinger
equation for the hydrogen atom. The appropriate
values for the constants A and J3 are found to be

The quantized values of J, and J' are thus
3/Ih and J(J+1)hm, respectively. The solutions
for given choices of 3' and J are

f J+1—Mq I

xi(r, e, v) =f(r)I I
I'~+I, ~-I(~ ~)

E 2(J+1)

)J+My &

+«)I
(27)

pJ+1+M& &

xu(», ~, v)= —f(r)I I I'~+I. ~+~(e, v )
~ 2(J+1) i

)J—Mq &

+g(r)I I
I'J —&. ~~+I(e o).

2J

The functions f(r) and g(r) are not determined
by the differential equations (24).

The functions Yg+~, ~ ~ are just the
angular functions encountered in the solution
of the Schrodinger equation for the hydrogen
atom. Their definitions and principal properties
are tabulated in Appendix B. In the Schrodinger
theory these functions appear in the wave func-
tions representing states in which the orbital
angular momentum is quantized.

The reader may note that if we set g(r) =0
we get a solution representing quantization of
L', with the orbital quantum number l= J+-'„
while if we set f(r) =0 we get a solution cor-
responding to l= J—2. The possibility of doing
this is a consequence of the commutation of L'
with the operators J„J„,J. and J'. But since
L„does not commute with I' we cannot avoid
using functions with m=i%&-,' simultaneously.
This is clear, of course, from the vector coupling
model also.

$8. BEHAVIOR OF THE PAULI SPIN OPERATORS

AND WAVE FUNCTIONS UNDER ROTATIONS

OF THE COORDINATE AXES

One of the most important considerations
arising in connection with quantum-mechanical
problems concerns the behavior of the wave
functions under a rotation of the coordinate
axes."Suppose that in studying a given system,
we choose a particular set of coordinate axes
in terms of which to describe the space and spin
coordinates and for which we find the solutions
of the wave equation. It is apparent that in the
absence of any external fields, or of any con-
siderations which single out one particular set
of coordinate axes as fundamental, the choice
of axes which we happen to have made will not
be in any way unique, and we might as well have
chosen some other set oriented in an arbitrary
way with respect to the first set."Mathemati-
cally, this means that the energy operator and
the wave equation should have exactly the same
form in the two sets of axes.

"W. Pauli, Zeits. f. Physik 43, 601 (1927).Cf. also, B.L.
van der Waerden, Die Gruppentheoretische Methode in der
Qnantenmechanik (Springer, 1932). E. VVigner, Gruppen-
theorie end ihre Anzeendung auf die Quantenmechanik' der
Atomspektren (Vieweg and Sohn, 1931)."This is true also with respect to translations of the axes,
but in Euclidean space pure translations without rotation
introduce no new features.
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a~'=a~ (il Uli)+a~ (2 Uli)
a —a1 ' (1 I Ul 2)+am (2 I Ul 2),

(29)

where (1I Ul 1) . are ordinary complex func-
tions, depending on the relative orientations of
the two sets of axes.

It will be convenient to look upon this trans-
formation as induced by an operator U, having
the property that

R1 = URj, Rm = URg. (30)

FIG. i. Rotation of coordinate axes.

The matrix of U (as expressed in terms of its
operation on the symbols a& and a&) is

(if Ufi) (il UI2)

(2f Uli) (2l Uf2)

As these equations must be reversible, we can
write

If then we consider the solutions of the wave
equations obtained separately for two sets of
axes, the problem arises of relating these two sets
of solutions in a one-to-one manner which will

maintain the characteristics from which we draw
the physical interpretation of the problem, e.g.
the interpretation of

I g I' as a probability
density.

Let us consider the two sets of coordinate axes
(x, y, s) and (x', y', s') related as shown in

Fig. 1.19

According to our previous analysis, these
functions are to be expressed in the forms

R1= U R1, Rg= U Rg.

U ' may also be expressed by a matrix

(1 I
U '

I 1) (1 I
U 'I 2)

U—1~
(2I U 'Ii) (2I U 'I2)

such that

a &

——a~' (1 U-'
I
1)+am' (2 U-'

I
1),

am
——ag' (1 U—'I2)+am' (2 U 'I2).

By elimination we find

P(kl Ull)(ll U—'Im)

(31)

g = xi(~ys&) ai+ xm(~ys&) aa,
g' =x&'(x'y's't) a&'+ xp'(x'y s'1)am',

(28)
=Z(&l U 'lf)(fl Ul~) =» (33)

where R1 and R~ are the spin functions appropriate
to quantization of the spin components along
the s axis, while R1' and R~' are the spin functions
appropriate to quantization of the spin com-
ponent along the s' axis. Since the "state" of
the spin is supposed to be determinable in terms
of its quantization along any axis, we assume
that these two pairs of spin functions are ex-
pressible in terms of each other by a linear rela-
tion of the form

'9 In Fig. j. the line A is the intersection of the (x, y), and
(x', y'3 planes. The transformation from (x, y, s) to (x', y', z')
can be carried out by {1)a rotation about s through an
angle g, {2) a rotation about A through an angle $, (3) a
rotation about s' through an angle g.

a,'=(1
a~' ——(2
a, =(1
a,= (2

U-'I1) a~+(1 U-'I2) a„
U '

I
1) ay+ (2 U '

I
2) ag,

U 1) ag'+(i U 2) am',

U 1) ag'+(2 U 2) an'.

(34)

in order that relations of the form (10) may be
preserved for the spin functions in both sets of
axes.

' We have written these relations out in detail for the
reader who is not too conversant with matrix notations.

or UU '= U 'U=a4 (unit operator!).

The conjugate spin symbols for the two sets
of axes must be assumed to be related by the
equations"
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x' cos f cos g—sin f cos & sing

y' —sin g cos y—cos g cos $ sin q

cos g sin q sin g sin $
+sin f cos icos q

—sin f sin g cos g sin r (36)+cos f cos $ cos q

sin $ sin g —sin $ cos g cos $

TAsr. E I. Transformation cocci ents. These operators (and their matrices) may be
looked upon as more general solutions of Eqs.
(4), and (5). They reduce to s„s„,s, for P, rt, f -+0.

Now according to our hypothesis that the
operators s,', s„', s,' are related to the spin
functions a1' and a2' in exactly the same way
that the operators s„s„,s, are related to a1 and
a2 we have by comparison with Eqs. (13) and (14)

For the analysis of this section, we assume
further that

The operator V is then said to be unitary.
The transformation coefficients between the

two sets of axes are as given in Table I. If we set
x] —x x2 p x3 =s this may be written as:

I I &K I$ R1 = fER2,

I I '1 Is„a1 = i-,ka2,

S,'a1' ———,AR1,

S R2 = —r~LR1,

S„'a2' ———i-,'ha 1',

s,'a2' = ——,'ka2'.

Let us introduce the operators o.1 o4 from Eq.
(16) and their counterparts in the primed set of
axes

3 3
I

XI =~i~Xi &

l=1 l=i
(37)

I I
OIe sk y

k= 1) 2) 3q 04 =04 ~

where the ~ll, are the coefFicients in Table I.
Ke shall base our explicit computation of the

transformation operator U on the supposition
that the operators representing the components
of the spin transform like the components of a
vector under a rotation of axes, i.e. , like x, y, s.
If s ', s„', s, ' are the operators for the components
of the spin in the primed axes, we write from the
table of transformation coeScients (36)

s,' = (cos l cos rt —sin I cos $ sin rt)s,

We see that the matrix elements of the four
operators nr' s4' when operating on the functions
a1', R2' are exactly the same as those of the
operators o~, , o4, when operating on the func-
tions a1, a2 so that we can write

2

rrr, 'a„'= Qa)' ~ (l
~

rrr.„~ r).

Substituting from Eqs. (30) we get

+(cos f sin rt+sin I cos $ cos rt)s„

+(sin rt sin t)s„etc. since

ok'Uar= Uga~ (l~o~~r)= Uo~a,

or
3 3

I I
Sle ~le ls l ~ SIe ~1&$ l ~

l=l l=l
(37a)

ega, =Par (l~a~~r).

i (sin &)e-*~cos f
s,' —,'k

i (sin ()e—'~ —cos $
(38)

Thus (as apphed to the spin functions a& and a2,
in the sense of Eq. (12)), the matrices of these
operators are:

sin r sin $ (cos t i sin I' c—os $)e
—'~

S~ ~25
(cos I +i sin 1' cos $)e'" —sin I sin $

cos f sin $ (—sin f i cos f' co—s $)e
I

sy
~ ~, 7

(—sin &+i cos f sin $)e" —cos f sin $

From this result we see that the relation between
the operators ~' and 0 is

cry, 'U= Uo-I„k= 1, 2, 3, 4.

These equations, taken with Eqs. (33, 35)
furnish the basis for the determination of the
operator U, and its dependence on the param-
eters specifying the rotation of the axes, e.g. ,

the Eulerian angles.
In $6 we showed that any two-dimensional

matrix, representing an operator on the spin
functions, could be written as a linear sum of the
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operators 0&, . . .
, o4. This leads us to write, as It should be noted that these quantities are not

in Eq. (20), single-valued functions of the relative orienta-
tions of the two systems. If we change any one

U=uloi+u2a2+u3a3+u4«(40) of the angles by 2nr we find that
with

ul= 2I (1I Ul 2)+(2
I Ul »7

22L(1 I UI 2) —(2 I UI 1)7.

u3= 2C(1 I UI1) —(2I UI2)7,

un=-', L(1I UI1)+(2 I UI2)7.

(ull u22 u32 u4)~ (uly u22 u3y u4) ~

The operator U is a multiple-valued function
of $, n,&1.

For the matrix of U we find"'

U(I( . II)

On the other hand, we know the transformation
formulas of the s operators from Eq. (37a) for a
given rotation of the system of axes, and if we let

cos —$.e if (n+—r)

i s—in 21$ e'&'3 r&

i s—in 2 $ e '~(n r&

(44)
COS l g. ei) (3+r)

4

0 jg
—~kl&ly 0 k / ~l,kffl ~

I l=l

In order to determine the transformations of
~4I=~42=~43=~34=~24=~&4=02 ~44= ~2 the functions XI and y2 we proceed as follows:

Suppose that nt( and nt(' are the solutions of the
wave equations carried out independently in the

~ operators as two sets of axes, but both representing the same
physical state of the system under consideration

(4] ) In order to preserve the invariance of the
probability density we shall assume that"

These operator equations can be used for the
explicit determination of the coeScients N~, u2,

u3 u4 Using Eqs. (41) we get

4 4 4

a3'U=(+~3&o&)( P u a ), Ua3 Pu„a.——a3,
n=1

or

xl'(x'y'z')') a&'+ x2'(x'y'z't) a2'

= &&,(xyzt) a 1+X2(xyzt) a2. (45)

On substitution from Eqs. (29) or Eqs. (31) we
find

xl'=xl (1I UI1)*+x2 (2I UI1)'

x2'=xl'(1I UI2)'+x2 (2I UI2)*

»=(1l UI1)»'+(1I UI2). x2',

»=(2I UI1)»'+(21 UI2)»'

so that finally
(46)

4 4 4

P g u (o3&o&a =Qu.o.o3. (42) all&i

n=l

If we work out both sides explicitly we find that
they each consist of a sum of terms in r~, . o4.

Equating coefficients of corresponding 0 opera-
tors on each side we get a family of linear
equations satisfied by the u's. The details of the
computation are given in Appendix C. They
lead to the following results, which may be
verified directly by the reader,

With the matrix (44), Eqs. (46) become

It is evident that the pair of quantities x& and
y2 do not transform under a rotation of axes like

xl' ——yi cos -'$ e*2(n+r)+X'2 i sin -'$ e *'&(n r&

(48)
X2 —Xl'i Sin -'2$ e'~ ~(r+ X2COS 2$ e '&(n+r)

~

u = i Sin -'P COS 21(n& —I), —

u2= i sin 2&
—sin 2(n&

—I'),

u3= —i COS 2& Sin —2'(3&+I),

u4 ——cos -'2$ cos 21(n&+f)—

(43)

"'The convenient notation U(I&, g, fI) for the operator
U as a function of the rotation parameters is adopted from
Wigner, Gruppentheorie, reference 17."M ore generally one could assume P = e't'P' where
8 is any real number. This generalization is unnecessary,
however, since the factor e'f' can be absorbed in the
transformation operator U. The reader may note at this
point that the operator U is not uniquely determined by the
conditions (39) and (35). Cf. Appendix C.
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the components of a vector or tensor of higher
rank. They are called the components of a spinor
(of rank 1).

The significance of the spin components as
rotation operators can be exhibited very nicely
from this analysis. If q=f=0 and f(=kg) be
in6nitesimal, an in6nitesimal rotation about the
x axis through the angle hP is induced, with the
transformation operator»'

U({~P,0, 0})= i,'~P ~—,+~,=~,+~g( iS,/k)—,

from which

(p!U'/~$) &I, p. r&-p = —is*/&.

U can be expressed as

P({$ 0 0'}) s its~i/ —s——iIIri

if the exponential function is de6ned formally by

e *&& =-Iy( i'g—,)~(1/2!)(—i-,'P, )P+ ~ ~

=(cos p'&)ap —i(sin ,'&)0I—

In view of the noncommutativity of these
operators, the exponential form loses the happy
faculty of addition of the exponents in the com-
position of two rotations. Extensive use has been
made of this representation by Eddington in his
recent book."

R„: L —+—L, L„++L„, L,—+—L„
Rp.' L ~L, L„—+L„, L,~L,.

We assume that the spin operators are subject
to the same transformations under these re-
Rections. By a reasoning entirely analogous to
that of the previous section, we conclude that
the corresponding transformation operators,
analogous to the U of Eq. (40) are:

R„: U(R„)= app,

Rp. U(Rp) = warp.
(49)

The double sign for U(R„) and U(Rp) has been
introduced here explicitly to show the freedom
in the choice of U (cf. footnote 21). For pure
reHections only the choice of + or —is allowed,
since a further reflection of the same sort returns
the system to its original conhguration.

coordinates (inversion). All other reflection
operators in ordinary space which leave the
origin of coordinates 6xed can be made up from
these two combined with appropriate operators
representing rotations of the axes.

By inspection of the orbital angular momentum
operators (2) we see that under these two re-
Hections they undergo the following transfor-
mations 9

$9. BEHAVIOR OF THE PAULI OPERATORS AND $10. THE EXTENSION OF THE PAULI THEORY TO

SPIN FUNCTIONS UNDER REFLECTIONS MANY ELECTRONS

In addition to rotations of the coordinate axes,
it is sometimes necessary to consider the char-
acteristics of the wave functions with respect to
various reflections. Problems of this kind arise
in the study of systems in which the energy
operator has certain symmetry properties with
respect to operations of this type, e.g. , spherical
or axial symmetry.

We con6ne our attention to two operators of
this kind, (a) the operation R„which reflects the
system in the (x, z) plane, and (5) the operation
Rp which reAects the system in the origin of the

-'" The minus sign appears in these expressions because U
is the operator which rotates the coordinate axes in "spin
space"; i.e., a1 and a~. More customarily one deals with the
operator U ' which transforms the components x'I and x~, in
which the negative sign does not appear.

~ A. S. Eddington, The RekrA'city Theory of Protons and
Electrons (Cambridge University Press, f936).

Although it does not lie within the scope of the
present article to discuss the problems of many
particles in detail, we may pause to indicate the
manner in which the Pauli theory is extended
to more than one particle. Since each electron
has a spin, we must introduce 2n individual spin
functions for e electrons.

ai(1), ap(1); ai(2), ap(2); . ; a, (n), ap(n)

The index in brackets designates the electron,
e.g. , ai(1) is associated with a state in which the
s-component of the spin of electron No. 1 is +-,'k.

A spin wave function representing a particular
state for the spins of all of the electrons can be
made up by taking a product of an arbitrary
choice of these functions, one for each electron,
e.g. ,

a, (1)a&(2)ap(3) ~ a, (n) .
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In all, we can make up 2" products of this sort,
representing the complete set of spin states of
the system.

The complete wave function is then written
in the form

Xa&m" r(&i, yii si; ~ ~ ~; x~, y~) s~; t)
gg g e ~ em]

Xaa(1)a((2) a,(n), (50)

where the sum runs over the 2" spin functions.
In applying this method to electrons we must

take cognizance of the Pauli exclusion principle
which requires that the function g change sign
if we interchange the variables of any two elec-
trons. In such an interchange we consider the
index numbers of the electrons appearing in the
spin functions as subject to interchange in the
same manner as the space variables.

In many practical calculations it is convenient
to write the functions x~i... as products, or sums
of products, of functions each depending on the
coordinates of a single electron (i.e. one electron
wave functions). "

II11. THE ESTABLISHMENT OF THE DIRAC

WAVE EQUATION

In turning from the Pauli theory to that of
Dirac, we enter on a new phase of ideas centering
around the problem of developing a theory which
will satisfy the requirements of the theory of
relativity. As is well known, the special theory of
relativity is concerned with the transformation
properties of the equations of mathematical
physics under the group of Lorentz transfor-
mations. These transformations relate the space
and time variables used by two "observers"
moving with constant velocity with respect to
each other. The specific requirement which is
ordinarily imposed is that the equations em-

ployed in physical theory must have the same
form for the two observers, and furthermore, that
the solutions obtained by the two observers for
the representation of a given physical phe-
nomenon must be related in a one-to-one manner
which will preserve the physical significance
attached to them. In itself, this requirement is

'3 Cf. Wigner, Grilppemtheorie (reference 17) or any book
on advanced quantum-mechanical theory.

not very restrictive, and leaves considerable
freedom in the choice of the actual mathematical
form for the equations. The final selection must
be made on the basis of arguments concerning the
physical phenomena to be described.

Prior to the appearance of Dirac's theory,
several authors" had proposed relativistic
generalizations of the Schrodinger equation.
These had in common the characteristic that they
contained second partial differential coefficients in

the time variable t, unlike the simple Schrodinger
equation which contains only a first partial
derivative in f. The starting point of Dirac's
theory was the observation that the success of
quantum mechanics in the construction of a
comprehensive description of stationary states
is due, in large measure, to the appearance of but
the first-order time derivative in the wave

equation
XQ =zh8$/Bt.

The importance of this restriction may be seen

from several points of view. The most weighty
concerns the definition of a probability density,
which from its physical meaning must be positive
everywhere. The form of wave equation assumed
determines the expression for the probability
density in terms of the wave function g. The
relativistic equation proposed by Schrodinger
leads to a probability density which is not
necessarily positive. '4

From another angle we can see that if the wave
equation were to contain a term in 8'g/8I', then
in order to specify the behavior of a system for
5 Q fp, in terms of its condition at t = t p, it would be
necessary to specify both g and Bg/Bt at t = to In.
speaking of an atom such a statement as "at
time tp the atom is in state A" would not be
adequate, but would need to be amplified to "at
time t p the atom is in the state A, and its state is

changing in some specified manner. " In the
absence of any physical evidence that such a
drastic extension of our specification of the
behavior of systems in terms of their stationary
states is required, it seems only reasonable to
avoid it if possible.

~" E. Schrcdinger, Ann. d. Physik 81, 109 (1926). O.
Klein, Zeits. f. Physik 3'7, 895 (1926). U. Fock, Zeits. f.
Physik 38, 242 (1926); 39, 226 (1926). J. Kudar, Ann. d.
Physik 81, 632 (1926).

~4Cf. W. Pauli, IIundblch der Physi&, second edition,
Vol. 24, p. 214.
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On the other hand, the symmetrical manner in
which the special theory of relativity treats the
four variables xi=x, xt=y, xa ——s, x4 ——ict, is
strong evidence that whatever equation is as-
sumed shouM contain them symmetrically. The
requirements of both quantum-mechanical theory
and the relativity theory, when taken together,
suggest that the wave equation should be of the
form (51), and that the hamiltonian operator K
should contain only first partial differential
coeScients in x, y, s.

As the result of his quest for a hamiltonian
operator satisfying these requirements, Dirac
proposed" the following form for the description
of the motion of a single particle in an external
electromagnetic field.

XI Xg X2=y, X3 S3 X4 =ZC$,

Al ——A„A, =AXX A3 ——A., A4 i4tl—,—(55a)

113—— i7i8—/Bxl XAX—/c, k = 1, 2, 3, 4.

the dynamical equations of the special theory of
relativity.

With the hamiltonian (52) we write the Dirac
weve egzcc60e

KDXt1 =[—c(4xlI11+433112+433113+4x4mOc) +&111]3|1

=i7i8$/R, (55)

which constitutes the basic starting point of the
Dirac theory. "

It is sometimes convenient to write the Dirac
equation in a more symmetrical form by
introducing

XD = —cL4x1111+4x3113+413113+Xx4moc]+4&, (52)
The Dirac equation then becomes

where IIX ———ih4l/Bxl —4A 3/c, k = 1, 2, 3.

AI=A, A~=A„, A3 ——A, are the components of
the vector potential, and p is the scalar potential,
specifying the external field.

Oti, u2, 0;3, n4 are assumed to be operators which
do not operate on functions of the space coordi-
nates or time, and which obey the equations

~3~1+~1~3=2634, k, I=1, 2 3, 4 (53)

[ iII4+—+4XXIIX+434m3c]4JI= 0 (56)

Another useful form is obtained by multiplying
on the left eith in4 and writing

Pl 34344X1~ P3 34X44XXy P3 1434433~ P4 4X4y (57)

which yields the equation

834 ——0 if kgl, =1 if k=l.

As in the nonrelativistic theory the operators
for the components of momentum of the particle
are retained as

(Qp3113+im pc) Xt1
=0.

k=1

)12. THE DIRAC OPERATORS AND

SPIN FUNCTIONS

(58)

p. ill/Bx—, p„ihB/By, p. ibad—/B—z (54).
A strong argument for the reasonableness of

this hamiltonian is the following. Let us consider
a free particle for which the hamiltonian is

3'.D' = —c(4xlp, +433p„+4x3p, +434m3c).

If we form (XD3)3 we have by virtue of" Eqs. (53)

(~o0)2 = c3(m Xc2+p 3+p 2+ p 2)

which is formally just the expression relating the
energy and momentum of a free particle used in

"P. A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928);
A118, 3S1 (1928).

~This process is permissible since the p operators
commute. The II operators, with inclusion of external 6eld
terms, do not commute and care must be used in arguments
involving the iteration of the hamiltonian.

This discussion has thrown no light on the
nature of the o. operators, save that we have
assumed that they are independent of the space
variables, that they do not operate on functions
of the space coordinates, and that they commute
with all space operators (linear momentum,
angular momentum, etc.).

"For other reviews of the Dirac theory cf. P. A. M.
Dirac, Quantum Mechanics, first edition (Oxford Uni-
versity Press, 1930), second edition (193S). H. Weyl, The
Theory of Groups and Quantum Mechanics, translated from
the second German edition by H. P. Robertson (Methuen,
1931). B. L. van der Waerden, Die Gruppentheoretische
Methode in der Quantenmechanik (Springer, 1932).
Pauli, Handbuch der Phys&, second edition, Vol. 24
(1933).L. de Broglie, I'Electron Magnetique (Hermann et
Cie, 1934).J. Frenkel, 8'ave Mechanics: Advanced General
Theory (Oxford University Press, 1934). G. Rumer,
Physik. Zeits. 32, 601 (1931). H. A. Kramers, "Theorien
des Aufbaues der Materle, " in Hand- und Jahrbuch der
Cheerischen Physi&, Vol. 1, Nos. 1 and 2 (Akademische Ver-
lagsgesellschaft, 1933—38).
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Following the general plan of $5 we introduce
"spin symbols" similar to the a~ and a2 of the
Pauli theory. However, it will be necessary to
introduce at least four" such symbols instead of
only two. We call them a&, a2, a3, a4.

For the definition of the mode of operation of
the o.'s on aj, , a4 we proceed by direct
analogy with the Pauli theory by assuming that
the result of the operation of each of the o, s on
the a symbols can be written as a linear sum in

the I's; i.e.

~~a =Z«(~l~~lj), »i=1 2 3 4 (59)

In this way we define matrices representing the
a's of the form

(11~~11) (11~~12) (11~~13) (11~~14)

(2
I
u)11) ~ ~ ~ ~ ~ ~ . . ~

(31 .11)

1 0 0 0

0 1 0 0

0 0 —1 0

0 0 0

The operator representing "unity" (i.e. Iaq
=aq) has the matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In our future work we shall need the matrices
representing various other operators which can
be made up from the n's. For reference we give a
list below. These operators are adjusted so that
their squares are all +1.

0 —1 0 0

~2=&p2p4-

0 1 0 0

1 0 0 0

0 0 0 —i

0 0 i 0

0 —i 0 0

i 0 0 0

0 0 1 0

0 0 0 —1
ag ——ip3p4

0 0 0

As in the Pauli theory, the defining equations
(53) for the n's do not determine the matrix
elements uniquely. For the purposes of this
report, we choose the matrices in the form given
below

0 0 0 1

0 0 1 0
&1 &pl p4

ZA2%3 Zp2p3

—1 0

0 0

0 0

0 —1

tCK3%1 —Zp3p)

0 0 —1 0

0 i 0 0

—i 0 0 0

0 0 0

0 0 —i 0

—1 0 0 0

ZA1&2 =Zplp2
0 1 0 0

0 0 —1 0

0 0 0 11

0 0 0 —i

0 0 —i 0
'~

0

i 0 0 0,

zÃycx4= py~
0 i 0

0 —1 0 0
» The reader can easily verify from the results of $6 that

no operator F (cf. Eq. (20})can be found which will anti-
commute with o1, erg, o3 but which is not a multiple of one of
these. The possibility of using two-dimensional matrices is
thus eliminated. For the more general discussion cf. %'.
Pauli, Zeemcn Verkandelingee (NijhoS, 1935), p. 3j..

A%20!4 = —P2 ~

0 0 0 —1

0 0 1 0

0 1 0 0

—1 0 0 0
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2433424 = —P3~

2432a3n4 $P2P3P4

0 0 i

0 0 0

0 —i 0 0

0 —1 0 0

—1 0 0 0

0 0 1

0 0 —i 0 the 0. s can be expressed as a linear sum of these
16 operators, and similarly any 4-rowed square
matrix can be written as a linear sum of those 16
matrices. This is a generalization of the similar
theorem found in II6 for the Pauli operators.

$13. THE DIRAC WAVE FUNCTION

Following the same procedure as in $5 we
write the complete Dirac wave function in the
form

0 0 1 0 Xlal+X2a2+X3a3+X4a4. (60)
0 i 0 0

—i 0 0 0
We then introduce as in CI5 the conjugate spin
symbols:

2433421434 2P3P1P4
0- 0 0 —i

0 0 i 0

0 0 0

Ri, R2, R3, R4,

which have the property that

(61)

2431422424 =ZP1P2P4

2421422423 PlP2P3P4

421422423424 —ZPlP2P3

0 1 0 0

0 0 1 0

0 0 0 —1

0 0

—1 0

0

0 0

0 —1 0 0

'0 0 —i 0

0 0 0 —i

i 0 0

0 i 0

0 0 —1 0

The complex conjugate function to 4tl will be
written as

Xl al+X2 a2+X3 a3+X4a4i (63)

R1 R1
CL4

R2 Rg

Rg —R2
CX4

R4 -R4'

QX1CX2
Re

-R1 . R2 R2
1CX1C12—Rg R4 R4

where p&*, , p4~ are the ordinary complex
conjugates of the functions xi, , x4.

In f21 we shall discuss the physical interpretation to be
attached to the "internal states" of the electron which are
represented by the symbols R&, R&, R3, R4. Anticipating this
analysis, we may note that, with our definitions, the
matrices of $12 show that these states are such that the
operators a4 and idio. g are quantized; i.e.

All of these matrices are hermitian as well as
unitary. "

It is to be noted that all of the quantities which
can be made up by multiplication of any number
of 0, 's can be reduced to one of these forms, or to
one of them multiplied by +1 or ~i. This is a
direct result of the commutation rules (53).
Consequently any general operator function of

"A matrix F is said to be hermitian if F Ft where Ft is
the matrix obtained from F by interchanging rows and
columns and then changing all elements to their complex
conjugates. F is said to be Unitary if F '=F1 {cf.Eq. (35}).
I ~ is usually called the adj o~rlt of F. For the purposes of this
article we refer to an operator as hermitian or unitary if the
matrix used to represent it is hermitian or unitary, as the
case may be.

Ke shall find that S,= ——,'kux1a~ is the operator for the z

component of the electron spin, while h. = —m~4 is inter-
pretable as a kind of "rest mass" operator. We may then
characterize R1 as representing a state in which S. has the
value +qk and A has the value —mo. Similar statements
follow for the other states.

In one iinportant respect the Pauli theory permits a type
of simplification which is not possible in the Dirac theory.
In the former, the energy operator used in most practical
problems is of such form that it is possible to employ wave
functions which contain but one spin function; i.e., solu-
tions of the form g&Ri or g~R~. In fact, solutions of this form
are commonly used in the literature. In contrast with this,
the form of the Dirac hamiltonian is such that, even for c
free particle, it is not possible to consider the "interna122

states as separable. That is, one cannot dispense with the
use of all four functions X1, ~
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)
(67)= 3P( —C433) itl,

(zha/Bt —pf+mpc') Xz+ cII +X3—cII3X4 ——0,
(64) Q4= —C(Xl X3 Xz X4+X3 Xl X4 Xp)

(i7l8/Bt 34tl —mp—cz)X3+cII Xz+c113xl 0, —— = 4*(—C~3) 4

By substitution of /from Eq. (60) in the wave Q' = —c(Xi X4+Xz*X3+X3*X3+X4*xi)
equation (55) we can work out the equations for —C43i)
the functions x~, y~, x3, x4. The result is

/3= zc(X1 X4 Xz X3+X3 X2 X4 Xl
(zha/at 3@—+mpcz) Xi+cII X4+cII3X3=0,

(ihB/Bt 3@ —mpc—') X4+cII+Xi cII3—X3=0

with IIw = II)aiII2.

which is never negative.
The possibility of endowing this expression

with the physical meaning of a probability
function depends on the existence of a probability
current density 3 such that

B—
l
ital'+div 3=0

Bt

for then only can we be assured that the total
probability of finding the electron somewhere
will be constant in time; i.e.

(8/at) fff I (I'«dy«= o

From Eqs. (64) and their complex conjugates
we find

B B—Iltl'+c —(—Xl X4 Xz Xp Xp Xz X4 Xl)
Bt Bx

B
+c (ixi"x4—ixz*xp+—zxp'xz zx4*xi)—

By

B
+c ( xl xz+xz x4 xz xi+x4 xz) =0.

BS

The components of the probability current
density can be identified as

II14. THE PROBABILITY AND CURRENT DENSITY

EXPRESSIONS

The physical interpretation of the Dirac wave
function is based on the same fundamental
hypothesis as in the Schrodinger, and Pauli
theories (cf. CI5).

The probability density is defined by

I%I'=0'0= Ix I'+I»lz+ lx I'+lx41', (65)

If we multiply by the charge e we get the charge
and current density expressions

I =.
I g I

=.g*Ig; j=.g'( —ca) q. (68)

The second of these equations suggests that the
(vector) operator —C43 represents the velocity of
the electron in the Dirac theory. This interpre-
tation is due to Breit."It is significant that in the
Schrodinger theory, there exists no operator for
the velocity, but only for the momentum. The
further development of this conception is deferred
to $21.

$15. THE FREE PARTICLE SOLUTIONS

In the absence of an external electromagnetic
field

A~ ——A2=A3=A4=0

the Dirac equation becomes from Eq. (64) and
(55a)

( 8 ) t'8 8) 8
zh—+mpc' lxl —zhcl —z—lx4 —zhc—X3 —0,

at l (ax By) as

( 8 ) t'8 ap 8
I

ih +m,c' —Ixz ihcl ——+3—Ixp+ihc X4 0—, ——
at ) (ax ay) as

(69)
( a ~ t'8 aq a

I
ih mpc'—Ix—z

—i7lcl i —lx—z ——ihc—xl ——0,
Bt ) Lax By& Bs

( 8 p t'8 81
ih mpc IX4 ihcl —+i lxi+ihc xz =0.

Bt ) I Bx By) Bs

We can obtain particular solutions of these
equations by assuming that the x's can be written
in the form

Xl = lt exp (i/h) (Pix+Pzy+Ppz Et), —

p, =1, 2, 3, 4,
3' G. Breit Proc. Nat. Acad. Sci. 14 553 (1928); 173 M

(Z93&).
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where 21~, , q4', pz, pz, E are all constants;
the p's are complex and the others real. By
substitution we obtain the following algebraic
equations for the p's:

(E+mpC )'ll j0 92+'CP37I3+C(pl zpp) $4=0,

0 gz+(E+mpc )&2+c(P&+zP2) q3 cP3$4 0)

cpzt/2+c(pz zp2)t/2+(E —mpc )'g 3+ 0 $4=0

c(p&+zp2)fez cp3g2+0 zt3+(E mp—c')214=0

g4 = —C
(Pz+iP2) C P3—D

mpc

E+ +mpC, E —mQC

q =exp(i/a)(p r —E &)

X(nz az+212 a2+gp az+—q4 a4)-(7.2)

For small values of the p's (i.e. P22+ P22

+P32«mpzc2)

so that
The necessary and sufficient condition for the

existence of nonvanishing solutions to these
equations is the vanishing of the determinant of
the coefficients', i.e. lv2 1»lnz I,

E+mpc Cpp C(pz —zp2)

E+m pc' c(pz+ip2) —cpz
=0

cpp c(pz ip2)—E—mpc' 0

C(P,+ZP2) —CP3 E—mpc

On expansion the determinant yields

[E2 m 2C4 C2(p 2+p 2+p 2)$2 —0

from which we obtain the two (double) roots

E~ = WC( mpzC+2Pzz+P22+P3') &. (70)

As both roots are double, for each root two of
the q's may be given arbitrary values, while the
other two can be obtained from the equations. If
we let A, 8, C, D be arbitrary complex constants,
we can write the solutions in the form

qg-= C, g2-=D,

P3~+(Pz zP2)D-
E —m pc'

q3+ =A, q4+ =8,
P.~+(P -'P.)~

g += —C

E++m pc'

(Pz+zp2)~ P&—
g2+ = —C

E++m pc'

/+=exp (i/Iz)(p r —E+z)

X(gz+az+2Z2+a2+4Z3+ap+214+a4); (71)

The existence of solutions of the Dirac equa-
tion for E(—mpc' (negative energy solutions)
has been the cause of much doubt and speculation
concerning their proper physical interpretation.
In a series of very interesting papers, Schrodinger"
some years ago studied the possibility of elimi-
nating the negative energy solutions by an
altered definition of the operators used for the
representation of physical quantities.

In fact, however, an exactly similar difficulty
is present in classical relativistic mechanics, in
which the energy expression for a free particle in
terms of its momentum components could be
taken as either of the expressions of Eq. (70). But
the difficulty can be evaded in this case by
requiring that in the motion of a particle its
energy, as well as its momentum, can change only
continuously. A particle moving with an initially
positive energy could never attain a negative
energy, since the finite interval 2mpc' separating
the positive and negative energies could not be
negotiated by continuous stages.

But in quantum-mechanical theory the trouble
is much more serious and fundamental, since
discontinuous transitions between diAerent states
are not only permitted, but form a basic element
in the applications to actual physical problems. A
preliminary investigation of transitions between
positive and negative energy states was made by
Klein, " soon after the publication of Dirac's
equation (Klan paradox) Klein stud. ied the

~~ E. Schrodinger, Sitzungsber. Preuss. Akad. Miss.
Phys. -Math. Klasse, p. 418 (1930); p. 63 (1931};Annales
de l'Institut Henri Poincare 2, 269 {1932).

3' O. Klein, Zeits. f. Physik 53, 157 (1929}.
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reflection of electrons at a "potential barrier"
separating two regions in which the potential
energy of the particle is 0 and I", respectively. In
Fig. 2 is shown a schematic energy diagram for
the two regions (treated as one-dimensional)
with the energy intervals of width 2moc' in which
no solutions exist for the free particle marked by
cross hatching. For I'~&2moc' it is possible to fit
the solutions together at the boundary between
the two regions such that a positive energy
solution on the left is fitted with a negative
energy solution on the right. Under these con-
ditions it would appear that the particle could
penetrate the barrier by making a transition
from a positive to a negative energy state.
Klein computed a coefficient of transmission,
which increases from zero for I' =8+moc' to

(E'—mo'c') &

2
E+(E'—rao2c4) &

for I'—+~.
Bohr made the suggestion that the high

coefficient of transmission arose from the discon-
tinuity in the potential, which would be as-
sociated with an infinitely great acceleration. The
problem was examined more in detail by Sauter, "
who supposed that the energy changed in a
gradual manner from one region to the other. He
concluded that the coefficient of transmission for
an electron would be small unless the energy
gradient exceeded

rnoc'/(II/moc) = 10"electron volts/cm.

Although this indicates that transition proba-
bilities between positive and negative energy
states are small for the fields ordinarily available
in nature, the theoretical difhculty of their
existence remains.

Some question might be raised concerning
calculations of this type, since in physical
problems we must consider the fields not as
purely external things, but as having a dynamical
origin. However, all attempts to eliminate transi-
tions from the positive to the negative energy
states have but established more firmly the
conviction that the negative energy solutions of
the Dirac equation must be considered on a par
with those for positive energies. Further dis-

"F. Sauter, Zeits. f. Physik 69, 742 (1931};7'3, 547
(1931}.

cussion of this point is given in a later section,

(II23)
It should be observed that the distinction

between "negative energy states" and "positive
energy states" can be made exact only in the
absence of external fields. In most applications
the electron is considered to be practically free,
but is caused to make transitions between its
various states by the external field, which is
treated as a perturbing inHuence. The distinction
between positive and negative energy states
retains its physical significance.

l(/

2NC
/Ji

2.fB,C
J,X

0

FIG. 2. Schematic one-dimensional energy diagram.

(a) The total angular momentum operator
shall be a (vector) sum of the orbital and spin
angular momentum operators.

(b) The total angular momentum operator
shall commute with the Dirac hamiltonian for
the electron in a central field.

$16. THE SPIN ANGULAR MOMENTUM OPER-
ATORS. QUANTIZATION OF THE TOTAL

ANGULAR MOMENTUM

In this section we shall study the operators
representing the components of the angular
momentum in the Dirac theory, and shall de-
velop the relationship of the four O,-operators to
the electron spin.

The operators for the components of the orbital
angular momentum are defined by exactly the
same equations as in the Schrodinger and Pauli
theories ($4).

Ke can no longer define the spin angular
momentum operators in an a Priori manner as in
the Pauli theory, but must appeal directly to the
structure of the Dirac equation itself. The
criteria which we shall use are that:
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The 6rst condition is the natural generalization
of the Pauli definitions (21); the second is the
necessary and suf6cient condition that the total
angular momentum may be quantized in the
stationary states of the hydrogen a.tom, just as is
the case for the orbital angular momentum in the
Schrodinger theory.

The operators for the components of the spin
angular momentum must be chosen to satisfy the
equations

(50 ')J—J(3'- ') =o

where (Xo') is the special form assumed by the
Dirac hamiltonian for the electron in a central
heM

The square of the magnitude of the spin angular
momentum has exactLy the eaLue 43k' requzred in the

hypothesis of Uhlenbech and Goudsmit
The automatic appearance of appropriate spin

operators constitutes one of the principal tri-
umphs of the Dirac theory, and has had much to
do with its adoption as the most fundamental
starting point at present available for the dis-
cussion of problems involving high energy
electrons.

We can now carry through a calculation of the
quantization of the total angular momentum
analogous to that of $7. We seek a wave function
g satisfying the two equations

Ko' —— c(a—iP.+a2P„+a,P, +a4moc)+cy(r) J'4 =BC (76)

The operators p are defined by (54).
On writing out the equations (73) in detail (for

each component), the reader will easily find that
the following operators satisfy these conditions,

where A and 8 are constants.
We substitute &=x&ai+xia2+xsas+xia4 m

these equations and work out the solutions for
xI, ~ ~ ~, x4. We 6nd

Jg =Lg ——,'kzo. 20.3,

J„=L„——,'kie3nI)

J,=L„——,'kiCXIe2.

(74) XI X2
(L,+-',A —A) =0, (L„——,'A —A) =0,

X3

The operators for the spin angular momentum
are seen to be

Xl X2
(L'+ 'A'+AL. -B) +—AL, = 0,

X3 X4

S,= ——,'hz+20, 3)

SIf= g AZCX3& I)

S,= ——,'kiaIo. g.

(75)
X2

[
Xi(L'+ -'A' —AL B) —+AL~ =0.

X4 Xs

It follows immediately by use of Eqs. (53) that
these operators satisfy exactly the formal equa-
tions of the Pauli theory.

S,S„=—S„S.=iAS, /2, etc. ,

S '=S '=S '=(-'A)'

Inspection shows these equations fall into two
sets, one containing only XI and X&, and the other
only X3 and X4. Furthermore we see that each
pair is identical in form with Eqs. (25) and (26)
of $7. The results of that section can be taken
overin toto, so that we may write the solutions in
the form

t J+1 3E)&-
t J+Mp &

)ti(r, 8, e ) =f(r)I I
I'&+&, M-, (~, &)+«r)

I I
I'», M-, (t), &),

E 2(J+1) ) E 2J )

(J+j.+Sf' &

x~(», i), ))= —f(r)I I
I'~+i, M+i«, e')+g(r) I I

I'.-i, M+i(t), e),
g 2(J+1) ) ( 2J )

(77)
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(J+1—M~ I
xz(r, 8, z ) = ~(r)l I

I'~+I. jr-I(8 z)+&(r)I I
I'~-I. zz-I(8 s')

( 2(J+1) ( 2J )
(J+1+M) & (J—Mp I

xz(r, 8 z ) = —~(r)
I I I'~+I ~+I(8 z)+~(r)l I I"-I ~+I(8 z)
0 2(J+1) I 2J )

where the radial functions f, g, F, G are not determined by Eqs. (76).
The quantized values of J, and J' are again

where
A =Mh, J3=J(J+1)h',

J & ~ o ~ o ~ J ~J+f o ~ o +J
$17. THE HYDROGENIC ATOM. FINE STRUCTURE FORMULA

Apart from the solution of the problem of electron spin, the most signal success a6orded by the
Dirac theory has been the derivation of the Sommerfeld fine structure formula for the energy levels
of an electron in the field of a single nucleus. This formula was originally derived from an extension of
the Bohr theory to include the variation of mass of the electron with velocity, long before the dis-
covery of quantum mechanics. After the discovery of the electron spin and the development of
quantum mechanics, the problem had a checkered career involving much uncertainty over the
significance of the electron spin and mass variation eR'ects. The derivation of the identical Sommerfeld
formula" in 1928 from Dirac's equation, restored the problem to the realm of exact theory, and
created a strong argument in favor of the validity of the new wave equation.

Ke shall confine ourselves to a discussion of the derivation of the fine structure formula and of the
wave functions for the energy levels. For the discussion of the empirical data on the spectra of the
alkali atoms, and to the x-ray levels of heavy atoms, the reader may refer to various accounts in the
literature. ~ "

The Coulomb field of the nucleus is defined by

A =Az ——Az ——0, A4 zg =z(Ze/r) ——(z = —s = —4.80 X 10-"e.s.u.).
Equations (64) now reduce to

8 Zs i (8 8) 8
I

ih—+ +moc' Ix~ ihcl ———i—Ix4 ihc Itz —0, ———
Bt r ) (Bx By) Bs

We set

( 8 Zsz ) (8 8$ 8
I

ih ++m—oc' Ixz —ihcl +i —IItz+—ihc II4 0, ———
Bt r ) (Bx By) Bs

8 Zez ) (8 8) 8
I

zhc—+ —moc' Ixz —zhcl ——z—IItz —zhc—x~=0,
Bt r i 48x By) Bs

( 8 Zs' ) (8 8) 8
I

zhc—+ -m"' lx4-zhcl —+z—Ix~+zhc—x2=0.
Bt r ) &Bx By) Bs

0(r 8 ~)s—(s/k)s(

(78)

(79)

and introduce for Yzz, , y40 the functions of Eq. (77). It follows from the commutation of the
hamiltonian operator with the components of J, discussed in the last section, that the wave functions
for the stationary states are of the form of Eqs. (77).

~ C. G. Darwin, Proc. Roy. Soc. 4118, 654 (1928)."H. Bethe, Haedblck der 2 hysik, second edition, Vol. 24, p. 316.
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The diA'erential equations (78) could be transformed to polar coordinates, but by use of the
formulas given in Appendix B this is not necessary. The expressions (77) may be substituted directly
and the terms containing the individual spherical harmonics collected together. By virtue of the linear
independence of the spherical harmonics the coefhcients of each separate harmonic must vanish. This
straightforward, but somewhat laborious, calculation may be left to the reader. As the end result, we
find the following differential equations for f, g, F, G.

df/dr+ (J+ ,') (f/r) —+(i/hc) [E+(Ze'/r) —moc']G = 0

dG/dr (J—-', )—(G/r) + (i/hc) [E+(Ze'/r) +moc']f =0,

dF/dr+ (J+ ', ) (F/r) +-(i/hc) [E+(Ze'/r) +mac']g =0

dg/dr (J —,')—(g/—r)+ (i/hc) [E+(Ze'/r) mac'] —F=0

(80)

(81)

The separation of these equations into two groups, each containing but one pair of functions, shows
that we can find two independent solutions for itt for each allowed value of E, by letting either of the
pairs of functions (f, G) or (F, g) vanish.

We shall carry out the solution of Eqs. (80) in detail. The work for Eqs. (81) proceeds along the
same lines.

Let us set'"
a = e'/hc, X = (moc/h) (1 —e') &, e =E/moc', p = 2Ãr,

f(r) =1Vii(1 —e)&(e ""/r)(pi —pi), G(r) =X (1i+~)~(e ""/r)(pi+pi),

(82)

(83)

dAg y Z
1 ———

p(1

n~
- -J+-,'

Ag+
~2)$ p

A2,
p(1 —e') &

dA J+~
+

dp - p p(1

ZCl
~i+ ——+ Ag.—6') p p(1 —6')

ZA6

The solutions of these equations may be found in the form of series

~l ~ +~1P+&2P + ' ' ~2 do+d lP+d2P'+

By substitution we obtain the recursion formulas

ZC16

where X& is a normalizing factor to be determined later.
By substitution in Eqs. (80) we find that pi and p2 satisfy the differential equations

dpi fZa'e ) (J+2 Zn
is i+I

d p E p (1 —E') '*I E p p(1 —6') '*]

dpi (J+— Zn ) t'Zn e

+ i~i+I
dp 4 p p(1 —e')&) ( p (1 —e')&)

We reduce these equations one step further by writing

0'&=P ~I~ 0'2=P ~2)

where A& and A2 satisfy the equations

(84)

(86)

(87)

cg, y+k+ —dI I+2- =cd i, ci J+-,'+ —di y+k — =0. (88)
(1 —P) & (1 —qi) & (1—e2) & (1 —q') k

35u In the remainder of this section, and in Appendix D, the e1ectronic charge is designated by e, and the energy in
units of m0c' by ~.
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For the lowest term 0 =0 (c [——0) we get two homogeneous equations for co and do which admit
nonvanishing solutions if, and only if, the determinantal equation

( Zae
{ ~+
] (1—e') &)

=0
( Za~

(1 —e') &)

is satisfied. One of the solutions of this equation is

'r=+{ (J+-,')' —Z'a'j . (89)

The other is the negative of this expression, which must be discarded since from Eqs. (83) and (85) the
behavior of the wave function in the neighborhood of r =0 would then be like

1/r]+[(J+$&2—z~a2] [

This choice would lead to a nonintegrable value of }(]t(~, which would not be suitable for the repre-
sentation of a real stationary state. With the choice (89) the behavior of

} g}' for small values of r is as

1/rl —[(J+$)~—z~a~] [

It is worthy of note that a 1/137 (Eddington's value), so that for all known atoms

Zo; (1.
As the minimum value of J is +-„ it follows that y is always real. From Eqs. (88) our recursion
formulas now become:

(p+ 0) (1 —e') & —Zae (J+-') (1—e') &+Za
Ck 1, dk= Ck ~

k(2y+0) (1 —e') [ (y+&) (1—e') & —Zae
(90)

In order that the solutions may be of the form of polynomials let the highest nonvanishing coeffi-
cient in the series for ck be

c„. , P 0, c„=c„+[—— ~ ——0.

Then

from which

y+n' —Zae/(1 —c') & =0,

E= bmoc' =moc'{ 1+Z'a'/(n'+y)'$-&

(91)

(92)

The principal quantum number is defined by

n =n'+ J+-', .

Introducing this into Eq. (92) we get the energy expression for a hydrogenic atom

mo(2&&m(2{1+Z2a2/(nJ1+{(J+1)2Z2a2}$)2]—[

If the rest energy moc2 of the electron is subtracted out, the residual is

S'„,g ——E„g—moC',

which is the Sommerfeld fine structure formula.
For the explicit determination of the wave functions we let"

(94)

(94a)

"These functions are related to the con8uent hypergeometric function. Cf. Whittaker and Watson, Modern Analysis,
fourth edition (Cambridge University Press), chapter 16. W. Gordon, Zeits. f. Physik 48, 11 (1928).H. A. Kramers, refer-
ence 27, p. 302 et seg. H. A. Bethe, reference 35, p. 311.
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$(5+1)
P(P, ri; x) =1+ x+ x'+ ~ ~ .

1!ti 2!ri(ii+1)
(95)

From the recursion formulas (90) (with cs= 1) it is easily computed that for F=F„,z

pi= Lp ' 5( 'n +1& 2 y+1 i p))~='Is, J~

y+n +'(J+g)s
p& f( n—', 2y+1; p)I

—&= &n„Z

A similar analysis can be carried out for Eqs. (81) by writing

F=¹t'(1+s)&(e-""/r) (8i —8s), g =¹(1—s) &(e-"'jr) (8i+8s).

(96)

(97)

y+n' (J—+-', )s
p'&( -n', 2v—+1 p)

8s ——[p& F(—n'+1, 2y+1; p)).=. , z.

'n, J
(98)

The normalization factors XI and Xp can be computed by the method given in Appendix D and are
found to be

X n's I'(2y+1+n')

I'(2y+1) 2Zamsc y+n'+(J+-,')s (n' —1)!
n's I'( 2y+1+n')

s

I'(2y+1) 2Zotmsc p+n' —(j+—')s (n' —1)!
where I' refers to the gamma-function.

It can be verified from the explicit formulas or can be seen from the differential equations (80, 81)
that

IGI»lff, lFI»fgl
For each of the two solutions for the energy state E„,~ one of the components of the wave function is
much larger than the other. If we designate the two independent solutions as

I. F=g=0, II. f=G=O,

we see that for (I) the big components have the angular factors

~J'—$, M&)y

indicating that the orbital angular quantum number is l= 1 „while —for—(II) the big components
have the angular factor I'q+I. It+I for which /=7+-,'. In a rough way we get the vector coupling
scheme of the Pauli theory. But the existence of the small components with the angular factors in the
reverse order shows that the vector coupling model is only approximate at best."

$18. THE RELATIvIsTIc PRQPERTIEs QF THE specifically the study of its behavior under the
DIRAC EQUATION grou. p of Lorentz transformations. "

We turn now to the discussion of the relativistic
invariance of the Dirac equation. This involves

3'f Interesting pictorial representations of the probability
density QsQ for the hydrogenic atom are given by H. E.
White, Phys. Rev. 38, 513 (1931), with a comparison with
the classical orbit model with vector coupling of I and S.

3 J. von Neumann, Zeits. f. Physik 48, 868 (1928). F.
Moglich, Zeits. f. Physik 48, 852 (1928). C. G. Darwin,
Proc. Roy, Soc. Alls, 654 (1928). W. Pauli, HaedbucA' der
I'kysik, Vol. 24, p. 222 gives an interesting discussion based
on the in6nitesimal elements of the Lorentz group. For a
diferent approach cf. A. S. Eddington, Relativity Theory
Of I'rotons end Electrons (Cambridge, 1936).
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In the special theory of relativity, "one con-
siders two observers, moving with constant
velocity with respect to each other, each describ-
ing his observations on the physical world by
the use of his appropriate set of space and time
variables. If we designate the coordinates of the
two observers by

XI —X) XQ —p) X3 8) X4=iCt,

Xg —X ) X2 —P ) X3 —3 ) X4 —SCAN )
I I I I I I

respectively, then, according to the relativity
theory these sets of variables will be related by
equations of the form

reasoning used in $8 for the Pauli theory. Con-
sider an electron moving in an electromagnetic
field, its condition being "observed" by two
observers moving with constant velocity with
respect to each other, and whose coordinates are
related by a particular transformation included
under (100).

Ke shall assume that the behavior of the elec-
tron will be describable by each of the observers
in terms of wave functions which are solutions
of the form (60) for each of the observers. If g
and g' are these solutions, Q satisfies the differ-
ential equation (101) while at' satisfies the
equation

4

xa' ——P(oa,x(, k= 1, 2, 3, 4,
l 1

(100) (gpa'Iia'+ impc) q' =0, (102)

IIa' —— i'(B—/Bxa') —(p/c) A a'.

In relating the operators III,' and IIE we have

where the ouE, E are constants.
respectively. Here

By reason of the physical interpretation of
the transformations (xa pure imaginary!!) the
following restrictions are imposed on the coef-
ficients col, E.

4

P~u~i; = Z~ag~;i = Ba;,
E~l E~l

B t Bxa B Bxp B—i7a = i)a~ — +
BXE E BXE Bxg BXE Bxg

is real if neither j nor k is equal to 4,
ca;a. is pure imaginary if j=4, k=1, 2, 3 or (B)

if 0=4, j=1, 2, 3,

BX3 8 BX4
+ +

Bx) Bxp Bxg Bxal

op)'4= ct)4g' ) g = 1) 2) 3) (C)
4

= —ZSQM~a
BXEc

A&44 is real and &0. (D)
By making use of Eqs. (A) the inverse trans-

formation is found to be
The vector potential transforms like a 4-vector

in the same manner, so that finally

I
XE = ~~EIXE ~

l 1

4»' = Q~iaIIa.
k

For the purposes of this section Eq. (58) gives
the most useful form of the Dirac equation

(QPaIIa+im pc) Q =0

An inspection of the operators in Eqs. (101)
and (102) shows that these conditions are com-
patible, and that the Dirac equations for the two

(101) observers will have the same formal construction
if we set

In analyzing the behavior of this equation and
its solutions under the Lorentz transformations
(100) we shall follow closely the general line of

4

pi'=Q ~i~p~, (104)

(105)
"R. C. Tolman, Relatil!Iity, Thermodynamics, and

Cosmology {Oxford University Press, 1934}. R. Becker,
Theoric der E/e@risitat, BandIJ: Ale&tronentheorie {Teubner,
1933}.A. S. Eddington, The 3fath~atica/ Theory of Rela-
tivQy, second edition {Cambridge, 1924}.

These two relations will be adopted as the
basis of our calculations. The first requires that
the four operators pa', , pa' in the primed
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axes be related to their analogs pl, .
, p4 in the

unprimed axes like the components of a 4 vector.
Eqs. (104), (105) are directly analogous to our
considerations of CI8 on the transformation of the
Pauli spin operators under a rotation of the
ordinary 3-dimensional coordinate axes.

For the Dirac wave functions in the two sets
of axes we write

Stl = Xla 1+XSa2+ X3a8+ X4a4 8

(1o6)
=Xl al +X2 a2 +XS a3 +X4 a4

The analysis of eb8 can now be carried over
directly. Ke seek an operator U such that

aI,'= Uai„k = i, 2, 3, 4.

We suppose that pl', , p4' are to have exactly
the same properties as operators on a, ', , a4'

that pl, , p4 h452le as operators on al, ' ' ', a4

so that

Ps'«' =2 a-'(m
I
&5 I

f)

or

p5' Ua 1 UQ a (m——
~
l95

~
f) = Up5a1,

m=1

from which follows the operator relation

The problem now reduces to the determination
of the coeScients ul, , uls from Eqs. (107).
The analysis can be carried out in a manner
exactly analogous to that of the determination
of the transformation function of the Pauli
theory.

One point of considerable importance must be noted
here. In the discussion of the Pauli theory ()8) it was
assumed that the operator U was unitary, i.e."

Ut = U-l.

This condition can be preserved in the relativistic theory
only for the sub-group of rotations in ordinary space. The
Lorentz tran sformations involving transformations be-
tween systems in relative motion lead to nonunitary values
for U (cf. below for a special Lorentz transformation). This
has as a consequence the circumstance that the complex
conjugate wave function

Q*= x &*a&+x2*a1+x4*a4+x4*a4

has rather awkward transformation properties. This is
implied in the notation that aI, is not to be treated as the
complex conjugate of I&. This is possible in general only
when U is unitary, as it is for space relations. In order to
develop the symbolic theory in a simple fashion, it would be
necessary to introduce another type of wave function

4 =V1R1+V282+ V383+V4a4

where the functions v1, ~ ~, v4 are not simply the complex
conjugates of X1, ~ ~ ~, y4. The transformation of p1*, ~ ~ ~,

X4* is found below to be

Ps'U= UPS, (107) x5'*=~(kl & 'I~)*xl*,

where PS' is given by Eq. (104).
For the explicit determination of U we can

generalize the method of $8. The 16 matrices of
$12 have the property that an arbitrary matrix
of four rows and four columns can be written as
a linear sum in terms of them. This leads to the
general expression"

U= ulP1+QSp2+QSPS+QSP4+QSSplp4

+QSSP2P4+ QTSPSP4+ QSSI92PS+QSSP SP 1

+Q102Pll(4+ Q112PlP2PS+ulSSPSPSP4

+Q182PSP1P4+Q142P1PSP4

+Q15plp2p3p4+QlsI& (108)

where el, - ~, ule are ordinary complex quan-
tities. If desired, this expression can be worked
out in terms of the 42's from Eqs. (57).

whereas the v's would be required to transform like

v5' =Zv1 (l
I

U
I
k).

These expressions agree if U is unitary.
Even if U is not unitary, it will be found that

125' = 1Z5 and

/tv y Qv

Because of the special characteristics of the operator U for
the Lorentz transformation group, it is possible to take for
the conjugate function

while

4 =SP42tl*,

from which

V1=Z+1, V2=Z3(2 2
V3= $+3 2

V4= Z+4

The detailed proof can be given most readily by the spinor
formulation of the theory. In a more formal way it can be
seen from the fact that

~ Stl =4(
I x, I'+

I x, I' —
I xS I' —

I
x41'l

is invariant under Lorentz transformations. (Table I.)"~

'0 Cf. especially W. Pauli, Zeeman Verhandelingen "'Cf. Pauli, IIandbz4ch der Physzk, Vol. 24, p. 220 et seq.
(Nijho6', 1935), p. 31. Eddington, reference 38, Chaps. A. S. Eddington, Relativity Theory of Protons and Electrons
2 and 3. (Cambridge, 1936), Chap. 6.
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The transformation equations for the x's can
be determined from Eqs. (105) and (106). We
have

a)„.
' ——Ua&, Qa——)(l

I
Ul k);

4 4

g'= Px.'a.'= 2 Zx~'«(I
I

UI &)

This operator is unitary, so that

The transformation of the y's is

cos 1 $.ei$(y+r) .x)+i sin 1].e—i$(~r) .x

x~' i——sin —',$ e'&«r& x)+cos -', $ e ')(~+r& xm,
(112)

x3' ——cos -'$ e'&«+r& x3+i sin -'$ e '&(~ && ~ x
k=1

4

&= Zx)«.

k=1 I=1
x&' i ——sin -'$ e'&«r) x3+cos —'$. e '~'"+r) .xi.

Special Lorentz transformation

We consider only the special transformation

By comparison of coefficients x pct-
x'=

xi= E(tl Ul &)x~' (109)

Let
p=v jc.

Since U now is not unitary in general, we must
use its reciprocal explicitly in the inversion of
these relations. The result is:

(110)

These equations are the direct analogs of Eqs.
(46) and (47) of $8.

The determination of the form of U for the
most general Lorentz transformation is a matter
of some complexity. We tabulate the results
below for the general space rotation, and for the
customary special Lorentz transformations (cf.
Appendix E). For further discussion see Ap-
pendix H.

General rotation in space (cf. $8)

U({(, », I l) = (i sin 2( cos 2(&)
—I ))iP2P,

+ (i sin —,
'

g sin -,'(» —I))iP8P)

+(i cos —,'( sin ,'(»+I ))i—P)Pq

+(«s 2$ «s 3(~+K))I (111)

The relationship of this transformation function
to the transformation function of the Pauli
theory is at once obvious. The reader will hnd
it instructive to write out the matrix of this
function and compare it with (44).

with the reciprocal.

U '= (sinh 28)iP)P4+(cosh —',8)I. (114)

From Eq. (110)

Xl' ——cosh —,'. yl+sinh -,'~ X4,

xn =cosh 279'xg+slnh —8 xa

x3 cosh —,'8 xa+sinh —',0 xm,

X4'=cosh -', 8- X4+sinh —,8 gl.

(115)

The reader may be interested to note the characteristics
of the function U with respect to inverse transformations.
For example the transformation operator for a rotation
about the x axis through an angle & in the positive sense is

(i sin 2$)iP2P3+ (cos 2 5)I.
The inverse transformation is that which returns the axes to
their original position, by a rotation through the angle
—g. It should then be

(—i sin —2'$)ip2'P3'+ (cos —2'$) I,
where P2' and P3' are the appropriate operators in the
rotated system, But from the equations

P2 P2 COS $+P3 Sln $, P3 = —P2 Sln $+P3 COs $,

it is found at once that

&P2'P3' =ip2PS.

cosh 8=(1—P') & sinh B=P(1—P') '

The transformation function is (Appendix E)

U= (—sinh ', ())iP)P-4+(cosh -,'0)I (113)
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A similar analysis for the special Lorentz transformation
given above shows that

~Pi'P4'=iP1P4,

so that the transformation operator satisfies the rule that
it is changed into its reciprocal by replacing vjc by —v/c.

$19. THE BEHAVIOR OF THE DIRAC WAVE
FUNCTIONS UNDER GAUGE TRANS-

FORMATIONS

It has been emphasized by Weyl" that there
is a type of invariance of the equations of elec-
trodynamics which is of importance for theo-
retical considerations. The equations connecting
the 6eld vectors and the scalar and vector poten-
tials in an electromagnetic 6eld are

H =curl A, E= —grad (t
—(1/c) (BA/Bt) (116)

with a connecting equation between A and @

div A+ (1/c) (B(t)/Bt) =0.

The substitution

A=A+grad (p, 4 = (p —(1/c)(B(p/Bt), (118)

Rf .'x~x, y—+y, z~s, t—+ —t. (122)

The Maxwell field equations for the scalar and
vector potentials are

div A //-(1/c)(B(t)/Bt) =0;
L&' —(1/c') (B'/Bt') jA = —4~j/c

[g' —(1/c') (B'/Bt') ]P= —4)r p

where p and j are the ordinary charge and
current densities of electrodynamics. In view of
their physical interpretation p and j undergo the
transformation 4'

j~—j

$20. THE BEHAVIOR OF THE DIRAC OPER-
ATORS AND %AVE FUNCTIONS UNDER

REFLECTIONS

It is interesting, and for some purposes im-
portant, to examine the properties of the Dirac
equation with respect to various reflections. "
We shall consider the inversion (II9)

Rp. x—+—x, y—+—y, s-+ —s, t~t (121)

and the "time reversal"

where ~ is any function for which

Lqs —(1/c') (B'/Bt') ](p =0
under either of the reflections Ro, R~, so that the

(119) potentials undergo the transformation

will lead to the same field strengths. This is
called a gauge transformation.

We consider the 6elds, and not the potentials,
as the quantities of physical importance, so that
we are led to examine the characteristics of the
Dirac equation under this transformation.

In 4-vector notation

A) —A I+ (B(p/Bxt), , A4 =i(I)= A 4+ (Brp/Bx4)

The wave equation in the form (58) becomes

4 ( 8
+Ps) —&7t ——As I+it)tpc Z,Ps — 4=0.

E Bx, c ) C & & BXIc

y~+y, A~ —A.

Under the space inversion Ro. III,—+ —III„
k=1, 2, 3. An inspection shows that Eqs. (64)
will be invariant in form under Ro if the y's
undergo the transformation:

Rp ~ X1~Xlp X2~Xsy Xs~ Xs& X4~ X4. (124)

This is just the transformation which would be
induced by the operator

U(Rp) =P4.

A consideration of the equation

The transformation

c(a//I) ( e/c) u .g (120)

shows that the same result could have been ob-
tained by postulating that the P's transforms
under Rp like the four quantities (x, y, s, ict).

is easily seen to restore the equation to its
original form.

"H. Acyl, The Theory of Groups and Quantum j/Ieckanics,
chap. IV, $6; Proc. Nat. Acad. Sci. 15, 323 (1929).V. Fock,
Zeits. f. Physik SV, 261 (1929).

~ Weyl, reference 41.
~ It must be recalled that p and j are density expressions,

so that p~ttsAyas~ measures the amount of charge in
~hyb, s, In classical electromagnetic theory j is expressible
as pv where v is the velocity of the charge at the point
considered. For more general considerations cf. Eddington,
The Mathematical Theory of Relativity, second edition, CI49.
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The physical interpretation of the Dirac
theory is based primarily on the characteristics
of various expressions which are made up by
suitable combinations of the four functions Xl,

X4 and their complex conjugates. In
working out the properties of these expressions
we must lean heavily on the study of their
mathematical transformation properties under
Lorentz transformations.

In $14 we saw that the charge and current
density expressions for the Dirac equation are

rrs ——( i7i8—/Bxs eA —s/c)

+(-iI—'sB/Bxs+sAs/c) = —ris*, k=1, 2, 3, (125)

rr„~—(Ir,*+sir,*)= —rr *,

rr —(rr, '—srr, *)= —Ir,*.

On substituting these expressions in Eqs. (64)
and at the same time replacing t by —t, we see
that the equations will be changed into -their

complex conjugates if we make the substitution

In working out the transformation properties II21. THE PHYsIcAL INTERPRETATIoN QF THE

under the "time reversal" Rt we must proceed a DrR~c THEORv
little more cautiously. It is observed 6.rst that:

R t ~ Xl~X2 y X2~ Xl
xs~xs', X4~—xs". (126)

These results may be exhibited on the wave
functions for the free particle ($15). A simple
inspection shows that the transformations (124,
126) both change the wave functions representing
a particle with linear momentum y into functions
representing the particle with momentum —p.

Dirac44 has pointed out another type of trans-
formation which emphasizes strikingly the im-

portance of the negative energy solutions. This
"Dirac transformation" is

p = g"(sI) Q, j= g*(—see) g.

We have already remarked on the interpreta-
tion suggested by Breit, that the operators

Co'I, C~2, CA3

represent the components of velocity of the
electron.

The requirement of invariance of the equation
of continuity

Bp/Bt+div j=0
under Lorentz transformations implies that the
four quantities

2» 22 2u~ $3 =ps) J4 =&Cp

The electromagnetic potentials and the coor-
dinates (x, y, s, t) are left unchanged. The
operators Iis again transform by Eqs. (125), and
we find that the Dirac equations (64) transform
into their complex conjugates with the substitu-
tion

4

js Z&ss$4 k=1, 2, 3, 4.

transform as the components of a 4 vector; i.e.
by the same expression (100) as the coordinates

X1~X4 ) X2 X3

Xs~ Xs Xs~xi ~ (127)

But this transformation interchanges the roles
of the "small" and "big" components of g, and
in fact, changes a negative energy solution into a
positive energy solution. A negative energy
solution for a particle of change e in a given
external electromagnetic 6eld is equivalent to a
positive energy solution of a particle of charge
—~ moving in the same external 6eld. This
observation leads directly to Dirac's theory of
the positron (II23).

44 P. A. M. Dirac, Quantum Mechanics, second edition,
p. 270.

(v+)A&=p (c'/E+);

(v-)A&=P (c'/E ).
(128)

The direct verihcation of this formula for the
special transformations given in the preceding
section may be left to the reader.

In developing this idea further, it will be instructive to
study specifically the free particle, for which the wave
functions are given in $15. Let us consider first the deriva-
tion of the Einstein mass-energy relation.

We adopt Breit's interpretation and compute the aver-
age values of the velocity components by the relation

vA, = Q'i —se) Q/f'Q.

From Eqs. (71, 72) we find for
8 8+
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The (average) velocity and the momentum vectors are
oppositely directed to each other in the negative energy
states.

These relations can be summarized in the equations

If we define

we get the relations4'

(PAv)2
—(v )A

2 jc2

E~ = Wmpc2(1 —pA„2)-&, (129)

p1' =mocP(1 —P2) E~' = Wmpc'(1 —/82)

On referring to Eqs. (71, 72) of $15 we see that (P+)lr
represents the particle having momentum p1' in the x'

4'This is obtained by substituting for p2 in Eq. (70)
from Eqs. (128).

4'These equations have been reduced to the standard
form of $15 by writing

A'=A cosh 8, 8'=8 cosh 8.

which is the formulation of the Einstein mass-energy
relation in the present theory. This gives us

P= +mo(1 —
PAv ) ~(& }Av (130)

as the exact relation between the momentum and the
velocity.

Since the characteristic values of the velocity operators
cA1 c&2 cA'3 are all +c, one must consider that a

single "instantaneous" measurement of any component of
velocity of the electron would yield either +c or —c. This
would seem to be in paradoxical contradiction to the
consideration of relativity theory that for a particle having
a finite rest mass, the proper mass should become indefi-

nitely large as the speed of the particle approaches c. The
arguments given above show that the solution of the
paradox lies in the fact that it is only the average speed (an
average between +c and —c!} which appears in the
Einstein mass-velocity formula.

It is interesting to resolve the paradox in another way.
Suppose we consider a set of axes (I) in which the mo-

mentlm of the electron vanishes. By Eqs. (128) its average
velocity will also vanish in this set of axes. But there are
still two types of motion of the electron, represented by the
wave functions

(Q )& (pal+)(/a4)c (a/)(}mpc2 i

(Q )/ (4'a +Da2)c(i/)}}moc&(

~here A, 8, C, D are constants (cf. Eqs. (71, 72)).
We can now introduce a set of axes (II) associated with

an "observer" moving with a speed —v along the x direc-
tion, for whom the original reference system is moving
along the x direction with speed +v. The wave functions
for the electron can now be found from the transformation
equations of Eq. (115), by using P = —v jc. A simple
calculation leads to the result4'

(Q+) I/ Dc/E+'+ }}}Dc')( p('B'a(' p, 'A'a—&')—
+A Q 3'+p'g4' je (~ tk) (~1'& '-E+ '

& ')

(Q )//= [C' +aD}' '+a(c/E ' m,c')—
X(p 'C'a '+p 'D'a ')]e"'&)( & '~'

where

direction and energy E+'&mpc2; while (p )rl represents it
having momentum —pi' in the x' direction and energy
E '( —mpc'.

The "velocity" v enters here as a kinematical, rather
than as a dynamical quantity, since it involves only the
relative speed of two "observers. "This shows in detail how
the Einstein mass-energy relation is preserved, and how the
reversed relation between momentum and velocity for the
"negative energy" states arises automatically in the
application of a Lorentz transformation.

Z

pp 411 kgb
mpC &=&

The components of the current density can
now be put in the form

j /
=&«&*p4p/ &

4

Zh(P *~ *&*)(PP.e) e*(p -P.P ~ e)3
2mp /=j

By a little manipulation" this can be written as

ZL(n, g*)(P,P,P,g)
2mp ~=i

—Q*(1I/PiP/:P/(I/) ]. (131)

Let us separate out the term for which l =k, by
writing

with
j@—j~(p) +j~(&)

Le*(&~P44)+(«*4*)(P44)j (132)
2mp

j /,
'"= — 2 $&*(&(p4p/ p(4)

2mp l4-k

(+( V) (P/P(p& 1/) j (133)
47 W. Gordon, Zeits. f. Physik 50, 630 (1927). W. Pauli,

Handbnch der Physik, second edition, Vol, 24, p. 238.
"Note that here the P's are allowed to operate on the

a's by the same formal rules as on the a' s. It follows that
(P*ak)a„=K,Pa„= (k ~P t n).

The expression for the current density can be
thrown into a form which will bring out more
clearly its connection with the Schrodinger
theory. 4'

From Eq. (58) we can write the Dirac equation
as

Z 4

Pp, n, e,
mpc &=&



D I RAC ELECTRON TH EORY

The terms in the "large" components X3 and

y4 give just the usual form for the current vector
in the Schrodinger theory. The remaining terms
in the "small" components Xi and y2 are of the
same form, but have reversed signs. This reversal
of sign is due to the presence of the operator P4 in
(131).

If the expression for j&'& is written out in detail
for each component, it will be found to give the
following contributions to the charge density,
and the three-dimensional current density:

p"' = —div (&'Pg)

jo&=c curl (&~M&)+(8/&&)(&*P&), (135)

where the vector operators P and M are defined

by their components

Pz = znyn4,
2mpc

Py —— ln2n4,
2mpc

Pz zn3n4&
2mpc

M, = zn2n3n4, cvl „= zn3nqn4,
2mpc 2m pc

Mz = Snyn2n4.
2mpc

These equations are exactly of the type ordi-
narily introduced in macroscopic electromagnetic
theory4' for the study of the "effective" charge
and current densities due to an electrical
polarization (electrical moment per unit volume)
P, and a magnetic polarization M. Having this
analogy in mind, one is led to interpret P and M
as the operators representing the electric and the
magnetic polarizations.

Although the basis of' these expressions in
classical electromagnetic theory is entirely differ-

4' Frenkel, Lehrbuch der Elektrodynamik, Vol. 2, p. 12.
R, Becker, Theoric der Elek'trisitat, Vol. 2, p. 124.

On writing out j~„-&'& we find

zck
f:—x *ex —x *vxm+x *r x

2mp

+x4*Vx4+ xi%'xi*+xmVxm* xsV'xs* x4Vx4*j

$2

+ &LI x i'+
I x,"—ix f' —fx f'j. (134)

mpC

ent from their interpretation in the present
theory, the mathematical analogy is still suiTi-

ciently close to bring out the interpretation of the
polarization vectors as arising from these added
terms in the Dirac current density expressions. "
The procedure is actually just the reverse of the
classical theory, in which the polarizations P and
M are introduced a priori, and are then replaced
by effective charges and currents.

The relativistic transformation properties of
the density expressions for the electric and the
magnetic moment require also that the operators
be of the above form, and give definite indication
that the magnetic moment operators are not
numerical multiples of the spin operators.
Instead

M.= —(e/mpc) S,n4.

It will be seen in the next section that this
association is intimately related to the existence
of the negative energy solutions of the Dirac
equation.

We give in Table I I a tabulation of the 16
operators of $12 with their transformation prop-
erties. This table is based on one given by de
Broglie, "which we have amplified by giving the
transformation properties of the various density
expressions under the "reflection" operations
Rp, R~, RD. A —or + indicates that the expres-
sion does, or does not, change its sign under the
reflection.

The spin 4 vector (S„S„,S„S4) and the
OperatOr nin2n3n4 are SOmetimeS referred tO aS a
pseudo vector and a pse-udo scalar, r-espectively,
because of their behavior under the space
inversion Rp.

By inspection of this table (or of the matrices
($12)) it is seen that the "internal" states
represented by the separate functions a&, a2, a3, a4
are arranged to represent quantized (i.e. ,

characteristic) states for the operators

p= eI, A= —mpn4, S,= ——,jfg ingn2,1

M. = (ek/2mpc) ia~aga~.

We tabulate the characteristic values of these
operators in Table III.

"Eqs. {135)may be used to explain the behavior of M
and P under the reflections Ro and R&. Since p(1) and j(»
transform as shown in Table I, these equations show the
transformations of M and P to be as given.

'j L. de Broglie, L'Electron Magnetique, p. 225.
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TABLE II. TrarIsformatioe propertk s of Dirac operators.

NAME

"Rest Mass Operator" (7)

Current Density

Charge Density

Spin Angular Momentum

Magnetic Polarization

Electric Polarization

OPERATOR

Jz = -eCal

fit e'Ca2

Jg = eCa3

p =eE

Sz = -gk ia2a3

Slt = —gk gagal

Sg = -gk iala2

S4 =i/k iala2a3

Mz = 'ia2aga4
2PCgC

ek
Mlt = ia3ala4

21Ãpc

Mg = 'iala2a4
21804

ek
Pz = iala4

2tltpc

P& = ia2a4
21804

ek
Pz = .ia3a3

2tgoc

0 =ala2a3a3

DENSITY EXPRESSION

—~(l x I
'+ I x I

' —
I x I

'-
I x I ')

e4(Xl X&+X2 X3+X3 X2+X4 Xl)

-ec( —iX1*X4+iX2*X3—iX3 X2+iX4 Xl)

eC(Xl X3 X2 X4+X3 Xl X4 X2)

e( I xl I
2+

I x2 I
2+ I xg I

2+
I x4 I

2)

kk(xl*x2+X2 Xl+X3*X4+X3*X3)
/

kk( —iXl*x2+ix2*xl —ixg*x4+ix4*X3}

kk(I xl I
2 —

I x2l'+ I x3l
'-

I x4I ')

)k( —iXl X3 —iX2 Xe —iX3 Xl —iX4 X2)

ek
( Xl X'2 X2 Xl+X3 X4+X4 X3)

2psp4

ek
(iXl*X2 —iX2*Xl —iX3*X4+iX4*X3)

28foc

ek (-
I xl I '+ I x2 I '+ I x3 I

'-
I x4 I ')

2 fSgC

ek
(-iX1 X4-iX2*X3+ix3*X2+ixl Xl)

2SKQC

ek
( Xl X&+X2 X3+X3 X2 X4 Xl)

218@4

ek
( —&Xl*X3+&X2*X4+&X3*X1—&X4*X2)

2 tÃQC

(-ixl*x3-ix2 X4+ix3*xl+ix4~X2)

Ro Rg RD LORENTZ TRANSFORMATIONS

+ + — Invariant (Scalar)

4-vector

21 =Jzs P =dye J3 =baze $4 3Cp

Completely antisymmetrical tensor
of rank 3 -4-vector (pseudo-vector)
$234 =Sz, 8314 =Sit, 8124 =Sg, 8321
=S3

Antisymmetrical tensor of rank
2 =6-vector
F3 =Mz, y31 =Mlt, F12 =M g

p14 =3Pz, tu24 =3Plt, F4 =3Pz

Invariant (pseudo-scalar).

TABLE III. Characteristic values of operators. Kith the wave function of the free particle this
reduces to

p +6 +e +6 +6
A 7Sp -mo +5TO +ISO
S. +gk —)k +)k —~k

M, —~k/2nzoc +ok/2moc +ek/2moc —ek/2nzoc

(A~)A, ——mp (mpc'/E~) =mpI a(1 —pAp) &j

I p I
~0 (x~)A„~am«

le I
" (p., 1) (x~).„o.

Since the actus, l wave function g is a linear
superposition of the symbols a~, am, a3, a4 it
represents a state in which the values to be
assigned to these physical quantities are weighted
averages of their characteristic values.

The designation of the operator A = —mou4 as a
"rest mass" operator which is due to de Broglie, "
is suggested by the way in which it enters into the
density expressions for M and P. We can com-
pute the average value of the operator A. from
the equation,

—Ixil' —I»l'+ Ixpl'+ lx41'

I xil'+ I xp I'+
I xp I'+

I
x4I'

"L.de Broglie, reference SI, p. 223.

The relation of the operator A to the nonquantum
mechanica1 theory may be noted by introducing
the "proper time" r (the time variable in the
system of coordinates in which the electron is at
"rest"). According to the arguments of the
special theory of relativity

dt =dr/(1 —P')&

from which we see that

Itt„„dtl =mpdr,

which is invariant under Lorentz transformations.
The integra1

J'mpc'dr

is the action integral of relativity theory.
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II22. THE RRDUcTioN oF THE DIRAC THzoRv By means of these expressions we can separate
TO THE PAULI THEORY the wave equation (138) into two equations

In CI15 it was pointed out that for

~@~bmoc

(2m pco+ih(8/8t) —ops) $0+c(e II) otip =0,

(ik(8/8t) —og) otto+ c(e II) )0——0,
(140)

two of the four Dirac x's are much larger than
the other two. For positive energy states ~xo+~,

IX4+l»IX&+I IXo+I and «r negat)Ve en«gy
StateS

I Xi I IXo I» IXo I IX4 I
Thia diSparity

between the pairs of functions permits the
development of an approximate wave equation
involving explicitly only the two large compo-
nents, which can be compared directly with the
Pauli theory. In order that the differing roles of
the positive and negative energy states may be
made more apparent, we state them separately.

where we have introduced the abbreviated vector
notation

e' II =0'&II)+0'oIIo+0'0IIo.

Since gp is a small term we can eliminate it by
successive approximations based on the 6rst of
these equations, by the expansion

40= 4 "0'+ 4 "0' +'

where

a. II
(0("= — &0,

2m()C
Positive energy states

(141)
]0 ' (=&(1/4mp'c') (ih8/8t 4@)(e —II) ot(0, ~ ~ ~ .

Let

]0=e( I")"""(xia,+xoao)

c(i/t))moc44(xoai+ x4s 0)

By means of the operator Q 0 iciiciocio =——P)PoPoP4

we can write the Dirac wave function as

s (ilk)mycoi—(f Q 4( ) (137)
(i&8/8t o(t)) otto

——c(e.II——)[—(e II) /2m pc

+(1/4m 0'co) (it't(8/8t) —o(t ) (e II)Jot)0. (142)

since
Qoai = —a3, Qoan= —a4 ~

(136) We shall retain only terms as far as the second
approxima tion.

If we substitute this expression for ]0 in the
second of Eqs. (140) we find the approximate
equation for otip'.

Further

iIt8olt/8t = [mpc'($0 —Qootio)

+i&(8$0/8t Q08$0/8t) ]—e (""&""".

Substituting in the Dirac wave equation (55) we

obtain

f CgnilI0 (04m—pC'+pit) j(—ttp Qp&(ip)—

=moc'(t)o —Qootio)

This can be reduced by writing out the
operators, and introducing the expressions for the
field strengths

E= —(1/c) (8A/8t) —grad iI), H =curl A.

The operators in the last term of (142) can be
interchanged by use of the relation

(oh8/8t pit)(e II)—
=(e II)[ih8/8t oy]+io))t(e—E).

+ih((8 ]0/8t) —Qo(8otI0/8t)) (138)

—c(e.II) I
—(e 11)/2moc

We can now rearrange the equation (142) to

It will be convenient to introduce the operators
03, of the Pauli theory, and let them

operate on ai and ao by the rules of II6. Then we

have

io4Qooto = —QogoA4 O O)

ao)p= Qpa'0)0, 400Qpot(0= —o'ootip, 0=1, 2, 3,
(139)

+(e H/4mpoco)[ilt8/8t —op)

+ (i t' /4mo0p' )( coE)eI ot(0. (143)
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To our degree of approximation we can replace the term (3ItB/Bt «p—)3{/0 on the right-hand side by
[(e II)2/2mo]3{/0. Further

(e II)'= (II12+II22+1I32)—(«h/c) (e H)

=Q ( iI'3—B/Bxo «A—p/c) 2 —(«h/c) (e H), (144)

(e' II)(e'E) (tr1111+(32112+e3113)(tr(E*+tr2E +troE )

(111Ez+112E(/+113Ec)+trltr2(11 1E(t 112Ez)+ ' '

= (E.II( ihBE—./Bx+ ) +i(13(E„II(—ihBE„/Bx —E,Do+i hBE,/By) + ~ ~ ~

= (E II) ik d—iv E i(—e { E X II])+/34(e curl E). (145)

From the Maxwell field equations in free For an electron in the Coulomb field of a nucleus
space we have of charge Ze

E= (Zc/ro)r
div E=O, curl E= —(1/c)(BH/Bt).

with L = r Xp and gives the correct perturbation
term inclusive of the Thomas correction factor.

By rearranging the factors in Eq. (147) we can
write it as

irlBttto/Bt =
I Q(1/2mp) ( i7sB/Bx—p «Ao/c)—2

which reduces the expression for a hydrogenic
Substituting these expressions back in Eq. atom to

(143), we arrive at our final form of the reduced +-,'(Zeo/m02C2ro) (S L)
wave equation

+«@—(e II)4/8mpoc2 —(«/mt)c) (S.H)

—-', («/m 'c') (S [EXII]) I 3{/0—(i«It/4m 'c')

X {(E II) —(2/C)(S BH/Bt) Ip{tpc (146)

The first two terms on the right-hand side
constitute just the hamiltonian operator Xq of
the Schrodinger equation.

If we drop the external field in the third term it
becomes"

—p'/8mp c = (Xs—4«)'/ 2om ,c2

which is the correction term ordinarily added to
the Schrodinger equation to account for the
variation of mass with velocity.

The fourth term is the energy term for the spin
in an external magnetic field, with the correct
gyromagnetic ratio +«/moc («= —s for the
electron!).

The fifth term is the so-called Thomas term, to
which the "spin-orbit" coupling is attributed.
Again replacing II by p, this term becomes

—2(«/m 'c') (S.{.EXp]) (147)

'3 Cf. E. C. Kemble, The Fundamental Prince ples of
Quantum 3fechan~cs for the discussion of these terms by
perturbation methods in the Schrodinger wave equation.

—',(«/mo'c') (E LS Xp]),
from which we can interpret it as the energy term
arising from the existence of an electrical moment
associated with the operator

—(«/mp'c') SXp.

The last two small terms in Eq. (146) are not
ordinarily considered in the Schrodinger theory.

For an illuminating discussion of the interpre-
tation of these interaction terms in the non-
relativistic approximation, the reader is referred
to two recent papers by Breit. '4

Negative energy states

The same formal process as that just given may
be employed in the derivation of an approximate
"Schrodinger equation" for energies in the
neighborhood of —moc'. The appropriate substi-
tution is now

)0 S
—(i/i)t)ptpcpt(X a +X a )

00 = c '*'"'""*'(xpa1+x4ap)

S(i/tt)mpctt($0 g qo)

~4 G. Breit, Phys. Rev. 51, 248 (1937); 53, 153 (1938).
Cf. also D. R. Inglis, Phys. Rev. 50, 783 (1936); W. H.
Furry, Phys. Rev. 50, 784 (1936).
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The equations for $' and Q' become

(i7i8/Bt e—y) $'+c(e H)g'=0,

( 2m—oc'+iAB/Bt ep—)Qp+c(e 1I)$'=0.

$' is now the large, and Q' the small, com-
ponent. Comparison with Eqs. (140) shows that
the only formal difference is the interchange in
the roles of Q' and P and the change in the sign
of the mass term. The final result will be an
equation similar to Eq. (146) with $' replacing
$0, and with the sign of the rest mass changed
throughout. In particular, we see that the sign
of the (8 I) term will be changed, indicating the
change in sign of the gyromagnetic ratio which
was mentioned in the previous section. This
exhibits explicitly the necessity for the assign-
ment of the magnetic moment operators by

M, = (~h/2moc)iamaan4,

rather than by (ek/2moc)icxmam, as was originally
done by Dirac on the basis of an argument
depending on the iteration of the hamiltonian.
The Thomas term, containing mo', is not altered
ln slgIl.

$23. THE DIRAC POSITRON THEORY (THEORY
OF HOI.ES)

In previous sections ($15, II20,) we have
encountered the problem of the existence of
solutions of the Dirac equation associated with
energies of the electron for which E& —moc'
(negative energy solutions), and have seen some
of their curious dynamical properties.

In 193D, before the experimental discovery of
the positron, Dirac" advanced a suggestion
concerning the negative energy solutions mhich
has since been developed into a fairly compre-
hensive theory, in spite of many difficulties which
it presents. Dirac supposed that in the normal
condition of the universe all of the possible states
of negative energy might be considered to be
already occupied by electrons, and that the Pauli
exclusion principle could be invoked to prevent
more then one electron from occupying each
given state. So long as no hypothesis of "finite-
ness" of space is made, the number of negative

"P. A. M. Dirac, Proc. Ray. Sac. 4125, 360 {1930).

energy levels available for occupancy would be a
high order infinity, so that in fact one needs to
suppose an infinite density of "negative energy
electrons" to be present. These electrons should
produce an infinitely large negative potential,
but because of the very uniformity of the
distribution, it might be assumed that no ob-
servable fields would be produced.

But if an electron were caused to make a
transition to a positive energy state, it would
leave a void in the distribution of electrons in the
negative energy states (i.e. , a hole) which might
be expected to behave, in some respects at least,
like a positive particle. Its properties would be
such that they could just be compensated by
having an electron return to the negative energy
state from the positive energy state. In particular,
this particle, or "hole" should appear to have a
spin angular momentum, just like the electron.
With the experimental discovery of the positron
in 1932, it was but natural to identify the "hole"
of Dirac's theory with the positron as found in
the laboratory.

A process in which an electron makes a
transition out of a negative energy into a positive
energy state is called pair creation on this theory,
since it would produce an ordinary (i.e. positive
energy) electron and a positron. Pair creation
requires a supply of energy from the perturbing
inHuence causing it of at least 2moc' ( 10' ev).
The reverse process in which an electron in a
positive energy state makes a transition into an
unoccupied negative energy level, thereby causing
the "disappearance" of an electron and e positron,
is called pair annihilation. It is associated with
the emission of an amount of energy equal to at
least 2moc'.

All of these considerations have the very best
support from the experimental evidence on the
appeerance and disappearance of positrons. ~"

This interpretation has also the advantage
from the physical point of view of giving a reason
for the fact that the ordinary electron is the
normal inhabitant of our world as me find it,
while positrons can be observed only under
specially designed conditions. For whenever free

'"0. Klemperer, Proc. Camb. Phil. Soc. 30, 347 {1934).
H. R. Crane and C. C. Lauritsen, Phys. Rev. 45, 430
(1934).
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positrons ("holes" ) occur, electrons are very
soon induced to combine with them with the
emission of the annihilation radio, lion. "

On the other hand, this theory is attended by
several very serious difficulties. In the first place,
the infinite density of electrons in negative

energy states which is postulated to be present,
presents many problems. Although a uniform

distribution of charge might set up no observable
field under normal conditions, yet there seems to
be no reason why it could not be a6ected by
fields due to other charge and current distri-

butions. The properties of a "vacuum" or "free
space" now become very complex, and the

appearance of infinities in the answers to all of its
physical characteristics such as its "index of
refraction" for example, can be avoided only by
the use of special conventions in the mathe-

matical developments. The field equations are no

longer linear, so that electromagnetic fields are no

longer strictly superposable; two light beams

interact with each other, and so on.
While these troublesome points remain, the

theory can hardly be said to have developed
much beyond a formative stage. But even so, in

the rapidly developing field of nuclear processes

during the last few years, it has played an

important role in the tentative discussion of the

properties of high energy electrons-and p-rays. "

f24 THE EX. TENSION OF THE DIRAC EQUATION

TO TWO PARTICLES

Kith the exception of the discussion of the
last section, the whole of our treatment has been

limited to the motion of a single particle in an
external field. Even in the positron theory in its
present form no effective attempt is made to
treat the interactions of two or more particles
except as a problem in small perturbations, i.e.,

the inHuence of one particle on another is sup-
posed to be so slight that it can be handled by
approximation methods.

~ Cf. W. Heitler, The Quantum Theory of Radhation
{Oxford University Press, 1936), for a comprehensive
discussion.

In his general theory of the relationship
between quantum mechanics and relativity,
Eddington" has made some very interesting

suggestions on the problem of two particles, and
has given a discussion of the energy of interaction
between two protons. Unfortunately, the authors
do not feel it possible to give a discussion of
Eddington's theory at the present time, and
must refer the reader to the original sources.

It was shown some years ago by Breit,"and

later by Mgller" and Bethe and Fermi, "that an

approximate formula could be obtained for the

perturbative energy of interaction between two

electrons of the form

Xii ——(e'/r im) L1 —-', (e' e")

—(e'rig)(a" rim)/2rim'].

Each electron is treated as in the Dirac theory,
with —car and —cari as the (vector) velocity
operators of the two electrons. The hamiltonian

operator for the two electrons is written as

X=XD(1)+Xi)(2)+Xim,

where XD(1) is the Dirac hamiltonian for electron

1, etc. The complete wave function now has 16
components, and can be put in the form

P xaiaa aP
k, l-1

Following a method similar to that of II22

Breit arrived at a system of equations which

involve four "big" components, and include ap-
proximate perturbative terms between the elec-

trons. He has made extensive applications of
his results to the study of hyperfine structure
separations. "

'~ A. S. Eddingtoo, The Relativity Theory of Protons and
Electrons (Cambridge University Press, 1936); Proc. Roy.
Soc. A102, 155 {1937).

"G. Breit, Phys. Rev. 34, 553 (1929); 35, 383 (1930);
39, 616 (1932). Cf. also Breit, reference 54.

' C. Mgller, Zeits. f. Physik VO, 786 {1931).
6 H. Bethe and E.Fermi, Zeits. f. Physik 'Vl, 296 {1932).
O'Cf. the discussion by Bethe, Handbuck der Pkysik,

second edition, Vol. 24, p. 375 et seq.
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APPENDIX A. LINEAR AND ORBITAL ANGULAR MOMENTUM OPERATORS IN POLAR COORDINATES

x=r sin tY cos q, y=r sin 8 sin y, s=r cos 8,

p, = i—ha/Bx= —ih[sin 8 cos ya jar+(cos 8 cos y/r)a/88 (sin —y/r sin 8)a/By J,

P„= ih—a/By = —ih[sin 8 sin yB/Br+(cos 8 sin y/r)a/88+(cos yjr sin 8)a/By],

P.= iha/—as = i—h[cos 88/Br —(sin 8/r) 8/88j,

L.= ih(—ya jas sa/—By) = —ih( —sin ya/88 —cot 8 cos ya/By),

L„= ih(sa/B—x xa/Bs) —= ih—(cos yB/88 —cot 8 sin ya/By),

L.= ih—(xa/By ya—/Bx) = —iha/By,

L~=L,+iL„=ihe~"(Via/88+cot 88/By),

I.2=L,'+L„'+L,'= ,'(L+L +-LMp)+L. ',

a( 81= —h' —
I

sin 8—I+
sin 8 88 4 88) sin' 8 By'

APPENDIX B. THE SPHERICAL HARMONICS

In the following definitions m and l are integers,
I
m

I
l, —

p=cos 8,

(l m) J- i (1 +2)oa/2 dl+m

(w) (8) ( )ss (s' —1)'
2 (l+m)! 2'. l! dii'+"

F,.(8, y) =o- ..(8)
(2ir) &

(B2)

It follows from (B1) that
oi. —(8) =(—)"o"i. (8)

The functions Fi, (8, y) form an orthonormal set on the surface of the unit sphere; i.e.

T 2r
*Y~., ~ .sin 0d8dq =8,

ft =0 y~0

We tabulate below some useful formulas involving these functions. These expressions are not all

independent, but the complete table assists materially in reducing the labor of computations. For
notation let

(a+1 bli-
[n;»=I

E 2u+1 ]
(8/88) Fi, = ', ((l+m—)(-l m+1))—&Fi, „ ie'++ ,'((I m)(-l+m—+1))&Fi„+,e—'~, ,

m cot 8 Fi, „————,'((l+m)(l —m+1))iF&, &e*& ', ((l 'm—)(—i+m—+1))&Fi,~+&e '&,

sin 8(a/88) Fi, „——l[l; m][I+1; —m+1)Fi+i, ~—(l+1)[l—1; mg[l; —m+1]Fi i, ~,

I~F, , =h((l —m)(l+ m+1)) i F, , ~„
L Fi, ——h((l+m)(l —m+1))&F, , „„

——m&~), „,
L'Fil(l+1)h'F, i, ——
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If f(r) is a function of r only

t
8 8y pdf l ~—+i —(fYg„=, —

I
—f—f

—[I; —m][l+1; —m] Y(+, ,
lax ay&

'
&dr r i

(df l+1 q

+~ —+ f l[t; m+1][t—1;m+1]Y, , „+„
(dr r

8q ~df l q

~f Yi =). f ~[l; m]D+1; m] Yi+&,
&8~ ay)

"
&dr

pdf l+1 i—
I

—+ f I[t —m+1][t—1; —m+1]Y, , „„
&dr r )

&df pdf l+1 q
fY~ -—=I f—ll

—t;-m][l+1; m+—1]Y'+' +I + f l[t' —m+1][l—1; m] Y. .. „,
as

'

(dr r ) &dr r

[l; m]—cos 8 Y~, ~ —[l+1;m+1]Y~+~, ~+[I;m+1] sin 8 Y~. „+~e '"=0,

cos 8 Y& „—[l; —m][t+1; m+1] Y~+&, „—[l 1;m][l; ——m+1] Y~ ~, „——0,

[l; m] cos 8 Yi, —[l+1; —m+1]Y&+&, —[l; —m+1] sin 8 Y~, ~e'"=0,

[l; —m+1] cos 8 Y&, —[l 1; m]Y~ —
&, +[l; m] sin 8. Y&, &e'&=0,

(2m/2l+1) cos 8 Y~, +[l; m+1][t; —m] sin 8 Y~, ~+~e '"+[l;m][l; —m+1] sin 8 Y~, ~e'&=0,

(2m/2l 1) Y&—&, +[l; m][—l 1; —m] s—in 8 Y~. +~e '"+[l;m][l —1;m] sin 8Y&se'", =0,

(2m/2l+3) Y(+g, „+[l+1;m+1][l; m+1] sin 8 ~ Y(, „+pe
—'&

+[l+1; —m+1][l; —m+1] sin 8 Y(, „ge'&=0,

[l+1; —m+1][l; —m+1] Y~+&, „—[t—1;m][l; m] Y~ ~, +sin 8 Y~, „~e"=0,

[l; m+1] cos 8. Y~, —[l 1; m] Y&—q, ~ ——[l; —m] sin 8. Y~ ~+ze ' =0,

sin 8 Y&, +& [l+1;m—+1][l;m+1]Y~+~e'&+[I; ,
—m]Ll —1; —m]Y~ ~, e'+=0.

References:

Condon and Shortley, The Theory of Atomic Spectra,
(Cambridge University Press, 1935), p. 52 et seq. Ke have
followed these authors in introducing the factor (—) in
the dehnition (B1). It has the advantage of making the
phases of the orbital angular momentum and spin matrices
the same.

H. Bateman, Partial Digerentnsl Equations (Cambridge
University Press, 1932), Chap. 6.

Khittaker and Watson, Modern Analysis, (Cambridge
University Press, 1927), Chap. 15.

G. Prevost, Proces-Verbal des Seances de la Societe des
Sciences Physigues et Naturelles de Bordeaux, 1935—36, p. 23.
The formulas given in this reference contain some typo-
graphical errors.

APPENDIX C. THE PAULI TRANSFORMATION

FUNCTION ($ 8)

Ke compute 6rst the special transformation
functions corresponding to rotations about the
coordinate axes.

Rotation about the x axis

For such a rotation q= &=0,

0 y
=0'j, 0'4 = 0'4,

om'=0~ cos )+&ra sin $,

&r~'= —o2 sin )+a~ cos $.

It is evident at once that since U must commute
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with a~, it has the special form

U({$, 0, 0})=u,o,+u44r4

Operating on the left with a&' and reducing by
the use of Eqs. (18) of the text we find

&r3' U({&,0, 0})=o3(iuj Sin g+u4 COS ()
+0 3( iu—4 cos $+u4 sin $),

U({g, 0, 0}) o3 u——4o3+iu, o3

plified by the following observation. The equa-
tion from which U is to be found is

ag, 'U= Uag. (C3)

with

Suppose that we consider a second transforma-
tion

iu—
& sin $+u4(1 —cos $) =0,

Here V is to be considered as expressed directly in
Equating corresponding coefficients of these

erms o e opera ors &r'4, ~ ~, o4'.
expressions gives

The resultant operator for o3~a3" is found
from

i u(14+ csog) —u4 sin $ =0.

The same equations are obtained from

o3'U({$, 0, 0})= U({$, 0, 0})o3.

The solution for which

is

U({$,0, 0})—+1 as $~0

u&
—— i sin—33', u4=cos —3'$,

Rotation about the s axis

ai = ai cos g+ag Si.n g,

am = —a~ sin g+ag cos q,
t'

0'3 =03, a4 =04.

giving

U({$, 0, 0})= i sill—-', $ 01+Cos 3$ 04.

or

aj,
"——Vai, 'V '= VUaI, U 'V '

aI,
"VU= VUag,

(C3)

i.e. , the resultant operator is VU, where U~s ex-
pressed directlyin terms of the 4r's, and V of the o "s.

But we can proceed in a different manner. If
we write Eq. (C3) as

4

33o4U= Uo3
/=1

(C1) we can say that to every set of transformation

cocci ents (~3~) roe associate an operator U. , to be

found in terms of the 4r's from the above equation
In carrying out two successive transformations

we have

An exactly similar calculation shows that

U({0, 4t, 0})= i sin —3,
—
4t o3+cos -'34t o4. (C2)

Ke can now build up the general transforma-
tion function by observing that the transforma-
tion (36) can be generated by the successive
rotations (cf. Fig. 1 of the text).

where

=UVa V, 'U, ',

QQ 3o3V.= V,o
k 1

(1) A rotation through
s axis, followed by

(2) A rotation through
line A, followed by

(3) A rotation through
axis.

the angle g about the This shows us that we can take the operator
V obtained from Eq. (C4), replace the o "s by

the angle $ about the the o's and multiply in the order UV' i.e.

V, U, = U, V, . (C6)the angle g about the

The reader can verify this for special rotations.
The calculation of the operator U({$, 3t, f'}) The use of this process is helpful in reducing the

for the general rotation may be materially sim- algebraic manipulations.
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Applying it to the space rotations, we get

U(fk ~ I})
U(}0, 11, 0})~ U(IP, 0, 0}).U(IO, f, 0})

[—P Sill pit' ap+COS yg ' a'ej[ —p Sill y$' ai

we get, by partial differentiation of these equa-
tions with respect to E,

B J+~p
(rf—)= — (rf )

Br r

+COS p('0'4][ —1 Sill yf '0'p+COS pf ' a4]

i si—n ip)(sin —',lt sin pi f+cos qs cos ,'f)—ai

i —sin lpga(sin —,'S cos -,'f' —cos —',11 sin ',f)a-p

i c—os q((cos —,'q sin —',f'+sin ~pg cos —,'t') a 1

+cos sip(cos —',11 cos —,'0 —sin p'0 sin pf)&4

8
(rGE)—=

l9r

i t' Ze Z

E+ —mpc'
} (rGS) (rG)—, —

Pic 0 r ) kc
(D3)j+1

(«e)

i t
Ze'——

} E+ +mpc' }(rfe) (r—f)—
kc& r

An inspection shows that these coeScients are
identical with those of Eq. (43) of the text.

APPENDIX D. THE NORMALIZATION OF THE

DIRAC WAVE FUNCTIONS FOR THE ENERGY
LEvELs oF THE HYDRoGENIc AToM ($17)

From these relations and their complex con-
jugates, we find

a
[(rf)—*(rGS)+(rfe)(rG)*j= ——

[~ rf )'+
)
rG ['j,

ar kc

and so from (D1)

On integrating the left-hand side we find

The normalization of the hydrogenic atom
wave functions has been carried out by Bechert. "
The following procedure is based on a method

p Br
given by Kramers. "

The normalization integral is'"

z

Ac

~oo z
lim [(rf)*(rGS)+(rfe)(rG)*].=.„, ~ ———— (D4)

hc

+]t ~rG~Pdr=l (D1).
0

From the differential equations (80) for f(r) and
G(r) we have

since the functions vanish at the lower limit
o.

From Eqs. (83) we see that rf is a pure imag-
inary, while rG is real, which permits us to write

(rf )e(rGS)+(rfs)(rG)*

d(rf) J+-', p f
Ze'

(rf) ——
} E+ —mpc' }(rG),

r hc( r )
(D2)

d(rG) J+-', i
t

Ze'
'(«) ——

} E+ +m, ce }(rf).
dr r kc( r )

)f& f Gel B (fq
(G G G) BE&G)

(rG)' B
-

pl —e) & A, —A,
—

mpc' Be 41+el Al+Ap
(D5)

The functions defined by these equations may
be considered to be functions of E in addition to
their dependence on r. If we treat E and r as
independent variables and write

fe = (Bf/BE), Ge = (BG/BE)

"K.Bechert, Ann. d. Physik 5, 700 (1930)."H. A. Kramers, "Theorien des Aufbaues der Materie" in
Hued- uwd Jchrbach der chemischen I'hysik (Akademische
Verlagsgesellschaft, j.933-3S), $66.

from Eqs. (83) and (85).
In this expression we must consider A~ and A2

as functions of e and r defined by the Eqs. (86)
and the series (87). For e not equal to one of the
values of Eq. (94) the series will be infinite of
the form

Al(e, r) = 1+el'r+cp'r'+ ~

Ap(e, r) =dp'+d, 'r+dp'r'+

ck' = (2~)"ck, dk' = (2&)'de,
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y+n'+(J+gs) e
(rG).=... g =(—)"'+'Xi (1+3)&

and it must be remembered that cy, dI, and X Further
are functions of c.

From Eqs. (88) we have as e~s„, q

Ai(s, r) ski(s„, g, r) =5( n—'+1, 2y+1; p),

i!.2(e, r)~A2(s, g, r) =

IS 6&, J

Ke are interested in the asymptotic forms of
these functions and their derivatives for r—+~.
These can be found from the theory of the con-
Auent hypergeometric functions, "and are given
explicitly by Kramers:"

I'(2y+1)
Ai(e g r) =(—)"'—'

I'(2y+ n')

I'(2y+1)
X e~&p"'

I'(2y+n'+ 1)

The reduction of Eq. (D5) can now be readily
carried out, and the result found

1ÃpC

t I'(2m+I)]' V+n'+(~+2)e
X

F(2y+n'+ 1) n'e(1 —s')

If we equate this to —i/irsc we find the normal-
ization factor quoted in the text.

8—Ai(e, r)
86 e&s

= ( (—)"'(n' —1)!Za(1—32)-& APPENDIX E. THE DIRAC TRANSFORMATION

F1TNcTioN (f18)
&(I'(2y+1)e&p 2& "'I—

e c—-
V+n'+(&+2) 2, z

g (e r) ( )s'+3
I

I'(2y+1)
X p"',

I"(2y+n'+1)

y+n'+ (J+~2) e—As(e r) = (—)"'+' (n'!)
I

e=&ns J S 0

Rotation about the x axis

Pi'=Pi

ri=!'=0,

P4'=P4,

ps' ——ps cos )+ps sin $,

ps' ———ps sin $+ps cos 8

As the work proceeds on exactly similar lines
to Appendix C we give only an abbreviated
discussion.

j." indicates the ordinary gamma-function.
It is important to note that the substitution

2= e„, z is made after the differentiation is per- From the equations
formed.

The analysis can be simplified by noting that
as r—+~

Nssp2P3+ 23132PSP1P4+23142plp2P4+23131.

Ps U= UP2 Ps U= UPs

we find

~( 'y+I) 'p As U must commute with both pi and p„ it must
be of the form

i Xi+As] I c~ J
ZQS Qy3

Qps Qy4

sin —2,$

cos ~~&

U= (i sin ~3$)2P2P3+(cos -,'$)I.

~ Whittaker and Watson, Modern Atcalysis, fourth edi-
tion!Cambridge University press, 192&), chap. 16, )16.1 es The o "i " hich U~l as 5~0 becomes
seq. In the notation used here 5'(g, q, x) = &F& I&; q, xI."Kramers, reference 63, p. 313.
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I' = I+a4 —znlaz —inlnzn4.The analysis for the general space rotation
continues just as in Appendix C with the result
given in the text. It is easily verified that

(F2)

Special Lorentz transformation (cf. text)

Here (P =zl/c)

Pl =(P +zPP4)(1 —P') ~ Pz =Pz Pz =Pz

P4'=(P4 zPP—)(1 P')—'

F =n4F = —tnin2F = —tnln2n4F,

n3F —n3n4F n ln2n3F ~nln2n3n4F y

n, r=n n,r= -zn F = -zn n, r,
n,n F =n n n F= —2 2n F = —zn n n F.

(F3)

With the help of these formulas we find fromThe commutation o U with 2 and 3 requires
that it be of the form

U 346zpl P4+ Ill zpl Pzpz+ 3142 zpzpzp4+ 3146I.

The relations

Pl'U= UP1 Pz U= UP2

lead at once to

Pr =(x &+x +x +x )r, (F4)

where xl, y2, y3, y4 are linear combinations of the
fl, , f16 For ex. ample

xl =fz+fz+zfz+zflz

If P is a solution of the Dirac equation

Q5 Sgl2 (zh(7/Bt Kil) f=—0, (F5)
116 +11 1+(1—P')'

If we let cosh 0 = (1—P') ', sinh 8 =P(1—P') i

we find

N5 ZNl2

Nl6 Qll

sinh 28

cosh ~l6

The solution for which U~I as P—+0 is

U= (—sinh -,'6)iplp4+(cosh 2('t)I. —

APPENDIX F. SAUTER S METHOD OF SOLUTION

OF THE DIRAC EQUATION

A general method for solving the Dirac equa-
tion without specializing the operators by the
introduction of matrices has been developed by
Sauter. " In CI12 we remarked that the 16
operators are linearly independent, and form a
complete set.

This suggests writing the solution of the wave
equation in the form

so is lt r. By substitution of (F4) one obtains

0= (ihB/Bt XD)lfr —= [(zhB/8t 6(t+mzc'—)Xl

+ cll X,+crrzX3]r+ [(aha/at —6$+mzcz) X,

+CII~X3 —CII3X4]nlazr+ [(zh 8/ Bt—64 —m(lc') X3

+CII X +clI X ] r+[(ihB/Bt —(t moc')—X

+cII+Xl c113X2]air. (F6)

This equation can be satisfied only if each of
the expressions in square brackets vanishes
separately, since the operators are linearly
independent. This brings us back just to Eqs.
(64).

The argument now is that if by any means one
can obtain a solution in the general form (F1),
he can write out Qr and interpret at once in
terms of the g's.

As an example, consider Sauter's treatment'~
of the Dirac electron in a field 6@= U(x). A=O.
Substituting

4 =flI+fznl+ +f1zalnzaza4 (F1) lt, = P ((I'll (P23+P3* &ox(x)—(F7)

with 16 space functions fl, , f16.
This can be reduced to an expression in terms

of four functions by considering the operator

"F. Sauter, Zeits. f. Physik 63, 803 (1930); 64, 295
(1930}.See also A. Proca, J. de phys. 1, 235 (1930);3, 172
(1932). Eddington, reference 38, chap. 2 et seg.

Dirac's equation goes over into

tZ —U d
+zha, +azPz~azP3+—n,m, c ~X(x) = 0,)c dx

"F.Sauter, Zeits. f. Physik 69, 742 (1931).
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dg z k
+ + —(& —~)g+-f .- (1+ )=0.

dX AC

Multiplication on the left-hand side with (1—42~)

shows that

df i k———(&—l')f+ g= o, -
dX AC h

dg z k
+ (Z V)g+ f=0

dX AC k

(F10)

which we multiply from the left side with —in~/k
to obtain:

d z k———(Z —V)42'+ —422 X(x) =0. (F8)
dx Ac k

Here we have introduced the new symbol 42& by
the relations

kn4 = i a—i(422p2+ 422pa+ 424m«)

k2 m 2c2+P 2+P 2

Ke see that

0!yo.'5+Or5(xy =0, cx2i = 1.

The form of the diRerential equation (F8)
suggests looking for a solution in the form:

X= [f(x)+~4g(x) j (1+~4) (F9)

If this is introduced in the differential equation
one obtains

df i k—(&——l/')f+—g-
dX AC

G(r) =G,(r), k= J—x)

g(r) = iF—2,(r), F(r) =G 2 2(r), k= —(J+-',).
A constant factor has been omitted since Darwin
does not normalize his wave functions. Fy and
G& are given by Eqs. (8, 9) of Darwin's article
and F I, & and G» are obtained by formally
substituting —k —1 for k.

Gordon" puts the solutions in a form-which
is the basis of our treatment. Apart from an
normalizing factor we have

f=if,/r, G= &2/r, j'= —(J+-,'),
g=i0'~/r F=A/r i'=+(J+-', ).

The relation between Gordon's quantum number
j' and our J is as indicated.

Kramers" has given some very convenient
forms for the radial parts of the Coulomb wave
function. The connection of his solutions which
are given in Eqs. (214), (215) on page 311 of his
monograph with our solutions may be verified
by using the formula

x P'(a, b; x) =a[I(a+1, b; x) —F(a, b; x)j.
Hulme" uses the same notation as Darwin but

puts F(r) and G(r) in a form more adapted to
use for the continuum (E)m«2). He writes

Coulomb 6eld

Darwin" gives the radial functions as in6nite
series. The relation between Darwin's solutions
and ours ss:

The problem is thus reduced to only two linear
differential equations. If they are solved we

write down X F and obtain

p2+'Lm«p2
Xy~f+ g, X2= —2—g,

k k

F= (8+@)/(2(&/c+m«)'),

G = (@—8)/(»(&/c —moc)')

with Q and given as integrals in the complex
plane. (Eq. (17a) and (1/b) of his article. ) To
normalize these functions such that

P3
X3=1—g,

k

P2+2m«
X4 f-—g)

k P*(E, J, M)P(E'J'M')dr

with x„—g() l~) (u2u+I)3&—& &)X~ = (1/&) ~(& &') &~~ &~~, —

6 C. G. Darwin, Proc. Roy. Soc. A118, 654 (1928).
"W. Gordon, Zeits. f. Physik 48, 11 (1928)."H. R. Hulme, Proc. Roy. Soc. A133, 381 (1931).

APPENDIx G. NOTFs ON OTHER SOLUTIONs OF they must be multiplied by a factor given by
THE DIRAC EQUATION Eq. (22a) in his paper.

For the convenience of the reader we append
some notes on the correlation of our notation
with standard treatments in the literature.
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Furry" neglects terms of the order (Z42)2 and
approximates Hulme's solutions for high energies.
With these approximate solutions he constructs
linear combinations which reduce to plane waves
at large distances. (Eqs. (4) and (5) of Furry's
article. )

Rose" gives a collection of wave functions in
the continuous spectrum of the Coulomb held.
He uses a system of units with mp, c and k all
equal to unity.

Other types of field

HufP' has treated the case of the homogeneous
magnetic 6eld. With the held in the direction of
the s axis and the electron moving in the (x, y)
plane, he obtains the solutions expressed in
terms of parabolic cylinder functions D, ($)
(for definition see reference 64). Huff considers
also the passage of electrons from a 6eM free
region into a region containing a homogeneous
magnetic 6eld.

Sauter'~ has studied the Dirac equations for a
homogeneous electric held. His solution obtained
in symbolic form is easily translated into more
ordinary notation as is shown in Appendix F.
The wave functions are

—tz( 4/It ) (tttzz+ zlzz S t )X .(X)—

and the X; are connected to the functions f and g
which are introduced by Sauter through Fq.
(F9) of Appendix F. Sauter gives two repre-
sentations for f and g. The one in Eqs. (14a, 14b)
of his article makes use of hypergeometric func-
tions, while the other (Eqs. (17a), (17b)) uses
contour integrals in the complex plane. For elec-
tric 6elds which are not extremely high an
approximate solution is given in Eqs. (21), (22),
which makes use only of functions for which
tables are available.

Plesset" has given a formal discussion of the
solutions obtainable in various potential 6elds
expressed as polynomials in the coordinates and
their reciprocals.

Other references to the literature will be found
in these papers.

' W, H. Furry, Phys. Rev. 45, 391 (1934).
~' M. E. Rose, Phys. Rev. 51, 484 {1937).
» L. D. Huff, Phys. Rev. 38, 501 (1931).
'4 M. S. Plessett, Phys. Rev. 41, 278 {1932).

APPENDIX H. SPINOR ANALYSIS

In the discussion of this article we have
treated the Dirac wave function as represented
in the form

xla 1+x2a2+ x3a3+ x4a43

where a~, a~, a3, a4 were introduced merely as
"spin symbols" or "spin functions. " We can
give the formalism more of an intuitive geomet-
rical character by imagining the a's as four
linearly independent basis vectors, while g is a
more general vector, in a 4-dimensional "spin
space. "

Interpreting the results of $18 geometrically,
we say that to every Lorentz transformation in
(x, y, s, t) there is coupled a transformation in
spin space to a new set of basic vectors, the
Dirac vector g is however unaffected by the rota-
tion. Because of the appearance of the half-
angles in the transformation formulas in spin
space ($18) the correspondence between the
transformations in (x, y, s, t) space, and those in
spin space is not one-to-one, but is two-to-one.
For a given Lorentz transformation one can use
either ~ U for the speci6cation of the associated
transformation in spin space.

The nature of the transformation induced in
spin space by the group of Lorentz transforma-
tions~' may be made more apparent by intro-
during a new set of vectors in spin space defined
by

ar =2-i(a, +a3), arr=2 &(a2+a4),

alrl 2 ( ar+a3)& alv=2 '( —a2+a4),

with the conjugate vectors

ar = 2—
&(ai+a3),

arrr=2 «( —ar+a3),

arr=2 '(a2+a4),

aiv ——2-'( —a2+a4).

7'B. L. van der Waerden, Xachrichten Gesellschaft der
S'issenschaften su Gott&sgen {Gott. Nach. 1929), p. 100;
also van der W'aerden, Die Gruppentheoretische Methode in
der Quantenmechanik {Springer, 1932). H. Weyl, The
Theory of Groups and Quantum Mechanics, reference 27,
p. 146 et seg.

The Dirac wave function 2lt is written in terms
of this set of spin vectors as

Q=rtlal+rtilarr+rtlllalll+rtlvarvz (H2)



DI RAC ELECTRON THEORY

where

sir=2 '(X3+X3),or =2-'(xi+x3),
(H3)

11111 2 ( Xi+X3) 3 &Iv 2 ( X3+X4)'

The transformation properties of these vectors
under the various tI'ansformations of the Lorentz
group can be found by the methods of II18. We
give a tabulation of the results for the basic
transformations.

aI zrar+Pazz~ aIII ti arII 7 azvi

arI ='Ya I+ liar i, arv = —P air i+cr arv)
(H4)

for the complete group (but not including the
reflections R3 and R,).

The reader can easily verify that for all of the
transformations given above the relationships
existing between the expressions for the two
pairs of spin vectors can be expressed by the
equations

General rotation in 3-dimensional space

ar'=ar cos ~3& e 'l&+rl arr —i sin -', g e'&& 3 'r,

arr'= ar—i sin ~$ e 'l'3 r'+air cos-', $ e'&& 3+z,l

arr1 =ai» cos q$ e '&"+r' azv—isin. 3i $ e'&&~z&,

a '= —a i sin ~& e 'l' z'+a
~ cos -'3g e'&& 3+&r.

Special Lorentx transformations

(A) Motion along the x axis with eeloc3ty p,c

az'=az cosh ~8 —azz sinh ~&8„

azz = —az sinh g8 +azz. cosh g,

azzz =azzz'cosh g~ +azv

azv =azzz. slnh y8~+azy cosh &8,.

(8) Motion along the y axis with velocity Pvc

az =az ~ cosh 28'„—azz s scnh ~8»

azz =az i sinh @~8„+azz cosh ~~8„,

arrz =azrr'cosll 3393+arv'i slllll 383,

azv'= azrr i—sinh 3.8„+arv cosh ~8„.

(C) Motion along the s axis with velocity P,c.—
az'=az. e &~*, azz' ——azz e&~,

azzz azzz " azv azv''ky t'

with nb Py=1—. These relationships are pre-
served for the more general transformations of
the group.

We can now see clearly that under the trans-
formations induced by the Lorentz group, the
4-dimensional spin space is reducible to two
2-dimensional sub-spaces which transform sepa-
rately by means of binary unimodular trans-
formations, and that the transformations in the
two separate sub-spaces are not identical, but
are intimately related to each other.

The nature of these results can be emphasized

by a change in notation. VA set

~i=az, ~2=azz, p' =azrr, p' =azv

The raising of the index on the last two
vectors expresses the fact that they transform
contragrediently to the first pair, except that
the dot beside the index indicates the transition
to the complex conjugate transformation coef-
ficients in Eqs. (H4).

If we define further

P=&iy P=&rig rtl —&III& rt3 —Srvi

the Dirac wave function can be written as

4 = Fei+Pe3+Si y'+S3 P'

The two parts

The most striking feature to be observed here
is the fact that under each of these transforma-
tions the two pairs of spin vectors (ar, arr) and
(arrr, arv) transform seParately by a binary
transformation. Since 311 of the transformations
of the Lorentz group can be built up from these
basic transformations, the result will hold good

which transform separately under the Lorentz
group are called spinors The Dirac funct. ion Q
in 4-dimensional space is equivalent to two
separate spinors.

It is of interest to examine the behavior of
these spinors under the reflections Ro and Rg of
II20. We find
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In particular it is observed that Ro inter-
changes the roles of the two spinors, so that
under the extended Lorentz group (i.e. the
Lorentz transformations as defined in $18 with
the addition of reflections) the 4-dimensional
spin space is no longer strictly reducible into
two separate sub-spaces.

For a more extensive development of the
spinor calculus and its relationship to tensor
analysis, with the formal re-working of the

Dirac equation and the Maxwell 6eld equations
in a consistent spinor notation, the reader is
referred to the literature. " From the point of
view of physical applications the spinor formula-
tion loses some of its formal advantages due to
the fact that it obscures the division of the Dirac
function into "large" and "small" components, a
division which assists materia11y in the discussion
of physical problems.

"B.L.van der Waerden, reference 75. O. Laporte and G.
Uhlenbeck, Phys. Rev. 37', 1380 (1931).A. Einstein and
K. Mayer, Preuss. Akad. Wiss. Berlin, Ber. 32, 522 (1932);
Proc. Ko*nig. Akad. Amsterdam 35, 497 (1933); 30, 615
(1933).H. A. Kramers, reference 63, f61, $63. G. Rumer
SPinor Analysis (NKTP, Moscow, 1936&. (In Russian. )


