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~~lCCASIONALLY the solution of a problem
in physics involves the numerical evalua-

tion of one or more complete elliptic integrals.
Although tables of these integrals are available, '
if the arguments and moduli involved do not
coincide exactly with those of the table, the
required interpolation is often laborious and
uncertain. Then, again, the reduction to the
tabulated standard forms may give rise to rather
complicated formulae.

The purpose of this paper is to develop a
direct method of calculating a very general type
of integral, which includes, as a special case, the
standard forms of complete elliptic integrals.
The method is based on Landen's transformation
and utilizes the rapidly convergent scale of
arithmetico-geometrical means developed by
Lagrange, Legendre, Gauss and others. '

Legendre's complete elliptic integrals of the
first, second and third kind may be regarded as
special cases of the integral

complete elliptic integral of the third kind,
namely

~ x/2 dp
II3-

~ 0 (1+q sin' p)(1 —k' sin' p)1

The definite integral (1), when expressed in
terms of R alone is

"F(R)dR
I(m, n) =

where

LV = (R'- n') (m' —R') (4)

R, = —',(R+nmR —').

As R varies from e to m, R~ diminishes from
the arithmetical mean

Let a new variable of integration be defined as
follows'

( "F(R)dp
I(m, n) =

p R

where F(R) is a continuous function of R and

R' =m2 cos' q5+n' sin2 @,

m) ———,'(m+n),
(1)

to a minimum at the geometrical mean,

n, = (mn)l,

and then increases to m~. Furthermore,
(2)

in which the parameters m and n are real positive
numbers. For example, if

m=1, n=(1 —k')&

F(R) =k'(k'+g gR') ', —

R=R,W(R)' —nP) &,

dP =4R'(mP RP)—
dRg ———,'(1 nPR ')d—R-

= aR '(RP —nP)&dR,

and, consequently,

the integral (1) becomes Legendre's standard

' Smithsonian Mathematical Formulae and Tables of
Elliptic Formulae.' An excellent collection of formulae is given in Louis V.
King's monograph "On the Direct Numerical Calculation
of Elliptic Functions and Integrals. "

where

dR/6= +dR)/2Ag,

' l.anden's transformation.

AP= (R,' n, ')(mP —RP)—
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From these relations it follows that the definite mean, which will be denoted by mi, . Since by (16)
integral (3) equals R; is in the interval n; to m;,

where

Ii(mi, ni) =
i Fi(Ri)dRi limit m;=limit n;=limit R;=nzJ. .

(11)
Furthermore, it can be demonstrated that if
F(R) is a continuous function,

limit F;(R~) =limit F,(mL),
Fi(Ri) =-', {F[Ri+(Ri' —nis) &j

a definite constant, so that the integrands of (15)
+F[Ri—(Ri' —«') 3} (12) approach a constant and (18) becomes

Thus the transformation (5) does not alter the
form of the integral (3), but merely replaces m

and n by tn» and n», respectively, and the function
F by the function Fi. Since (3) was equivalent to
the form (1), it follows that (11) is equivalent to

I(m, n) = (ir/2mz. )[limit F;(m )ij . (19)

Of particular interest to the computer is the
rapidity with which the limit is obtained. This
is best illustrated by an example. For the case

where

p~" Fi(Ri)dpi
Ii(mi, ni) =

I

~p R»

Ris=mis coss y, +nis sins y, .

m= 1, n= i/+2=0. 707106 78119,

(13) the sequence is

m» =0.853553 39059, n» =0.840896 41525;
m~ =0.847224 90292, n~ =0.847201 26674;
my =0.847213 08483, ns= 0.847213 08475;
m4 =0.847213 08479,

The same argument made for the integral (1)
may be applied to the integral (13) to yield
another integral. By repetition of this process a
sequence of integrals is obtained, all equal to
the integral (1). These integrals may be written

( "F;(R;)dy,I (m n) = I s=0 1 2 ~ (15)

~here

R ' —m ' cos' Q +n' s&n' p.

m*=y(m;-i+n, i), n;=(m; in; i)&; (17)

F;(R,) =-', {F; i[R,+(R —n,')&j

+F [R —(R' —n')&$} (18)

while for i=0,

mp ——m, np ——n, Ep ——R, and Ep ——P.

The integral (1) may be obtained by evalu-
ating any one of the integrals (15) or by finding
the limit of the sequence as i increases without
bound.

As i increases, the ns; and n; rapidly approach
a common limit, the arithmetico-geometrical

and the error made in using m3 for the limit is
4X10—", a negligible quantity in most problems.
If, however, m4 were computed to a sufFicient
number of places, the error could be reduced to
10 ". Furthermore, if the ratio m/n is greater
than 0.7 or less than 1.4, the convergence is more
rapid, so that in this interval mI, may be taken
equal to m3. Suppose in addition Rl is taken
equal to ms, a constant, then the integrand of
(15) also reduces to a constant and all that is
required for its evaluation is Fs(ms). Now by
(18) and (17), taking s=3 and Rs ——ms,

Fs(ms) s{F=s[ms+ (ms' ns')—~1
+Fs[ms —(ms' —ns') &j } (20)

=-', {F,(m,)+F,(n,) }.
Hut the right members of this equation are by
(18) expressible in terms of Fi and hence, by (12),
in terms of Ii. The result is

Fs(ms) =-,'{g[F(m)+F(n)]
+F(ni) +F(m')+ F(n') }, (21)

where
m' =ns+ (nss —nis) &,

n' =ns —(ns' —nis) l.
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F(R) =2i(1+mnR ')

On substituting these results in (15), taking i=3 and is of the form (1) with
and replacing R3 by m3, the following quadrature
formula is derived: (27)

"F(R)dp

0
{
', LF(-m)+ F(n) ]

Sms

+F(n )+F(m')+ F(n') }. (23)

If i = 1, m = 1 and n = 1i+2, by formula (23)

Z = 7.528347 14.

For the case

Many applications of formula (23) may be
found in the calculation of electrostatic and
electromagnetic fields. For example, the mag-
netic intensity due to an electrical current, i, in a
circle of radius, a, for a point, P, in the plane of
the circle and at a distance, FI, from center, is
given by the integral

}'»a sin X d8
Z=i J~ (24)

where ) is the angle between an element, udISI of
the circle and the line joining P to this element,
R is the distance from P to the element, and 8

is the angle at center of circle made by P and an
element, In terms of the variable of integration

R'= c'+FI' —2cFI cos t)I,

sin X = (R'+a' H')/(2aR). —

On replacing the variable of integration by

y= (8+sr)/2,
R'=a'+Fr'+2aFI cos 2@

= (a'+H') (cos' @+sin' @)
+2aH(cos' p —sin2 p)

= (a+If)' cos' @+(a —H)' sin' @
=m' cos' P+n' sin' @,

~here m and n are the maximum and minimum

distances of the point P from the circle. The
integral (24) then becomes for the case a)H

Z=2i R '+mnR ' d@,
0

(26)

m = 1, n= 1/Q2,

the remaining arguments of the function I'
occurring in (23) are

n j ——0.840896 41525,
m' =0.950367 17766,
n' =0.744035 35581.

The integral (26) is also expressible in terms
of complete elliptic integrals of the first and
second kind. The value of Z derived from tables
of elliptic integrals agrees with that found from
formula (23) to eight significant figures. But for-
mula (23) applies equally well to integrals that
are not exactly elliptical, but only approximately
elliptical. For example, suppose the electrical
circuit is not a circle but an ellipse of major and
minor axes u and b, respectively. It can be
demonstrated that the field on the major axis, at
a distance FI from the center of the ellipse, is"F(R)dy

Z=J (28)

where

R' = (a+H) ' cos' p+ (a FI) sin' 4,—

F(R) =16ibH'a '{1+R '(a' FI') }— —

X {4H'+e'R '(a' H')' 2e'(a—'+H )—+e R'}-
and e is the eccentricity of the ellipse. If e is
small, formula (23) gives satisfactory results.
Thus, for FI=0.2, e=0.25, a=0.8, and i=i it is
found that

m = 1.0, n~ =0.7745967, m' =0.9274718,
n =0.6, ma ——0.7872471, n' =0.6469199;

and by formula (23),

Z =8.377580,

a result that is correct to seven significant
figures.

One method of estimating the accuracy of
formula (23) is to compare the result found from

(23) with that obtained by carrying the process
defined by Eqs. (17) and (18) one step further,
that is, to m4. The quadrature formula so de-
rived resembles formula (23) but involves four
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TAm. E I, Values of me, nl, m' and n' for use in formula (23). (tn = 1, n=0. 1 to 1.0)

0.10
.11
.12
.13
, 14
.15
.16
.17
~ 18
.)9

0,20
.21
.22
.23
.24
.25
.26
~ 27
.28
.29

0.30
.31
.32
.33
.34
.35
.36
.37
.38
.39

0.40
~41
.42

.44
45
.46
47
.48
49

0.50
.51
.52
.53
.54

0.4250
.4362
.4468
.4570
.4669
.4765
~4858
.4949
.5037
.5124

0.5208
.5291
.5372
.5452
.5530
.S608
~ 5684
.5759
.5833
.5906

0.5978
.6049
.6119
.6189
.6258
.6326
.6394
.6461
.6527
.6593

0.6658
.6723
.6787
.6851
.6914
.6976
.7039
.7101
.7162
.7223

0.72840
.73443
.74043
.74639
.75232

0.3162
.3317
.3464
.3606
.3742
.3873
.4000
.4123
.4243
.4359

0.4472
.4583
.4690
~4796
.4899
.5000
.5099
.5196
.5292
.5385

0.5477
.5568
.5657
.5745
.5831
.5916
.6000
.6083
.6164
.6245

0.6325
.6403
.6481
.6557
~6633
.6708
.6782
,6856
.6928
.7000

0.70711
.71414
.72111
.72801
.73485

0.6889
.7012
.'7125
.7228
.7325
.7415
.7500
.7580
.7655
.7726

0.7794
.7859
.7920
.7979
.8036
.8090
.8142
.8193
.8241
.8288

0.8334
.8378
.8420
.8461
.8501
.8540
.8578
.8615
.8651
,8686

0.8721
.8754
.8787
.8819
.8850
.8880
.8910
.8939
.8968
.8996

0.90239
.90510
~90776
.91038
.91294

0.1452
.1569
.1684
.1798
.1911
.2023
.2133
.2243
~ 2351
.2459

0.2566
.2672
.2778
.2882
.2987
.3090
.3193
.3296
.3398
.3499

0.3600
.3700
,3800
.3900
.3999
.4098
.4197
.4295
.4392
.4490

0.4587
.4684
.4780
.4876
.4972
.5067
.5163
.5258
.5352
.5447

0.55408
.56347
.57284
.58218
.59149

0.55
.56
.57
.58
.59

0.60
~ 61
.62
.63
.64
.65
.66
.67
.68
.69

0.70
~ 71
.72
.73
.74
.75
~ 76
.77
.78
.79

0.80
.81
.82
.83
.84
~ 85
.86
.87
.88
.89

0.90
.91
.92
~ 93
.94
.95
.96
.97
.98
.99

0.7S822
.76408
.76992
.77572
.78150

0.78725
.79297
.79866
.80433
.80997
.81559
.82118
.8267S
.83229
.83782

0.84332
.84880
.85425
.85969
.86511
.87051
.87589
~ 88124
.88658
.89191

0.89721
.90250
.90777
.91302
~91826
.92348
.92868
.93387
.93904
.94420

0.94934
.95447
.95958
.96468
.96977
.97484
.97990
.98494
.98997
.99499

0.74162
.74833
.75498
.76158
.76811

0.77460
.78102
.78740
.79373
.80000
.80623
~ 81240
.81854
.82462
~ 83066

0.83666
.8426]
.84853
.85440
.86023
.86603
~ 87178
.87750
.88318
.88882

0.89443
.90000
.90554
.91104
.91652
.92195
.92736
.93274
.93808
.94340

0.94868
.95394
.95917
.96437
.96954
.97468
~97980
.98489
.98995
.99500

0.91546
.91794
.92038
.92278
.92515

0.92747
.92976
.93202
.93424
.93643
.93859
.94072
.94282
.94489
.94693

0.94895
.95094
.95291
.95485
.95677
.95866
.96053
.96238
.96421
.96602

0.96781
.96958
~97133
.97306
.97477
.97647
~ 97814
.97980
.98145
.98307

0.98468
.98628
.98786
.98943
.99098
.99252
.99404
.995S5
.99705
.99853

0.60079
.61006
.&1931
,62853
.63774

0.64692
.65608
.66522
.67435
.68345
.69253
.70159
.?1064
.71966
.72867

0.73766
.74663
.75558
.76452
.77344
.78234
.79123
.80010
.80895
.81?79

0.82661
.83541
.84421
.85298
.86174
.87049
.87922
.88793
.89664
.90532

0.91400
.92266
.93130
.93994
.94856
.95716
.96576
.97434
.98290
.99146

additional ordinates. It may be written where S has the two values

S=new (n32 —nP) &( "F(R)d@
I ~2[F(m) +F(n) ]

16m4 and the n, are given by (17).

+F(ng) +F(m') +F(n') +F(m") On comparing formula (23) with (29) it is
seen that, if mi and m4 are essentially equal,

+F(n")+F(m"') +F(n'") I, (29) then formula (29) is the arithmetical mean of (23)
and an analogous formula involving the four

where the four additional ordinates are given by new ordinates. Consequently the sum

m", n", m"', n'" =5&($' np)&, —(30) —,'[F(m) +F(n))+F(ng) +F(m') +F(n') (32)
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F(R) =Ri, m=1, I= I/g2,

5=0.851687 908748 or 0.842738 198622

al'ld

m" =0.986838 326207,
m"' =0.898423 836184,

n" =0.716537 615543,
n"' =0.787052 561061.

The sums (32) and (33) are found to be

3.674894 86598,
3.674894 86593,

should be approximately equal to the sum

F(m")+F(n")+F(m"')+F(n"'). (33)

The number of significant figures to which these
two sums agree is an indication of the accuracy
of formula (23).

As another example take

That is, m and n may always be interchanged,
and the integral written so that m is greater
than n. Secondly, the function F may always be
so modified that m is equal to unity, so that for
tabular purposes m = 1 and n varies from 0 to 1.
In the belief that such a table may be useful, a
four to five place table of ml, nI, m' and n' for
m=1 and n between 0.1 and 1.0 is included in
this article. See Table I.

There is a special class of integrals of the type
(1) that permit of even simpler formulae than
those here given, namely that class of functions
for which the F;(R;) of (18) all have the same
form. One member of this class is

F(R) =log (A+BR),

where A and B are constants. For by (12)

Fi(Ri) =-', log (A'+B'n '+2ABRi)
=-', log (Ai+B,R,),

so that, for this example, formula (23) should give
results correct to eleven significant figures. The
accuracy of formula (29) is, of course, far
greater.

The integral of this example belongs also to
the type

where

In general

A i ——A'+8'nI',
BI——2AB.

F,(R;) =2—' log (A, +B;R;),

J (m' cos'-@+n' sin2 Q)
' 'dP,

0

and arises in the theory of zonal harmonics. In
fact, the zonal harmonic4

~j+

P, (x) =—
}[x+ (x'-' —1)il cos' p

0

+ [x—(x'- —1)*]sin' @}-'-'dy

where

Ai=Ai g'+8; I'n,
Bg = 2Ai 18i—l.

By computing the sequences A; and 8; along
with mi and n;, this integral is then given by

x/2 df
log (A+BR)

0 R

If s is not too large, formula (23) gives satis-
factory results for the integral (34). In fact, if
m/n is between 0.7 and 1.4 and s between —10
and +10, formula (23) gives a result that is
correct to at least five significant figures.

Tables may be readily constructed to facilitate
the computation of integrals by formula (23).
In the first place, by replacing p by s/2 —4 in (1),
the form of (1) remains unchanged, except that

=—limit log (A;+B;ml)/(2*ml) (35).
2

Such an integral was found to arise in the calcu-
lation of logarithmic potentials of ellipses.

The integral

"am cos' @+brn sin' Q dQ
(36)

m cos' P+rn sin' P R

R' =n' cos' p+m' sin' p. where u, b and t' are constants, when expressed
entirely in terms of R is found to belong to this

4 ByerIy, Fourier's Series and Spherical Harmonics, p.
j.67.

' '
same special class. After applying the trans-
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formation (3), the integral becomes (13) with

a»m» cos $1+b»r»n» sin f»
p» ——

m» cos' qh»+r»n» sin~ qb»

a& =~2(a+b), bi= (a+br)/(1+r),
r, = (ng/4m()(r+r '+2).

The integral is given by

and hence, on omitting the factor 2i(m+n), is of
the form (36) with

a=m ' b=n ' r=n/m

For m = 1, n = 1/g2, and hence

a=i, b=+2, r=1/+2,

where
a;+5;r;

a*+i = k(a'+b'), b'+i =—
1+r'

r;+g (n;+——g/4m;~g) (r;+r; '+ 2),-
a=i, 2, 3

the sequences are
(37)

m) =0.8535534,
a» = 1.2071068

mg =0.8472249,
a2 = 1.1893398,

m3= 0.8472131,
a3——1.1892734,

n» ——0.8408964,
b» = 2.1715729, r~ ——1.0150518;
ng =0.8472013,
bg = 1.1892071, r p

= 1.0000279;
ns =0.8472131,
63= 1.1892734, r3= 1.0000000.

for it can be demonstrated that the limit a;
=limit 5'.

Complete elliptic integrals of the first, second
and third kind are all expressible in the form (36).
For example, the integral (26) may also be
written

cos' @+nm ' sin' @
Z= 2i(m+n)

m cos2 @+n~m» sln2 @ R

Consequently at the third step the a; and b;, as
well as the m, and n;, agree to seven significant
figures. Hence

Z = 7.528347.

In conclusion, it is noted that these formulae
are not only rapidly convergent but ideally
suited for machine calculation.


