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CCASIONALLY the solution of a problem

in physics involves the numerical evalua-
tion of one or more complete elliptic integrals.
Although tables of these integrals are available,!
if the arguments and moduli involved do not
coincide exactly with those of the table, the
required interpolation is often laborious and
uncertain. Then, again, the reduction to the
tabulated standard forms may give rise to rather
complicated formulae.

The purpose of this paper is to develop a
direct method of calculating a very general type
of integral, which includes, as a special case, the
standard forms of complete elliptic integrals.
The method is based on Landen’s transformation
and utilizes the rapidly convergent scale of
arithmetico-geometrical means developed by
Lagrange, Legendre, Gauss and others.?

Legendre’s complete elliptic integrals of the
first, second and third kind may be regarded as
special cases of the integral

/2 F(R)d¢
1<m,n>=f —, (1)

where F(R) is a continuous function of R and
R2=m? cos? ¢p+n? sin? ¢, (2)

in which the parameters m and # are real positive
numbers. For example, if

m=1, n=(1-—k)}
F(R) = (1 =R,

the integral (1) becomes Legendre's standard

! Smithsonian Mathematical Formulae and Tables of
Elliptic Formulae.

2 An excellent collection of formulae is given in Louis V.
King’s monograph “On the Direct Numerical Calculation
of Elliptic Functions and Integrals.”

complete elliptic integral of the third kind,
namely

x/2 d¢
H3= f .
Yo (1+4nsin? ¢)(1 —k?sin? ¢)}

The definite integral (1), when expressed in
terms of R alone is

m F(R)dR
I(m, n)= f — (3)

where
A= (R*—n?)(m*— R?). 4)

Let a new variable of integration be defined as
follows?

Ri=3(R+nmR™). )

As R varies from n to m, R, diminishes from
the arithmetical mean

my=3(m+mn), (6)

to a minimum at the geometrical mean,
ny= (mn)}, 7

and then increases to m,;. Furthermore,

R=R1ﬂ:(R12—n12)%, (8)
A?=4R*(m,*—R,?),
dR] = %(1 —n12R‘7)dR
= £ R (R{*—n2?)\dR,

and, consequently,

dR/A= +dR,/2A,, 9)
where

A= (R—nt) (m?— Red). (10)

3 L.anden's transformation.
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From these relations it follows that the definite
integral (3) equals

™ F1(R1)dR,
Lms, my) = f e
where
Fi(R) =3{F[Ri+(R2—m?)}]
+F[Ri— (R2—m®i]}. (12)

Thus the transformation (5) does not alter the
form of the integral (3), but merely replaces m
and n by m, and n,, respectively, and the function
F by the function F;. Since (3) was equivalent to
the form (1), it follows that (11) is equivalent to

/2 Fl(Rl)d¢1
Il(ml,nl) =f .
0 R

1

(13)

where

R*=m,? cos? ¢;+n,? sin? ¢,. (14)

The same argument made for the integral (1)
may be applied to the integral (13) to yield
another integral. By repetition of this process a
sequence of integrals is obtained, all equal to
the integral (1). These integrals may be written

"2 Fi(R:)des
Ii(m;, ni)=f _— 1=0,1,2, -
0

i

*y (15)

where
R2=m3 cos? ¢;+n?sin? ¢;, (16)
and
mi=3(mia+ni), ni=mi_ni)};
Fi(R:) =3{Fia[Ri+ (R2—n?)t]

+F:.’;[Ri— (R#—nY]}; (18)

(17

while for =0,

mo=m, mno=n, Rey=R, and Fy=F.

The integral (1) may be obtained by evalu-
ating any one of the integrals (15) or by finding
the limit of the sequence as 7 increases without
bound.

As 1 increases, the m; and #; rapidly approach
a common limit, the arithmetico-geometrical
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mean, which will be denoted by m .. Since by (16)
R; is in the interval #; to m;,

limit m;=limit #;=limit R;=m.

Furthermore, it can be demonstrated that if
F(R) is a continuous function,

limit Fy(R;) =limit F;(my),

a definite constant, so that the integrands of (15)
approach a constant and (18) becomes

I(m, n)=(x/2mz)[limit Fi(mz)].  (19)

Of particular interest to the computer is the
rapidity with which the limit is obtained. This
is best illustrated by an example. For the case

n=1/4/2=0.707106 78119,
the sequence is

m1=0.853553 39059,
mq=0.847224 90292,
m3=0.847213 08483,
mqy=0.847213 08479,

m=1,

n,;=0.840896 41525 ;
n2:=0.847201 26674;
n3=0.847213 08475;

and the error made in using m; for the limit is
41071, a negligible quantity in most problems.
If, however, m, were computed to a sufficient
number of places, the error could be reduced to
10~2, Furthermore, if the ratio m/n is greater
than 0.7 or less than 1.4, the convergence is more
rapid, so that in this interval m; may be taken
equal to ms Suppose in addition R;s is taken
equal to m; a constant, then the integrand of
(15) also reduces to a constant and all that is
required for its evaluation is Fs3(ms). Now by
(18) and (17), taking 2=3 and Rs;=m;,

Fy(ms) =%4{ Fo[ms+ (ms®—ns?)¥]
+ Fo[ms— (mg?—ns?)¥]}
=3{Fa(ms)+ Fa(ns)}.

But the right members of this equation are by
(18) expressible in terms of F; and hence, by (12),
in terms of F. The result is

Fs(ms) =1 {3[F(m)+ F(n)]
+F(n)+F(m')+ F(n')},

(20)

(21)

where
m’ =ng+ (n2 —ni2)k,
n' =ny— (n? —mn)ki

(22)
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On substituting these results in (15), taking 1=3
and replacing R; by m;, the following quadrature
formula is derived :

2 F(R)d$
f = (3[F(m)+F(m)]

0 R 8’”’1«3
+ F(n)+ Fim")+ F(n')).

(23)
For the case

n=1/v2,

the remaining arguments of the function F
occurring in (23) are

n;=0.840896 41525,
m’=0.950367 17766,
n' =0.744035 35581.

m=1,

Many applications of formula (23) may be
found in the calculation of electrostatic and
electromagnetic fields. For example, the mag-
netic intensity due to an electrical current, 7, in a
circle of radius, a, for a point, P, in the plane of
the circle and at a distance, H, from center, is
given by the integral

27 g sin \ d6
i[O
0 R?

(24)

where \ is the angle between an element, adf of
the circle and the line joining P to this element,
R is the distance from P to the element, and 6
is the angle at center of circle made by P and an
element. In terms of the variable of integration

R?=qa?+H?—2aH cos 0,
sin A= (R*+a?—H?)/(2aR).

On replacing the variable of integration by

¢=(0+m)/2,
R2=qa?+ H*+2aH cos 2¢
= (a*+ H?)(cos® ¢+sin?® ¢)
+2aH(cos? ¢ —sin? ¢)
= (a+H)? cos? ¢+ (a—H)? sin’ ¢
=m? cos? ¢+n? sin? ¢,

(25)

where m and 7 are the maximum and minimum
distances of the point P from the circle. The
integral (24) then becomes for the case a >H

w2
Z= 2if (R-'4+mnR—3)d¢, (26)
0
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and is of the form (1) with

F(R)=2i(14+mnR™?). (27)

If i=1, m=1 and n=1/4/2, by formula (23)
Z=17.528347 14.

The integral (26) is also expressible in terms
of complete elliptic integrals of the first and
second kind. The value of Z derived from tables
of elliptic integrals agrees with that found from
formula (23) to eight significant figures. But for-
mula (23) applies equally well to integrals that
are not exactly elliptical, but only approximately
elliptical. For example, suppose the electrical
circuit is not a circle but an ellipse of major and
minor axes a and b, respectively. It can be
demonstrated that the field on the major axis, at
a distance H from the center of the ellipse, is

..fﬂz F(R)d¢ o8

Jy R
where
R?=(a+H)?cos? ¢+ (a—H)*sin? ¢,
F(R)=16:bH?% {1+ R %(a*— H?)}
X {4H?*+e2R~*(a?— H?)?— 2e*(a*+ H?) +€*R?} 3,
and e is the eccentricity of the ellipse. If e is
small, formula (23) gives satisfactory results.

Thus, for H=0.2, e=0.25, ¢=0.8, and z=1 it is
found that

m=1.0, n,=0.7745967,
n=0.6, m3=0.7872471,

m’'=0.9274718,
n’=0.6469199;

and by formula (23),
Z =8.377580,

a result that is correct to seven significant
figures.

One method of estimating the accuracy of
formula (23) is to compare the result found from
(23) with that obtained by carrying the process
defined by Egs. (17) and (18) one step further,
that is, to ms. The quadrature formula so de-
rived resembles formula (23) but involves four
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TABLE 1. Values of ms, n1, m’ and n’ for use tn formula (23). (m=1, n=0.1 to 1.0)

n ms m m n n ms n m’ n
0.10 0.4250 0.3162 0.6889 0.1452 0.55 0.75822 0.74162 0.91546 0.60079
11 4362 3317 7012 1569 .56 76408 74833 91794 .61006
12 4468 3464 7125 .1684 .57 .76992 75498 .92038 .61931
13 4570 .3606 7228 .1798 .58 717572 76158 192278 .62853
.14 4669 3742 7325 1911 .59 .78150 76811 92515 63774
15 4765 .3873 7415 .2023
.16 4858 .4000 .7500 2133 0.60 0.78725 0.77460 0.92747 0.64692
17 4949 4123 .7580 2243 .61 .79297 .78102 .92976 .65608
18 .5037 4242 .7655 .2351 .62 .79866 .78740 93202 166522
.19 5124 4359 7726 .2459 .63 .80433 79373 93424 .67435
.64 .80997 .80000 93643 68345
0.20 0.5208 0.4472 0.7794 0.2566 .65 .81559 .80623 .93859 .69253
.21 .5291 4583 .7859 2672 .66 82118 .81240 .94072 .70159
.22 5372 4690 .7920 2778 .67 .82675 .81854 94282 .71064
.23 .5452 4796 7979 .2882 .68 .83229 .82462 94489 .71966
.24 .5530 4899 .8036 .2987 .69 .83782 .83066 94693 72867
.25 .5608 .5000 .8090 .3090
.26 .5684 .5099 .8142 3193 0.70 0.84332 0.83666 0.94895 0.73766
27 5759 .5196 .8193 3296 71 .84880 .84261 .95094 .74663
.28 .5833 .5292 .8241 .3398 72 .85425 .84853 195291 .75558
.29 .5906 .5385 .8288 .3499 73 .85969 .85440 95485 .76452
.74 .86511 .86023 95677 77344
0.30 0.5978 0.5477 0.8334 0.3600 .75 .87051 .86603 95866 78234
31 .6049 .5568 .8378 .3700 .76 .87589 87178 96053 79123
.32 6119 5657 .8420 .3800 a7 .88124 .87750 196238 .80010
33 6189 5745 .8461 .3900 .78 .88658 .88318 96421 .80895
.34 .6258 .5831 .8501 .3999 .79 .89191 .88882 196602 81779
.35 .6326 5916 .8540 4098
.36 .6394 .6000 .8578 4197 0.80 0.89721 0.89443 0.96781 0.82661
.37 .6461 .6083 .8615 4295 .81 .90250 .90000 196958 .83541
.38 .6527 6164 .8651 4392 .82 90777 90554 97133 .84421
.39 .6593 .6245 .8686 4490 .83 91302 91104 97306 .85298
.84 91826 91652 974717 .86174
0.40 0.6658 0.6325 0.8721 0.4587 .85 92348 92195 97647 .87049
41 6723 .6403 8754 4684 .86 92868 92736 97814 .87922
42 .6787 .6481 .8787 4780 .87 93387 93274 .97980 .88793
43 .6851 6557 .8819 .4876 .88 193904 .93808 98145 .89664
44 .6914 .6633 .8850 4972 .89 94420 .94340 .98307 90532
45 .6976 .6708 .8880 .5067
46 .7039 .6782 .8910 .5163 0.90 0.94934 0.94868 0.98468 0.91400
A7 7101 .6856 .8939 .5258 91 95447 95394 .98628 92266
48 7162 .6928 .8968 .5352 .92 195958 95917 .98786 93130
49 7223 .7000 .8996 .5447 .93 96468 96437 98943 .93994
94 96977 .96954 .99098 94856
0.50 0.72840 0.70711 0.90239 0.55408 .95 97484 97468 199252 95716
St 73443 71414 90510 .56347 .96 97990 97980 .99404 96576
.52 .74043 72111 90776 57284 97 98494 98489 99555 97434
.53 74639 .72801 91038 58218 .98 98997 98995 .99705 98290
.54 .75232 .73485 91294 .59149 .99 .99499 .99500 .99853 99146

additional ordinates. It may be written

fr/zp(R)dd,
» R

+F(n)+F(m')+F(n')+ F(m'")

M4

{3[F(m)+F(n)]

+F(n")+Fm'"")+F»n'"")}, (29)

where the four additional ordinates are given by

mn, n//Y mlll, nlllzsd:(sz_nl2)g, (30)

where S has the two values
S=n3+ (ns?—ns?)? (31)

and the #; are given by (17).

On comparing formula (23) with (29) it is
seen that, if m; and m, are essentially equal,
then formula (29) is the arithmetical mean of (23)
and an analogous formula involving the four
new ordinates. Consequently the sum

$[F(m)+ F(n) ]+ F(n)+ F(m")+F(n') (32)
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should be approximately equal to the sum

Fm')+Fn'")+Fm'")+F@n'"). (33)

The number of significant figures to which these
two sums agree is an indication of the accuracy
of formula (23).

As another example take

F(R)=R},

m=1, n=1/4/2,

then
S5=0.851687 908748 or
and

m' =0.986838 326207,
m’’=0.898423 836184,

0.842738 198622

n''=0.716537 615543,
n'"’=0.787052 561061.

The sums (32) and (33) are found to be

3.674894 86598,
3.674894 86593,

so that, for this example, formula (23) should give
results correct to eleven significant figures. The
accuracy of formula (29) is, of course, far
greater.

The integral of this example belongs also to
the type

/2
f (m? cos® p+n?sin? ¢)*"d¢, (34)
0

and arises in the theory of zonal harmonics. In
fact, the zonal harmonic?

2 Ar/2

Pu(x)=— j (Do (22— 1)4] cos?

™0
+[x—(x2—1)}] sin? ¢} *"d¢.

If s is not too large, formula (23) gives satis-
factory results for the integral (34). In fact, if
m/n is between 0.7 and 1.4 and s between —10
and +10, formula (23) gives a result that is
correct to at least five significant figures.

Tables may be readily constructed to facilitate
the computation of integrals by formula (23).
In the first place, by replacing ¢ by 7/2—¢ in (1),
the form of (1) remains unchanged, except that

R2=n? cos? ¢+m? sin? ¢.

‘7 Byerly, Fourier's Series and Spherical Harmonics, p.
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That is, m and » may always be interchanged,
and the integral written so that m is greater
than %. Secondly, the function F may always be
so modified that m is equal to unity, so that for
tabular purposes m =1 and # varies from 0 to 1.
In the belief that such a table may be useful, a
four to five place table of m3, n;, m’' and »’ for
m=1 and » between 0.1 and 1.0 is included in
this article. See Table I.

There is a special class of integrals of the type
(1) that permit of even simpler formulae than
those here given, namely that class of functions
for which the F;(R;) of (18) all have the same
form. One member of this class is

F(R)=log (A+BR),
where A and B are constants. For by (12)

Fi(R))=1% log (A*+B*1,2+2A4BR,)
1 log (A1+B1R)),

where
A=A+ B,
B,=2AB.
In general
Fi(R)=2"%log (A:+B:R)),
where

A=A, +B;_’nd,
B,=24; ,B; ..

By computing the sequences A4; and B; along
with m; and #,, this integral is then given by

/2 d¢
f log (A+BR)—
0 R

=§ limit log (4:+Bmyz)/(2imy). (35)

Such an integral was found to arise in the calcu-
lation of logarithmic potentials of ellipses.
The integral

T (36)

. ff/‘l am cos* ¢+brn sin? ¢ d¢
- 0 m cos? ¢+rnsin?¢ R

where a, b and 7 are constants, when expressed
entirely in terms of R is found to belong to this
same special class. After applying the trans-



CALCULATION OF COMPLETE ELLIPTIC

formation (5), the integral becomes (13) with

aym; cos? ¢1+b171n1 sin? b1
1=

my cos? ¢1+717; sin? ¢,
where
a1=3(a+d), bi=(a+br)/(1+7),
r1=(n1/4m)) (r+r142).

The integral is given by

E=(n/2m)[limit a;], 37
where
a'i+biri
aip1=3%(ai+b:), bi=— ) (38)
1+f,‘
tiv1= Mip1/4mir) (ritri7 1 +2),
1::11 2, 3; )

for it can be demonstrated that the limit a;
=limit b;.

Complete elliptic integrals of the first, second
and third kind are all expressible in the form (36).
For example, the integral (26) may also be
written

x/2
Z= 2i(m+n)f

o mcos?o+nimlsin?¢ R

cos? p+nm~lsin?¢ do

INTEGRAL 269
and hence, on omitting the factor 2¢(m+n), is of
the form (36) with

a=m=, b=n"l, r=n/m.

For m=1, n=1/4/2, and hence

b=4/2, r=1/4/2,

a=1,
the sequences are

m,=0.8535534,
a,=1.2071068,
ma=0.8472249,
az=1.1893398,
ms=0.8472131,
as=1.1892734,

n,=0.8408964,
b1=1.1715729,
n,=0.8472013,
by=1.1892071,
n3=0.8472131,
b3=1.1892734,

r;=1.0150518;
r.=1.0000279;

r3=1.0000000.

Consequently at the third step the a; and b;, as
well as the m; and #;, agree to seven significant
figures. Hence

Z=17.528347.
In conclusion, it is noted that these formulae

are not only rapidly convergent but ideally
suited for machine calculation.



