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INTRoDUcnoN

Ordered substituttona1 a110ys

A MONG the many types of alloys there is one
which is known as a "substitutional solid

solution. " Sometimes this is made by the addi-
tion of various quantities of metal 8 to metal A.
It is found that the crystals of the alloy are very
like those of the pure metal save that upon some
of the lattice sites 8 atoms have been substituted
for A atoms. For many years it was thought
that this substitution was a purely random affair
and that there was no order in the way in which
the atoms are arranged on the lattice sites.
Recently, '~ '~ however, it has been determined
by that final arbiter of crystal structure, x-ray
diffraction, that in a large number of cases the
atoms are arranged in as definite a way as are
the two different elements in an ionic salt.

The earliest prediction of ordered structures
was based not on x-ray evidence but on some
chemical experiments of Tammann """" He
found that suitably conditioned Cu-Au alloys
containing more than 50 atomic percent Cu were
attacked by nitric acid which dissolved the Cu
but none of the Au. Samples containing 50
atomic percent Cu or less were not affected. On
the basis of this evidence he concluded that a 50
atomic percent Cu-Au alloy contained an ordered
arrangement of atoms and any extra Cu atoms
did not ht in and were easily removed.

At present, however, the conclusive evidence
of ordered arrangements, or superstructures, or
superlattices as they are also called, is furnished
by the presence of "superstructure lines" on
x-ray diffraction patterns. Fig. 1 shows sche-
matically a superstructure and an x-ray beam.
Here we see A and 8 atoms arranged in a regular
array. It is quite obvious in this case that some
sites, called n-sites, are appropriate to A atoms

A -- — A ——— A —--A —-- —-

8 ——— 8 —-- 8 ——— 8---
A ——-A ———A ——— A- ————

8 ——— 8 ———8 —- — 8 —--

FIG. i. Superstructure and origin of superstructure 1ine.

and some, called P-sites, to 8 atoms. An A atom
is called "right" when in an a-site and "wrong"
when in a P-site; and similar de6nitions apply to
8 atoms. In the perfectly ordered state of Fig. 1,
all atoms are right. Now imagine that an x-ray
beam falls on the crystal and is reflected in such
a way that its path length difference between
two planes of n-sites is one wave-length and
between adjacent n- and P-planes, one-half wave-
length. Then the waves in the outgoing beam
scattered by the A atoms will all be exactly in

phase with each other and exactly out of phase
with those scattered by the 8 atoms. If the
scattering factors of the two kinds of atoms are
diferent, the opposing waves will not cancel and
a line will result on the x-ray plate. Consider
now what occurs if the atoms are disordered so
that equal numbers of A and 8 atoms are upon
the n-sites and upon the P-sites. Then the u-sites
give rise to scattered waves whose amplitude is
the average for A and 8 atoms and the same is
true of the P-sites. The a and P scattered waves
now being equal in amplitude cancel each other
completely, and no line appears on the plate.

Such lines, the occurrence of which is con-
tingent upon the presence of a superstructure, are
appropriately known as "superstructure lines. "
Their presence upon an x-ray picture is proof
positive of the existence of a superstructure, and
to some extent their intensity is a measure of its
approach to perfection. Fig. 2 represents an x-ray
pattern from CuaAu in a disordered state (right),
a well-ordered state (left) and a state of inter-
mediate order (middle). The superstructure lines
are identified on the left.

The earliest superstructure lines were observed
by Bain'~ for Cu3Au and Phragmbn" for Fe3Si
and the first analysis of an ordered structure
from its x-ray pattern was made by Johansson
and Linde'~ for the alloy CuAu. For these cases
the large difference in scattering factors greatly
facilitated the experimentation. In some cases
the atoms have nearly the same scattering power
and the superstructure lines are so weak that
they can hardly be detected. Recently improved
techniques have made possible the analysis of
such alloys, an outstanding example being the
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work of Jones and Sykes'n upon P-brass, for
which the two elements Cu and Zn are adjacent
in the periodic table. A review of the ordered
structures now determined by x-rays is given in

Part II, Section 16.
All superstructures so far analyzed are charac-

terized by a common feature: in them atoms of
one species tend to surround themselves by
atoms of the other species. XVe use the word
"tend" advisedly because although in some cases
the atoms surround themselves as completely as
possible with unlike neighbors, in others they
stop definitely short of this limit. However, the
above statement is adequate for our purposes
here and we shall postpone a more exact state-
ment of the situation until Sections 5 and 16.

The order-disorder transformation
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Interesting investigations of superstructures
can be made by studying the effects of heating.
Let us follow the course of this process starting
at. a low temperature with a perfectly ordered
superlattice like that indicated in Fig. 1.

As the temperature is increased, the first effect
is only a greater amplitude of thermal vibration
of the atoms about their equilibj. ium positions.
%'hen this eAect becomes large enough, occa-
sional pairs or small groups of atoms acquire
sufficient energy to break away from their places
in the lattice and interchange positions with
each other. This interchanging results in a
certain number of atoms becoming "wrong"—
an A atom on a p-site or a 8-atom on an n-site is

called wrong.
Thus disorder enters the arrangement of the

atoms in two closely associated aspects: from a
local point of view, the neighbors of some atoms
are of the same species, whereas according to
the tendency to have unlike neighbors, they
should be diferent; from a long distance point
of view, some P-positions are occupied by A
atoms. Definitions of order have been made to
describe these two aspects: "short range" or
"short distance" or "local" order, denoted, by o.

and defined quantitatively in Section 2, is a
measure of how well on the average each atom
is surrounded by unlike neighbors; 0.=1 repre-
sents the best ordered arrangement an(1 a = 0 the
worst. . "Long range" or "Iong distance" order,

(211)

(21o)
4N'1« tc

M'."'.'i', :,"*.' "'

(200)

(
kp

I' IG. 2. X-ray diffraction pattern showing superstructure
lines (retouched).

denoted by S and defined quantitatively in
Section 1, is a measure of how completely the
a-sites are occupied by A atoms and the p-sites
by 8 atoms; S=1 represents perfect order and
S=0 disorder.

The tendency of atoms to surround them-
selves by unlike neighbors results in the forma-
tion of the perfect superlattice at very low tem-
peratures. At higher temperatures, where thermal
agitation leads to atoms becoming wrong, this
tendency acts to restore wrong atoms to right
positions. At every temperature less than a
certain critical temperature, described below,
there is a certain equilibrium condition with a
definite number of wrong atoms; at this condi-
tion, the rate at which right atoms go wrong
ov ing to thermal agitation is equal to the rate
'lt wllich wr&)ng at()Ills g() right owilig t.o therm;l. l

agitation aided by the ordering influence of the



F. C. NIX AND XV. SHOCKI EY
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Fic. 3. Long range and short range order versus ten&pera-
ture.

right neighbors of wrong atoms. As the number
of wrong atoms increases with increasing tem-
perature, some of the neighbors of a wrong atom
will also be wrong and will tend to keep it as it is
rather than to make it right. Hence with in-
creasing temperature there is not only increasing
disorder but also increasing ease of disordering.
This process mounts at a more and more rapid
rate until a certain critical temperature, T„is
reached and there the long range order 5
vanishes abruptly. By analogy with the theory
of ferromagnetism, this temperature is known as
the "Curie point of order. " In Fig. 3, we show
one possible form for this process; there is
another form described in Section 1 for which
there is no discontinuity in the value of 5 but
instead a continuous decrease to zero.

Even above T„however, there is still a degree
of local order resulting from the tendency of the
atoms to have unlike neighbors. Although this
tendency is no longer strong enough to produce
long distance order throughout the entire crystal,
in opposition to the disruptive inHuence of
thermal agitation, it still prevents the occurrence
of a completely random state of affairs and
maintains a considerable number of unlike pairs
of neighbors. In order to overcome this effect
the crystal must be heated to yet higher tem-
peratures.

The development of detailed theories to ex-
plain and predict the various stages of the order-
disorder transformation constitutes the primary
object of the theoretical portion, Part I, of this
paper. Such theories have been developed by
numerous investigators, among the pioneers be-
ing Gorsky, 28s Bore1ius, Johansson and Linde, '~,
Kagner and Schottky"~ and Dehlinger and
Graf."" Later Borelius'~ extended the work
greatly and discussed in particular the question
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FIG. 4. Specific heat-vs. -temperature of a p-brass alloy,
containing 48.9 atomic percent Zn. The dashed line is cal-
culated frown the specific heats of Cu and Zn, assuniing a
pure mixture.

of temperature hysteresis. Bragg and Killiams34~

redeveloped the theory and extended and simpli-
fied it in many respects. More recent develop-
ments have been initiated primarily by the work
of Bethe." In the theoretical discussion given
here we have made no attempt at a historical
presentation, and the material has been arranged
as seemed best from the point of view of content
and ease of explanation. Other topics taken up
in this part have to do with the approach of a
disturbed system toward its equilibrium state of
order and with effects arising when the com-
position of the alloy is changed.

Energy considerations

Energy is required to produce disorder and
move the atoms into wrong positions in opposi-
tion to the ordering force. This excess energy
manifests itself as an "anomalous specific heat"—that is, a heat capacity in addition to what is
predicted on the basis of the Dulong-Petit law
for ordinary thermal motion. This energy and
specific heat are associated with the arrangement
or configuration of the atoms in the lattice and
are frequently referred to as "configurational
energy" and "configurational specific heat. "The
rate of disordering increases from zero to a
maximum value just below T,. This leads to a
similar behavior shown in Fig. 4 for the con-
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6gurationa) speci6c heat. "~ The contribution
above T, comes from the local order 0, 'which

continues to require energy for its decrease at
higher temperatures.

Energy measurements which give rise to such
curves as that of Fig. 4 furnish an important
tool for investigating superstructures. %here
x-rays do not yield an answer, the existence of
such specific heat curves is indirect evidence of a
superstructure (the question of confusion with
specific heat due to ferromagnetism can easily be
settled). We shall discuss such energy measure-
ments in Part II, Section 14.
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Other manifestations of order

There are other physical properties besides
those of a thermal nature which are profoundly
influenced by the state of order in an alloy.
These are of interest for two reasons: 6rst, they
furnish a class of indirect evidence, like that
given by the anomalous heat quantities, which is
useful in studying order-disorder transformations
and in predicting the presence of ordered
structures; and second, they suggest the de-
liberate utilization of the state of order to
obtain materials with new and desirable prop-
erties. One of the most striking of the indirect
manifestations of order is the behavior shown in
Fig. 5 of the specihc resistivity. '" We see that
superimposed upon the normal linear depend-
ence on temperature there is a rapidly increasing
rise terminated by a discontinuous jump at T, ;
the reader will at once appreciate its close
correspondence to the increase in long range
disorder with increasing temperature, Fig. 3.
Magnetic and mechanical properties are also
order-dependent.

A general summary of the influence which the
state of order has upon these and various other
properties occupies several sections of Part II.
A discussion is also given of how these variations
lead to the predictions of ordered structures in
cases not yet conclusively investigated by x-rays.

Cooyerational phenomena

The phenomena of order in alloys are included
in a general class known under the name of
"cooperational phenomena. " Physical systems

100 200 300 400
TEMPERATURE IN DEGREES GENTIGRADE

500

Fio. 5. Electrical resistivity-es. -temperature for CuIAu.
The alloy was in equilibrium at temperatures

above 35D'C.

exhibiting cooperational eEects contain certain
units which act jointly in producing a certain
cooperational property, the amount of this
property so produced being then a measure of
the degree of cooperation: in our case, the atoms
united in forming a superlattice. The process of
cooperation is in general of the foIIowing char-
acter: the ability of the units to join forces in
opposition to disruptive influences, like thermal
agitation, is greatly enhanced by any increase in
the existing degree of cooperation —so greatly
enhanced, in fact, that when the disruptive
influence is not too large, the units establish a
cooperational state.

The three best known coope rational phe-
nomena are ferromagnetism, the libration-rota-
tion transition in solids, and the order-disorder
transformation in alloys. Of these three, the
youngest and apparently best equipped with
a satisfactory statistical theory is the third.
The recent developments in it have, we believe,
furnished a new and enlightening viewpoint
which will aid in the understanding of the entire
field; and, in fact, the extension of some new
methods of the order-disorder theory to other
cooperational phenomena is now in progress. "~
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PART I. THEORIES OF - THE ORDER-DISORDER PHENOMENON

A. Equilibrium theories for simple unvaried corn
positions

In the following four sections we shall deal with
alloys having certain 6xed simple compositions.
Ke shall further suppose that for all states of
order —from perfect order to randomness —there
is no significant change in the arrangement of
the lattice sites; that is, the only effect which we
consider is one of arrangement of the atoms upon
an unalterable framework. Some of the theories
are suf6ciently general to apply to a w ide
variety of lattice types. For the others we shall
deal specifically with simple cubic, body-centered
cubic, and face-centered cubic arrangements of
lattice sites. For these cases all sites are in-
trinsically equivalent, and it will be only the
arrangement of the atoms in the lattice which
makes any one site appropriate for one species
of.atom rather than for another.

In some actual cases, there are slight dis-
tortions of the lattice, usually associated with
states of order; in others, there may actua11y be
produced upon ordering an entire rearrangement
of sites. Ke shall postpone a discussion of these
effects until Part II, and in accord with our
assumptions, we shall disregard their inRuence in

our theory. Ke shall also disregard those vexing
questions of terminology which arise for alloys,
where in a strict sense the absence of a repeated
unit cell makes the use of the word "lattice"
incorrect.

Ke shall be concerned entirely with binary
alloys (the two chemical elements shall be de-
noted by A and 8) and with only two composi-
tions of' these: one having equal numbers of A
and 8 atoms and described by the chemical
formula AB, the other having three 8 atoms for
each A atom and described by AB3. Later, when
we generalize our considerations, the composition
will be specified by the atomic percent of A, the
above cases corresponding to 50 and 2S, re-
spectively. For the present cases it is always
possible to choose a regular set of o.-sites—one
for each A atom —which form a lattice by
themselves. The remaining sites are P-sites and
are just su%cient to accommodate the 8 atoms.
Owing to the equivalence of all sites, it is always

possible to choose the e-sites in several equiva-
lent ways and it is immaterial which selection
is made.

The energy, speci6c heat, and other properties
of an alloy depend upon many factors besides
those associated with atomic con6gurations or
state of order. For example the energy of the
alloy will depend not only upon this arrangement
but also upon the state of thermal vibration.
In the theories, unless otherwise stated, it will

be assumed that the effects of changes of order
and the effects due to thermal vibrations can be
separated from each other and that this separa-
tion has been carried out. The energy, entropy,
and speci6c heats calculated below will be those
associated with the state of order. They are the
so-called "anomalous" or "configurational" parts.
The ordinary quantities, such as are associated
with the Dulong-Petit law, will not be con-
sidered.

1. The theory of Bragg and Wi1Hams34c "E "~

The basic concept of the theory of Bragg and
Williams is that of long range order. Our first
task will be to give this a quantitative definition.
We shall then see how it leads to a theory
predicting a critical temperature, sometimes with
and sometimes without a latent heat. The ab-
sence of short range order from this theory is a
defect, which will be remedied in the treatment
of Bethe's theory in the next section.

Let us now suppose that the n-sites have been
chosen, and the A atoms placed upon them.
The remaining P-sites are then occupied by 8
atoms. Let the total number of atoms, which is
also the total number of sites, be N. Throughout
this work we shall deal with one gram atom of
material; hence N= 6.06X10" and Nk =R
=1.986 cal. /'C g atom. Let F~ be the fraction
of atoms which are A atoms and also the
fraction of sites which are O.-sites; then i —F~ ——F~
is the corresponding quantity for B and P.

When the perfectly ordered arrangement is dis-
turbed, some of the A atoms will move to P-
sites, displacing an equal number of 8 atoms
which move to O.-sites. We describe such situa-
tions by stating the fraction of e-sites still
occupied by right atoms; let this fraction be r .
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KegFg =R'p FB. (1.2)

In the state of perfect order r and rp are unity
and m and mp are zero. In the state of random-
ness the probability that any given site is
occupied by an A atom is Fg, hence the fraction
of the a-sites occupied by A atoms is also F& and
in terms of our notation we find r =my = F~ and
m =rp ——F~. The Bragg-Williams order param-
eter, 5, is to be so defined that it is unity for
perfect order and zero for the random state.

Perfect
Order

I,

0

0
1

Random
State

F~
F~

0

The tabulation suggests several definitions for 5
in terms of the other parameters; as may be
verified from Eqs. (1.1) and (1.2), these are
equivalent, and we write

fp —Fg

Fg j —E~

Qfp= 1 ——.(1.3)

Order as a function of ordering energy and tern

peratnre 5(V, T)
We must next consider thermal equilibrium at

a certain fixed temperature, 1. First of all we
suppose that at the equilibrium condition there
is a definite ordering energy V which acts in such
a way that interchanging an A atom upon an
a-site with a 8 atom on a P-site, thus producing
two wrong atoms, raises the energy of the
crystal by V. This energy is assumed to be the
same for all pairs of sites in the lattice and does
not vary depending on Auctuations of local order.
This assumption is not in keeping with the
description of the order-disorder transformation

The fraction of e-sites wrongly occupied is
1—r =m . Similarly rp and mp represent the
correctly and incorrectly occupied P-sites. The
number of A atoills 011 'tile P-sites is wsFBN alld
is equal to the number of 8 atoms on n-sites,
m F~¹ From these considerations we can de-
duce the equations

1=Fg+Fe ——r~+w, =re+we, (1.1)

given in the introduction, which was, as we shall
see later, based on Bethe's theory of Section 2.

At the end of this section we shall give a
rigorous derivation of the equilibrium condition
using the free-energy principle of statistical
mechanics. Before doing this, however, we shall
follow the more simple procedure used first by
Bragg and Williams to obtain their result. We
need only consider the A atoms, since once their
positions are fixed, the distribution of the 8
atoms is automatically determined. Let us next
consider that all but one of the A atoms are
immobile and inquire into the probability that
this one is right or wrong. This atom will move
about the lattice by exchanging positions with
adjoining 8 atoms. It will spend a fraction f
of the time on a positions and fe on P-positions,
and it is our problem to find the ratio f /fe,
that is, the relative probability of this atom
being in a right position compared to its being
in a wrong position. Fortunately we can dis-
regard the dynamics of the process of inter-
change of positions and, knowing only that such
a process exists, find our answer in the Boltz-
mann statistics. There are w F~N available (i.e.,
not occupied by other A atoms) right positions
for this atom and rpF~N available wrong posi-
tions. These wrong positions are, however,
weighted unfavorably by the Boltzmann factor
exp (—V//kT) corresponding to the extra energy
V of having an A atom in wrong position.
Hence, for the A atom under consideration the
ratio of the probability of being right to the
probability of being wrong is

(w F~N)/[reFeN exp (—V/kT)]. (1.4)

Now if the alloy is in equilibrium, the behavior
of this A atom must be typical of all the A
atoms and the distribution of A atoms between
e- and P-sites must be given by the above pro-
portion. The numbers of A atoms in a- and in
P-sites are, respectively r F&N and weFsN;
hence the condition for statistical equilibrium is

r F„N/weFeN
=(w F~N/reFsN) exp (V/kT) (1.5)

or expressing our results in words

number of a-sites occupied by A atoms number of Q.-sites not occupied by A atoms V
exp . (1.6)

number of P-sites occupied by A atoms number of P-sites not occupied by A atoms kT
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S=S(V/kT) =5(X),
X= V/kT.

(1.9)

Bragg and Williams consider the behavior of S
specified by the above form for varying V while
T is held fixed. Under these circumstances they
refer to it as "5-of-V,

" i.e., S(V); this emphasizes
that the derivation was obtained by assuming a
certain fixed value of V and then finding the
equilibrium value of 5 from it. We shall deal
with the form as a function of X; however,
the physical picture is the same.

For the simple case denoted by AB (vis
F& F& ,'), Eq. ——(1.8)——m—ay easily be solved for
5, yielding

S=tanh (X/4). (1.11)

Dependence of ordering energy Upon order, V(S)
%'e have just determined how the ordering

energy V and the temperature T lead by Boltz-
mann statistics to a value S for the order.
However, this is only half of the story for the
ordering energy V is in itself determined directly
by the state of order in the alloy. Let us for the
moment postpone a further consideration of the
5(X) relationship and concentrate upon the way
in which V depends upon the state of order.

When the alloy is perfectly ordered, the
creation of a pair of wrong atoms requires a

These expressions are readily simplified to

r re/m me=exp (V/kT); (1.7)

and this may be expressed in terms of 5 as

{L1/Fs(1 —5)j—1I {L1/F~(1 —5)j—1I
=exp (V/kT). (1,8)

It may be readily verified that the quantities in
the braces are positive and that the value zero
for 5 corresponds to zero for V/kT —that is to
zero ordering energy or infinite temperature,
while unity for S corresponds to infinity for
V/kT. Intermediate values of V/kT will give
values of 5 between that for perfect order and
that for randomness.

It is of advantage to note that in Eq. (1.8)
5 appears as a function of a single variable
(V/kT). We express the explicit form of the
dependence to be obtained by solving (1.8) for
5 by the symbolism:

V= VpS. (1.12)

This description of the ordering energy is, as
Bragg and Williams point out, rather coarse
grained. Actually the ordering energy between
any pair of atoms depends on the arrangement of
their immediate neighbors and only indirectly on
the distribution of atoms upon the a- and P-sites
over the entire lattice. This defect is largely
removed in the theory of Bethe, discussed in
Section 2, in which the entire energy of the super-
lattice arises from the interaction of nearest
neighboring pairs of atoms.

The relationship V= VOS is denoted by U(5)
and called the "V-of-S relationship" by Bragg
and Williams; this serves to emphasize the ideas
involved in its origin —that it specifies how the
force tending to produce order in the lattice
depends upon the state of order already pre-
vailing there. One important respect in which

V(5) dilfers from 5(X) is its definiteness; no
matter what the temperature is or whether the
system is or is not in equilibrium, whenever
the order has value 5 the ordering energy has
value V= Vp5; on the other hand when the
system is not in equilibrium, then the other
interrelation 5(X) between 5, V, and T ceases
to hold.

certain definite amount of energy which we shall
denote by Vp. However, as the alloy becomes
disordered, the amount of energy required to
eHect such an interchange becomes less. This can
be seen most easily for the state of randomness.
For this there is no physical way of telling which
set of lattice sites are a and which are P; the
difference between them being a purely mathe-
matical one carried over by our memory of
the situation which existed while we still were
imagining a superlattice. For the case of random-
ness, then, there will be no energy involved in
the interchange of atoms between the physically
meaningless o.- and P-sites and U will be zero.
Hence V depends on the order in such a way as
to have its maximum value, Vp, for 5=1 and
its minimum, zero, for S=0. The simplest
assumption to make for the relationship between
V and S satisfying these conditions and the one
which we shall accept for the purpose of this
section is the one made by Bragg and Williams:
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Ep ———', NUpFgF g. (1.14)

Here Ep represents the entire energy of the order-
disorder transformation of one gram atom of
alloy. Throughout this section, no matter what
theory we are treating, we shall alw'ays mean by
E p the energy required to change the alloy from
the state of best order to that of randomness.
For the cases AB and ABo we find Zp NVo/8——
and 3N Vo/32, respectively; these values are
given in row one of Table I, p. 15.

Statistical equilibrium, case of AB
If the temperature is regarded as constant

with value 1&, there are now two equations for
the two unknowns U and 5. The simultaneous
solution of these equations leads to the condition
of equilibrium. For clarity we write them once
more in a slightly modified form

5=5(V/kTi) =5(X), (1.15)

V (kT) ( V) kT,
I=

Vo & Voi EkTi) Vp

We see now that the right sides of these equations
can be regarded as two functions of X(= V/k Ti).
The equilibrium condition corresponds to a value
of X for which they are equal, i.e. (kTi/Vo)X
=S(X), the corresponding values of V and S
then being the equilibrium values. In order to
solve these equations, Bragg and Williams plot

The Bragg-Williams assumption about the
ordering energy leads to a simple expression for
the energy of the alloy. In order to change the
alloy from order 5 to order 5+dS we must
move a certain number of A atoms from wrong
to right positions. This number is readily found
from the definition of order Eq.. (1.3) to be

FgNdr = FgNF~dS.

For each one of these moves the energy de-
creases by U= Up5; hence the change in energy
of the alloy is

dE = —VFgNF ggd5

= —N UpFgFg5d5.

This can be readily integrated and choosing the
state of perfect order as the zero of energy we find

E(5) = ', XVpFgFe(1-—5') =So(1—So), (1.13)

0,8

0.4

00 4
X~

Fco. 6. V{S) for several temperatures and S(X},AB case.

kT/Vo oi or using E—p—lq'Vp/8, ——

T.= Vo/4k = 2Zo/&, (1.27)

~This does not mean that the relationship V(S) has
changed but that the relationship beta'een V and X has.

the right sides as functions of X. The crossing
point of the two curves then specifies the desired
condition.

Figure 6 is such a plot, drawn for the AB case.
The S(X) curve shows that for large values of X,
i.e., high ordering energies or low temperatures 5
approaches unity —perfect order —while for small
V or high T, 5 approaches zero. The V(S)
relationship is, of course, represented by a
straight line through the origin with slope
(kTi/Vo) The intersection point Pi, gives the
equilibrium values of S and U for the tempera-
ture 1&. For higher temperatures, 12 say, the
slope of the V(S) line is steeper' and the 5(X)
curve is, of course, the same. The intersection
point moves to P2, with a lower degree of order.
As yet higher temperatures are attained, P
moves lower and lower on the S(X) curve until
finally, at To for example, the V(S) line no longer
intersects 5(X) except at the origin.

It is of interest to find the temperature at
which P just reaches the origin; this is the critical
temperature, and above it there is no long dis-
tance order. It occurs when the line 5= (k T/ Vp) X
is tangent to S(X) at the origin, hence when
(k T/ Vp), the slope of V(S), is equal to dS(X) /dX
at X=O. From Eq. (1.11) we easily find that for
X=o

dS/dX = ~o.

Hence we obtain
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Fro. 7. Illustrating the approach of the system towards
equilibrium.

where T, denotes the critical temperature. This
value will be found in the second row of Table I.

Nonegzulibrilm behavior

Under some circumstances the alloy will not
be in the equilibrium state; its state of order will

change with time. In a later section we shall
discuss this matter quantitatively and for the
present content ourselves with showing in which
direction the system will tend.

Suppose that the alloy is at the temperature T
which corresponds to the line V(S) on Fig. 7.
Since this line is the mathematical expression for
V= VOS, which —according to assumption —ls
always true, any possible state of the system is
represented by a point on this line. Suppose
initially the system has order S» indicated in the
lower part of the fj.gure. Then its state is repre-
sented by the point Q whose X coordinate is X~.
Now if the temperature and ordering energy were
given unalterable values which lead to the value
X» for, X, then thy equilibrium value of order
would be S~ ——S(Xq). Hence when the system is in
the state speci6ed by X», it will strive towards
the order Sg. For this case S2 is greater than S»,
hence the order of the system will increase with
time and the point Q will move toward I'. A
repetition of this argument shows that Q will
move upwards whenever Sg is above S» and
downwards when Sg is below S» ,'that is upwards
whenever S(X) is above V(S).

We see, therefore, that P is a point of stable
equilibrium. This cannot be said for the origin,
however; for a1though it represents a solution of
the equations, we see that any Ructuation from it
will lead to situations with S(X) greater than

V(S) which will then tend to higher values of S
until P is reached.

Statistical eglilibrium, case of AB3
Bragg and Williams have treated cases other

than those corresponding to alloys represented
by the formula A J3. The type AB3, which
corresponds to several physically interesting cases
such as Cu3Au, is of considerable interest and its
S vs. X plot is shown in Fig. 8. This figure is only
schematic for it has been necessary to exaggerate
greatly the reversal of curvature of the S(X)
curve in order to make it apparent on a plot of
this size. We see that there is an important
difference between this and the AB case because
it now is possible to have three simultaneous
solutions to the equations (1.15) and (1.16):

S=S(X),
S= (U/Uo) = (kT/ Vo)X.

The V(S) line which corresponds to temperature
12 gives three intersections; the origin, P', and
P. If we apply the nonequilibrium theory of the
preceding paragraphs to this situation, we see
that P' is unstable and that an initial state of
order giving point Q will tend to I' if it starts
above P' and to the origin if it starts below P'.

From this reasoning we should conclude that at
any temperature giving three intersections, there
would be two stable states of the alloy, one being
that of complete disorder. These two states,
which will have di6'erent degrees of order and
difI'erent energy contents, may be regarded as
different phases of the substance and the idea
that they can be in equilibrium over a common

0.6

0.2

Fro. 8. V(S}for several temperatures and S(X},883 case.



large temperature range can be shown to contra-
dict the Gibbs phase rule. By arguments based on
considerations of free energy given later in this
section, it can be shown that for temperatures
below a certain critical temperature T„I' has a
lower free energy than S=O and hence gives the
thermodynamical equilibrium state; above T„
S=O is the equilibrium state. The line corre-
sponding to T, is shown on the figure, for it the
loops A and A' have equal areas, and as will be
shown later, this condition implies the equality
of the two free energies. At the critical tempera-
ture the conditions are found to be

and

5=0.467

T.=O 205 Vo/0 = 2.18Eo/R. (1 18)

Details of the predictions of the theory
Order. —When the computational work neces-

sary to determine the dependence of order on
temperature is carried out, the curves marked
Bragg-Killiams of Figs. 9 to j.4 are obtained.
The other curves refer to theories described later.
In all cases the temperature scale is given in
reduced units: RT divided by the entire con-
figurational energy change from perfect order to
randomness. We see that the order of the AB
alloy decreases to zero at a certain critical
temperature, taking on all values between unity
and zero. For AB3, however, there is R jump at T,
and the order falls from 0.46tt directly to zero.
The reader will easily verify that these results
are entirely in harmony with the qualitative
predictions based on Figs. 6 and 8.

Eeergy. —The dependence of order upon
temperature can be inserted in Eq. (1.13),
E(S)=Ep(1 —S') and the energy-os. -temperature
curves in Figs. ii and 12 obtained.

For AB3, there is a discontinuity in order and
hence in energy at T.. This change in energy
manifests itself as a latent heat which must be
given to the alloy in order to transform it from
the state of order S=0.467 to the state of order
S=0 at the critical temperature. The value of the
latent heat Q, is easily calculated from the
relationship E(S):
Q=E(0) E(.467) =(0.4—67)oEo

=0.218Ep =0.0205K Vp ——0.100RT,. (1.19)

It is in the Bragg-Vhlliams theory, that as we
have just been saying, the whole of the energy of

transformation Ep is required to get the alloy to
the state of order 5=0 at a temperature just
above T,. This is not true in the theories de-
scribed later involving the notion of short
distance order: according to these only a part,
denoted by E(T,+), of Ep is required. We shall
denote by E(T. ) th—e energy required to get up
to the critical temperature without making the
transition. Hence E(T,+) E(T—, )=Q—repre-
sents the latent heat. These quantities are
given in Table I. The energy yet to be gained
through destruction of local order above T, is
(Eo —E(T.+))=E.(o).

It is of interest to compare the critical temper-
ature with the energy E(T,+) required to bring
the alloy to the state of zero long range order,
that is, to S=0. For this purpose RT./E(T, +) is
tabulated. AII theories give about the same
value —approximately 2—for this quantity.

Specific heat. The config—urational specific
heat is found by differentiating: C=dE/dT.
This quantity has the interesting property, as is
proved below, of being the same function of S or
RT/Eo for all values of Vp. As may be concluded
from dimensional arguments, or from the details
of the calculations given above, the equilibrium
value of S must be a function of RT/Ep y. ——
Combining this with Eq. (1.13) we find

&=(d/dT)EO(1 —S') = 2EoS(d/d )S(y)
= —2RS(d/dy) S(y). (1.20)

Thus neither Ep, Vp, nor T appear explicitly and
C depends only upon the analytical form of Sas a
function of RT/Eo.

The algebraic work involved in calculating
dS/dy is tedious and the reader is referred to
reference 38C for details. The results for AB and
AB3 are shown in Figs. 13 and 14.

Entropy. —With the increase of energy and
disorder as the temperature rises, there is as-
sociated an increase in entropy. This can be
calculated in two ways; by thermodynamics,
d4=dQ/T=dE/T; or by the Boltzmann rela-
tion, C =h In W' where W is the a priori proba-
bility. When we give the free energy treatment,
we show that these are equivalent. For our
present purposes it is much more convenient to
use BoItzmann's relation.

For a given value of S, other than unity, there
wi11 be a large number of ways of arranging the
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ALL QUANTITIES REFER TO BRAGG-
1 GRAM ATOM wILLIAMS

BETHE'S
iST

AB
SIMPLE CUBIC

Z=6

BETHE S
2ND KIRKWOOD

BETHE'S
iST KIRKWOOD

AB
BODY-CENTERED CUBIC

g~8
ABs

BRAGG-
WILLIAMS

ABg

FACE-
CENTERED

CUBIC
Z~f2

PEIERLS

Eo

RTc/Eo

E(Tc—)/Eo
Q/Eo
B(Tc+)/Eo
Zc(~)

2

1
0
1
0

1.644

0.800
0
0.800
0.200

1.581 1.577

0.754
0
0.754
0.246

0.789
0
0.789
0.211

+Vo /8 3m~ /2 3¹/2 3¹/2
1.738

0.857
0
0.857
0.143

1.707

0.854
0
0.854
0.146

2.19

0.792
0.218
1.00
0

0.18
0.36
0.54
0.46

2¹ 3N Vo/32 3¹/4

8Tc/E(Tc+)

C(Tc—)/R
C (Q)/R
4 (Tc+)/R
C,(o)/8
C(te) /R

C(Tc-)/R
C(Tc+)/R

0.693
0
0.693
0
0.693

1.50
0

0.633
0
0.633
0.0604
0.693

1.90
0.119

2.097

0.628
0
0.628
0.065
0.693

2.14
0.203

0.626
0
0.626
0.067
0.693

4.233
0.134

2.028

0.652
0
0.652
0.0411
0.693

1.78
0.081

0.650
0
0.650
0.043
0.693

2.207
0.0858

2.19

0.462
0.100
0.562
0
0.562

2.36
0

2.38

0.19
0.27
0.46
0.10
0.562

0.16

4=k ln W(S). (1.21)

To find the number of ways consider the F~N
atoms on the a-sites. Of these r FgN are A
atoms and m FAN are 8 atoms. The nuxnber of
distinct ways of arranging them, (considering
arrangements which differ only by permutations
of the A atoms among themselves and the 8
atoms among themselves as not distinct) is given
in a well-known way by the binomial coe%cient:

( FgN i FeEl
W.=

i

&r,F~X) (r,F~X)!(to F~X)!

A similar expression gives the number of ways of
arranging the atoms on the p-sites. The a priori
probability of the state 5 is given by

W(S) = W.X Wp (1.23)

and the application of Stirling's formula for the
factorials gives:

C (S) =k ln W(S) = kN[F~(r lnr-
+w ln to )+Fss(rp ln rp+top ln wp)]. (1.24)

atoms. Ke take the tt priori probability of the
state with order S to be proportional to W(S),
the number of ways. %e shall then obtain the
relationship:

This can be expressed in terms of 5 and becomes:

C (S)=k ln W(S) =
—R[F~[1 Fa(1—S)]ln [—1 —Fts(1 —S)]
+F~Fa(1—S) ln Fa(1 S)—
+Fp[1—Fg(1 —S)]ln [1—Fg(1 —S)]

+Fan(i —S) ln Fg(1 —S)]. (1.25)

The reader will recognize that each expression
of which the logarithm is taken is positive and
not greater than unity; hence each term in the
sum is negative and C is positive. A further
consideration will show that the limits for 5= 2

and 5=0 are

C(1) =0,
C(0) = R[F~ ln Fq+Fss ln—Fa]. (1.26)

This gives for the entropy changes from order to
disorder the values

AB 64=R ln 2=0.693'
=1.37 cal./'C g atom, (1.27)

ABs AC =Rate[4 ln 4 —3 ln 3]=0.562R
= 1.11 cal./'C g atom. (1.28)

These two values must be obtained for any
theory which assumes that at the lowest tempera-
ture the arrangement is perfect and that at the
highest temperature the arrangement is random.
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fdS

where W'(5) has been calculated above, Eq.
(1.25), and E(5) is given by Eq. (1.13):

E(S)= ,'EV—,FgFs(1 —5'). (1.31)

0
0

Fio. 15. Comparing the free energy method with the V(5)
and S(X) method.

They are not restricted merely to application
with the Bragg-Williams approximation.

We can also calculate the entropy just below

the critical temperature; putting S=0.467 in

Eq. (1.25) we obtain C(0.467) =0.462R. In this
case we can calculate the entropy easily in

another way. The entropy above the critical
temperature where S=0, has already been
calculated and is 0.562R. Also the latent heat is
0.100RT. so that the change in entropy at T, is
0.100R. Hence the entropy just below T, is

0.562R —0.100R= 0.462R. (1.29)

The fact that the Bragg-Williams treatment
gives this thermodynamic consistency is a conse-

quence of the theorem proved in the following

paragraphs: that the Bragg-Williams method is
equivalent to a statistical mechanical free energy
treatment; and it is known that such treatments
are always thermodynamically consistent and in

fact can be made to yield demonstrations of the
basic thermodynamic principles.

Derivation of tke Bragg Williams -equations from
tke free energy principle

We shall now utilize the expression for entropy
obtained in the last section in order to derive
afresh and more rigorously the principles of the
Bragg-Williams theory. This treatment follows
that given by %'illiams"~ and by Fowler. "~

The statistical mechanical weight of a given
state of a system is equal to the product of the
a priori probability times the Boltzmann factor.
Thus the weight of the state of order S is

&(5)= W(S) exp (—E(5)/kT) (1 3o)

The equilibrium state at a given temperature is
that with the largest value of y(5). In order to
determine this state we shall maximize not y(5),
but instead the equivalent quantity ln y(5), in
respect to S. The expression for ln y(5) is

ln y(5) =ln W(S) E(5—)/kT. (1.32)

Although we shall deal with ln y(5) in the form
just given, we shall write it once more in an
interesting variation:

kT ln —y(5) =E(S)—Tk ln W(S)
=E(5) —TC (S)
= F(S). (1.33)

As the above sequence of equalities shows,
ln y(5) is simply related to the free energy F.
Thus our argument presents a somewhat simpli-
fied proof that the thermodynamic equilibrium
requirement of minimum free energy is a
consequence of the statistical mechanical demand
for maximum probability. '

We shall now maximize ln y(5) in respect to S.
The expressions appearing on the right of
equation (1.32) are known functions of Sgiven in
Eqs. (1.25) and (1.13). Carrying out the process
gives:

d ln y(5) d ln W(5) 1 d ln E(5)

dS dS kT dS
1

=XFgFs —In
I(F,(a-s)

1 q- 1—In] —1
~ + XVgFgFsS

KFs(i —5) ) kT
1

=XF~Fs —In
~

I Fg(i —S) ]
V,S-

—lnj —1 )+
E Fs(1—5) ) kT

(1.34)

The factor NF&F& may well be removed to the
other side and we write

' Since a rigorous discussion of thermodynamic analogs
has no place in this review, we shall be content with this
rough demonstration. For a comprehensive treatment of
such questions, the reader should consult 36J.
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L,($) = ln y($)/XFgFs,
Xi($) = (Vp/kT)$,

(1.35)

(1.36)

Xp($) =ln —1 —1 . (1.37)
Fz(1—5) Fs(1—5)

we see that U($) which is

V= VOS=kTX
is the same as

X=Xi($)= (Vp/kT)5

The old equation, (1.8), from which the relation
$(X) was derived read

1 q I
1

-1/i
(Fg(1 —5) ) &Fs(1—5) )

The condition of equilibrium is then equivalent
to making L a maximum

dI /dS =X,(5) —X,($) =0. (1.38)

In order to solve this equation we plot Xi(S)
and Xp($) as functions of S. The results for the
case of AB3 are shown in Fig. 15. For reasons
which will soon be apparent we plot Sas ordinate
and Xi and X2 as abscissae. We see then that the
curves appear to be the same as those we drew in
Fig. 8 in connection with $(X) and V(S). We
shall postpone a proof of this identity for a few
lines and instead study this figure in its new
aspect.

For any given value of 5, say 5i, dl/dS is
equal to the horizontal diRerence between the
two curves (Xi—Xp). When this is positive a
larger probability will be found by increasing S;
and the change in L in going from S2 to S3, for
example, will be represented by the area between
the curves indicated by shading. A simple
continuation of this argument shows that I"
always gives a smaller value of L and hence of
ln y($) than 5=0 or P and that 5=0 and P have
the same value for In y($) only when T is so
chosen that the areas in the two loops between
X~ and Xm are equal. When T is less than this
critical temperature I' is more probable and
when it is greater S=o is more probable.

We must next verify that these curves are
really the same as those known as S(X) and
V(S). Recalling the previous definition, Eq.
(1.10), of X:

The logarithm of this equation dearly gives the
relationship between 5 and X implied by Xp($).

Thus we see that the equal area statement
about the V($) and S(X) curves is equivalent to
requiring that ln y($) be a maximum or that the
free energy be a minimum.

Lattice Type
Simple cubic
Body-centered cubic
Face-centered cubic
Hexagonal close packed
Two dimensional square net

6
8

12
12
4

2. The Theory of Bethe35~

Iniroducti on
A weakness of the Bragg-Williams attack is

its rather macroscopic character. The ordering
energy acting upon any particular atom is
assumed to depend upon the distribution of @11

the other atoms in the crystal and not, as one
would intuitively feel, upon only its immediate
surroundings. It wouM be expected that more
adequate theories would be developed by con-
sidering the atoms in detail and inquiring into
the forces acting between them. Considerable
progress in this direction has been made by
Bethe, "~ whose work has since been extended by
Peierls" and others. Bethe assumed that the
atoms interact in pairs, so that every two atoms
have a mutual potential energy, which, however,
falls oH rapidly with increasing separation of the
atoms. He assumed this falling oB to be so rapid
that potential energies are appreciable only for
those pairs of atoms which are nearest neighbors
in the lattice. (Bethe's theory can be generalized

by considering interactions between next nearest
neighbors as well. This possibility has been
investigated by Chang. P~)

The alloys which we consider in this section
have simple lattices for which it is easy to
recognize the nearest neighbors of each atom.
(We shall here neglect the effects of slight
distortions of the lattice which occasionally
transform some nearest neighboring positions
into next nearest neighboring positions. ) The
number of nearest neighbors of each atom in the
lattice depends upon the type of lattice. We
denote this number by s. The following tabulation
shows its dependence on lattice type.
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Tk8 assQB$Pf101 as 10 8s8rgy
Thus each atom is surrounded by s nearest

neighbors and hence has s non-negligible po-
tential energies. Since each of these is shared
between a pair of atoms, there will be in all s/2
potential energies per atom. The value of .each
potential energy will be determined by the nature
of the atoms constituting the pair to which it
belongs. If the atoms are both A atoms the
potential energy wi11 be denoted by viz ', if both
are 8, v~~', if one is A and one j8, v~~. In this
work it will be assumed that these energy values
are characteristic constants of the two metals;
arid no variations in their magnitudes, due to
change in order, composition, or state of strain,
will be admitted. This assumption (which differs
from Bethe's only in regard to the explicit
statement of its assumed range of application),
will be referred to as the "nearest neighbor
assumption. "

In terms of the nearest neighbor assumption a
formally simple expression for the energy of the
alloy can be obtained. Let the number of pairs
(henceforth we shall refer to a pair of nearest
neighboring atoms merely as a pair) which are
AA, BB, and AB be denoted by Qgg, Qvv, and

Qz&, respectively. Then associating with each
pair its potential energy and summing these for
all pairs in the lattice, we obtain for the total
energy:

g =vggQAA +vssQVV+vgsQgB. (2.1)

It would now appear that Bethe's theory has
the advantage of having three adjustable
parameters, v~~, v~g, and v~~ whereas the Bragg-
%111iams theory had only one, Vo. This ap-
pearance, however, as will be shown below is only
delusive and actually no one of Bethe's parame-
ters is important by itself but only a certain linear
combination denoted by u

v = 2 (vwx+vsv) —vzs (2.2)

The reason for the importance of v is that the
interchange of any two atoms in the crystal
alw'ays changes the energy in units of v. For
example, consider the interchange of an A atom
and a 8 atom which are not nearest neighbors in
the lattice. ' Let e of the neighbors of the first
atom be A atoms and (8—a) be B atoms, and let

3 As the reader may verify, this restriction is not essential
to the obtaining of the I'es'tilt,

2VQgg+ coils't.
E=- 2VQvv+const.

—vQ~s+ const.
(2.7)

In these the values of "const." are diferent but
need not concern us here, since they do not
contribute to changes in configurational energy.

%'e see now that if e is positive, lower energies
are obtained by creating unlike pairs of atoms at
the expense of like pairs. This is in accord with
the observed fact that in ordered structures like
atoms tend to keep apart. A negative value of v

will lead to like atoms keeping together and will

result in segregation into pure metals at low

temperatures. We shall return to this case very
brieAy in Section 8.

A practical feature of the forms should be
pointed out. In carrying out calculations it is
sometimes much easier to count the AA pairs
than the AB pairs. We see that we need count
only the AA pairs if we use the first of the three
forms of E, or only the AB pairs if we use the
third. This result can be seen in another way:
since v only is important, the results obtained for
v~~, v~g, and v~~ will also be obtained if we make
egg =vg~ ——0 and egg ——2e. In the case thus
obtained the interaction exists only between AA
pairs and the other types can be disregarded. A
similar process can be used to eliminate other
sets of pairs.

the B atom have a' A neighbors and (8 —a') B
neighbors. The total energy associated with
these two atoms is

avgas+ (S—a+a )V~V+ (S—a )Vss. (2.3)

If the two atoms are interchanged, the new

energy will be

a Vgg+(8 —a +a)Vgs+(8 —a)vsv (2.4)

and the change in energy is seen to be

(a' a)V~~—+ (a' a)Vss—
—2(a' —a)vgs ——2(a' —a)v. (2.5)

This is a particular example of a general result
given in Appendix 1. It is there shown that for
an alloy of given fixed composition,

Qgv =collst. 2Q+g —const. ' —2Qvv. (2.6)

Utilizing these equations, we see that E can be
expressed by any of the three forms



Q = (s/2) N. (2.8)

Then the fraction of pairs which are unlike is

q= Q»/Q. (2.9)

The shorE range order r
In order to discuss the consequences of his

theory, Bethe introduces a new order parameter
r. This parameter is de6ned like that of Bragg
and VA'lliams insofar as it is unity for perfect
order and zero for randomness. It is diferent,
however, in not being connected with the n- and
P-sites but with the behavior of the nearest
neighbors. Let Q be the total number of pairs in
the lattice. In terms of N and s it is

ABABAB
BABABA
ABABAB
BABABA
ABABAB
BABABA

{a)
S=i
o=i

AB BABA
BA ABAB
ABAB BA
BABA AB
ABA ABA
BAB BAB

{b)
S=O
0 =O.T

the positions occupied by A atoms as Q.-sites and
those by the 8 atoms as P-sites.

q —q(rand. )

q(max. ) —q(rand. )
(2.10)

In the state of perfect order q has a maxi-
mum value q(max. ) (which is unity for some
simple eases) and for randomness a smaller value
q(rand. ). Bethe's parameter o is defined by

ABBBAA
BAAABB
ABABAB
BBBBAA
AAABAB
BABABA

{c)
S=0.555
o =0.333

{S'=0.309)

so that the limits unity and zero are properly
attained for order and randomness.

The parameter 0 indicates how on the average
each atom is surrounded by its neighbors; that is,
it is a measure of the average order immediately
about each atom. For this reason it is termed the
"short range order" or "local order, " in contrast
to the long range order 5 which gives the order
upon the a- and P-sites over the entire lattice.

limitations imposed on the present application
For our discussion of Bethe's theory we shall,

as he did in his original paper, limit ourselves to
alloys of the AB type. For these it will be further
supposed that all the nearest neighbors of a
given a-site are P-sites and that all nearest
neighbors of a P-site are a-sites. This is true for
the simple cubic lattice, the body-centered cubic
lattice, and the two-dimensional square net. The
ordered structure of the simple cubic lattice is
exempli6ed by the sodium chloride structure in
which the cx-sites form a face-centered lattice
occupied by the ions of one sign and the P-sites
are occupied by the iowa of the other sign. The
caesium chloride structure is a corresponding
example for the body-centered lattice. The
ordered structure of the two-dimensional square
net is indicated in Fig. 16(a), and we may regard

Eo ——4'¹v (2.14)

and the energy of intermediate states is given in
terms of r by

Z=ZO(1 —0). (2.15)

Fro. 16. Illustrating several degrees of long and short
range order.

For these simple cases the limiting values
q(max. ) and q(rand. ) are easily found. For
perfect order all pairs are of type AB and
q(max. ) =1. For randomness the probability is
one-half that any particular neighbor of a given
atom is unlike the given atom; hence one-half the
pairs are of AB type and q(rand. ) =2. Thus we
6nd

(2.11)

According to the third form for the energy
equation, the energies of the best ordered and
random states are:
Best ordered

—vQ~s(max. ) = —oQ1 = —$¹o. (2.12)

Random

—oQ&s(rand. ) = —oQq(rand. ) = ,'Eso. (2.13)——
Hence the energy of transformation, which is
denoted by the same symbol here as in the Bragg-
%'illiams theory, is
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In comparing various theories with each other,
we shall assign to each the same value for Eo.
Equating values of Eo for the Bragg-Williams
and Bethe theories we find

~o=2m. (2.16)

This equation has a physically satisfying signifi-
cance. Consider the state of nearly perfect order
in which only two atoms are wrong. Although
such a state must come into being by interchange
of nearest neighbors, it is actually much more
probable that the two wrbng atoms are not
nearest neighbors: there are only —,'¹ ways of
having two wrong atoms which are nearest
neighbors but there are +4¹ ways of having two
wrong atoms. Hence the "first excited state" of
the alloy corresponds to two wrong atoms in
diferent parts of the lattice. By definition its
energy is V0 in the Bragg-Williams theory; in the
Bethe theory each atom reduces the number of
unlike pairs by s, hence the energy is 2', which
is the same if the two theories have the same Eo.
We see, therefore, that equating the over-all
change in energy for the two theories makes them
agree near the state of perfect order. We shall see
later that, as follows from these ideas, the theo-
ries do converge in the low temperature range.

The relotionship betweert 5 ued o

In Fig. 16(a) the order is perfect and there are
as many AB pairs as possible. Hence both S and
0 are unity. It will readily be appreciated that
for this lattice these two conditions are equiva-
lent: perfection of either long or short range order
implies perfection of the other. In Fig. 16(h),
however, we see that half the atoms are right
and half are wrong in respect of long range order
and hence that S=O. This represents a situation
which is discussed in more detail in Part II. It
can be described by saying that the crystal
consists of two domains which are out of step with
each other. In each the order is perfect; however,
for the crystal as a whole S=O. The situation is
somewhat difkrent for 0-, in the case indicated
0 =0.7. The defect in 0. arises, obviously, from the
interface or "change-step" boundary between the
out-of-step domains. The larger the domains, the
smaller is the relative importance of the interface
and the nearer 0 approaches unity although S
remains zero.
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Fio. 17. Selection of a group of sites for Bethe's indirect
method.

In the Bragg-Williams theory, low energy
corresponds to a high degree of long range order
and hence at low temperatures the stable state is
one with long range order. In Bethe's theory, the
connection between energy and long range order
is not so close, in fact we have just exhibited the
possibility of achieving nearly the minimum

energy, i.e., 0 =1, while having no long distance
order. These considerations raise the question:
will Bethe's assumptions, after the mathematical
deductions from them shall have been completed,
ever predict a state with long range order?
This difficulty he resolves by a consideration of
the probability of occurrence of a change-step
boundary. The probability of having a boundary
as compared to not having any is given by the
number of ways of putting in such a boundary
times the Boltzmann factor associated with the
extra energy owing to its presence. When the
magnitude of this probability is estimated, two
conclusions can be drawn: the probability of a
change-step boundary is negligible at low tem-
peratures; it becomes large at a certain critical
temperature which is independent of the size of
the crystal provided only that the number of
atoms is large. This type of calculation consti-
tutes a sort of existence proof of a critical
temperature for Bethe's theory. However, in
order to evaluate the critical temperature, one
must go over to the indirect method of Bethe.
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In general, 8 and cr will be less closely related
than in Fig. 16(a) and more closely related than
in 16(b). Fig. 16(c) indicates such a case. If the
Bragg-%'illiams and Bethe theories agreed, we
should be able to derive the energy of the former
expression, Eq. (1.23), from that of latter, Eq.
(2.15), and write

Z=BO(2 —n) =Ep(2 —S') or a =S'.
Actually we shall find that o &S' (above T, for
example o )O=S) except for T=O with S=o =1
and 1= 00 with 5=0=0. Thus less energy is
required to attain a state of given long distance
order, speciFied by 5, in the Bethe than in the
Bragg-Williams theory.

Bethe's indirect method of solution
Next the ideas of energy of nearest neighbors,

short range order and long range order must be
combined to give an equilibrium theory. In order
to do this, we arbitrarily select a group of sites, as
indicated in Fig. 3.7 for detailed consideration.
Ke further distinguish between two parts of the
group: an interior, which may consist of one site
or of several, and a boundary. The selection is so
made that the nearest neighbors of interior sites
which are not themselves of the interior consti-
tute the boundary. All the remaining sites of the
lattice constitute the exterior. Bethe has carried
out his calculations for groups of two sizes. In the
smaller group, Fig. 18(a), dealt with in his first

{a) {b)

FIG. 18. Bethe's two approximations: (a) first; {b) second.

approximation, the interior consists of one Q.-site,
and the boundary consists of the s neighboring
P-sites. In the larger, Fig. 18(b), dealt with in his

second approximation, the interior consists of the
whole smaller group, and the boundary of the
neighboring n-sites.

The particular group of sites selected for
consideration is in no way physically diferent
from any other similar group in the lattice.
Hence conclusions drawn from a consideration of
it can be applied to sites of other groups as well.
Furthermore, according to the limitations of the

present application, there is physical symmetry
between the A and 8 atoms and between the
a- and r9-sites. Consequently if any statement
regarding the distribution of A atoms upon
a-sites is true, then a similar statement regarding
B atoms on P-sites must also be true. However, in

the groups considered by Bethe, an a-site has
been given the special distinction of being at the
center of the group. For this reason consideration
of the arbitrarily selected group, unless tempered
by a proper realization of the arbitrariness, can
lead to conclusions which are inconsistent with
the physical symmetry between a- and P-sites.
As we shall see below, from the requirement that
such inconsistency does not arise, we obtain the
basic equation of Bethe's solution.

Now if atoms are allocated in some deFinite

way to the boundary sites, it is possible to
calculate the probability of any given arrange-
ment in the interior. This is a consequence of the
fact that since all the nearest neighbors of the
interior atoms (or atom for the first approxi-
mation) are known, the energy can be found and
the Boltzmann factor calculated. Since the
number of available atoms in the entire crystal is
very large, the a priori probability of any given
atom being an A atom or a 8 atom is —,', irre-
spective of how many other A or 8 atoms have
already been chosen. Thus the probabilities are
entirely determined by the Boltzmann factor
discussed above. However, we do not know what
arrangement to assume for the boundary atoms.

Let us suppose that there is a state of long
distance order in the exterior. This will acct
what happens upon the boundary by tending to
make A atoms go to a-positions and 8 atoms to
P-positions. We shall represent this tendency by
an ordering energy "I," the magnitude of which
we shall determine later, such that the energy of a
wrong atom in the boundary is greater by u than
that of a right atom because of the inHuence of
the exterior. Ke can now carry out calculations
of the probability of various situations for both
the boundary and the interior because now all of
the energy terms can be included. The results of
such calculations will be expressed as functions of
three variables: two of these, v and 1, are
regarded as known and the third, u, as unknown.

It would appear at 6rst that many values of u
could be assumed and that there would be no
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way of te11ing which was right. Nevertheless we
shall see that unlesa a particular value of I is
chosen, the assumptions prove to be inconsistent.
This particular value of u is then the one which
must correspond to the equilibrium degree of
long range order in the exterior; and in terms of
it we can calculate all pertinent information
about the equilibrium state.

In order to 6nd the correct value of u we

proceed by noting that the center site of the
group is an e-site and has as its nearest neighbors
z P-sites. In this treatment we supposed that
there were in the crystal as a whole equal
numbers of A and 8 atoms and equal numbers of
a- and P-sites. Thus any satisfactory theory
should treat the a- and P-sites in a symmetrical
way and we should 6nd that the probability,
denoted by r, of having a right atom on the
O.-site in the center would be eqaal to the
probability, denoted by rp, of having a right
atom on one of the neighboring P-sites. Now in
terms of the known quantities v and T and the
unknown u we can calculate r (v, T, u) and
rs(v, T, u). The equation

r, (v, T, u) =rs(v, T, a) (2.17)

becomes a means of determining u as a function
of the other two variables.

Thus starting with definite values of v and T,
we can use Eq. (2.17) to determine u. For Bethe's
6rst approximation, each boundary atom has one
neighbor in the interior and (z —1) in the exterior.
The theory shows that at low temperatures, the
value of I is (z —1)v, corresponding to tlie
influence of (z —1) right neighbors in the exterior.
As the temperature rises, u decreases 6nally
vanishing at a certain critical temperature.
Similar results follow from the second ap-
proximation.

In terms of e and T and the now known value
of u, the probability of any situation in the
interior and the boundary becomes perfectly
definite. Because of this, we can determine the
long range order over the entire lattice; let us
denote by r the common value of the two expres-
sions r (v, T, u) and rs(v, T', I) Then r is t.he
probability that the center site or any of its
nearest neighboring sites be rightly occupied.
Since, as w e know, the group under consideration
is typical of the entire lattice, the probability that

any site whatever is correctly occupied is r. Hence
from the de6nition of long-distance order, Eq.
(1.3), we find 5=2(r —$). We can also calculate
the probability that any particular pair consists
of unlike atoms; this probability is g by definition
(2.9), and in terms of it and Eqs. (2.11)
and (2.15) we can calculate o =2(g ——,') and
Z=E0(1—o). These quantities, like 5, apply to
the entire lattice.

The results of Bethe's two approximations
difI'er only slightly. The second approximation is
regarded as the more accurate because for it the
boundary is farther away from the central
atoms. Hence any errors introduced by the
rather simplified assumption regarding the inAu-

ence of the exterior will have a diminished eHect
upon the central atoms, to which we apply Eq.
(2.17), because of the exact treatment of the
intermediate atoms. The rather small difkrence
between the 6rst and second approximation,
shown in the results, makes one believe that the
effect of such errors is small and that both
approximations are quite accurate.

Results of Bethe's theory for the AB al1oy

By means of the method described above,
Bethe has calculated the dependence upon
temperature of 5 and 0. for the 6rst and second
approximations in the simple cubic lattice. The
results are shown in Figs. 9, 22, and 23 and
Table I. Some of the details of the first order
approximation are given in Appendix 2.

Bethe's theory predicts for the AB case, as
does that of Bragg and Williams, that 5 vanishes
at a certain critical temperature T, without,
however, suHering any discontinuous change.
For this reason there is no latent heat of transfor-
mation at T,. In Bethe's theory the critical
temperature is represented by the vanishing-of I
which implies that the exterior is no longer
capable of differentiating the A from the 8
atoms. Hence there is equal likelihood of finding
either type of atom on the boundary and S=O.
However, owing to the interaction between
atoms of the group, each atom is even then more
likely to have an unlike atom than a like atom as
its neighbor; and although 5vanishes, 0 does not.
Hence only a certain part of the energy E0 is
required to get the alloy to T„'since there is no
latent heat in this case, the energies just above
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and just below T, are equal and the energy in
question is represented by E(T.—) =E(T,+).
This quantity bears nearly the same relationship
to the critical temperature as in the Bragg-
Killiams theory, as may be seen from the row

RT,/E(T, +) in Table I.
Additional energy is required to heat the alloy

above 1, and destroy the short range order.
This gives rise to the anomalous specihc heat
above the critical temperature. In this respect,
Bethe's theory is a considerable improvement
over that of Bragg and %'illiams in which there is
no anomalous specihc heat above the critical tem-
perature; as we shall see in Part II, Section 14,
experiment shows an appreciable anomalous
specific heat above T,. Just below the critical
temperature the specihc heat has a peak, as was
the case in the Bragg-Williams theory, owing to
the rapidity of the disappearance of long distance
order. Just above the critical temperature its
value is much smaller, corresponding to the
steady decrease in short range order above T,.
The limiting values just below and above the
discontinuity are shown in Table I.

aC= l CdT/T. (2.19)

His calculations based, on the results of his
second approximation give the value

64 =0.698R (Bethe). (2.20)

This good agreement, together with the small
difference between the 6rst and second approxi-
mations, tend to make one believe that the final
approximation is rather good.

It would also be of interest to know the change
in entropy from perfect order to the critical
temperature. Unfortunately Bethe does not give
this. However, an estimate can be made from his
data for the change in entropy between the
critical temperature and the random state. Com-
bining this with the correct value for the entropy
of the random state, we have computed the
entropies in Table I.

AC =R In 2 =0.693R (correct). (2.18)

For Bethe's theory this is found by integrating
the speci6c heat.

Erttropy chartges

So far, we have presented no justi6cation, save
its intrinsic reasonableness, for Bethe's method of
approximation. The V(5} and S(X) procedure of
Bragg and Williams has been shown to give the
mathematically exact solution corresponding to
the physical assumptions; this followed from the
free energy treatment at the end of Section i.
Bethe's method of approximation does not
appear to possess any such simple free energy
analog and we must adopt diferent means for
testing its exactness as a mathematical solution
of the problem de6ned by the nearest neighbor
assumption. Since there is no free energy analog
for Bethe's method, the results are not consistent
with thermodynamics. Hence a satisfactory nu-
merical agreement of Bethe's theory with
thermodynamic predictions, instead of being
merely an identity as for the Bragg-Wilhams
theory, is more or less a measure of the absolute
accuracy of his method of approximation.

The thermodynamic test of Bethe's theory is
made by computing the entropy change from
perfect order to randomness. As was pointed out
in Section 1 this value should be given by Eq. (1.27)

Peierls' applicatiort of Bethe's theory to the case
of ABss'a

Peierls has applied the nearest neighbor as-
sumption to alloys having unequal numbers of A
and 8 atoms. His results are designed to apply to
Cu8Au. There are two features which greatly
increase the computational difhculties of his
work as compared to that of Bethe. In the 6rst
place there are three times as many 8 atoms as A
atoms and consequently the symmetry between
a- and P-sites postulated in Bethe's theory is
destroyed. Also the face-centered lattice of the
Cu-Au system does not have the simplifying
feature of the simple cubic or body-centered
cubic lattices. For them the nearest neighbors of
any atom were never nearest neighbors of each
other; for the face-centered lattice, however, each
nearest neighbor of a given atom has among its
nearest neighbors four which are also nearest
neighbors of the given atom.

These difticulties are of an entirely mathe-
matical character. It is necessary to introduce
more than one new energy "I"and consistency
relationships more complicated than r =rp are
needed. Physically the assumptions and process
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of solution are the same as for the case discussed
by Bethe. For the details of Peierls' work the
reader is referred to references 36G and 37G. The
results w'ill be given below.

Like Bragg and%'illiams, Peierls finds that for
the case AB3 there is an abrupt change in state of
order at a certain critical temperature and with
it there is associated a latent heat. Like Bethe, he
finds that the state above the critical temperature
is not truly random and that a relatively high
degree of local order prevails. The decrease with
increasing temperature of this local order gives
rise to an anomalous specific heat above the
critical temperature.

The dependence of long range order and energy
upon temperature for Peierls' theory are shown
in Figs. 10 and 12. It will be noted that there are
two vertical dotted lines in these figures. Peierls'
calculations are not sufficient to enable him to
give the critical temperature precisely; however,
he computes that it must lie between the two
dotted lines. The same computational obstacles
have prevented him from giving curves of specific
heat. A rough estimate from his data gave the
values in Table I.

It would also be of interest to have an entropy
calculation from Peierls' theory in order to check
its accuracy as was done with the Bethe theory.
Owing to the computational difhculties involved,
this has not been done. Ke have estimated
from Peierls' tables the entropy change from
T.(RT./Eo ——1.33 was arbitrarily chosen for this
purpose) to T= ~ due to decreasing short range
order. The entropy change at the eritieal temper-
ature can also be estimated. These can then be
combined with the theoretical value for the
entropy of the random state to give the values in
Table I.

3. The energy versus entropy representatton'

Let us now' analyze afresh the order-disorder
problem with a view to finding what really
constitutes a solution. In the results given in the
previous section, variations of energy, specific
heat and state of order, have been given.
How'ever, none of these quantities appear to be
particularly fundamental by themselves and we

' The writers are indebted to Dr. F. Seitz for suggesting
the energy es. entropy type of plot as a convenient means
of expression.

are interested in something which is as nearly
self sufticient as possible.

A good answer, and the one which we shall
use, is suggested by the relative probability in
statistical mechanics; namely the product of the
a priori probability times the Boltzma, nn factor
which was before discussed in connection with
the free energy treatment at the end of Section 1.
For our case the a priori probability is given by
the number of ways of arranging the atoms.
Let us disregard the value of the long distance
order parameter, S, for the moment and con-
centrate upon the energy. According to Bethe's
assumptions, which we shall take as the basis
of this section, the energy changes in steps of v.

The lowest energy, corresponding to perfect
order can be chosen as zero and then all other
possible energies will be multiples of v. For each
possible energy, E, there will be a certain number
of ways, W(E), of arranging the system so that
it will have this energy E.The relative probability
of finding the system with this energy is y(E)
where we have

r=x &(E) (3.2)

and in terms of it calculate by known means' all
the equilibrium properties of the system.

Thus a knowledge of the functional dependence
of W(E) upon E is equivalent to a solution of the
problem. Let us therefore assume divers forms
for W(E) and see how they lead to various types
of temperature dependence for the system. In
doing this it is most convenient to deal with the
entropy 4 (E) related to W(E) by the Boltzmann
equation:

4(E) =k In W(E). (3.3)

Utilization of this expression in the equation for
y gives

y(E) =exp (ln (W(E) E/kT))—
=exp }[TC(E) Ej//kT} =exp( —F/k—T), (3.4)
' See for example R. H. Fowler, 36J.

y(E) = W(E) exp ( E/kT)—
=exp (ln W(E) E/kT). (—3.1)

If W(E) were a known function of E, it would be
possible to maximize y(E) and thus find the most
probable, or equilibrium, state for each tempera-
ture. Or alternatively we could compute the
partition function
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thus showing that maximum probability corre-
sponds to a minimum of the free energy

slope T. At it we have

dBjdC = T. (3 &)

(3.5)

Graphical presentation
On Fig. 19, curve C represents the type of

behavior to be expected for the configurational
energy and entropy of an alloy. The lowest
energy corresponds to a high degree of order and
hence to only a few arrangements and a small

entropy. For higher energies there are more ways
of arranging the atoms and the entropy increases.
The maximum entropy corresponds to the energy
of the random state which energy can be achieved
in more ways than any other. However, we can
produce arrangements having energies greater
than Eo by arbitrarily clustering like atoms
together. The limit of this process is reached
when all the A atoms are clustered together
forming a crystal of pure A leaving the 8 atoms
as pure B.This arrangement can be obtained in
only a few ways and has a low entropy. This
explains the turning back of the curves above Eo.

The slope of the curve at any point is

dE cal. =—'K.
dC cal./'K dC

(3.6)

It is seen to have the dimensions of temperature,
and we shall use this fact to analyze the equi-
librium conditions.

Each point on the curve corresponds to a pair
of values of E and 4 which represent some state
of the system. To discover which point corre-
sponds to equilibrium at any temperature T, we
proceed as follows. Draw a line having slope
equal to T, and traversing the curve at any
point I" for which E and C have the values E'
and 4', respectively. It is readily seen that the
intercept of this line upon the E axis is equal to
(8' —TC"), viz to the . free energy which the
system would possess, if the energy E' and the
entropy 4' coexisted at the temperature T. Now
among all the possible value-pairs of E' and 4'
which are represented by the points of the curve,
that one which is in thermal equilibrium at T is
that one for which the free energy is least. It is
consequently represented by the point of
tangency, P, between the curve and the line of

This condition is also obtained at once by setting
the derivative of Eq. (3.5) equal to zero.

The temperature behavior of the system repre-
sented by curve C of Fig. 19 can easily be visu-
alized. At T=O, the stable state corresponds to
the origin with E=4 =0. For higher values of T,
intermediate points like 2' are obtained. Finally
as T approaches ~, and the entropy becomes the
dominant term in F, point G at which the
entropy is a maximum is approached. The
portion of the curve above G will obviously never
give rise to stable states.

Latent heat
Curve D represents a qualitatively difkrent

situation; it has a reentrant portion between I'j
and I'2 and because of this it may have the same
slope at as many as three points. In general one of
these will have a lower free energy than the other
two and will give a unique stable state. However,
there is one particular slope T, for which the free
energies are the same for two points, P~ and I'2.
For temperatures below T„the stable state
corresponds to a point below I'~ while above T,
points above I'~ are stable. Thus T, marks a
transition temperature and at it there are
discontinuous changes of AE in energy and of
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Fj:G. 19. Illustrative inexact plots of configurational energy
eerszcs configurational entropy.
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44 in entropy. These quantities are related by
the equation

~~= T,AC. (3.8)

Specific heat
The smooth increase in energy and entropy

with rising temperature leads to a specific heat.
This is easily evaluated in terms of derivatives
on the curve. Denoting the equation of C as
E=E(C), we have

dE d'8 dr
dC d4' dC

(3.9)

Hence the specific heat is

(3.10)

Kp

F N TROPY

Fro. 20. Illustrating energy oersgs entropy according to
the Bragg-Williams theory.

Connection between the asslmptions of Bragg and
Williams and of Bethe as to energy

Let us suppose that the system has a definite
value 5 of long range order. The number of ways
of obtaining any allowed value of E is denoted by
W(E, S) and is less than W(E). Now according to
the Bragg-Williams theory all the arrangements
of the atoms with given order 5 had a common
energy E(S). However we know that for Bethe's
assumption the energy depends entirely upon
how the atoms are arranged locally and that the
energy can be expressed in terms of this local or
short range order o by Eq. (2.15)

E=ED(1—o).

Ke have adopted Bethe's assumption and shall
try to interpret the Bragg-Williams formulation
in terms of it.

Among the various ways of arranging the
atoms with order 5, some will correspond to high
and some to low' values of 0. There will then be
some average value of 0, and since the number of
atoms is to be supposed very large, the proba-
bility of an appreciable deviation of 0 from this
average value is small. In this paragraph we
mean by average a purely statistical process; no
connection with the Boltzmann factor is implied.

For the simple AB lattice discussed in connec-
tion with Bethe's theory, the relationship between
5 and the average value of ~ is simply found.
Consider any pair composed of an n-site and a
nearest neighboring P-site; the probability that
the two atoms upon these sites are both right is
r„rp and the probability that both are wrong
is m mp. Hence the probability that this pair
is composed of unlike atoms is r re+w we. This
quantity is the average value of g; g was defined
in Eq. (2.9) as the fraction of the pairs which
are of AB type. From the relationship (1.3)
between the r's and the m's and 5 we find

average of g = gA„——(1+S')/2 (3.11)

and in terms of Eq. (2.11) for o.

average of 0 = o.A„——5.
Hence the average value of the energy when the
system has order 5 is

EAy(S) =Ep(1 —o'~) =E0(1—S ). (3.13)

The above result shows quite clearly the
relationship between the Bragg-Williams and
Bethe theories. In the former the energy is
supposed to have a certain definite value when 5
is specified; in the latter this energy is not
definite but may Ructuate about a mean value,
this mean value being that assumed as definite in
the former.

The entropy of the state of order 5 was found
in Section 1 by counting the number of ways of
arranging the atoms for this fixed order and the
mathematical formula for 4 (S) was given in Eq.
(1.25). Since both E~,(S) and C(S) are known
functions of 5, they can be plotted against each
other with 5 as a parameter. The results are
shown in Fig. 20 in an inexact form, the concavity
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of the re-entrant portion of the AB» curve being
greatly exaggerated. These curves terminate
abruptly with the random state S=O, which
gives the highest possible energy on the Bragg-
Williams theory. The critical temperatures are
given by the slopes of the dashed, lines and the
values of 5 are indicated on one of the curves.
For temperatures above the critical temperature
the stable state has E=Eo and 5=0, and hence
there is no increase in energy above T, and the
anomalous speci6c heat vanishes. In this respect
these curves diR'er from those of Fig. 19, for
which the state with B=EO is not reached until
T goes to in6nity. An analytical treatment of the
AB3 curve can determine the exact slope of the
dashed line which is tangent to the curve near
5=~ and also passes through the 5=0 point.
The result of this calculation has already been
given in Section 1.

Constant 5 curves

The Bragg-Williams theory curves were con-
structed by assigning to each value of 5 a definite
energy and entropy, thus obtaining a point on
the curve. Actually, as expl. ained above to each
value of 5 there corresponds a variety of values
of the energy each with its own entropy,
C(E, S) =k ln W(Z, S). Hence each value of S
gives not a point on the figure but instead a
curve. This curve will have its maximum entropy
at the most probable or average energy for that
value of S, and thus at the same value ZA„(S)as
occurs on the Bragg-Williams curve. Further-
more, as we shall show below, the value of this
maximum entropy is 4(S).Hence the curve for a
6xed value of 5, hereafter referred to as a
"constant 5 curve, "has its maximum entropy at
the point on the Bragg-%'illiams curve corre-
sponding to the same value of 5.A portion of' the
constant 5 curve for S= ~3 is indicated on Fig. 20
for the AB3 case.

At 6rst it seems surprising that the maximum
entropy on a 6xed 5 curve is the same as the
Hragg-%'illiams entropy for that value of 5;
because for the Bragg-Williams case the entropy
corresponds to all arrangements with order 5
while for the constant 5 curve the maximum
entropy corresponds to only the fraction of these
having the average energy ZA, (S) (or the nearest
allowed value of energy). We should therefore

expect the maximum entropy of the 6xed 5 curve
to be somewhat less than the Bragg-Williams
value. Actually the difference is negligible owing
to the fact that we are dealing with a large
number of atoms. Because of this the number of
ways of arranging the atoms for order 5 is given
according to Eq. (1.25) by an expression like

eNf(8) (3.14)

where f(S) is of the order of unity. The number of
allowed energy values for the system is of the
order of¹Hence the most popular energy value
must be obtainable in at least

s&f(s)/N

ways. Its entropy will be

C =kNf(S) —k In N.

(3.15)

The second term is negligible compared to the
first and hence the entropy is practically as great
as that corresponding to all arrangements having
order 5.

In the next section we shall discuss a method of
dealing with order-disorder problem developed
by Kirkwood, and shall see how his results can be
utilized in order to obtain information about the
constant 5 curves.

' J. G. Kirkvrood, 388. The m'iters are very greatly
indebted to Professor Kirkwood for several discussions of
his method and for the privilege of seeing an advance copy
of h~s paper.

4. The method. of &i~kvrood'

Kirkwood has devised a particularly ingenious
and elegant method which can be used to deter-
mine the shape of the constant 5 curve. Since,
however, the effectiveness of the method lies in
the utilization of certain mathematical tricks, we
shall present only the results here and give the
details in Appendices 3, 4, and 5.

As was explained in the last section, there is no
de6nite energy for a state of order 5 but instead
a wide distribution of energies. When we aver-
aged over these statistically (considering only the
a priori probability and not the Boltzmann
factor) we found a certain average energy,
EA (S). Other energies will be possible also and
what we really desire is the distribution in energy
of these other energies; having, this is equivalent
to knowing the constant 5 energy-entropy curve.
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Now no methods have been devised for 6nding
this distribution directly, "' however, we can 6nd
various quantities more or less intimately related
to it. One of these is h~, the mean square devia-
tion of the energy from the mean value:

principal aim in making the transformation here
is one of presentation. By a general equation
given in Appendix 5 it is shown that an ex-
pression of the free energy as a power series in
(1/T) can be transformed to give the entropy as
a power series in E. When the details are carried
out we find that Eq. (4.3) becomes

Here W(5) represents the total number of ways
of arranging the atoms with order 5 (derived in
Eq. (1.25)) and the Z extends over all of these
arrangements. A2 is a measure of the width of
the distribution. It can be evaluated for any
particular lattice and any particular state of order
by straightforward but rather laborious calcula-
tions of' the nature met with in statistics.
A simple case is treated in Appendix 4.

In order to apply Kirkwood's method gen-
erally we should calculate all quantities like
((AZ)'}A„such as ((~)'}A,, ((AE)')A„etc. These
quantities are customarily known as moments of
the deviations and we shall designate them
symbolically as

They are, like EA„functions of 5. When these
moments are known it is then possible to obtain
an expansion of the free energy in terms of
them and the temperature. The result, derived in
Appendix 3, reads

~2 ~3
F=EA„TC(S)—— +—

2!kT 3!(kT)'

64—3hg'
+ (4 3)

4!(kT)'

Here C(5) =k ln W(5) is the entropy calculated
on the basis of the BraggWilliams theory.
The numerators of the higher terms are not the
simple "moments" but are instead the so-called
"semi-invariants" of TheiIe

As was indicated in the last section we regard
the energy-entropy curve as the fundamental
desideratum, and we shall convert Kirkwood's
result into it. For the solution of any practical
problem this transformation is not necessary and
may even lead to more complicated results; our

~ See, for example, a discussion by R. Becker, reference
37A.

We see here in analytic form the result given in
the last section that the entropy on the constant
5 curve is C(S) when E=EA„(5).

Thus in principle if we are willing to calculate
enough moments, we can get the 6xed 5 curve
with arbitrary accuracy. Actually the calcula-
tion of the moments is very tedious and work has
been done including only the second, A~, although
Kirkwood has calculated them up to the third for
a simple type of lattice.

An important feature of Kirkwood's method is
its generality of application. It need not neces-
sarily be applied to the simple lattices of the
type considered by Bethe. Also there is no
reason why it should be restricted, to stoichio-
metric ratios of the elements: it is very little
more difFicult to 6nd the deviations when the
ratio of the elements are not 3: 1 but say in-
stead 3.i: 1.

Results from Kirkwood's method
We shall here restrict the discussion to the AB

case of the simple cubic lattice. Fig. 21 shows
the constant 5 energy vs. entropy curves and also
the Bragg-Williams curve. Only the 6rst two
terms of Eq. (4.4) were used for this figure and
consequently the fixed 5 curves are parabolas
with their vertices on the Bragg-Williams curve.
This means that the distribution in energy,
W(Z, S) =exp LC(E, 5)/k$, has the form of a
Gauss error function. This degree of approxima-
tion has been discussed in cooperative phe-
nomena before: in the theory of ferromag-
netism"K and in treatments of rotation of polar
molecules in solids. "8

Stable states always correspond to maximum
entropy for 6xed energy and hence to points on
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the envelope of the fixed 5 curves. This envelope
is seen nearly to coincide with the Bragg-%illiams
curve for low energies and, entropies. This is
because at low energies only a few atoms are
wrong and, as we pointed out in discussing the
relationship V0= 2@v in Section 2, the probability
that they come together and produce Auctuations
in energy are so small as to be negligible. Hence
the Bragg-Williams representation is adequate.
At higher energies the envelope diverges more
from the Bragg-Williams curve and we 6nd that
for each energy the maximum entropy occurs for
a smaller value of 5 than that given by the
Bragg-Williams curve. As the envelope is fol-
lowed higher up, the values of 5 are bunched
more closely together until 6nally S=0 is
reached. The last portion of the curve is not
truly an envelope but merely a section of the
S=0 parabola.

There is no abrupt change in slope or reentrant
portion of the curve at or near the point where
S=O joins the envelope. Hence there is no
discontinuity in energy giving rise to a latent
heat. The theory therefore predicts the same
continuous type of vanishing order as was given
by Bragg and Williams and by Bethe for the AB
case of the simple cubic lattice. However, near
the point where the S=O curve joins the en-
velope, the latter has a very small curvature;
hence a small change in slope requires a large
change in energy and gives a large speci6c heat.
Immediately above the point of juncture the
S=0 curve has much greater curvature and gives
a smaller specific heat. The mathematical sig-
ni6cance of this situation is represented by the
d'E/dC' term in Eq. (3.10).

Kirkwood's method being built upon free
energy considerations is automatically thermo-
dynamically consistent. Hence a check such as
that applied to Bethe's theory is merely an
identity for it.

The results of Kirkwood's method f'or the
simple cubic lattice are given in Figs. 9, 11 and
13 and Table I. For his theory, as for that of
Bragg and Williams, R'1,/E(T. &) =2. We have
also calculated the data in Table I for the body-
centered lattice. We have been informed"D that
the value 4.23 for the specific heat just below T,
is reduced to 1.7 by including the 63 term in
Eq. (4.3).
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Fj:G. 21. Energy versus entropy for the simple cubic
lattice AB case as given by Kirkwood's method. Dashed
line, S=0 curve for face-centered lattice A'J3 case.

Further application of Kirhvoood's method

It would be of considerable interest to apply
Kirkwood's method to the case of AB3 and to
compare the results with Peierls' work. This
would involve treating the face-centered lattice,
for on the basis of the nearest neighbor assump-
tion no superlattice would form in the simple
cubic or body-centered cubic lattice at this
composition. The writers have attempted such
an application taking into account the second
moment. It proves that the second moment
approximation is not good enough for the face-
centered lattice and instead of obtaining an
envelope for the 4 versus 8 parabolas it is found
that the fixed S parabola for S=O lies outside of
all the others as indicated by the dashed curve
of Fig, 21. This would, predict no formation of a
superlattice at all, and in order to apply the
method further moments, which can be obtained
only with considerable e6ort, would be needed.

A fundamental difhculty connected with the defin
tion of long range order

We are now in a position to consider a funda-
mental difhculty connected with long range
order and energy versus entropy plots. It is
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Fio. 22. Reduction of order from 5& to 5& by means of
change-step boundary.

inherent in the natur'e of the problem and not
restricted to Kirkwood's method. In Fig. 21 a
constant 5 curve starts at energies higher than
ZA, (S), proceeds downward until it touches the
envelope and then turns inward. This value of 5
is then attained for a temperature given by the
slope of the envelope where the constant 5
curve touches it. The fundamental difficulty is
that in actuality the constant 5 curve does not
turn inward after striking the envelope from
above but instead follows it downward to the
point X=4=0. This conclusion is drawn from
the following reasoning. Consider two values of
5, Si&5~. Suppose the crystal can be set up in

W(Z, Sq) ways so as to have energy E and
order 52. Now suppose that the crystal consists
of a rectangular block as indicated in Fig. 22.
Then for each arrangement having order S2 me

can find a dividing line as indicated such that
if the two parts of the crystal are displaced one
lattice spacing in respect to each other across
this plane, the order is reduced to Si. There is in
general an increase in energy in this process
corresponding to the introduction of the "change-
step" boundary, but this is negligible on the
scale of Fig. 21. Hence we see that there are
essentially at least as many ways of achieving
energy 8 with order Si as with 52. Thus we
conclude that W(E, S~) =W(E, S2). This shows
that in an exact 6gure, drawn on the axes of
Fig. 21 there would never be any turning in
from the envelope.

However, this reasoning should not be con-
strued to imply that long range order is merely a
6ction and that Kirkwood's method, if exactly
carried out, mould yield no answer. An exact
plot, such as discussed above, mould give cor-
rectly all theoretical predictions concerning
energy and entropy changes. The long range
order would be implied in these predictions and
it would arise from the change in energy due to
the change-step boundaries, which, although

negligible on the scale of such a 6gure, can
bring about order in the manner described in
Section 2. Due to this efFect there would be a
turning in from the envelope, invisible on any
plot of practical size, and a de6nite value of
order for each point on the envelope. This is
just the result obtained by the very incomplete
application of Kirkwood's method. We see now
that it was the roughness of the approximation
which led so simply to this result and that with
improvement it would be more dificult to tell
how the values of S were arranged on the
envelope. The situation is reminiscent of many
problems in quantum mechanics where although
satisfactory results are obtained by 6rst-order
perturbations higher order approximations lead
to difhculties.

Some ideas which may be of importance in
clearing up the situation just described have
been mentioned by Slater, 37~~ He points out
that both short range and long range order are
simplified concepts, a complete description of the
state of order requiring more complicated
variables. For these reasons it may be that
definitions of "intermediate range" order will

prove helpful in further developments of the
theory.

8. Equilibrium theories for alloys of arbitrary
composition

The theories discussed above have been limited
to very simple alloys: those for which the con-
centration of the metals is such that there are
just enough atoms of each type to 611 up some
simple fraction of the lattice sites, one-half in the
case of AB, and one-quarter and three-quarters
in the case of AB3. In metallurgy, these are very
special cases; in general wide ranges of com-
position must be considered.

Not very much thorough theoretical work has
been done for the case of arbitrary composition.
Boreliusa~ has given a description of the type
of results to be expected which is helpful in
understanding the problem in general. Two
writers have recently given treatments utilizing
the nearest neighbor assumption: Easthope"
has used Bethe's first approximation to 6nd the
dependence of critical temperature upon com-
position, with especial emphasis on the composi-
tions close to AB3, and Shockley'~ has used the
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Bragg-Killiams approximation to discuss order-
disorder phase diagrams for alloys which, like
Cu-Au, form face-centered lattices.

5. The energy of formettlon of alloys

In this section we shall consider alloys which
do not modify very greatly their lattice structure
as the composition is varied. Thus a change
from a face-centered, cubic to a body-centered
cubic lattice will be excluded. The change from
face-centered cubic to a slightly distorted
tetragonal form will be included, but the effect
of this distortion in dividing nearest neighboring
sites of a given site into nearest neighbors and
next nearest neighbors will be neglected. This
simpli6cation permits an easy application of the
nearest neighbor assumption because the number
of nearest neighbors of a given site is constant
and only the variation in the numbers of like
and unlike pairs need be considered. In dealing
with the energy of an alloy it is convenient to
take as zero the energy of the constituent metals
when pure. When this is done, the expression
(2.i) for the energy of a sample of alloy of
arbitrary composition and state of order may be
simplified by methods given in Appendix 1 to
the form:

E= —~Qua, (5.i)
where Q~e, as defined in Section 2, is the total
number of AB pairs in the alloy.

Energy of best ordered ard, random states as
functions of composition

The energy of the random state may be very
easily calculated in the manner used in Section 3
and leads to the smooth curves of Fig. 23, for
the body-centered and face-centered cubic lat-
tices. It is essentially a more complex problem to
determine the lowest possible energy for each
composition, for it is necessary both to 6nd an
arrangement of atoms which gives this lowest
energy and to prove that no other arrangement
can give a lower one. The solution of this problem
is outlined in Appendix 1 and gives the lines
consisting of straight segments of Fig. 23. For
later reference to experimental work we point
out that the best arrangement for 50 atomic
percent on the body-centered lattice corresponds
to the CsC1 type structure with each atom having
eight unlike nearest neighbors, as shown in

Fig. 40(C). For the corresponding best arrange-
ment of the face-centered lattice, the structure is
as shown later for the CuAu alloy, Fig. 40(B),
and each atom has eight unlike and four like
neighbors. For the composition AB3 in the body-
centered cubic lattice the condition of minimum

energy implies no unique lowest energy state,
and there are many ways of arranging the atoms
with the lowest possible energy; for the face-
centered cubic lattice, however, a definite super-
lattice, as shown in Fig. 40(A), is implied with
each A atom surrounded by twelve B atoms. In
Part II we shall see that in several cases these
three ordered structures actually occur but that
in other cases structures in definite disagreement
with the nearest neighbor assumption are found.

A striking feature of the diagram is its
symmetry about 50 atomic percent. This is an
evident consequence of Eq. I,5.i) and emphasizes
again the fact that only one parameter v—rather
than three, v~g, v~~, vs~is important. It is also
evident that Eq. (5.i) will give predictions
which are symmetrical about 50 atomic percent
for a11 properties having to do with superlattice
formation. * Experiment does not conhrm this
prediction and thus shows that the nearest
neighbor assumption does not represent the
whole story.

It is a little dificult to see why there should be
a state of long range order for compositions
diBering appreciably from simple ratios like
1:1 and 1:3. Thus as soon as there are enough
extra atoms to complete a plane bisecting the
alloy crystal (i.e., to have one plane through
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FIG. 23. Energy of formation from pure A and pure 8
of random alloys (smooth curve} and best ordered alloys
(straight lines).

*This situation is unaltered by considerations of next
nearest neighbor interactions, etc.
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Fro. 24. Critical temperature as a function of composition.

the alloy which does not divide AB pairs), it is
possible to have the atoms on one side of the
plane out of step with those on the other and
to obtain the state of lowest possible energy with
zero long distance order. However, there are
relatively few ways of bringing this about
compared to the large number of ways of having
one coherent scheme of order through the crystal
with the extra atoms distributed at random in
wrong positions, a situation which also gives the
minimum energy. For any particular lattice,
there will be a certain minimum percentage
of A below which the lowest energy can be
obtained in more ways without long distance
order than with it. According to the theory of
Easthope, who uses Bethe's first approximation,
alloys having as little as 1/sth (s is the number
of nearest neighbors of each atom) of their atoms
of type A may still form a superlattice. This
figure seems somewhat small —it implies that
when each 8 atom has on the average only one
A neighbor, there will still be enough A atoms to
form a superlattice. In the work of Shockley
treating the face-centered lattice by the Bragg-
Williams approximation, the lowest energy
always corresponds to the best possible order
and, hence, a superlattice is predicted for all
compositions. However, we do not think that
this unreasonable prediction invalidates any of
the more important conclusions at which
Shockley arrived.

6. The depend, ence of critical. temyerature upon
composition

The theory of Bethe and the extension by
Peierls can be perfectly mell applied to arbitrary
compositions and the critical temperature calcu-
lated. It is merely necessary in calculating the
probability of any given configuration of atoms
to weight the a priori probability of atoms in
accord with their relative abundance. The calcu-
lations are, however, quite complicated and
considerable computational work is demanded.

Easthope has carried out calculations for two
cases."G The first of these is for a lattice like the
body-centered or simple cubic for which we can
choose a set of a-sites and a set of p-sites so that
all the nearest neighbors of each n-site are
p-sites and vice versa. (For cases of arbitrary
composition there will not in general be equal
numbers of A atoms and n-sites or of 8 atoms
and p-sites and for even the best ordered
arrangements there will be some "wrong"
atoms. ) He has furthermore made his calcula-
tions as if there were no latent heat to be
expected during the transformation for any
composition. As he points out, this will probably
introduce a small error into his results. With
this restriction he has given an accurate treat-
ment by Bethe's 6rst approximation ("interior"
composed of one atom only) for all compositions.
His plot of critical temperature versus composi-
tion is shown in Fig. 24. The limiting case,
s= ~, for which the Bethe and Bragg-Williams
approximations converge is also shown. In the
Bethe theory, only part of the energy of trans-
formation is used up in getting to the critical
temperature. This part is plotted in Fig. 25.
Here the unit of energy is that required to bring
the 50 atomic percent alloy to the critical
temperature; it is (s—2)/(s —1) times the total
energy of transformation of the 50 percent
alloy, that is 0.800(~i¹v)(=0.80020) for the
simple cubic, 0.855(i~¹v) (=0.855 Eo) the body-
centered and —,'¹v(=ED) for the Bragg-Williams
approximation. Since Easthope disregards the
possibility of a latent heat, this energy is de-
noted not by Z(T,+)r but by E(r,)r. For the
Bragg-Williams approximation, the entire energy
of transition is used up in getting to 2",. Hence
the Bragg-Williams curve is the difference be-
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tween the best ordered and random curves of
Fig. 23.

Easthope's second calculation is for the face-
centered lattice for compositions near AB3. It has
been observed in some experiments that the
critical temperature has a maximum at the
stoichiometric ratio of 3: 1. Easthope does not
calculate a curve of T, versus composition for
this case but instead calculates the derivative of
T, in respect to composition at this point. He
Finds that the derivative is not zero, as it should
be for a maximum, and that higher critical
temperatures are to be expected towards the
2: 1 ratio.
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The similarity between the disappearance of
long range order and the melting of a solid has
been pointed out by various writers. E. J.
Williams"~ even refers to the state above T. as
having "liquid order. " In accordance with these
ideas we may think of the solid solution of two
metals as having an ordered phase and a random
phase. It is then natural to inquire into the
phase diagram for an alloy system.

Shockley has done so for the Bragg-Williams
approximation and the face-centered lattice.
The copper-gold system has a face-centered
lattice and possesses ordered structures for
Cus Au and Cu Au. The first of these is cubic and
the second tetragonal. Shockley's work shows
that these are special cases of two ordered
phases, so that the problem actually involves
three phases: a random phase denoted by $, an
ordered cubic phase q and an ordered tetragonal
phase g. The phase diagram for these three
phases is shown in Fig. 26. The relationship
between critical temperature, T~o percent, and
ordering energy for 50 atomic percent is that
given by the Bragg-VA'11iams theory for case AB;
in accord with Fig. 23, the energy of trans-
formation Eo is Ne.

In discussing this system Shockley finds it
necessary to generalize the definition of order.
This is done by dividing the face-centered
lattice into four simple cubic sublattices as is
indicated in Fig. 27. For each of these sub-
lattices there is an order parameter de6ned in
terms of the fraction of the sites of the sublattice

FIG. 25. Energy required to destroy superlattice as a
function of composition.

which are occupied by A atoms. Numbering the
sublattice~ from 1 to 4 and denoting the fractions
by fi, f2, f4, f4 the order parameters are defined by

These expressions were chosen in analogy with
the expression

5=2(r.—-,')
which was used in Section 1 for the AB case.
In terms of these order parameters the ordered
and random states of AB and AB3 correspond to
the values tabulated below. The values of +1and

AB ordered
AB random
A 8~ ordered
A B3 random

Ss

1
2

1
0—1

—1
0—1

1

l

—1
0—1

—1. imply sublattices of pure A and pure 8,
respectively. Thus for AB ordered, two of the
sublattices are pure A and two are pure B; it is
immaterial which two are chosen and the values
of the S; may be permuted. This structure is just
that observed for CuAu and is shown in Fig.
40(B). Similarly the ordered AB& corresponds to
three sublattices of pure B and one of pure A and
conforms to the experimentally known structure



F. C. NIX AND K. SHOCKLEY
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composition are made, results like that indicated
in Fig. 28 are obtained. (This figure is not
quantitative; the reentrant portions near the
crossing points being greatly exaggerated. ) It is

seen that in diferent composition ranges different
phases have the least free energy and are stable.
In the neighborhood of the intersection points of
the free energy curves, common tangents can be
drawn as are indicated in the left half of the
Figure. For compositions between the points of
tangency, the most stable state of the alloy will

0 5 I0 l5 20
hTGMIC

25 30 35 40 45 50
PERCENT h

FIG. 26. Phase diagram for face-centered cubic lattice,
solid lines. Critical temperature for an alloy of homogeneous
composition, dashed lines.

of CuaAu, Fig. 40(A). This scheme may easily
be applied to arbitrary composition; for example
the composition A385, halfway between AB and
AB3, gives

AgBg best ordered
A 38g randoITl

The treatment involving these order param-
eters is like that described in the last paragraphs
of Section 1. The entropies for all of the sub-
lattices are calculated and added to give tbe
total entropy, and the average energy is deter-
mined. Both of these quantities are explicit
functions of the state of order, as expressed by
the four variables S~, S~, 53, S4. Hence the free
energy I'" —TC is a known function of the state
order and may be minimized by known mathe-
matical processes. The fact that the state of
order cannot be expressed by a single parameter
considerably increases the labor involved. The
results show that the free energy depends in a
distinct way on composition for three phases
which are characterized by certain relationships
between the parameters:

phase $, random cubic, S~ ——Sg ——Sg ——S, (7.2)
phase s, ordered, cubic, S~WS~=Sg=S4 (7.3)
phase I, ordered tetragonal, S&=Sq W S3=S4 (7.4)

and Sg / Sm &Sg ——Sg / Sg (7.5)

When plots at constant: temperature of free
energy for each of the three phases versus

FiG. 27. Resolution of face-centered cubic lattice into four
simple cubic sublattices; all points of each sublattice are
indicated by same symbol.

be a mixture of two phases having compositions
corresponding to the points of tangency. ' After
similar curves are found for other temperatures,
the phase diagram, Fig. 26, can be constructed.

No experimental work has as yet shown the
occurrence of two phases with different com-
positions, one ordered and one not, in equilibrium
with each other. Although such situations seem
inevitable on basic thermodynamic grounds, they
may be very difficult to realize in practice owing
to the slowness of obtaining equilibriu.

If the segregation into two phases does not
have time to occur, then the temperature com-
position diagram should be constructed as indi-
cated on the right of Fig. 28 where the stable
phase for each composition is given. The result
of this process is represented by the dashed lines
in Fig. 26. They correspond to Easthope's curve

8 For a discussion of this thermodynamical question see,
for example, N. F. Mott and H. Jones The Theory of the
Properties of Metals and A/lays (Oxford 1936) p. 24 and
various texts of physical chemistry.
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for s= ~, Fig. 24, save that a difkrent type of
lattice is present. Ke see that there is no maxi-
mum in the critical temperature at the atomic
ratio 3: 1.

The writers believe that there is no theoretical
basis for expecting a maximum or minimum of
the critical temperature at any particular atomic
ratio save 1:1. Here the curve must be flat
because of the symmetry about this point.
This belief is based on the following reasoning.
At the critical temperature there is only a small
amount of order present. Consequently an excess
or defect of one species of atom represents a
continuous change in the state of affairs and
there seems no reason for a particular ratio of
abundance, like 3: 1, having special significance.
This is very different from the situation at low

temperatures; then it will be quite important to
have just the right proportion of atoms and an
excess and a defect will change the energy in

quite different ways; note the kink in the energy
versus composition curve for the ordered face-
centered cubic lattice in Fig. 23.

a kink in the specific heat curve. Fig. 29 shows
the latent heat as a function of composition and
Fig. 30 represents the speci6c heat curve cofre-
sponding to A j3.-. The prediction based on the
work of Bragg-Williams, Bethe, and Peierls that
only the ratio 1:1 has no latent heat is con-
firmed. We shall return to this point briefly in
Section 13.

c =c(s), (8.2)

where C (S) is the Bragg-Williams approximation
expression. The constants in the energy form are
to be determined by experiment. This formula-
tion allows Borelius to give a discussion in terms
more general than are permitted by the nearest
neighbor assumption; however, it has the simul-
taneous disadvantage of restricting most of the
results to generalities and thus not giving
material which can be directly compared with
experiment.

8. Treatments not using the nearest neighbor
assumption

Borelius does not utilize the nearest neighbor
assumption but assumes instead a more general
form for the energy. In terms of our expressions
it amounts to assuming that the energy is

E=ED(a+bP+cS'+dS'+ ) (8.l)

and the entropy is

Fg

0 IO 20 30 40 50 80 70 80
8 ATCNA&C PERCENT A

Energy entropy -composi-tion surface
Borelius discusses the problem by using a

generalization of the energy-entropy curves dis-
cussed in Section 3. These curves corresponded

F16. 28. Free energy verses composition for the three
phases of the face-centered cubic lattjce.

0.20
483 438'

I

Ke see furthermore that between ratios of
3: 1 and 1:1 there are two critical tempera-
tures: one corresponding to a transition from
tetragonal ordered to cubic ordered, the other
from cubic ordered to cubic random. For the
Cu-Au alloy system, as described in Part II,
Section 16, two phase changes for a single com-
position have been observed. "E However, one of
the two observed ordered structures is ortho-
rhombic rather than cubic. Each of these transi-
tions has ln genelal an associated latent heat and

z
O O.I5

z

~
O.IO

UJ
X

Oub

0
0 20 30

ATOMIC PER GENT A
40

FIG. 29. Latent heats of transformation for face-centered
cubic lattice.
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FIG. 30. Specific heat verses temperature for face-centered
cubic lattice A 3B~ case.

9. The thermodynamic potentials of ordered.
phases

Tammann based his early prediction of
ordered structures upon chemical evidence in the
Cu-Au system. We discussed these ideas briefIy
in the introduction. He found two concentration
limits for the action of Cu dissolving solvents,
one at CusAu and one at CuAu. These correspond
to the abrupt changes of slope near Cu&u and
CUAu of the free energy versus composition
curve, which for low temperatures is very nearly
like the curve for best order of Fig. 23. From
the "slope-intercept'" method of finding thermo-
dynamic potentials, we can easily see that there

to a single composition; if a composition axis is
constructed at right angles to the entropy and
energy axes, then the family of energy-entropy
curves for various compositions will constitute a
surface. Just as a complete knowledge of the
energy-entropy curve was equivalent to a solu-
tion of the case of fixed composition, so is a
complete knowledge of this surface ail that is
needed for the alloy system.

Borelius gives a general discussion of this
type of surface even including the case for
which the random state, rather than the ordered
state, has the lower energy. This interesting
case corresponds to metals which have limited
solid solubilities in each other at low tempera-
tures. It has recently been discussed by R.
Becker"~ using the nearest neighbor assumption
with a negative value of v. A further discussion
of this topic would be out of place in this review;
and it has been mentioned only as an example of
the utilization of ideas developed in the order-
disorder theory in other branches of metallurgy.

will be a sudden change of the thermodynamic
potential of Cu for these compositions, of a
nature to make it more di%cult to extract Cu
from the less Cu rich alloys.

This means of investigating superstructures
has not been very active recently. For a further
discussion the reader is referred to the works of
Tammann. "" '~

C. Theories for alloys which are not in thermal
equilibrium

Not very much work of a theoretical nature
has been done as yet upon the behavior of alloys
which are not in equilibrium. The two principle
contributions concern rather different aspects of
the question. Bragg and Williams have investi-
gated the rate of approach to equilibrium of alloys
which are almost in equilibrium; and Borelius
has dealt primarily with questions of temperature
hysteresis: that is, with effects connected with
order which are very much like the supercooling
of liquids or the lag in phase change between
white and grey tin.

The rate of approach of the alloy to equilibrium
is governed by the frequency with which atoms
change places. This interchanging is in turn
associated with an activation energy and, like
many chemical processes having an activation
energy, it "freezes out" at a certain temperature:
that is, at this temperature the time of relaxation
is of the order of years and somewhat above it, of
the order of hours. For some alloys, P-brass for
example, the "freezing out" temperature, Ty, is
considerably below the critical temperature of
ordering, T,. These alloys usually order upon
cooling from temperatures above T, : during the
process of cooling, they pass through tempera-
tures below T„for which a superlattice should
form, while they are still hot enough to possess a
short relaxation time; this favorable situation
produces a superlattice. On the other hand if T~
is much above T., no superlattice can be produced
by heat treatment: at temperatures where a
superlattice would be thermodynamically stable,
the relaxation time is so great as effectively to
prevent ordering; while at temperatures giving
a short relaxation time, the superlattice is
not stable. The freezing out effect just discussed
probably prevents the formation of a considerable
number of otherwise to be expected superlattices.
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When we do not have equilibrium these will not
be equal and consequently the total number of
right A atoms will be changing.

According to the definitions and limitations of
Section 1, the total number of right atoms is
I'~Nr, and the rate of change of this is

F~1V(dr /dt) = n, —n„. (10.2)

Let the temperature now be considered constant
with value T; let r, signify the corresponding
equilibrium value of r and let the instantaneous
value of r be

ra=r. .+e, (10.3)

where 8 represents the deviation from equi-
librium. When 8 is zero, we have equilibrium and
n„—n„vanishes. If 8 is positive, there are more
right atoms than there should be and there is a
net change tomards wrong positions. At the
constant temperature„T, n„and e„are both
functions of r, and the value of their difference
for the small deviation 8 will be

n. —n„=L(d/dr. )(n.—n,)],S= Cb, (10.4)

where the subscript e means that the derivative
is evaluated at r =r, and

j.0. The time Of re»~ation

Bragg and Williams, using the ideas presented
in Section 1, have developed a theory describing
the relaxation of an alloy toward its state of
thermal equilibrium. The following discussion
follows closely their presentation of reference
34C.

As we discussed in connection with the 5(X)
and V(5) curves of Section 1, when the alloy is
not in equilibrium the degree of order is not
what it should be for the ordering force which is
present. Let us once more concentrate upon the A
atoms and see how they change places between
a- and P-sites.

Denote by n„the number of A atoms on
n-sites which displace B atoms on P-sites per
second, that is the number going wrong, and by
rI,, the corresponding number of A atoms re-
turning from P-sites and displacing B atoms on
cx-sites. Under equilibrium conditions, these proc-
esses will of course balance and we shall have

(10.1)

Putting this in Eq. (10.2) we find

(10.6)

This is the conventional equation of an ex-
ponentially decaying disturbance. In terms of the
relaxation time v,

the solution is
r = FgN/C,

8=8pe "'
(10.7)

(10.8)

where 80 is the deviation from equilibrium at
/ =0. The problem of Bragg and Williams was to
estimate the value of C.

Consider an adjacent pair of A and B atoms.
Owing to the temperature agitation there is a
probability that these two atoms will acquire
sufficient energy and appropriate directions of
motion and will change places. In making this
change with the A atom going from the n- to the
P-site, the atoms must climb over a potential
barrier of height 8', hence their thermal energy
at the beginning of the interchange must be at
least 8'. When returning they must again climb
over this barrier but since initially they had
potential energy V= VOS due to the fact that
both atoms mere wrong, an initial thermal energy
of only W—V is needed. Ke approximate the
condition necessary for two adjoining A and 8
atoms to change places and become wrong atoms
by the three conditions:

(1) When A crosses the plane which passes
through the o,-site and is perpendicular to the
line connecting the pair of sites, it does so with
kinetic energy greater than W/2 and in a direc-
tion which lies within a certain solid angle 4~co.

(2) The same condition (with B and P replac-
ing A and n) applies to B.

(3) These events agree in time within a frac-
tion y of the period of oscillation which may
be taken to be the same for both.

"In other words an interchange will take place
during a period of oscillation if both atoms have
sufficient energy, are aimed correctly, and ap-
proach the barrier nearly simultaneously. "
Denoting the frequency vibration by v and
denoting by I p the probability that the two
adjoining A and B atoms go wrong per unit time,
we find

C—=P(d/dr )(n —n„)j,, (10.5) fap=16i ps'(1+W/2kT')e ir~" . (10.9)—
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NFgym mp. (10.12)

Combining these with the probability that each
of these interchanges takes place in unit time we

obtain
e„=NFgyr rpf p, (10.13)

s,= Nay'pp~w pfp I (10.14)

Ke see easily that the condition for equilibrium,
e,„=rI,, leads to the equation:

rrp fp V
=—=exp

w wp f~p kT
(10.15)

which is the equilibrium condition 1.7 of Section 1.
All the quantities occurring in n and n,, are

either constants or knomn functions of r . Hence
the derivative C, Eq. (10.5), can be evaluated
and r calculated from Eq. (10.7). We have

n n„=NFgyr, rpf—p

X [1 (w.w p/r. rp) ex—p (V/kT)]. (10.16)

From (1.7), (1.8) and (1.37) we 6nd that
r r p/m mp

——exp X~(S); and from (1.12) and
(1.36) that V/kT=X~(S). Differentiating (10.16)
with respect to 5 and noting that the equilibrium
value, S„satisfiesX&(S,) =XI(S,), we 6nd

Dd/dS) ('8 '8 )] = FBP(d/dr. ) (~ ~,) 5.
= F,C =NF„yr.rpf.p)X,'(S.) —X,'(S.)j

f1+S,q P X~'q

&1-S,& & X,'i
9 Bragg and Williams establish this relationship by

reasoning similar to that used in the mass action la~.

Similarly the probability that twa adjoining
wrogg atoms become Aght 10 unit time 1s

f ~f pr/kr (10.10)'

Ke must next estimate the number of ways in
which right A atoms can go wrong with adjacent
8 atoms. The number of A atoms upon n-sites is
r F~¹ Let each of these n-sites be surrounded by
y adjacent P-sites. Each of these P-sites has the
probability r~ of being occupied by a 8 atom.
Thus on the average each of the r F~N right A
atoms has yrp ways of going wrong; hence the
total number of mays for A atoms to go wrong is

r FgNyrp= NFayr rp. (10.11)

Similarly the number of ways in which A atoms
can 1eturn to o.'-sites 1s

Insertion of the value of C in Eq. (10.5) leads to

Taking

g gWIIr, T (10.18)

v= 10"sec. ', corresponding to a charac-
teristic temperature of 500'K

cu'p=5&10 '
y=4,

(8'/k T)' =600,

they estimate that

A=10 "sec.
They have also estimated the value of A for a
ring transition in which three atoms take part,
and this leads to estimates of the same order of
magnitude.

The order of magnitude chosen for T/V is reason-
able. It should lie somewhere between values
obtained from the energy required to melt the
alloy and the energy necessary to separate it into
free atoms. The latter is given by the binding

"34C, p. 72S.

(1+S,)y
Xg') (1—S,)Fs

X16rS~'(1+W'/2kT)' exp (—IvV//kT). (10.17)

The term in (1—Xq'/X2') arises from the de-
pendence of V upon Sand hence upon r . If V did
not depend on r then the term would be unity;
however, its dependence is such as to increase the
time of relaxation. This can be seen by thinking
of a deviation towards greater disord, er; with it
comes a decrease in order and consequently a
decrease in ordering force. Thus the rate of
recovery is not as rapid as if the ordering force
had remained constant. Near the critical temper-
ature X~(S) and X2(S) cross at a slight angle and
hence the ratio of slopes is nearly unity. Under
these circumstances Bragg and Williams think
that the length of the relaxation time may cause
a lag in response of the structure to a change in
temperature near the critical temperature. They
site cases where such a lag has been observed. "

The dominant term in Eq. (10.17) is the
exponential, and the variation of the other parts
can be neglected except possibly for the case
where (1—Xq'/X2') nearly vanishes. Thus we
may write generally
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energy of the alloy and is about 80 kilogram
calories per gram atom for alloys of the Cu-Au
system; it gives a value of W/k of 40,000'K.
From the energy required to melt the alloy we
should obtain about 5000'K. Temperatures of
interest for order-disorder phenomena in the
Cu-Au system are about 600'K; hence W/kT
should lie betwet. 'n 8 and 70; so that the value
24, assumed by Bragg and Williams, is of a
reasonable order of magnitude.

The results of experimental investigations
upon this field are given in reference 36I and
described in Part II, Section 18.

11. The theory of temperature hysteresis

Borelius'~ '~ has developed y, theory of tem-
perature hysteresis based on the re-entrant por-
tions of the energy versus entropy curves. In
order to visualize his theory, suppose that the

se

l'I,G. 31. Illustrating the origin of temperature hysteresis.

scales of the energy versus entropy plot are so
chosen that a line at 45' corresponds to unit
temperature. Then a line making angle 0 with
the entropy axis gives a temperature line with
slope T=tan 8. Now instead of drawing a line

with slope T, rotate the plot through angle 0 as
indicated in Fig. 3I. It is seen that for any fixed
temperature, height is proportional to free
energy. Hence if a ball is allowed to roll on a
track representing the curve, its lowest possible
position specifies the stable state. In the figure
the ball indicates a state with rather high
entropy and consequently a high degree of
disorder. This is not the stable state for there
are lower points on the curve. However, the
system cannot reach these without going through
intermediate states of higher free energy; since
this is impossible according to thermodynamics
and highly improbable according to statistical
mechanics, it stays where it is, in what is termed

a "metastable state. " Cooling the system de-
creases the bump in the free energy curve and
finally it disappears entirely at a temperature,
say T&, for which the ball on the track would just
roll down to the left. If the system is now heated,
the bump reappears and at a temperature, say
T2, the minima to both sides are equally deep.
According to the equilibrium theory of thermo-
dynamics, this should be the transition temper-
ature; however, the system is now caught to the
left of the bump and cannot make the transition
from its metastable state until a temperature T3,
again corresponding to the rolling of the ball, is
attained. In Fig. 32, the solid line indicates the
equilibrium behavior, and the dotted lines and
arrows the hysteresis loop predicted on this
theory.

By using various values for the coefficients in
his energy as a function of order expression (8.1),
Borelius is able to alter his energy versus entropy
curve in such a.way as to fit various. observed
cases which showed hysteresis.

Bragg and Williams" ~ "U point out that it is
not necessary for the whole sample to travel
over the bump in free energy, which would
indeed be so improbable as to prevent a transi-
tion; instead it would suf6ce for a nucleus of the
stable state to form —after which the change
from one phase to the other would proceed like a
recrystallization. The extra free energy needed,

to form such a nucleus would not be excessive
and the probability of its occurrence would be
appreciable. Bragg and Williams state that they
have estimated the probability that a nucleus

forms per unit time and that it is of such an order
of magnitude that no appreciable hysteresis
would be expected.

Ep

I

Tp T3
TEMPERATVRE

Fro. 32. Hysteresis loop for temperature hysteresis.
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The experimental evidence on these points,
which at present is none too conclusive, is
presented in Part II, Section 18.

D. AdaPtation of the idealized theory to actuality

So far in our theory, the atoms have been
rather vague entities. They have been assumed to
be distinguishable so that we could designate
them by letters A and B and all their physical
properties were exemplified by one or more of the
three quantities s, v, and Vo. Now alloys are far
too complicated to be adequately described by
such a simple system; and as we shall see in

Part II, they frequently depart from theoretical
predictions made on this basis. In order to draw

the theory nearer to reality, more of the charac-
teristic properties of the metals forming the
alloy must be included. In the following sections
we describe sorpe preliminary steps made in this
direction.

I2. The origin of the ord.erinl, ' energy

The theory of the origin of the ordering
energy is not at present very advanced. Hume-
Rothery"N "L has presented a valuable qualita-
tive picture based on the ideas of strain in the
lattice due to the presence of the two species of
atoms. He notes, as we did early in this part, that
superstructures are characterized in general by a
tendency for like atoms to keep apart. This can
be understood by supposing that one type of
atom distorts the lattice of the other type and
that the energy of distortion is least when the
strain is distributed as evenly as possible. This
leads to an eRective short range repulsive force
between like atoms and brings about the general
kind of arrangement met with in superlattices.
Burne-Rothery relates the strain in the lattice to
the difference in size of the two atoms. If this
diRerence is very small, the strain will be small
and the ordering force so slight that super-
structures do not form. On the other hand, if the
difference is too great, the energy of mixing the
metals w'ill be positive and they will be relatively
insoluble in each other (case of "unfavorable size
factor"); under these conditions the solid solu-
tions will be dilute and no superlattice will form.
Only when the diRerence in size of the atoms lies
in a certain restricted range will both the
ordering energy and the solubility be favorable to

the formation of a superlattice. Hume-Rothery's

qualitative picture has so far been supported by
experimental findings. However, the possibility
of making quantitative predictions on its basis
seems remote, and we expect that accurate
theories will be founded on the quantum-
mechanical electronic theory of metals.

Mott"L has made a quantum-mechanical cal-
culation of the energy of the superlattice in
P-brass. A detailed discussion of Mott's work,
which would involve the modern electronic
theory of metals, is beyond the scope of this
review. He finds that the principle terms in the
energy arise from the exchange repulsion between
the ions and from electrostatic eRects due to the
fact that Cu agd Zn ions do not possess equal
charges in the alloy. His estimate of the energies

per gram atom are:

Electrostatic
Energy due to exchange repulsion
Total energy (calculated)

while he estimates that experiment gives

Total energy (observed) less than

620 calories
300 calories
920 calories

990 calories.

His work also enables him to discuss the
validity of the nearest neighbor assumption and
he concludes that it is a good approximation to
consider energies between nearest neighbors only
but that the value of the interaction energy is not
independent of the state of order but decreases
with decreasing order. This will lead to increased
abruptness in the rapid approach to disorder
with rising temperature and may account for the
fact that the peak, 5.1R in the anomalous specific
heat for P-brass, shown in Figs. 4 and 35, is
considerably higher than the values, 1.78R and
2.21R, predicted by the nearest neighbor theory
for the body-centered lattice, Table I. It is also
evident from Mott's work that the energy of
interaction between nearest neighbors will depend
upon the composition. A further study of this
question would be of considerable interest in
explaining and analyzing curves of critical
temperature versus composition such as Fig. 39,
in Part II, Section 15.

An improvement of agreement between theory
and experiment has been eRected by Chang. 37~

He achieves this by the introduction of inter-
actions between next nearest neighbors into
Bethe's theory. This procedure leads to a theory
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which has two adjustable parameters that can be
varied independently in order to alter the pre-
dictions of the theory. Vhth the theories of the
origin of the ordering energy in their present
state, we regard results obtained by the intro-
duction of further parameters more as an indi-
cation of possible types of behavior than as an
explanation of experimental findings.

13. The effect of lattice vibrations

In the introduction to Part I, we stated that
independence of the lattice vibrations and state
of order would be assumed. This assumption is
dictated by simplicity and a lack of knowledge as
to what connection is to be expected. Some
experimental evidence, cited in Part II, Section
20, shows that elastic properties, and conse-
quently lattice vibration frequencies, are affected
by the state of order. In this section we shall see
how various kinds of dependence of Debye
temperature on state of order may alter the
symmetry about 50 atomic percent and may
create or suppress latent heats.

Entropy of lattice vibrations
If the lattice vibrations depend upon the state

of order, then their free energy must be added to
the configurational free energy and the total free
energy minimized to find the equilibrium state.
In the free energy for the lattice vibrations,
however, there is only one term which can depend
on the state of order; it is the part of the entropy
associated with the Debye temperature. This
term may easily be found from the expression for
the free energy of a harmonic oscillator. "
Letting 8 be the Debye temperature, whose
value for the state of perfect order is 8I, and
chosing the zero of entropy as the state of perfect
order, we 6nd

4L, (8) =3R ln (8r/8). (13.1)

This expression is so important in the following
remarks that we shall derive it by a simple
physical argument. Ke are interested in temper-
atures well above the Debye temperature so that
we may consider the energy of each of the 3N
modes of vibration to be AT, independent of the
value of 8. Hence the energy term in the free
energy does not depend on order and can be

"See for example Mott and Jones, 36M, p. 2.

disregarded. Now the spacing of the energy levels
of the normal modes is proportional to 8—we
assume that all frequencies vary in the same
proportion as 8 varies due to changing order.
Hence if 1 and 2 are two states of the system and
8~/82 is greater than unity, then the energy levels
are more closely spaced for 2, and there mill be
more ways of distributing the energy among the
vibrational modes. In fact there will be 8~/82

more ways for each mode and consequently

(8 /8 )3% (13.2)

Energy versus total entropy curves

The relationship between configurational
energy and entropy, henceforth denoted by
4,(E), was discussed in Sections 3 and 4. Due to
the assumed relationship between the Debye
temperature and state of order (we are here sup-
posing that the effect due to thermal expansion
can be separated off), we can consider 4 r.(8) as a
function of the configurational energy and plot it
on the same set of axes. Curves 1 to 6 in Fig. 33
indicate schematically some possible types of
behavior. Curves AB and AB3 correspond to the
configurational curves for those compositions.
They are drawn, as is described in Section 3, in
accord with the ideas underlying Bethe's and
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VIG. 33. Possible behaviors for entropy of lattice vibra-
tions and the effect upon AB and AB3 cases.

more ways in all. Hence the dift'erence in entropy
between 1 and 2 is

4 s —4 $ ——k ln (8g/82)' = 3R ln 8y/8s. (13.3)

This is equivalent to the expression already given.
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KirkwcNd's theories so that the maximum

entropy occurs with the energy, Eo, corresponding
to the purely random state, with short range
order 0=0. Energies above Eo correspond to
negative values of cr ', they have less entropy than
the random state and represent arrangements
having like atoms clustered together.

The entire order dependent part of the entropy
for a given configurational energy is found by
adding the configurational entropy, 4,(E) and
the entropy of lattice vibrations, Cr, (E). De-
noting this total entropy by C r(E), we have

C r(E) =C 1.(E)+C,(E). (13.4)

C» is then a definite function of the energy
E, and the new energy-entropy curve completely
specified.

The simplest dependence of CL, upon E is a
straight line as indicated by 2 and 5. In this case
the inHuence of lattice vibrations is just to
change the temperatures at which various stages
of disorder are reached. Curve 2 which has
increasing entropy with increasing disorder
favors the destruction of the superlattice and
lowers the temperatures. We find in accordance
with Eq. (3.7) that the temperature correspond-
ing to a given value of the configurational energy
is determined from

i d@'r dC e dC L, i 1
+ =—+, (13.5)

T dE dE dE To TI.

where To is the temperature obtained by neg-
lecting the lattice vibrations and TJ. is slope of
the E vs. C I. line. We see that T is less than To
when TI. is positive so that the effect of the
lattice vibrations is to shift the order-disorder
transformation to lower temperatures. T=
corresponds to

(13.6)

Thus for this case the high temperature state is
not random but corresponds to a negative value
of To, implying that it is past the maximum

entropy state on the configurational curve and
corresponds to negative short range order.

A negative slope for the straight line tends to
make states of high order more stable and thus
shifts the transformation to higher temperatures.
T= ~ corresponds to a positive finite value of
To in this case so that the random state is never
reached and the alloy preserves a certain amount
of its order to very high temperatures.

The effect of curvature in the C& line is very
interesting. As we have discussed above, latent
heat is due to an inward curvature in the
energy-entropy curve, as is indicated to a very
exaggerated extent on the AB3 curve. Calcula-
tions in the Bragg-Williams approximation show
that this curvature is very slight indeed, conse-
quently Cl. curves like 1 or 4 when combined
with AB3 may entirely remove the reentrant
portion and suppress the latent heat. The curve
ABC+1 on Fig. 33 illustrates this. On the other
hand CI, curves like 3 and 6 will increase the
reentrant portion and increase the latent heat.
Thus a curve of type AB, which has no latent
heat by itself, may acquire one when combined
with a C I, curve like 3 or 6, which will give rise to
a reentrant portion for C q. Other possible
behaviors will occur to the reader; however, it
does not seem worthwhile at present to elaborate
these speculations.

Some preliminary calculations by the writers'~
indicate that certain features of the Cu-Au
system may be explained by arguments along
the following lines. The CL, curve for CusAu is
weakly of type 4. This will tend to raise the
critical temperature, decrease the latent heat and
prevent complete disordering at high tempera-
ture. On the other hand for CuAu3, tII is nearly
independent of order. Hence the critical tempera-
ture for CuAu3 will be lower than for Cu3AU,

perhaps so much lower that the ordering process
is frozen out to a considerable extent above the
critical temperature thus accounting for the
absence of a strong superstructure in CuAu3.

PART II. EXPERIMENTAL STUDIES OF SUPERSTRUCTURES

The theories discussed in the foregoing pages
have dealt principally with two attributes of the
order-disorder transformation: the state of order
itself, and quantities of the nature of energy. We

shall now discuss measurements of the energy of
transformation as well as determinations of
specific heats at various temperatures, and
compare with them the theoretical predictions.
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FK'. 34. Speciac heat-es, -temperature for a Cu3Au alloy
is shown by the curve (0}.The curve (y) is calculated
from the speci6c heats of Cu and Au assuming a pure
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We shall follow this discussion with a description
of the results of x-ray analysis of the nature of
the ordered structures and compare these experi-
mental results with the demands of theory,
recalling that the nearest neighbor conception
demands that an ordered structure be so arranged
that any given atom will be surrounded by the
largest possible number of unlike neighbors.

The theories also predict, in some simple cases,
how the "Curie point of order" —the temperature
where long distance order begins on cooling—
should vary with composition. Again we shall
compare these predictions with the experimental
results. Finally we shall discuss the effect of
order on various mechanical, magnetic and
electrical properties of alloys.

Section 14. Energy content measurements

Accurate measurements of the specific heats of
order-disorder transformations yield direct data
which can be compared with the theoretical
predictions given above. The method of mixtures,
commonly employed to determine the specific
heats of solid bodies at high temperatures, fails to
yield suf6ciently accurate data to compare with
theory, especially in the interesting region near
the Curie point of order. A modification of the
Nernst vacuum calorimeter has been devised by
Sykes"R ""and his collaborators, and a some-
what similar modification independently by
Moser, " in order to obtain accurate specific
heats at various temperatures. Sykes' modifica-
tion consists essentially in using a specimen in the
form of a closed hollow cylinder placed inside and
thermally insulated from a second closed cylinder
of copper. The outer cylinder is heated by the
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Fto. 35. Specific heat-vs. -temperature for a p-brass con-
taining 50.4 atomic percent Zn.

usual resistance wound furnace while the inner
one, the specimen, is heated independently by a
small auxiliary heating coil. By suitable adjust-
ments of the heating currents, the two cylinders
can be held at about the same temperature, and
the radiation losses consequently minimized.
From the knowledge of the energy input to the
coil inside the specimen and the resulting rate of
temperature rise of the latter, and with aid of
certain corrections (for radiation losses and the
like) the true specific heat values at various
temperatures are obtained.

Figure 34 gives the "anomalous" specific heat-
ss.-temperature curvessa (curve with open circles)
for a CusAu alloy which had been previou. ly
ordered by slow cooling at the rate of 30'jhour
from 450'C. The curve marked by solid circles
was obtained by taking the experimentally de-
termined specific heat values of Cu and Au and
assuming the law of mixtures (Kopp-Neumann
law) to be valid for the alloy. The observed
specific heats did not depart appreciably from the
thus-computed values below 225'C; at this
temperature we infer that the divergence away
from perfect order commences. The specific heat
curve had a maximum at ca. 391'C, the Curie
point of order. Above this it does not drop
directly to the Kopp-Neumann line but ap-
proaches it towards higher temperatures. Thus
there is an anomalous specific heat above as we11

as below the Curie point.
Figure 35 is a similar curve for P-brass, taken
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FIG. 36. Specific heat-es. -temperature for a series of
Cu-Zn alloys. A is for a pure cx-brass containing 36.80
atomic percent Zn. 8, C, D, refer to alloys in the a+p
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respectively.

from the work of Sykes and Wilkinson, 37P showing
in considerable detail the behavior near the
Curie point of order. Fig. 4 of the introduction
was obtained by Moser, 36~ also for P-brass; it
covers a larger temperature range than Fig. 35.
On the latter figure we note that the drop of
specific heat beyond the peak is spread over a
range of about 10'C. We return to this point
below when comparing values on these curves
with theory.

In Fig. 36 we give specific heat curves"P for
several other compositions of Cu-Zn alloys. These
have 1ess Zn than the P-brass of Fig. 4, and lie in

the o, +P field so that the alloy does not consist of
a single phase of P, as it did in Fig. 4, but of a
mixture of the P-phase and the o.-phase The.
lowest curve is for the pure O.-phase; it shows a
kink in the specific heat curve at cc. 200'C, which

is not understood. The second curve corresponds
to a mixture of a and P consisting chiefIy of a. The
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FK'. 37. Energy of transformation-vs. -temperat ure for
Cu3Au.

higher curves correspond to more Zn and hence a
larger proportion of P. The peak in the curves is
due to the P-phase and increases in height with
increasing quantity of P; however, since the
P-phase does not alter its composition appreci-
ably the Curie point of order does not change.

The energy of transformation of an alloy can
be obtained by integration of the specific heat
curve, or it can be determined directly by simply
measuring the energy necessary to transform the
partially ordered specimen from a temperature 1
to a temperature immediately above the Curie
point of order. Fig. 37 depicts such an experi-
mentally determined curve"H for a Cu3hu alloy
along with the theoretical curves discussed above,
as predicted by the Bragg-Williams and the
Bethe-Peierls theories. In Fig. 38, we give the
energy of transformation-vs. -composition for a
series of Cu-Zn alloys, as determined by Sykes
and Wilkinson. "P The increase in the energy of
transformation with increasing zinc content in
the two-phase o.+P field is again due to the
increasing amount of the P-phase. The curve
shows, however, for the first time how the energy
of transformation varies as a function of compo-
sition for pure P-phase alloys not possessing the
composition, CuZn, necessary to give the ideal
superlattice. We note that the energy necessary
to transform the alloy from a highly ordered
state at 240'C to the disordered condition at
500'C increases as the zinc content approaches 50
percent, i.e. , CuZn. Easthope's theoretical re-
sults, shown in Fig. 25, predict that the energy of
transformation at the copper-rich side of the
P-phase field, ca. 45 atomic percent Zn, should be
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0.78 times that of a CuZn alloy. The experi-
mental results of Sykes and Kilkinson yield 0.75,
in quite good agreement.

On comparing the theoretical predictions with
the experimental specific heat curves, we note a
general qualitative agreement with the results,
shown in Fig. 13, of Bethe and Kirkwood for
alloys of 50—50 atomic compositions, e.g. , P-brass,
in particular regarding the high specific heat
above the Curie point of long distance order. The
Bragg-VA'lliams theory, as given above, requires
the configurational specific heat to vanish for
temperatures above that point. The same general
behavior is to be seen in Fig. 34 for a CueAu alloy.

The agreement between theory and experiment
for the specific heats immedia/e/y below 1, is not
very satisfactory. Sykes and Jones"n report the
configurational specific heat at this point for
well ordered Cu3Au, free from out-of-step do-
mains, to be 62.0R whereas the Bragg-Williams
theory gives (Table I) the value of 2.4R. The
experimentally determined value for p-brass is
5.1R, whereas the theory of Bragg and Williams
gives 1.5R, Bethe's first approximation 1.788,
and Kirkwood the somewhat higher value of
2.218. Ke note that alloys become disordered
more rapidly immediately below T, than the
theories predict.

The numerical aspect of this disagreement
between theory and experiment must not be
taken too seriously, however, for the specific
heat, being a derivative, will be drastically
aAected by small errors in the theory. We notice
that for the simple cubic lattice, the Bethe and
Kirkwood theories diverge by a factor of two. An
explanation due to Mott has already been given
(Section 12); he predicts on the basis of the
electronic theory of metals that the effective
ordering force will decrease more rapidly than
any of the other three theories predicts. This
process will result in a more abrupt disappearance
of order with a consequently higher peak in the
specific heat.

The rapid downward slope, or fall in the
specific heat-ss. -temperature curve of p-brass for
the temperature region immediately above T, is
thought to be due to the breaking up of coherent
long distance order into small partially ordered
domains. This explanation is analogous to that
given by Mott.and Potter'~M to explain the similar
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Fro. 38. Energy consumed in transforming a series of
Cu-Zn alloys from 240'C to 500'C.

behavior in the specific heat curve of pure Ni
above the magnetic Curie point. Sykes38~ states
that such behavior is generally observed in order-
disorder transformations.

The curves of energy of transformation-es. -
temperature lend themselves better to a com-
parison between theoretical and experimental
values in the vicinity of the Curie point. Fig. 37'

shows the theoretically and experimentally de-
termined values for such a transformation in
Cu3Au. Again the alloy disorders more rapidly at
temperatures near the Curie point of order than
either the Bragg-%illiams or the Bethe-Peierls
theories predict, whereas the agreement is much
better at lower temperatures. The relationship
between the critical temperature and the energy
required to transform an alloy from some lower
temperature to just above that critical tempera-
ture is nearly that given by the theories. The
experimental value for RT„/F(T,+) is 2.60,
compared to 2.19 for Bragg-williams and 2.38
for Peierls, as given in Table I.

As was discussed in Part I, Sections 1, 2, 4 and
7, a latent heat was predicted from the work of
Bragg-%'illiams, Bethe, Peierls and Shockley for
all atomic percentages save 50—50. Sykes and his
collaborators have reported the presence of latent
heats for Cu3Au"H and MgCd'~ alloys whereas
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the transformations in p-brass"p and Cu~Pd"n
display no indication of a latent heat. Of these
four cases of experimental evidence, the Cu3Au
and CuZn alloys agree with the theoretical pre-
dictions, whereas CulPd and MgCd do not.

One way of explaining these discrepancies has
been suggested in Section j.3; it was there shown
that the manner of the dependence of the Debye
temperature upon the state of order has an
inHuence upon the presence or absence of latent
heats. Although the correct explanation may be
entirely different, measurements of Debye tem-
peratures for these alloys mould be of con-
siderable interest.

The entropy changes associated with the de-
struction of the superlattice have been calculated
by the various theorists, and their results are
given in Table I. These quantities are only the
configurational entropies, effects due to lattice
vibrations, electronic specific heats, etc., being
disregarded. For Cu3Au Sykes and Jones "n
estimate a change in entropy from perfect order
to the state just above T, amounting to 0.408 per
gram atom. Table I gives the corresponding
quantity p(T, +) as 0.562R by the Bragg-
Williams theory and about 0.468 by Peierls'
theory. Peierls' value is lower than Bragg and
Williams' by virtue of the local order still present
above T, ; according to Bragg-Williams theory
the state just above T, is entirely random. The
fact that the experimental value is smaller than
Peierls' value may indicate that the short range
order is even greater than predicted by Peierls. In
Fig. 37 there is another disagreement with
Peierls: the experimental latent heat is smaller
than he predicts. As pointed out above, the
latent heat may be very sensitive to the behavior
of the Debye temperature, and in Section j.3 we
showed how the entropy and latent heat would
both be reduced by such eEects. The corre-
sponding entropy change for p-brass has been
estimated by Sykes and %'ilkinson by extrapola-
tion for the 50—50 composition, CuZn, as 0.5j.R.
As in the preceding case, it turns out to be less
than the predictions of 0.698 by the Bragg-
Williams theory and 0.658 by the theories
(including short range order) of Bethe and
Kirkwood.

The agreement between theory and experi-
ment for the P-brass transformation, although
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Fio. 39. Critical temperature of order-os. -composition.
Dashed curve represents this relationship as given in the
theory of Easthope.

not exact, was sufficiently impressive to make the
presence of a superstructure acceptable to most
investigators; quite recently this conclusion has
been definitely confirmed by the x-ray evidence
of Jones and Sykes. '"
Section 15. Curie point of long distance order as

a function of composition

Early investigators noted that what we today
call the Curie point of long distance order
depends on the composition of the alloy. Even
small deviations in composition from the simple
atomic ratio necessary to form an ideal super-
lattice entail a change in the Curie temperature.
For the Cu&u region the available data'r" ""
indicate that an excess of either metal tends to
lower this critical temperature of order, T,. The
theories based on the nearest neighbor assump-
tion do not predict a maximum in the critical
temperature at this composition; and for the
reasons stated in Part I, Section 7 we believe
this disagreement is due not to the mathematical
approximations but rather to certain physical
properties, neglected in the theory, which are
characteristic of the Cu-Au system. This view is
supported to some extent by evidence from other
systems, for instance Cu-Pd in which ordered
structures form at compositions just to one side
of CuPd but apparently not at all at that com-
position itself. 32~

The full line in Fig. 39 is the curve of critical
temperature of order vs. composition for the
p-brass phase as reported by Sykes and Wilkin-
son '~ We note a falling o6 in T.with decreasing
zinc content as we proceed away from the
composition Cuzn. The dashed cu,rve, depicting
the behavior of T, as a function of composition
for a body-centered alloy as predicted by the
theory of Easthope presented in Part I, Section
6, shows rather good agreement between theory
and experiment.
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Section 16. Ordered structures

Before discussing the ordered structures which
have now been shown to exist in alloys, we shall
review brieAy the principal predictions of ordered
structures made by theory. Although this intro-

FK'. 40. Ordered structures (A) CusAu, (8) CuAu:
open circles, Au atoms; solid circles, Cu atoms; (C) CuZn:
solid circles, Cu atoms; open circles, Zn atoms.

duction will serve as a basis for comparison
between theory and experiment, its primary
purpose is to describe in detail several important
superstructures.

In the Part I, Section 5 we showed how in
three cases the nearest neighbor assumption leads
to de6nite ordered structures. In brief outline
this comes about as follows: according to the
nearest neighbor assumption the atoms tend to
form unlike pairs, the energy of the crystal being
in fact (—o) times the number of unlike pairs, so
that the lowest energy state corresponds to a
maximum number of unlike pairs. For con&-

position ABin the body-centered lattice this condi-
tion of maximum number of unlike pairs or
minimum energy leads to the CsCl structure.
In this structure every atom has only unlike
nearest neighbors and the structure, shown in
Fig. 40(C), is clearly uniquely determined. For
composition AB in the face centered lattice, th-e

theory leads uniquely to the arrangement of
Fig. 40(B). Here each atom has eight unlike and
four like neighbors; it is impossible to get all
neighbors unlike without changing lattice type.
Any arrangement in which atoms have fewer
than eight unlike neighbors would have higher
energy according to theory, and therefore could
not be the stable low temperature state. The
third superstructure occurs for composition AB3
and the equivalent AsB in the face-centered
lattice. In Fig. 40(A) we see it; each atom of the
less abundant species is completely surrounded
by unlike neighbors —obviously a condition of
minimum energy. For the body-centered lattice
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Fro. 41. Orthorhombic CuAu. Heavy lines outline unit
cell. Open circles, Au atoms; solid circles, Cu atoms.

of composition ABs or AOB there is no prediction
of a de6nite superlattice and it is possible to
arrange the atoms in many ways all having the
minimum energy. In the following discussion we
shall see cases where the above predictions are
fu1611ed and others where they are not. These
latter cases exhibit the failure of the simple theory.

The alloys of the Cu-Au system form an
isomorphous series of solid solutions and crystal-
lize upon a face-centered lattice. According to
our theory there should be superstructures at
CusAu, CuAu, and CuAu3. The first two com-
positions conform to prediction, as has been
shown by the x-ray investigations of Johansson
and Linde;"" but only inconclusive evidence of
a superstructure has been obtained for the
third. "E The CusAu structure is, seemingly, just
as predicted by theory. It has cubic symmetry
and may be described by saying, as was done in
Part I, Section 7, that three of the four simple
cubic partial lattices, into which the face-
centered lattice can be resolved, are of pure Cu
and the fourth is pure Au. Resolving in the same
way for the CuAu structure, we say that two of
the partial lattices are Cu and two are Au; and
the arrangement of atoms, as shown in Fig. 40(B),
has tetragonal symmetry, the fourfold axis being
perpendicular to the alternating planes of Au
and of Cu atoms. The actual lattice has this
tetragonal symmetry, and exhibits a slight dis-
tortion of the lattice sites from the cubic arrange-
ment of the orderless alloy: in the ordered alloy,
the axial ratio a/c is 1.080.lcm Ordered structures
like this have been found by Johansson and
Linde for alloys having compositions from 47 to
53 atomic percent Au, which were annealed in
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the temperature range 400'C to 200'C. In all of
these, except of course the one which is exactly
50—50, there are extra atoms of Cu or Au above
those needed to form the superstructure. These

FIG. 42. {A) Trigonal CuPt. Alternate {111)planes are
occupied by Cu and Pt atoms. {8}Illustrates the dis-
tribution of excess Pt among the Cu {111)planes of the
CuPt structure for the CusPt5 alloy.

apparently take up random positions in the
lattice. This and cognate questions will be dis-
cussed in connection with the dependence of
resistance upon composition.

Another superstructure, entirely diAerent from

any predicted above, has also been reported for
the Cu-Au system by Johansson and Linde. "E
It occurs for the just-mentioned tetragonal-
lattice alloys, 47 to 53 atomic percent Au, when

they are rapidly cooled after annealing between
410'C and 420'C, and also for alloys having
between 36 and 47 or between 53 and 65 atomic
percent Au which are annealed in the tempera-
ture range 400 C to 200'C. This decidedly com-
plicated structure possesses orthorhombic sym-
metry; in Fig. 41 a unit cell is outlined by the
broad black lines. We note that this ortho-
rhombic structure can be thought of as formed
from the tetragonal lattice of Fig. 40(B) by step
shifts which occur at every 6fth atom along the
L010$ direction, with the indicated structures
extending indefinitely in the [0017 and L100]
directions. An alloy containing 50 atomic percent
Au possessing the orthorhombic structure goes
slowly over into the tetragonal lattice when
annealed at temperatures between 200—380'C.
This structure, insofar as it is like the tetragonal
form, agrees with the nearest neighbor assump-
iton, but the change-step boundaries introduce
extra pairs of like nearest neighboring atoms.

Two other systems which, like Cu-Au, form
an isomorphous series of solid solutions in their
high temperature disordered states are Cu-Pd

and Cu-Pt. The ordered alloy Cu3Pt, like Cu+u,
conforms to theory and has the cubic structure
of Fig. 40(A). Ordered CuaPd was formerly
thought to possess precisely the same structure,
but recent observations'~ indicate that a slight
distortion of axial ratio invests it with tetragonal
symmetry, the arrangement of atoms being
otherwise apparently the same as for Cu3Au.
For other compositions, even more difference
from Cu-Au is observed. As for ordered CuPt,
although it has a structure of alternate planes of
Cu and of Pt atoms, they are not (100) planes
but (111) planes. This structure was first ascer-
tained by Johansson and Linde"" and has
trigonal symmetry as is shown in Fig. 42(A).
For it each atom has only 6 unlike neighbors,
instead of 8 as for the CuAu structure, and the
nearest-neighbor assumption is seen to fail.
Linde" I has recently extended the studies to
include other compositions in the CuPt region.
He hnds that alloys containing more Pt than 50
atomic percent tend to take the excess Pt atoms
in preferred positions, i.e., the additional Pt
atoms go into the (111) planes formerly wholly
occupied by Cu atoms and furthermore are
distributed in such a way as to be surrounded
by Cu atoms in the manner shown in Fig. 42(B).
This structure would be expected to exist for a
composition of CuePt&. As to CuPt alloys con-
taining excess Cu atoms (i.e., 51—60 atomic
percent Cu) there is evidence that they exhibit
a random distribution of the Cu atoms among
the Pt planes of the CuPt structure. This is in
agreement with our inferences from data (pre-
sented below) of electrical resistivity as a func-
tion of composition (Fig. 49), it being found that
ordered alloys with excess Pt atoms possess a
resistivity much lower than the same alloys
when rapidly cooled, whereas the resistivities of
the annealed alloys with excess Cu atoms (51 to
60 atomic percent Cu) tend to approach those of
the rapidly cooled alloys. For Cu-Pd alloys with
between 37 and 48 atomic percent Pd, there is a
more drastic change 2'~ '7~ the disordered face-
centered cubic alloys alter their lattice type upon
cooling and become ordered body-centered alloys,
the structure being of the P-brass type described
immediately below.

Among the most interesting of the ordered
structures developed from the random body-
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the p- hases of various alloy systems. On the greater percentages of Al, we note that in t e
basis of such analogies one would thus expect to annealed specimens t-e a it'
t e -p ases o v

"nd ordered «ansformations in P AgM-g P Ag-» distribute themselves among the b an posi-
Agcd and P Auzn. Superstructure hnes have tions, the distribution becoming equal at about

al«ady been obs«v«" fo" t"e &-Agzn p as 40 atomic percent Al. At the composition FeA
which shows it to be similar to the ordered both rapidly cooled and annealed alloys acquire
p-brass. an ordered structure of the P-brass type wit

Other interesting ordered structures resulting the cube centers occupied by Al atoms and t e
from the transformation of a random body- corners by the Fe atoms. Here again the Al

Phas a e tho e Fea " atom surrounds itself with the maximum number
FeA1. The ordered regions in the Fe-Al system of unlike neighbors
have been subjected to a very careful x-ray A structure similar to Fe~l has been ob-
studyby Bradley and Jay.""Theystudied alloys servedm~s in the Fe-Si system at the composi-
containing up to 50 atomic p rcent Al in both

tlon Fe Si
the ordered and random states.

Among other ordered structures of interest
are the close-packed hexagonal structures of

notations permitting us to describe brieAy the
distributions of the atoms among the designated
1 tt'ce sites as we pass to alloys containing
greater percentages of Al. In Fig. 43(B) we show
a plot, after Bradley and Jay, of the percentage
of indicated positions occupied by Al atoms as a
function of composition for both annealed and ~P
quenched alloys. The full-drawn line up to 18
atomic percent Al, marked abed, indicates an =b
equal distribution of the Al atoms among the
abed positions for both rapidly cooled and
annealed alloys. At 18 atomic percent Al Bradley
and Jay observed a diffuseness in the x-ray
diffraction lines of the lattice which they at-
tributed to the onset of order in the annealed
alloys. They observed no superstructure lines in
the annealed alloys until a composition of 24
atomic percent Al was reached, at which point
they estimated that about 62 percent of the 6

' '
ns were occu ied by Al atoms, the FiG. 43. (A) Enlarged cell with positions indicated in

the manner necessary to describe the distribution of Al
atoms in ordered Fe-Al alloys. (8) Distribution of Al atoms

slow cooling produces among the four indicated positions c, b, c, d. Full line up
to 18 atomic percent Al depicts distribution for botthe Fe3A1 ordered t uctu e e e about
rapidly and slowly cooled alloys. From 18 to 38 atomic

~ positions are occupied by Al percent Al, lines marked (Q}refer to rapidly cooled alloys,percent o e po
'

and lines marked {x) refer to annealed alloys. The line
from 38 to 50 atomic percent Al refers to both rapidly andcube diagonal one meets A1 atoms at alternate slowly cooled alloys.
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Mg3Cd, "~ with the following distribution of
atoms
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Section 1V. Phenomena which ~ay indicate the
degree of order

(a) The degree of long distance order in a
highly ordered alloy, free from out-of-step
domains, can be determined with a fair degree
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Fro. 44. Out-of-step domains.

,0~0 3~~
and the similar structures of MgCd337~ and
Ni3Sn. "0 Laves and Moeller"~ have also ob-
served hexagonal dose-packed ordered structures
in the quasi-binary system Mg-AgCd3 in the
composition region from 37 to 70 atomic percent
Mg. A somewhat more complicated structure
has been reported by Rahlfs"N for Ni2MgSn and
P-(CusNi)3Sn. The unit cell is similar to that of
p-brass but twice as large. Bradley and Lu"o
have recently reported a superstructure for
tetragonal Cr2AI. This structure forms upon the
body-centered cubic lattice; and, if we consider
planes of the (100) type, which are formed alter-
nately of cube corners and of cube centers, we

6nd that every third plane contains Al atoms and
the remaining planes Cr atoms.

The Heusler alloy, Cu~MnAl, in the ferro-
magnetic condition is highly ordered, 34~ and
according to Bradley and Rodgers" the atoms
have the following distribution in a body-
centered cubic cell

of accuracy by comparing the-intensities of the
x-ray suyx, rstructure lines with the lines of the
normal lattice. An example has been given by
Bradley and Jay~~~ in their thorough studies of
the Fe-Al ordered alloys, from which they were
able to deduce the percentage of lattice sites of
each type occupied by Al atoms. We gave a
graphical representation of their results in Fig.
43(B). Ageew and Shoyket"" have given corre-
sponding curves for a CuAu alloy.

When an alloy is only partially ordered and
small out-of-step domains are present, many
disturbing factors arise, rendering a quantita-
tive determination of the degree of order difFicult

if not impossible. Borelius, Johansson and
Linde'~ discussed this difficulty as far back as
j.928. In Fig. 44 we reproduce from their paper a
drawing depicting such out-of-step domains.
Such a situation might easily arise in an alloy
such as P-brass. At the onset of order the Q.-sites

might be occupied by copper atoms in one part
of the crystal and by zinc atoms in another
part. . In the face-centered cubic lattice, exempli-

fied by the CusAu alloy, there are four partial
lattices, any one of which can be the particular
partial lattice onto which the Au atoms might
order. Here the relatively great complexity makes

it a good deal harder to reason from the x-ray
pattern to the degree of order than in the simpler
case of P-brass. These so-called out-of-step
domains form at random throughout the body
of the alloy, and increase in their internal degree
of order as well as in size. When two nuclei

which are out-of-step meet under certain con-

ditions, they coalesce into one coherent ordered
scheme. This is thought to take place in a manner

analogous to the grain growth in metals com-

monly called grain-boundary migration. 36~

(b) The presence of small ordered nuclei re-

sults in a diffuseness in the superstructure lines,
which makes it extremely dif6cult to obtain the
ratio of the intensity of the superstructure lines

to the lines of the normal lattice. Thus such
measurements, for alloys not possessing a co-
herent scheme of long distance order, are of
little value in ascertaining the degree of order.
Sykes and Jones have used the diffuseness in the
superstructure lines to determine the size of these
nuclei, utilizing the Scherrer equation which
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correlates the size of the particles with the width
of the lines of its x-ray diffraction-pattern.

(c) Another method proposed for estimating
the degree of order is based on the fact—
discovered by Johansson and Linde""—that the
lattice of a Cuhu alloy changes from cubic to
tetragonal when ordering occurs. Immediately
below the Curie temperature of order, the axial
ratio —the measure of the "tetragonality" —is
a '. c=1.067, and it continues to increase with
decreasing temperature until, when the alloy is
in a highly ordered state, it reaches ca. 1.080.
Borelius and his collaborators have utilized the
values of the axial ratio as a quantitative
measure of the degree of order of the alloy, and
feel that it is the most reliable measure of the
degree of order available from x-ray data. This
feeling rests on the assumption that it is the
ordering which causes the deformation of the
cubic structure, resulting in either the tetragonal
or orthorhombic lattice. The fact that the
tetragonality increases with increasing degree of
order must be taken as support of Borelius'
assumption, but otherwise there is very little
evidence to substantiate it. X-ray diAraction
patterns of alloys quenched from temperatures
immediately below the Curie temperature of
order often show the presence of both the
random cubic and partially-ordered tetragonal
Cuhu 30K, 32H

(d) Still another method proposed for esti-
mating the degree of order consists in measuring
the electrical resistivity which, as we have shown
in the introduction, is drastically affected by
ordering. In the use of such measurements one
must take into consideration the contribution of
normal thermal agitation to the electrical re-
sistance. The same objections, however, can be
raised to this method of measurement as were
raised above to the use of the intensity and
width of the superstructure lines, for electrical
resistivity also is inHuenced by the size and
irregularity of the partially ordered nuclei.
Sykes and Jones, however, have shown that
ordered domains must attain a size comparable
to the mean free path of the conduction electrons
before this infIuence commences. The existence of
anti-phase or out-of-step domains of larger sizes
would tend to contribute some degree of dis-
orderliness and consequently give rise to a

g ew'Ik F (18.1)

Here S' represents the potential barrier which

higher resistance than one would obtain from a
crystal possessing a uniform coherent scheme of
long distance order throughout. Like intensity
measurements of the x-ray superstructure lines,
however, electrical resistivity measurements
yield a fair measure of the degree of long distance
order for a uniformly ordered alloy free of small
anti-phase nuclei.

The presence of order in alloys is indicated in
other ways than by x-ray and electrical re-
sistivity measurements.

(e) Among physical properties affected by
order is the magnetic susceptibility; this is
found in the Cu-Au alloys, which we discuss in
some detail below. Uery little information has
been obtained to date, however, permitting a
correlation between the magnetic properties of
alloys and the prevailing state of order.

(f) The ordering phenomenon in alloys, whether
of the long or short distance type, is also almost
always accompanied by a diminution in volume.
Since the volume change can be measured with a
relatively high degree of precision, accurate
measurements of this kind will also probably
prove valuable as a measure of the degree
of order.

(g) The knowledge of the energy necessary to
transform a partially ordered alloy in equilibrium
at a temperature T to the random state immedi-
ately above T„along with the knowledge of the
energy necessary to transform a highly ordered
alloy into the random state, might also be of
some value in ascertaining the degree of order.

Section 18. Behavior of alloys not in therm~1
eqmilib~am

Relaxation tinge

The equilibrium state of order in an alloy
comes into existence by atomic interchanges of
the type responsible for diRusion. A theory of
the process based on this conception was pre-
sented in Part I, St:ction 10. It was there shown
that the deviation of the system from the state
of equilibrium diminishes exponentially with a
certain characteristic "time of relaxation, "
This time is dependent on the temperature and
has the form
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Thai. E II.

TEMPERATURE, 'C

361
350
321
300

r, IN HOURS

8.7
14.4
64.0

212.0

TABLE III.

TEMPERATURE, C

340
330
320
300
280

T, IN HOURS

5.0
6.9
8.3

12.9
19.0

taking into account the dependence of tempera-
ture T upon time t and to use these solutions to
work backwards from the experimental results to
find 7.. The results of such a process are given in
Table III.

must be surmounted for interchange to take
place.

Each state of order is the equilibrium state of
order for a certain temperature 8, which we shall
use in our argument to stand for the state.
If the actual tempera, ture T is greater (less)
than 8, the degree of order is too great (too
small) for the condition prevailing, and tends
toward the state corresponding to T. In terms of
8 and T the "relaxation equation" is

d8/dt = (T 8)/r— (18.2)

Sykes and Evans" measured resistivity in
order to ascertain the rate of approach of a Cu3Au
wire to equilibrium at a number of different
temperatures. In Table II we give a few of their
values of r for relaxation at several different
temperatures.

A graphical plot of log r vs. (1/T) gav—e a
straight line relationship from which one ob-
tained a value of A = 10 " sec. and W/X
=19,100'K for the constants of Eq. (18.1).
These values are of the order predicted in
Part I, Section i.0 by the Bragg-Williams theory.

Sykes and Evans have also made measure-
ments at constant rates of cooling. In order to
6nd the relaxation time from these, it is necessary
to investigate solutions of the equation

(d8/dt) = (T 8)/Ae~t'r, —(18.3)

A graphical plot of these data also gave a
straight line relationship between log v and
1/T, but with quite different values of W/k and
A: 8250'K and 10+'4' sec. A comparison of the
value of r and the derived constants as deter-
mined by the two methods show a disagreement
too large to be accounted for by experimental
error. Thus for 300'C, 7- as determined for
relaxation at constant temperature was found to
be 212 hours whereas the value of ~ as deter-
mined from cooling at a constant rate is j.2.9
hours. This disconcerting fact can be rationalized
by saying that the alloy possesses two kinds of
relaxation times, which are separately obtain-
able by diA'erent experimental processes. There
is nothing in the theory of relaxation time pre-
sented above which could account for this. In
that theory, however, one coherent scheme of
long distance order was assumed.

Irreversible cycles
The theories of Bethe and Peierls, based on

the nearest neighbor assumption, lead one to
expect the formation of local domains of order
at temperatures much above the Curie point of
long distance order. The quenching of alloys
from temperatures above 1, would then leave
these local domains of order in the quenched
specimens at room temperature. The higher the
temperature of quench, the less should be
the amount of local order found in the specimens.

Sykes and Jones"H made specific heat measure-
ments on a CuaAu alloy quenched in water from
450'C, which appeared, from electrical resis-
tivity measurements to be in a perfectly random
state. The resistivity of the quenched alloy,
measured at room temperature, fell on the
extrapolation to room temperature of the linear
portion of the resistivity-vs. -temperature curve
for temperatures above the Curie point of order
(see Fig. 5). X-ray diffraction patterns displayed
no superlattice lines. The specific heat measure-
ments disclosed, however, that considerable local
ordering had taken place. In Fig. 45 we reproduce
such a specific heat-vs. -temperature curve, dis-
playing the onset of the release of configurational
energy at temperatures as low as 60'C, much
below the point (230'C) where it had previously
been supposed that atomic interchange ceases.
The amount of energy released between 60'C
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FIG. 45. Specific heat-es. -temperature for a Cu3Au alloy
previously quenched in water from $50'C.

and'230'C was greater the higher the tempera-
,ture of quench. Back-reAection x-ray diffraction
patterns of specimens which had been heated at
130'C for two hours, releasing a considerable
portion of the configurational energy, still failed
to show any superlattice lines. VAres of the same
alloy on being subjected to a comparable thermal
treatment had resistivities characteristic of a
disordered alloy. Sykes and Jones conclude,
from studies of the width of the first super-
structure lines to become detectable, that the
ordered domains must have linear dimensions of
at least 5.5 10 ' cm or 14-20 atomic distances.

These interesting experiments show that
neither the absence of x-ray superstructure lines,
nor an electrical resistivity such as has been
deemed characteristic of random alloys, are to
be considered as proof that such an alloy is
completely disordered. Specific heat studies
show that such an alloy may possess a rather
large amount of local order, and that in some
cases more than forty percent of the configura-
tional energy is released before ordering is mani-
fested in x-ray and resistivity measurements.

Sykes and Jones assume that the ordered
nuclei grow during the initial dip in the curve of
Fig. 45 and finally touch with the surface layer
of each ordered domain remaining in a random
condition. On assuming that the ordered domains
are cubes with d atoms along an edge, "then to a
first approximation the energy released will be
the fraction (1—6/d) of the total energy provided
the energy of any atom is fixed only by the
identity of its immediate neighbors. " From such
considerations Sykes and Jones find the size of
the domains at the end of the second dip in the
specific heat curve of Fig. 45 to be 12 atoms
along an edge, a value to be compared with
14-20 estimated from the width of the super-
structure lines. By similar means they estimate
the size of the ordered domains at the end of the
first dip to be 6—8 atoms along an edge.
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In Fig. 46 we show resistivity-vs. -temperature
curves"~ "I for a Cu8Au alloy under various
conditions of heating and cooling. The full dots
refer to the equilibrium condition attained with
extremely slow rates of cooling. The extrapola-
tion of the straight line portion of the equi-
librium curve to the resistivity axis, the point
marked X, coincides with the resistivity value
obtained by quenching the alloy in water from
some temperature above T,. On reheating this
quenched alloy, the resistivity follows the curve
marked with open circles. The resistivity de-
crease produced by ordering did not begin at
60'C, the temperature where heat began to be
evolved in the specific heat-vs. -temperature curve
of Fig. 45, but only at about 310'C, showing
that the formation of the small nuclei which
gave rise to the evolution of heat from 60'C to
230'C does not a8'ect the electrical resistivity.
In the curve marked with squares we depict the
dependence of resistivity on temperature for a
wire of the same alloy cooled at a rate of 30'C/
hour; the alloy is far from being in equilibrium,

TEMPERATURE IN DEGREES CENTIGRADE

FIG; 46. Electrical resistivity-vs. -temperature for Cu, Au.
The curve marked (y) is the equilibrium curve (Fig. 5).
The curve with (O) markings represents the change in
resistivity with temperature on reheating the previously
quenched alloy at a rate of 2'C/min. The (Q) markings
represent the change in resistivity with temperature on
cooling at a rate of 30'C/hour. The curve with (6} mark-
ing show the change in resistance with temperature on
reheating the same alloy at the rate of 30'C/hour.
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for the resistivity is considerably higher (e.g. at
250'C) than the equihbrium value. If the alloy
had been uniformly ordered throughout, it
should on reheating tend to relax toward the
respective equilibrium values. In fact, however,
when the alloy which was previously cooled at
30'C/hour is reheated at 40'C/hour, the curve
(with triangular markings) falls slightly below
that obtained on cooling and has an identical
slope from 250'C to 330'C. Sykes and Evans'"'
explain this beha~ ior by assuming that the alloy
cooled at 30'C/hour was not uniformly ordered
but consisted of small highly ordered domains
which were internally in equilibrium at all
temperatures throughout the cooling period and
also in the heating cycle at temperatures up
to 330'C.

The appearance of different Curie points of
order on heating and on cooling, as derived from
measurements of electrical resistivity, has led
many inv'estigators to insist on the existence of a
real hysteresis. Recent work of Sykes and
Evans'" on a Cu&u alloy has shown that, when
sufFicient time is allowed for equilibrium to be
established, the difference between the Curie
points on heating and on cooling is reduced to a
few degrees. Results have been reported on
CueAu giving the two Curie temperatures as far
as 20' apart, w'hen the rates of heating and
cooling were presumably too great to permit an
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FIG. 48. Electrical resistivity-es. -composition for the
Cu-Pd system. () rapidly cooled alloys, (0) annealed
alloys.

approach to equilibrium. We are not prevented
by the available data from having faith that if
the heating and the cooling could be carried on
slowly enough, the two Curie temperatures
would coincide. Borelius, '~ however, believes that
a real hysteretic e6ect exists in Cuhu and CuPd
alloys; indeed for the latter he reports a difference
of about 100'C.

Section 19. In6uence of order and composition
on the electrical resistivity

In Fig. 5 of the introduction we showed the
effect of uniform long distance order on the
resistivity of a CuaAu alloy. At room tempera-
ture the resistivity R„ofthe rapidly cooled
random alloy, free from large volumes of long
distance order, was found to be 11.4 10 ' ohm-

cm, whereas an alloy cooled suAiciently slowly'
to possess a uniform scheme of long distance
order of high degree, has a resistivity Ro of
4.3 10 ' ohm-cm. In Fig. 47 we show Ro and R„
plotted against composition for the system of
Cu-Au alloys. "E The smooth parabolic curve A

represents electrical resistivity values, measured
at room temperature, as a function of com-
position, for a series of alloys quenched from
650 C. Such alloys should, according to the
discussion above, be free from any domains
possessing coherent schemes of order with dimen-
sions greater than 5.5 10 ' cm along one edge.
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FIG. 49. Electrical resistivity-es. -composition f'or the
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percent Au the annealed alloys possess lower,
and at the critical compositions Cu&u and
CuAu much lower, resistivities than the quenched
random ones. The values at 25 atomic percent
Au coincide with those of Fig. 5 for quenched
and ordered CusAu, respectively. The minima in
the curve for the annealed alloys occur at 25 and
50 atomic percent Au. Annealing of the alloys
in the region from 65 to 85 atomic percent Au
provoked a small increase in the electrical
resistance over that of the same alloys when
quenched from 650'C. This increase might be
due to a segregation. Johansson and Linde"s

These alloys may contaj, n many sxQR11 ar eRS

possessing a high degree of local or short distance
order„but as we have shown above these do not
affect such properties as electrical resistivity.
Curve 8 in Fig. 47 depicts the electrical re-
sistivity values measured at room temperature
as a function of composition for the same alloys
after being subjected to prolonged annealing at
200'C. Such a prolonged annealing treatment at
temperatures below T, but sufFiciently high to
permit atomic interchange should produce co-
herent schemes of long distance order throughout
the composition regions which give rise to
ordered structures. The 6gure shows that in
some regions, those near the pure Cu and pure
Au, Ro and R, coincide: i.e. in these composition
regions there is insuf6cient long distance order to
aR'ect the electrical resistivity. In the com-
position region from about 18 to 65 atomic
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Fro. 50. Age-hardening curve for a Cupt alloy. The alloy
was rapidly cooled before the annealing.

report, however, the presence of very weak
superstructure lines in the region CuAus.

Figure 48 gives a graphical representation of
similar measurements on a series of Cu-Pd
alloys. "~ 32~ Their behavior is similar to that of
the Cu-Au alloys discussed above, except for the
striking di6'erence in the symmetry around the
Cu3Pd and CuPd compositions: prolonged
annealing failed to provoke an ordered structure
in the 50 atomic percent Pd alloy. The ordered
alloy at compositions near. Cu3Pd possesses a
structure similar to the Cu+u, but according to
recent results"I the lattice suBers a slight
distortion producing tetragonal symmetry. The
ordered alloys from 37 to 48 atomic percent Pd
are body-centered cubic structures of the CsCl
type 274 & 35L

In some alloys the atoms in excess of those
necessary to form an ideal ordered structure
distribute themselves in an orderly manner in
the lattice. Such an arrangement might be
expected to RBect the electrical resistivity of the
annealed alloys, and Fig. 49 shows such an e6'ect
in the Cu-Pt alloys. In the above discussion of
Section 16 the structure of the CuPt ordered
alloy, it was mentioned that in ordered alloys
containing greater than 50 atomic percent Pt the
excess Pt atoms took definite positions in the (111)
Cu planes of the ordered CuPt, in such a manner
that at the composition corresponding to Cu~Pt~
each excess Pt atom is surrounded by 6 Cu
atoms (see Fig. 42(B)). On the other hand, the
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excess Cu atoms, in alloys containing more than
50 atomic percent Cu, apparently take a per-
fectly random distribution among the (111) Pt
planes of the ordered CuPt structure. This
conclusion is drawn from x-ray studies of the
structure and is consistent with the nature of
the electrical resistivity-vs. -composition curve
for the annealed alloys. In the region from 50
atomic percent Pt to nearly pure Pt the annealed
alloys possess a markedly lower electrical re-
sistivity than the quenched or random alloys.
The annealed alloys containing excess Cu atoms,
however, show a marked increase in resistivity
with increasing number of excess Cu atoms, and
6nally at about 37 atomic percent Pt the re-
sistivity coincides with that of the quenched
alloy.

From our discussion of Easthope's theory in
Section 5 we recall that it predicts the existence
of a superstructure in alloys containing as little as
1jzth (z is the number of nearest neighbors of
each atom) of the atoms of either kind. There do
not appear to be any experimental cases to which
this theory is strictly applicable. For the body-
centered cubic lattice the limiting atomic per-
centage should be j.2.5; the experimental value,
18 atomic percent Al in the Fe-Al system, shown
in Fig. 43, is higher than Easthope's; furthermore
it arises from next nearest neighbor interactions.
Thus in this case, the nearest neighbor inter-
actions are considerably less operative than the
theory predicts. Easthope's theory was only
intended to be applied to the body-centered cubic
and simple cubic lattices. On applying it, how-
ever, to the face-centered cubic lattice where
s= 12, we note that superlattices begin at ca. 9,
11 and 19 atomic percent Pt, Pd and Au,
respectively, in alloys of these metals with
copper. These values are to be compared with 8.5
atomic percent according to the formula 1/z.
Kith the theory in its present state, especially
with respect to the dependence of ordering energy
upon order and composition, no signihcant
conclusions can be drawn from a comparison of
the predicted and observed values.

Ke shall point out in a later section how
electrical resistivity measurements may be used
as a criterion for establishing the presence of an
ordered phase.
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FIG. 5 1. Effect of plastic deformation on the electrical
restistivity of a Cu&Au alloy.

Section 20. Effect of order on mechanical proyex-
ties

It was observed by Nowack" that the
annealing of a rapidly cooled CuPt alloy, con-
taining 50 atomic percent Pt, provoked an
increase in hardness, as measured with the Brinell
hardness test, which was similar in many respects
to the age-hardening behavior of precipitation-
hardening alloys. In Fig. 50 we show a curve
obtained by annealing a previously quenched
CuPt alloy, which increases in hardness with
increasing time of anneal. The quenching retains
at room temperature the random high tempera-
ture structure and the annealing treatment
provokes an ordering of the alloy. Thus the
highly ordered CuPt possesses a greater hardness
and tensile strength than an alloy of the same
composition in the random state. Similar be-
havior has been observed for CuAu, CuPd and
to some extent for a Cu3Au alloy. "~ Sachs and
Keerts"E report that the shear stress at the
elastic limit of a Cu&u alloy suffers a decrease on
ordering of approximately the same percent as
does the electrical resistivity.

Rohl, "0 working in Gruneisen's laboratory,
made measurements on the effect of order on
Young's modulus, a much more fundamental
property than hardness and tensile strength, in
several alloys known to order on annealing. He
found that Young's modulus increased on order-
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FIG. 52. Efkct of plastic deformation on the electrical
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ing for CusPd and CueAu phases whereas it
decreased on ordering for the CuAu and CuPd
alloys.

Section 2I. ESect of plastic deformation on order

Dehlinger and GraPO+ proved that plastic
deformation of an ordered CuAu alloy destroyed
the order, by 6nding that the superstructure lines
were absent from the x-ray diEraction pattern
given by the plastically deformed alloy. Schafer33H

observed a similar behavior on plastically de-
forming a FeAI ordered alloy. This behavior has
been shown even more convincingly by Dahl36~

for a CuaAu alloy, and has been used by him, as
well as more recently by Linde, "K to show the
presence of an ordered phase where the existence
of such a structure escapes detection by other
physical tests.

Severe plastic deformation of most pure metals
and random solid solutions produces only small
changes in electrical resistivity. The change is
about 2 percent for most pure metals such as Ag,
Cu, Al, Ni and for random solid solutions such as
the iron-nickel alloy of 35 atomic percent Ni.
Some exceptions have been reported: an 18
percent change in the case of the rather brittle
metal tungsten, and a 50 percent change for
molybdenum. However, such a brittle metal as
tungsten cannot be considered to display the
same response to mechanical deformation at
room temperature as most of the more plastic
metals and alloys. Fig. 5j. depicts the eHect of
cold working or plastic deformation on the
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electrical resistivity of a CucAu alloy. cc~ As a
measure of the degree of cold work we plot the
percentage reduction in cross-sectional area of
the CucAu wire on being drawn through the
drawing dies in the cold. working operation.
Curve A of Fig. 51 represents the change in
resistivity as a function of the degree of cold
work for samples of the alloy which were
quenched in water from an elevated temperature
in order to retain the orderless state, before
subjecting them to plastic deformation. We note
that even after severe cold working the change in
resistivity is less than two percent, as is to be
expected from the cold working of a random
solid solution. Curve 8 depicts the change in
electrical resistivity as a function of the degree of
plastic deformation for samples of the same alloy
which, previous to the cold working operation,
were annealed at a low temperature to develop a
highly ordered condition. The two curves illus-

trate in a striking way the effect of plastic
deformation on long distance order in an alloy as
manifested by its effect on electrical resistivity.
To judge from the resistivity, the coherent
ordered structure was completely destroyed
after 60 percent reduction in cross-sectional area.
X-ray diffraction patterns taken at various
stages in the cold working process displayed
decreasing intensity of the superstructure lines
with increasing degree of cold work, and their
ultimate disappearance at about 60 percent
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reduction in cross-sectional area. Such a sub-
stantial increase in resistance with severe cold
work has been observed in all cases studied where
a superstructure was originally present.

In Fig. 52 we give results recently published by
Linde, "K showing how such studies can be used
for ascertaining the presence of ordered struc-
tures in the Cu-Pt system. Curve A of that
figure refers to the change in resistivity eRected
by cold working of an annealed Cu-Pt alloy
containing 80 atomic percent Pt. Fig. 49 shows
that there is also a marked diRerence between the
electrical resistivities of the alloy of this compo-
sition in the quenched and annealed conditions.
Curve 8 of Fig. 52 depicts similar measurements
made on an annealed alloy containing 25 atomic
percent Pt, known from x-ray studies to possess a
superstructure similar to that of Cu3Au.

At this point we wish to explain the significance
of the points marked by circles and crosses for the
random alloys of Fig. 49. Linde"K found that
cold working applied to some of the quenched
alloys, containing greater than 50 atomic percent
Pt, produced an increase in resistivity. %'henever
in Fig. 49 a cross and an open circle appear at the
same abscissa, they give the resistivity of the same
alloy before and after cold w'orking respectively.
Thus in alloys of these compositions, even such
drastic cooling as is achieved by quenching in
water from 900'C is not sufhcient to prevent
some degree of ordering. The smail degree of
order which forms in spite of the drastic cooling
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Fix 55. Diamagnetic susceptibility-es. -composition for
the Cu-Au system, ( ) rapidly cooled alloys (&() annealed
alloys.

seems then to be destroyed by cold working, so
that presumably only cold worked specimens are
representative of the random alloys.

In the Fe-Ni system the eRect of cold working
on the resistivity has been investigated by DahP'~
with a view to drawing inferences as to presence
of a superstructure. He found that Ni and
Fe-Ni alloys containing less than 35 atomic
percent Ni suRer only slight changes in resistivity
on cold working, whether the specimens had been
annealed or rapidly cooled,"but that all alloys
containing between 40 and 90 atomic percent Ni
suRer a change in resistivity greater than would
be expected were the alloys already in the
orderless state before being subjected to the cold
working treatment, the maximum occurring at
about 75 atomic percent Ni. At any composition
the change AR on cold working is greater for
alloys which had been previously annealed for
prolonged periods of time, a treatment which
would be favorable to the formation of a super-
structure, than for alloys which had been slowly
cooled in a furnace from 900'C. Alloys quenched
from 900'C also display a similar change, hR
being greater than would be expected for the
plastic deformation of disordered alloys. These
data, along with the general behavior of the
electrical resistivity of Fe-Ni alloys of this
composition-range for the rapidly cooled and
annealed states without cold work, are indicative
of a superstructure in the NiaFe region. The
nearness to equality of the scattering powers of
Fe and Ni atoms for x-rays, makes it almost if
not quite impossible to detect any superstructure
by x-ray analysis.

Dahla~ has extended this type of study to
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another interesting system, the Ni-Mn alloys,
where the presence of a super+, ttice %'ould aga1n
escape detection by virtue of the nearly identical
scattering powers for x-rays of the constituent
atoms. Here, for alloys initially subjected to
various heat treatments, he follows the eRects of
cold work not only on the electrical resistivity
but also on the magnetic properties. Fig. 53
depicts the change LR in resistivity on cold
working for annealed and rapidly cooled wires of
a Ni-Mn alloy containing 25 atomic percent Mn.
It is small for rapidly cooled mire, whereas the
annealed wire (like ordered CuIAu) exhibits a
large value. In Fig. 54 we give Dahl's magnetic
measurements carried out on the same alloy
similarly treated. The NisMn alloy is non-
ferromagnetic when it has been rapidly cooled,
and this remains the case even after severe cold
working; but if it has been annealed, it exhibits
strong ferromagnetic properties which are pro-
gressively destroyed with increasing degree of
cold work. %e shall return to the discussion of
the eRect of cold work on superstructures later in
reviewing the various criteria for establishing the
presence of an ordered phase.

Section 22. ES'ect of order on ~agnetic properties

I'eromagnetic end diamagnetic alloys
The inRuence of order on the magnetic prop-

erties of alloys was 6rst reported by Vogt and
Seetnann29s for the alloys CuaAu and CuAu. The
full line of Fig. 55 depicts the diamagnetic
susceptibility of a series of orderless Cu-Au
alloys. Ordering the Cu3Au alloy irtcreased its
diamagnetic susceptibility by some 18 percent
whereas ordering CuAu provoked a decrease of
about the same amount. Since measurements
were made only on tmo states assumed to be
those of perfect order and perfect randomness,
they do not indicate how the magnetic sus-
ceptibility depends on the degree of long distance
order; nor is it known whether the presence of
short distance or local order a8ects the magnetic
susceptibility. These magnetic measurements
were made before the existence of local ordering
had been established. The alloys to which the full
curve refers were assumed to be in the disordered
state because superstructure lines were not ob-
served or resistivity values corresponded to those
of a disordered aHoy.
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On Fig. 56, ee show how magnetic suscepti-
bility depends on composition for a series of
orderless Cu-Pd aHoys. "~ With addition of the
strongly paramagnetic Pd to the weakly diamag-
netic Cu the alloys become at 6rst more strongly
diamagnetic, until the concentration reaches
about 25 atomic percent Pd, at which point the
curve turns upwards and rises rapidly toward the
high paramageetic value of pure Pd. On ordering,
alloys with compositions near Cu3Pd and CuPd
display an increase in diamagnetic susceptibility;
the greatest change for the CuPd region occurs
at about 37 atomic percent Pd, and progressively
less change takes place in alloys with increasing
Pd content. It is of some interest to point out
that the minimum in the electrical resistivity
curve for ordered alloys in the CuPd region
occurs at 47 atomic percent Pd, whereas at this
composition order produces the smallest change
in the magnetic susceptibility. In the CuiPd
region, on the other hand, the maximum degree
of order as determined by x-ray measurements
occurs at about 17 atomic percent Pd, the same
point where ordering provokes a maximum e6'ect
on both electrical resistivity and magnetic
susceptibility.
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Egect of order on ferromagnetic alloys
In Figs. 53 and 54, we presented evidence

indicative of a superstructure in the alloy Ni3Mn.
The annealed alloy shows the phenomenon of
saturation, with a magnetic moment even greater
than that of pure Ni; whereas the same alloy in
the rapidly cooled state is not even ferromagnetic.
The saturation of annealed alloys is shown in
Fig. 57."6 Here we see the magnetic intensity at
saturation for a series of Ni-Mn alloys when
rapidly cooled and when annealed at 450'C.
Annealing substantially increases the magnetic
intensity at saturation in alloys containing
greater than 17 atomic percent Mn. In the
composition region from 24 to 35 atomic percent
Mn, annealing changes a nonferromagnetic alloy
into a strongly ferromagnetic one. The presence
of a superstructure has not yet been established
by x-ray means. Nevertheless, the indirect evi-
dence clearly indicates the presence of a super-
structure in this alloy when annealed. This
structure is clearly associated with the strongly
ferromagnetic state.

Some interesting data have been reported by
Jellinghaus"n on the relationship between order
and ferromagnetic properties in a Fe-Pd alloy
containing 50 atomic percent Pd. The alloy after
rapid cooling had a coercive force of some 2
oersteds, which on annealing for 15 hours at
500'C increased to 260 oersteds and on further
anneal finally reached a steady value of 150
oersteds. The annealing treatment provoked a
change from the face-centered cubic structure of
the rapidly cooled random alloy to an ordered
tetragonal structure similar to that of CuAu.
Other observers, 3'K however, report that they
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6nd a superstructure only in the Fepd3 region.
Jellinghaus"n also reports the presence of an
ordered structure in an alloy containing 50
atomic percent Fe, 45 atomic percent Pt and 5
atomic percent Rh, of the CuAu tetragonal type.
With this ordered structure is associated a
coercive force of 1400 oersteds and a remanence
of 3700 gauss.

The alloys of chromium and platinum con-
taining from 20 to 50 atomic percent Cr have
been observed"6 to be ferromagnetic, with the
maximum in the curve of saturation-mag-
netization-vs. -composition occurring at about 30
atomic percent Cr. The saturation intensity is
influenced by the heat treatment, the annealed
alloys exhibiting higher values than the rapidly
cooled ones. X-ray examination showed no evi-
dence of superstructure lines for alloys containing
less than 40 atomic percent Cr; beyond 40 atomic
percent there were such lines, increasing in
strength with increasing proportion of Cr. In this
system the ferromagnetism is clearly not associ-
ated with a high degree of coherent long distance
order, since the alloy containing 30 atomic
percent Cr, where superlattice lines are not
detectable, displays the highest ferromagnetic
saturation.

The famous Heusler alloys have been shown by
recent investigation to have an ordered structure
associated with the ferromagnetic state. Bradley
and Rodgers, '4~ Heusler~~ and others have
shown that an alloy of the composition Cu2A1Mn
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is ferromagnetic when rapidly cooled from about
600'C after annealing and is highly ordered. %e
have already given the structure of this ordered
phase as determined by Bradley and Rodgers.

Fallot" has used magnetic measurements to
detect and study ordered structures in the alloy
systems Fe-Si, Fe-A1, Fe-Cr, Fe-V, Fe-Au and
Fe-Sn. In Fig. 58 we reproduce Fallot's measure-
ments of 0'p/o'pgp, the ratio of magnetic saturation
at O'K to that at 290'K, on alloys of the Fe-Si
system containing up to about 30 atomic percent
Si. For annealed alloys the curve displays pro-
nounced discontinuities at 12.5 and 25 atomic
percent Si. The latter composition corresponds to
the well-known Fe3Si ordered phase. The plot of
the ferromagnetic Curie point vs. composition,
shown in the same figure, likewise displays a
break at 25 atomic percent Si. Fallot also regards
the change in the direction of the Curie point-vs. -

composition curve at 12.5 ato~ic percent Si as
of some significance, In general he considers the
occurrence of singular points, such as appear at
12.5 and 25 atomic percent Si in the curves both
of p'p/0'pgp and of the magnetic Curie point as
functions of composition, as indicating the
presence of ordered structures. Independent
x-ray evidence"~ has established the presence of
an ordered structure at 25 atomic percent Si, but
we know of no conclusive x-ray evidence indicat-
ing a superlattice at 12.5 atomic percent Si. Fallot
finds a similar break at 25 atomic percent Al in
the two comparable plots for the Fe-Al alloys,
well known to form ordered structures. Ke feel
that similar evidence might be used to supple-
ment other data, but such evidence as is pre-
sented by Fallot must be considered, at least for
the present, to be insufhcient when taken alone to
establish the existence of a superlattice.

Some of the permanent magnet alloys have
been shown"I '~~ '~U ~' to display a super-
structure when in the magnetically hard state.
An example is the so-called Mishima alloy, "K
containing Fe, Ni and Al. Burgers and Snoek"~
have shown, however, that the coercive force is
not proportional to the intensity of the super-
structure lines. We do not consider it established
that the presence of a superstructure is re-
sponsible for the magnetic properties, although
the increase in magnetic hardness provoked by
annealing is accompanied by a superlattice.
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Section 23. Criteria for establishing the presence
of ordered structures

As we have already intimated, in alloy systems
where the component atoms have almost identical
scattering powers for x-rays the presence of an
ordered structure would, under the usual x-ray
investigations, escape detection because of the
faintness of superstructure lines. These lines
arise, as we described in the introduction, by
virtue of the fact that although the x-rays scat-
tered from the a-sites are 180' out of phase with'

the rays scattered from the P-sites, the difference
in scattering powers of the two atoms prevents
cancellation of the rays. If the component atoms
possess not very diHerent scattering powers
for x-rays, the lines may be too faint to be
discerned; whereas when the di6'erence in scat-
tering power is sukciently great they are rather
intense, as for the ordered CupAu alloy of Fig. 2.

It is however a fact, and an important one,
that even though elements adjacent to eacI
other in the periodic table have scattering-
powers nearly the same for most wave-lengths,
yet there are small intervals of wave-length for
which there is a marked difference; and judicious
selection of the x-ray wave-length to be used has
in some cases made it possible to detect super-
structure lines when the Cu or Fe Xo, radiations,
which are ordinarily used in such investigations,
failed to show the presence of the superlattice.
Fig. 59 depicts the atomic scattering curves f'or
Zn and Cu as derived from experimental data of
Bradley and Hope"s for Fe, taken from Jones and
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Sykes, '~~ along with the additional knowledge
of the critics absorption wave-lengths for Cu
and Zn. Jones and Sykes, on the basis of the
data in Fig. 59, selected Zn X0. radiation as
being of a wave-length suck that 1t would be
scattered by Cu and Zn atoms with suScient
difference in intensity. By using the radiation of
a Zn anticathode 61tered through copper, these
investigators were able for the 6rst time to
obtain superlattice lines from ordered p-brass.
Bradley and Rodgers'~ had previously used the
same policy of selecting a suitable x-ray wave-

length for the study of the Heusler alloys in

order to assign de6nite locations to the Cu and
Mn atoms. An exact knowledge of the atomic
form factor curves should be of great assistance
in the selection of a suitable anti-cathode ma-
terial for studies of systems where the component
atoms have similar scattering powers.

Many indirect means are also extremely useful

in establishing the presence of an ordered
structure. In alloy systems consisting of iso-

morphous series of solid solutions, annealing after
quenching decreases the resistivity of composi-
tions which form ordered structures, as illustrated

by Figs. 47, 48, 49 and as observed in the Ni-Mn
and the Fe-Ni alloys also. One must consider this
as indicative of the formation of a superstructure
in the composition regions where such an eHect is
observed. Two such regions are found in the
Ni-Mn system, one about the Ni3Mn and another
about the NiMn compositions. In the Fe-Ni
system the efkct is observed in alloys containing
35 to 90 atomic percent Ni.

Changes in the electrical resistivity of a
homogeneous solid solution on cooling, similar to
the change shown for CueAu in Fig. 5, can also be
used to indicate the onset of an ordering process.
Since similar changes in electrical resistivity are
also provoked by ferromagnetic changes, how-

ever, one must exercise great caution in the use of
such data.

The drastic changes in the electrical resistivity
of ordered alloys provoked by plastic deformation
can also be used in many cases to indicate the
presence of an ordered structure. The fact that
appreciable changes in resistivity also occur in
molybdenum and tungsten on cold ~orking
forces one to proceed cautiously in interpreting

data of this sort, but we feel that changes of the
magnitudes shown above for CuIAu and Cu-Pt
alloys can be taken to indicate strongly that a
superlattice is being destroyed by plastic defor-
mation. It was such data that led Dahl, 36~

ss was discussed by one of us, "T to consider the
possibility of an ordered regice. around Ni3Fe.
The behavior of the electrical resistivity and
magnetic properties on cold working a previously
annealed Ni3Mn alloy permits a similar inter-
pretation.

The nature of the P —P' transformation in the
Cu-Zn system was 6rst suggested by Tammann
and Heusler'~ from rather crude speci6c heat
data. The accurate speci6c heat work of Sykes
and his collaborators, "I "I "P along with the
resistivity-vs. -temperature characteristics, agree
so we11 with the Bragg-Williams theory that it
has been customary in recent years to think of
this transformation as of the order-disorder type.
Only recently has this viewpoint been con6rmed
by the x-ray studies of Jones and Sykes"~
mentioned above. We consider similar specific
heat measurements to be of real value in es-
tablishing the nature of many transformations.

Magnetic measurements such as those reported
by Fallotee~ may also be mentioned as having
some possible value when further confirmatory
evidence is accumulated. The break in the
OQ/ORQO curve of Fig. 58 at 12.5 atomic percent Si
is certainly similar in nature to the break at 25
atomic percent Si where x-ray evidence has
established that a superstructure exists. We feel,
however, that much further conhrmation must be
obtained before real significance can be attached
to such breaks.
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order is possible not only in lattices bu. t also in
the literature of lattices, although between the
two cases there exists the iInymtant and lamen-

table difference that the transformation of dis-
order into order liberates energy in the metal-
lurgical but absorbs it in the literary case.

APPENDIX 1.SIMPLIFICATION OF THE NEAREST NEIGHBOR ENERGY EXPRESSION AND ENERGIES OF FORMATION OF ALLOYS

Relationships between the Q'I

Consider a lattice containing N atomic sites each sur-
rounded by z nearest neighbors; the tota1 number of pairs
will then be

A A
A —B A —B

A A
lesser energy difference 2e

A A
A —A B-B

A A
greater energy

&=&»Q»+~a«Qgra+&»Q»
FA&AAQ FWBBQy

which reduces to

E~ p&AB —$(~~+~SB)jQLB.

It is best to define a new quantity

~ = k(~m+~aa) -+~a-

In terms of e the energy is

(A1.6)

(A1.7}

(Ai.8)

(Ai.9)

The meaning of t/'is indicated in the diagram below:

(A1.1)

Let Q be made up of Q~, Qgg, and Q~g pairs of the different
types. Next imagine that a model of the alloy, consisting of
wooden balls and wooden rods representing the atoms and
the lines between pairs, is pulled apart into pairs, each
pair carrying with it 1/zth of a ball at either end. Each
AA pair then has the fraction (2/z) of an A ball, etc. If
the total numbers of A and B balls in the model are FgN
and FgN then we must have

FgN = (2/I) Q»+ (1/s) Q», (&1.2)

~s&= (2/1)Q««+0/1)Q» +& 3)

Ke can solve these for the like neighbor pairs:

Q~z = F~Q —kQ~s,

QBB=FBQ $QAB

Let us next consider the energy of the alloy as compared
to the energy of two pure crystals of A and B from which
it could be made. The energy of a crystal of pure A with
FgN atoms will be e~ tunes the number of pairs, which is
(z/2) FgE= FgQ. Hence the energy in question is

%'e see that e must be positive or else there will be tendency
at low temperature for the alloy to separate into two com-
ponents of pure A and B, contrary to the assumption that
we are dealing with an alloy which forms a superlattice at
low temperatures.

Energy versus composition

Random state.—For the random state 'the probability
that any site is occupied by an A atom is Fz and that it is
occupied by a B atom is Fz. Hence the probability that
any two adjacent sites are occupied by an AB pair is
2FgFg, the factor of two corresponding to the two possi-
bilities AB and BA. Hence the fraction of AB pairs is
2F~F~ and the energy is

8{random) = —2eQFgFg
= —NezFgF~.

{A1.10)

Best ordered state.—Due to the symmetry about SO

atomic percent we need consider only Fp~F&. The lowest
possible energy corresponds to a maximum value for Qgg&

and by Eq. (Ai.4) to a minimum of Qgg. The least possible
value of Qgg is zero, and this can be attained for the body-
centered lattice: consider the perfectly ordered AB case;
in it there are no AA pairs and Qgg is zero. If we replace A
atoms by B atoms without rearrangement, thus never
producing AA pairs, then all values of Fg less than one-half
can be attained with Q~=O. Hence, from (Ai.4) and
(A1.9), we have

E= —eQgg —2eQFg = —Mezz. {Ai.i 1}
This equation applies for Fz~$ for the simple cubic and
body-centered cubic lattices. For the face-centered lattice,
the situation is complicated because for Fz&$ it is im-
possible to avoid AA pairs. This leads to the kink at 25
atomic percent A in Fig. 23. A detailed establishment of
the curve is given in reference 38C.

APPKNDIx 2. BETHE s FIRsT APPRoxIMATIoN

The consistency condition

Ke suppose that the interior consists of one a-site and
the boundary of z p-sites and that no two- p-sites are
nearest neighbors. Let the ordering energy of the exterior
be u so that the relative probability of an A atom in the
boundary compared to a Batom is given by the Boltzmann
factor

exp ( «/kT) a- (A2.1)

Let us arbitrarily choose e~~e~g e and @~=0„this is

legitimate according to Eqs. (Ai.s) and (Ai.9) for the
reasons given in Section 2; i.e., it gives e for the value
of $(egg+ega) —o~. Hence the Boltzmann factor weight-
ing unfavorably the occurrence of a wrong (that is, an
AA or a BB) pair compared to right (i.e. an AB}pair is

exp (-e/k T) =x exp (-4Eg/RTz). (A2.2)
Assume that the central atom is A, a right atom. Thea

the relative probability, r, of finding e wrong A atoms in
the boundary is the u priori probability of e wrong atoms
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times the Boltzmann factor. The 6rst is given by binomial

coefhcient, the number of ways of arranging n wrong

A atoms in z sites. The second is e"x". Hence

g&xtl {A2.3)

Assume that the central atom is 8, a wrong atom.
Then, by similar reasoning the relative probability of
finding n wrong A atoms in the boundary is

gÃx» Q (A2.4}

r;= ~~ r„=(1+ex)»
n.-o

and for being wrong

(A2.5)

m;= g m;=(~+x}'.
n-0

(A2.6)

Hence the normalized probability of the center atom
(which is on an a-site) being right is

because in this case each of the z —m right 8 atoms in the
boundary gives interaction e with the wrong interior 8
atO1Tl.

Accordingly, the total relative probability for the in-
terior atom being right is

Instead of using r =rp, we use m =mp and multiply
through by (r;+m;). This gives

m; =axr;/{1+ex) +~zv;/(e+x}.

Dividing by r; and collecting terms with m;/r;,

(A2.9)

(
e+x 8-g ~»—1

1+EX
(A2.11}

Where the new variable 8 = (u/k T}/2(z —1) has been
introduced for convenience in solving Eq. {A2.11) for x.
We find

sinh {z—2}8x=
sinh zb

(A2.12)

Figure Ai shows a plot of the right side of this equation
for z=6, the simple cubic lattice. For 8 greater than
about 0.5, the right side of Eq. {A2.12) differs negligibly
from the function exp (—2b), shown dashed. Hence for
low temperatures, that is, small x and large 8, we find

ln x = —o/k T——28 = —u/k T(z —1) or u = (z —1)e. This is
just the ordering energy which should be exerted at low
temperatures upon an atom in the boundary due to its
(z —1) right neighbors in the exterior. It is seen that
values of x greater than x„

R'; X ex1— {A2.10}
r; e+x r; (e+x} {1+ex}

Substituting the values for m; and r; we readily find

ra =ra/(r;+m;). (A2.7) x, = 1—2/z, (A2. 13)

Oxr1', 4Q/g

(1+ex) (e+x), (A2.8)

From this we can 6nd rp = 1 -mp, the probability of finding
a 8 atom on a 19'-site. By the symmetry described in the
text, we must have r~=rp, this consistency equation can
now be used for determining u, or rather the equivalent
quantity e.

We next calculate the relative probability of an atom in
the boundary being wrong. This is equal to the average
number (that is, the statistical mechanical average) of
wrong atoms in the boundary divided by z. The relative
probability of 6nding n wrong atoms in the boundary is
r~+m~. Multiplying this by ri, averaging, and normalizing
gives

» »

%tv=glop= g +(r +ze'„} g (r„+zy„)
n 0 e~o

S=tanh zB. (A2. 14)

Negative values of S, like negative values of b correspond
to interchange of a- and P-sites. For x greater than x„
there is no solution of this type and we must set e = 1 which
leads to r =rp=zo =~p=$. The critical temperature is
readily found:

and

v/kT, = —ln x,= —ln {1—2/z}

RT,/Zo= —4 —:zln (1—2/z).

(A2.15}
(A2.16)

Evaluation of e

do not occur on the curve. For values of x less than x, there
are two values of 8 which have opposite signs. This corre-
sponds to reversing the sign of u and is in accordance with
the fact that e- and P-sites are equivalent. Shen x and e

are expressed in terms of 8, the qua. ntities r =rp =r and
m =mp=m can be evaluated and S=2(r —,) becomes:

I.Q

0.4-

I I i I L

2= SINH 4d

Ke next consider the order of neighbors. There are z

pairs in the interior and the boundary. For a right center
atom the number of AB pairs is (z —n) and for a wrong
center atom it is e. On the average, therefore the fraction
of pairs w'hich are AB (that is, g by definition (2.9})is

1Z{z—e)r +Zen„
(A2. 1IP')

z r+m;
Hence according to (2.11), the value of Ir, or rather 8/Eo
= (1-o), is found after some algebraic manipulations to be

t I i I-2.Q - 1.0 -I.2 -0.8 -0.4 0 Q.4 Q.S
d = u/Ic T2(Z-I)~ IR 1.8 2Q

FIG. A1. Relationship between 5 and X for Bethe's 6rst
approximation.

4~x 1

zr;+m; 1+ex 1+&*«* '&

2 sinh {z—2)B
sinh (2z —2}b cosh zb
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Calculations of quaatihes at I',
By expansion in series near the critical temperature,

Bethe 6nds the speci6c heat per gram atom just below T,:

between T, and T= ~. The writers have evaluated this
from the simple expression for {1—e) in terms of x as
follows:

dE s,d(1 —e)C/8= dT
——-(ln x)'

($2:-1} log ~ (A2.19)

s{ ) s(r }-f . == —— f—as"( ')—
~1 Rs dx
Zo(1 —~)

C ~C 4Eo x (A2.23)

Above the critical temperature, & =1 and

1—cr =2x/(1+x).

The specific heat just above T, is less by a factor

(A2.20)

8—2= {s/2} —ln (1—1/s)+ ln (1-2/s) R.
28—2

This expression was used in obtaining the entropy values
of Table I.

{3z—2) (A2.21)

than that just below T,.
The fraction of Eo required to reach T, is {1—o,) and

in terms of x, and s it is

2xcE(T,~)/Eo =(1-,) = ' = ~ (A2.22)1+x' s—1

The entropy at T, can be found from the entropy change

g approaches ~
In the Bragg-Williams theory the ordering energy is

dependent upon the order on all the sites in the lattice.
Physically this is equivalent to assuming that every P-site
is a nearest neighbor of every a-site and vice versa. Thus
if the Bethe method is correct, it should converge upon the
Bragg-Williams theory as s approaches ~. Bethe show's in
his work that this is indeed the case.

APPENDIX 3. EXPRESSION FOR THE FREE ENERGY IN TERMS OF THE SEMI-INVARIANTS OF THIELE

We shall here derive the relationship established by
Kirkwoodes& between the free energy and the semi-
invariants. Let the energy of each of the W' allowed
arrangements of the atoms be E;, i =1, 2, ~ ~ ~ 8'. Then by
the partition function method, the free energy is de-
termined from

and

C(x) = e~&*&

d C{x) ~(,)dD{x) C
dD{x)

{A3.8)

The left and right terms of the last equation are expressed
as series in x. Equating coefficients we 6nd

exp (—J"/k T) =Z exp (—Ei/k T). (A3.1) &1=&o4,
Zg =Zo) g+Z1X1,

The value of F defined by this equation can be shown for
our case of large numbers of atoms to dier negligibly from
the value of Fgiven by the most probable value of E; in the
sum.

Consider the equation

golgi eXo+&X,+~+2) g(2~+... (A3.2)

where for brevity w'e let

x = —1/k T. (A3.3)

(A3.5)

If this equation is regarded as an identity in x, it serves to
determine the "semi-invariants" ) i in terms of the E;.The
relationship is established by expanding the exponentials
of the left side obtaining

W W x2W
Z 1+x2 Ei+ —,Z EP+ ~ ~ =e"o+~"~+&+'»'&"~+" . (A3.4)

1 i 1 2 i 1

The sums of the various powers of E; are denoted by

Zp= 51=$'

n —1&a= Z
f8~1

(A3.9)

The value of Xp is easily found by setting x=0: Xp=ln Zp
= ln 5'. Denoting average values over the allowed arrange-
ments by

(E )Av
——Z„/Z,

and mean deviations from the average by

(A3.10}

Q=ln Zp=ln IV,

4=&1/&o =EAv,

X ={E')A„—E „'=S,
4= &E'&Av —&3E')AvEAv+2EAv'= ~3,
)« =~a—3~a'.

(A3.12)

Replacing x by —1/kT we find

——=D( —1/k T) =~——+ + ~ ~ ~ (A3.13)
p 4 &s

kT kT 2!(kT}'

&„=((E—EAv) ")Av = Z &m{ EAv)", (A3.11)
1" n

Zp p m

we 6nd for the first few ) 's:

Letting

and

we can write

Z„=ZEi
i 1

C(x) =Zo+xx, +(x~/2!}z,+
&(x) =Xg+xX1+ (x'/2 1)Xg+ ~ ~ ~

(A3.6)
(A3.1')

and multiplying through by —kT and writing k ln S'=4,
we have

by ha —3hy
2tkT 3!{kT)' 4!(kT)~

which is Eq. (4.3) of the text.
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APPENDIX 4. APPLICATION OF KI1QK%'OOD 8 METHOD

Calcuhtion of the second moment

In calculating the moments needed in Kirkwood's
method, it is convenient to introduce some new variables
associated with the pairs of nearest neighboring sites.
There are IN/2 =Q of these pairs and for each of them we

shall introduce a variable p;, i= 1, 2, ~ ~ .Q de6ned by the
conditions

d(i) =Q(rm —r m~}. (A4.6)

For type (2) there are (N/2) a-sites, for each of these there
are 3(s—1) ways of choosing adjoining P-sites, hence the
number of terms from them is (s—1)Q. The fraction of the
arrangements which leads to p;p; = 1 is r m pup =mr'

(neglecting terms of the order of 1/Ã), hence the contri-
bution to 6 is

p;=1 (if the ith pair of sites are occupied by A atoms),

p; =0 (otherwise}.

d (2) = (g —1)Q(no~ —r'm~).

A similar treatment for type (3) gives

(A4. 7)

For any arrangement of the atoms, the total number of
AA pairs is

Q

Q»= ~p» (A4.1)

= & & {&p'ps)Av —r').

In the sum of the (p»p;)A„ terms, there are four distinct
cases 1

(1) i =j, that is the two sites of p; are the same as the
two s1tes «p».

(2} p; and pg have a common a-site.
(3) p; and pg have a common p-site.
(4) p; and p; have no common sites.

There are Q terms of type (1) in d; for each of them p =1
in a fraction nc of the arrangements, hence (p;~)p„=raand
their contribution to I is

We wish to calculate the value of d~=((E-&all}')Ay
averaged over all arrangements of the atoms with order S.
In terms of Appendix 1 we readily 6nd

~,=4~~((q»~ —(Q»)&~))A„—-4~~~. (A4.2)

Since we are dealing here with a lattice such as the
simple cubic or body-centered, we may divide the sites into
an a-sublattice and a p-sublattice, such that each p;
corresponds to a pair of nearest neighboring sites one in

each sublattice —never both in one sublattice. We further
restrict ourselves to the composition AB, and may write:

r rp=r=(1+S)/2, p0 =ppp=pp=(1-S)/2. (A4.3)

Now consider the pair associated with p;. Its a-atom is
A in a fraction ro of the arrangements and its P-atom is A

in a fraction mp of the arrangements. Since the arrangements
on the a- and p-lattice are independent (we emphasize here
that this is an e priori average and that a correlation be-
tween the lattices owing to the Boltzmann factor is not
implied), an AA pair will be obtained in the fraction
r mp=rm of the arrangements. Hence p; is unity in a frac-
tion ne of the arrangements and zero in the remaining
fraction (1—roe). The average of p; is therefore

(p;)A, = {ne) ~ 1+(1—rm) 0 = rm = (1—5')/4. (A4.4)

By expanding the terms in Eq. (A4.2) we 6nd

0
~= & & ((P"P2)~.—&P )A~&P])I

)rN($rlV —1)
$N($N —1)

(A4.9)

of the arrangements. Combining this with a similar term for
the P-sites gives

r'm'(1 —2/rÃ) (1—2/mN)
(1—2/X)2

= r'm' +0 —,
(A4.10)

Multiplying by Q', thus neglecting terms of order less
than P in the 6nal result, we get

Z(4) =sQ{ZrW' —~).
Hence the value of 5 is

(A4.11)

a =~(1)+a(2)+a(3)+S(4)
=Qr'N'= Q(1 —5')'/16. (A4.12)

Calculation of free energy and allied quantities

When this result is put in the de6nition of b~

~, = &~~Q(1 —5~)~= &X~~(1—5~)2 (A4. 13)

and combined with the value of EA&(S) calculated in

Section 3
zA„(s)=z.(1—5 ) =~~+~(i-s~) (A4. 14)

me obtain

F= —Tc (S)+E&„-s,/2k T+".
=Zp(1 —S') —2'RDn 2 —»(1+S) ln (1+S)

Eg'(1 —S'}'—)(1—5) ln (1—5)g — ' + ~ ~ ~ (A4. 15)
CRT

Kirkwood uses the variable a,

In terms of a

st 2'
2kT RT (A4. 16}

-E/P?kT=on 2 —$(1+5) ln (1+5)
—$(1—5) ln (1—S)j—a(1—5')/2

+ &(1—5&)&/4m+ ~ ~ .. (A4.17)

The condition that F be a minimum for a given tempera-

h(3}= (s—1)Q(r& —rW'). (A4.8)

All the remaining Q' terms of d are of type {4);however in

spite of their greater number, they are individually enough
smaller that their contribution is of the same order as for
(1), (2) and (3).The value of p;p; is unity only for arrange-
ments having A atoms on both a-sites and on both P-sites.
On the N/2 a-sites there are rN/2 A atoms. Two of these
will occur on the designated a-sites in a fraction
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tore is (Bt/85) =0, which leads to
S=tanh yS, (A4.18)

&=~-~'(1—5')/z. (A4.19)
The solution of these equations leads to a nonzero value of
5 only for e greater than a certain critical value a& corre-
sponding to 5=0 and y = 1 in Eq. (A4.19):

o.= isE1 —(1—4s))3. (A4.20)

Values of the critical temperature

T,. =zv/2ka, (A4.21)

computed from this are given in Table I. Kirkwood also
gives equations for energy, entropy, and specific heat,
corresponding to the equilibrium state obtained by
minimizing the free energy:

E/~kT=(~{1-5~)- ~(1-5 }/.}/2
4/Nk = ln 2 —gf(1+5) ln (1+5)+{1—S}ln (1—S)j—~~{1 —5~)~/4z. (A4.22)

C, (1—2a/z)' 1

Nk ~3 —2'�'/z 2z

C/Nk =~~/2z

(A4.24)

(A4.25)

Llxmtmg form as T approkctLes ~&+~~tf

As T approaches ~, Kirkwood's series converge rapidly
and his approximate results become accurate. The limiting
form for the energy is

E/Eo = 1—2Eo/RT (A4.26)

The reader can easily verify that the theory of Bethe also
gives this expression.

C/Nk ' + ~ (A4.23}cosh~ yS-y —2aoS'/z 2s

The specific heat has a discontinuity at a =n, . The larger
and smaller values being, respectively,

APPENDIx 5. CALcULATIoN oF THE ENERGY Versus ENTRoPY CURva FRGM THE FREE ENERGY

I"= F—EA„. (A5.2)

Let the entropy be expressed as a power series in U:

C(U) =4o+Ci U+ 2, + 3I + ~ ~ ~ . (A5.3)

In order to have a similar expansion for E' in 1/T we
write

{AS.4)

The coeKcients in this series are simply related to the ) 's:

+o ———kXo —k ln 8',
4'i =Xi-Ewy =0,
+o= —),g/k = -de/k,
e,=.+x,/k&-+S&/k&,
+4= -g/k& = (—S4+3Zp)/ko.

(AS.t )

In obtaining the relationship between energy and
entropy from the expansion of the free energy given in the
Appendix 3, it proves convenient to shift the zero of the
energy scale to EA„.We let the new energy variable be U

(A5.1)

and the new free energy be

d+(G) d@ (G)
dG dG

{A5.11)

Both sides of this equation are in terms of series in G,
and since it must be an identity in G we can equate coef6-
cients of like powers. Since +i is zero d+(G)/dG has no
constant term„hence we obtain

@'o= -+o,
CiC~=0, or

2l

Ci—-0,
(A5.12)

These equations can be solved for the 4; in terms of the
+; and give for the first few terms

perature and the slope of the energy vs, entropy curve.
This gives

T=d U/de, or G=de{U)/d U. (A5.9)
A third relation follows from the ther modynamical
equation

—'ls(d/dT)(F'/T) = U or U=d%'(G)/dG (A5.10}.
We see that these three equations are symmetrical with
0'{G) and G corresponding to 4{U) and U.

In order to solve these equations we substitute Eq.
(A5.10) in Eq. (A5.8) thus obtaining

U- TC. (A5. /)

Although %i vanishes, 4'g does not. The vanishing of 4'~

would ixnply no spread of energy and hence the trivial case
of a system with constant energy.

One equation relating the various quantities in the above
expressions is the definition of free energy

Co= —eo=k ln 8',
4i %g 0)
4'g = 1/Ng)
@'s = —+3/+s',

3%'P—0'g%'4
4

ii

'kg = 1/4g)
%3= —C)3/4g3,

34)P—4 oC)4

(A5.13)

From it we find

+(G)+C(U) = UG. (A5.8)

Another relation is given by the equation relating tem-

Inserting the values of the +'s in terms of the h~'s and
replacing U by E-EA„and k ln 8' by C(S), we obtain the
expansion of (4.4) given in the text.
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