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1. INTRODUCTION

HE major subjects of this article are two extensions of what formerly

was called atomic theory—that is to say, the attempt to explain as many
as possible of the properties of pieces of matter large enough to be visible
and tangible and ponderable, by visualizing these as swarms of tiny particles
each endowed with only a very few and simple qualities. Among the pro-
perties of gases, for example, are pressure and viscosity and entropy and tem-
perature. Conceivably one might invest the ultimate atoms with all four.
The atomic theory of gases as it stands today, however, is the outcome of a
very different procedure. It is the achievement of an effort to interpret
these four properties and several more as features of an imagined assemblage
of enormously many corpuscles all alike, and not possessing them nor any
others except position and velocity and mass (and moment of inertia, some-
times) and the liability to make elastic impacts with each other. On the whole
the effort has been remarkably successful. Therefore viscosity and tempera-
ture and entropy are not attributed to single atoms, but pictures and ex-
pressions for them are derived as qualities of the assemblage. The theory
which leads to these results is called statistical; it is based on certain assump-
tions which, in the form in which they were originally made, constitute the
classical statistics. The successes of the classical statistics are a part of the
evidence that matter is corpuscular. Once they were nearly the whole of
the evidence, for they antidated the striking demonstrations of individual
atoms which now spring to the mind whenever one is asked to state the rea-
sons for accepting the atomic theory.

Radiation resembles a gas in some respects. Entropy and temperature and
pressure, for example, are properties displayed by radiation when enclosed
in a space surrounded by a wall of even temperature, just as they are by a
gas in a like situation. It seems quite natural that one should tryto interpret
them in the same way as for a gas they are interpreted by the atomic theory:
imagining the radiation as an assemblage of innumerable particles, a swarm
of photons or corpuscles of light. Nowadays at least the idea seems quite
natural; but of course, in the years when no one as yet had broken away from
the tradition that light is altogether wavelike, it would doubtless have been
thought a very wild one. Even after Einstein had ventured such a breach
with the past, nearly a score of years elapsed before there was developed
out of the theory of quanta an adequate conception of the “radiation-gas.”
The historical sequence in the growth of the atomic theory of matter was here
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inverted: there was abundant evidence for the corpuscular theory of light,
in phenomena such as the Compton effect and the photoelectric effect show-
ing the work of individual photons, before the statistical theory of these
corpuscles was perfected. We now see that the trouble was, that even when
one accepts the notion of corpuscles of light without reserve, and even when
one knows the proper values of energy and momentum to be assigned to
these corpuscles, it still is not correct to apply to them the same statistics
as gives such good results when applied to the atoms of matter. Bose dis-
covered how to remodel the statistics, in order to construct a competent
atomic theory of the radiation in thermal equilibrium in an enclosure.

The other of the new extensions of atomic theory is partly a revival—
the resurrection of the theory, first proposed some thirty years ago, that part
at least of the negative electricity within a metal acts like a swarm of freely-
flying corpuscles which collide now and again not with each other bat with
the atoms. It was of course the classical statistics which was always used
in developing this theory. Moribund because of several incurable discor-
dances with fact, the theory was resuscitated by Pauli and by Sommerfeld
with a revision of the statistics. It was not quite the same revision as
enabled Bose to set up an atomic theory of radiation, but a very similar one,
invented first by Fermi and later independently by Dirac. One cannot say
that the so-renovated “electron-gas theory” is a perfect explanation of all
the multifarious phenomena of the flow of electricity and heat inside of
metals and outward through the boundaries of metals. Its initial successes,
however, are so auspicious as to suggest that the hope of further progress
lies not ‘in renouncing it (as seemed to be almost inevitable before the al-
terations) but in amending it in its details.

Is the atomic theory of material gases to remain untouched by these
novel ideas? Apparently all three forms of statistics, the classical and the
two recent types, lead to very nearly the same conclusions when applied
to material gases. Only at remarkably low temperatures and remarkably
high densities do their predictions diverge; and under these conditions the
experimental data are not easy to interpret for that purpose. Suppose,
however, that eventually the data are proved to decide for one of the new
forms of statistics against the old: what then? Probably we shall merely
remove one of the theoretical foundation-stones of the kinetic theory of
gases and insert another to take its place, meanwhile leaving practically
intact the great superstructure of formulae and equations whereby the kinetic
theory makes contact with experience. Happily this is an easier process in
theoretical physics than in architecture.

Custom has lately changed the meaning of the term atomic theory, mak-
ing it almost synonymous with theory of the structure of the atom; but the
province which this latter has taken for its own is one to which its fore-
runner disclaimed all right of entry. It was never supposed that all of the
properties of a gas can be interpreted as statistical features of a swarm of
corpuscles. The earlier atomic theory conceded some of them to the indivi-
dual atoms, thus in effect renouncing the ambition to explain them; and
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among these were the spectra. Where the statistical theory left off, the build-
ers of atom models took up the work. Bohr, for example, designed a model
for the individual hydrogen atom, competent—at least to a great extent—
to explain the Balmer series and the rest of the line-spectrum of “atomic
hydrogen.” This model he constructed, following Rutherford, out of a pair of
corpuscles. What he and his successors thus developed was in a way an
atomic theory of the atom—a degree deeper, or further, or higher perhaps, than
the atomic theory of matter which had provided him with the notion and
the scale of the atom to begin with.

What then distinguishes this new “atomic theory of the atom” fromt is
ancestor? Well, the major differences in method and in aim are traceable
to the fact, that in the later theory the number of elementary particles which
constitute the system is quite manageably small, while in the earlier, it is
inconceivably tremendous.

Bohr constructed his model for the hydrogen atom with only a pair of
corpuscles, and those for all the other atoms out of not more than a few dozen
each. Now with a model consisting only of two particles, one can specify
positions and velocities for these with the utmost of precision, and go merrily
ahead predicting and describing orbits with as much exactness as one cares
to lavish. Even with dozens of electrons and a nucleus one can attain at least
a specious accuracy of detail; remember the portraits of the electron-orbits
of massive atoms which six or seven years ago were so profuse. Perhaps it is
not wise to make such definite assertions; but it is feasible. Not so, however,
with the subjects of the older theory.

The model proposed for a cubic centimetre of gas under the ordinary
conditions of temperature and pressure consists of something like 10%°
particles. Merely the mention of so extravagant a figure is sufficient to per-
suade that it is vain to dream of making any progress by postulating a defi-
nite position and a definite velocity for each of these. The life of the human
race would not be long enough to write down even the postulates, to say noth-
ing of the inferences.

This seems a fearful handicap; but it is not so at all. Adopting the sta-
tistical method, one does not even begin upon the hopeless task of fixing place
and motion for every particle. We content ourselves with writing down a
function, which states how many among the multitude of particles we as-
sume to be situated in each small (but not too small) element of volume;
and how many we assume to have momenta which lie in each small (but not
too small) range of momentum. These are specifications much more modest
and vague; but they are ample. For the things which we wish to interpret—
entropy and temperature, viscosity and conduction and diffusion—the atomic
picture need not be made one whit more definite.

In saying this I am understating the case. If the atomic picture could be
made more definite, say by stating the locations and the velocities of all
the atoms with absolute precision, the meanings which we shall presently
attach to entropy and temperature would be dissolved. Our theory of these
entities depends upon the vagueness of the picture. Seemingly they appeal
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to us as physical realities because our senses and our instruments are too
obtuse to perceive the atoms. Our minds must feign a somewhat similar ob-
tuseness, pretending not to fix the particles of the imagined swarm too
sharply; therefore it does not matter that they are so numerous that the
pretence becomes sincere. Exact knowledge of the individual atoms is un-
attainable; but it is useless, is not desirable even. One remembers Aesop’s
tale of the fox and the inaccessible grapes; in this case it is probable that the
grapes really are sour.

For that matter, perhaps they do not even exist. One of the most strik-
ing of the very recent ideas in theoretical physics is the thought, that even
for atom-models with but a few particles, even in thinking of an isolated
particle, it may be altogether pointless to assign exact positions and ve-
locities. In dealing with a swarm of particles by the statistical way, we do
in effect fix the position of each corpuscle, but with a certain latitude; we
fix the velocity of each, but again with a certain latitude. Perhaps this
latitude, this indefiniteness, is something inherent in nature. Insisting as
I am upon the contrast between the theory of the structure of the atom and
the statistical theory of matter and radiation, I may in effect be insisting on
the contrast between a faulty way of visualizing some phenomena, and a
correct way of visualizing all.

A function of the sort which I just mentioned, a so-called distribution-
unction, is the goal of every statistical theory. I have said that it states
how many among the multitude of particles we assume to be located in each
small element of space and to have momentum comprised in each small
range of values of momentum. So it does; but the purpose of a statistical
theory is, to derive it from assumptions still more fundamental, in pre-
ference to assuming it outright. Of course one might say instead, that the
reason for deriving a distribution-function is to put the fundamental assump-
tions to their test. Whichever viewpoint one prefers, it is the distribution-
function which is tested by experiment: indirectly, in that it supplies nu-
merical values for such things as conductivity, viscosity, specific heat; and
directly, for there are now immediate ways of observing it in certain cases.

A distribution-function commonly appears in an equation of this form:

dN:f(%%%PmPu;Pz)’dxddeszdPysz- (1>

Such an equation will as a rule refer to some particular assemblage of par-
ticles, say N altogether, occupying some definite region of space: a gas in
a tube, radiation in a cavity, electrons in a wire. It is to be read as follows:
“dN, equal to f. dxdydzdp.dp,dp., stands for the number of particles having
coordinates in dx at x, in dy at y, in dz at 3, and components of momentum
indp, at p,, in dp, at p,, in dp, at p,.” The phrasing “in dx at x” is a suc-
cinct alternative for “between x and x+dx.”

The function f is the distribution-function in the variables in question—
here the coordinates of the particles referred to some Cartesian frame in
the ordinary or “coordinate” space, and the components of momentum
resolved along the axes of that frame, the momenta. Heretofore it has been
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customary to use the components of velocity rather than the momenta,
but these are much to be preferred: partly because it is they which figure
in the canonical equations, but chiefly because we shall find when we pass
over to the study of assemblages of photons that the momenta play the
same role in these as they do in assemblages of atoms, while the speeds of
all photons are the same. There is a well-known formula for translating a
distribution-function from one set of variables to another.set dependent
on the first, which we shall use in special cases.! It is also well known that
to obtain the distribution-function in some of the independent variables
from the distribution-function in a/l of them, it is necessary to integrate
the latter over the entire range of all the other variables: in such a case as
is symbolized by equation (1), the distribution in p., would be obtained by
integrating f with respect to the first five variables over the entire range
of each.

The product dxdydz is an element of volume in ordinary or coordinate-
space; the product dp.dp,dp. is an element of volume in momentum-space,
in which each particle is represented by a point having for its coordinates
in a Cartesian frame the values of its momenta; the product dxdydzdp.
dp,dp, is an element of volume in phase-space. The function f describes
the distribution of the assemblage in this phase-space of six dimensions.
In some cases—for instance, that of electrons in a metal not at an even
temperature, and that of oscillators—we shall have to think continually
of this six-dimensional space. In others—whenever we deal with photons,
and whenever we consider atoms or electrons in a region where neither
temperature nor potential varies from place to place—we shall be able to
assume that the distribution in the coordinate-space is uniform (that f is
independent of #, v, 2) and to dismiss it from mind, and to derive the dis-
tribution in the three-dimensional momentum-space quite separately as
if there were no other. Even in these simplest cases it would no doubt be
more consistent to operate always in the phase-space. Unhappily the
human mind is so constructed, that no matter how much it may ratiocinate
about space of six dimensions or six trillion, it always visualizes in space
of three.

In an equation such as (1), the differential element or the product of
such elements which terminates the right-hand member must be neither too
large nor too small. If it is so large that f varies considerably from one
point in it to another, then its multiplier, which is by definition the mean
value of f in the said element, must be computed by the methods of integral
calculus. If on the other hand it is so small that it contains only a few of the
corpuscles, then the product of f into its size may be many times as great
or many times as small as the number which it does contain. This is easily

1 Let uy, #s,. . . . represent the variables of the first set, , vs. . . . those of the second;
let f(u1, #s,. . . .) and F(vy, vz . .. .) stand for the distribution-functions in the two sets; then
(ur,up, * -+ )

F(vl,vZV t ) = f(vl)DZy c T
v1,v9, ** *)
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perceived by proceeding to the absurd limit of dividing the space into say
ten times as many elements as there are corpuscles, so that in at least nine-
tenths of the elements the number of participles is zero while f is greater
than zero, and in the others the number is generally much greater than f
times the size of the element. To subdivide the space so finely would be to
make the atomic picture too definite, and ruin it for the purposes for which
we now require it.

It is not too early in this paper for me to say emphatically that the
differential elements which figure in equations such as (1) must not be identi-
fied with the elementary compartments of the phase-space, which we shall
presently encounter, and which are so important in the new statistics and
in the old alike. It takes a great many of these latter to make up an element
large enough to be employed in an equation like (1). Otherwise expressed:
the subdivision of the phase-space into the elementary cells or compart-
ments of the forthcoming theory is much too fine to be used in connection
with the distribution-function. Much confusion may arise from failing to
realize this.?

In speaking of the distribution-function, I have been tacitly assuming
that there is such a thing as a stable, self-sustaining, changeless distribution
of the atoms of a gas, the photons in a cavity, the electrons in a wire. This
assumption must now be examined. It is scarcely self-evident; one might
guess at first that the more numerous the particles, the more abruptly would
the distribution vary from one moment to the next, and that an assemblage
of 102" particles would be in such unceasing turmoil that it would be sense-
less to imagine one single distribution for it.

Experience however shows the reverse. The gas in a tube remains uni-
formly dense and stationary, it does not surge forever to and fro nor huddle
in a corner nor become spontaneously hot at one end and cold at the other.
In the radiation in a cavity with heated walls the intensity comprised
within any portion of the spectral range remains unchanged so long as the
temperature of the walls is constant. The distribution-in-velocity of the
electrons streaming from a heated filament does not appear to change.
Moreover, when by artifice the gas in a tube is forced to assume uneven
density, non-uniform temperature, or any sort of flow or turbulence, it
settles down very quickly into a stagnant uniformity as soon as it is left
to itself.

Now we know that while a gas is passing from an unstable state—a state
of non-uniform temperature, for instance—to its stable and permanent
condition, a property which we call its entropy and denote by S is increasing;
in certain simple cases we can evaluate this rate of change of entropy. We
know that when a gas is in its stable condition, its entropy is at a maximum;

2 I am thinking particularly of the fact that in most expositions of the classical statistics
one is adjured that there must be many particles in each compartment, and then in taking up
the Fermi statistics one is told that there must be not more than one in each compartment;
yet the two lead to formulae which in the limiting case are the same.
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we know how to compute the entropy (except perhaps for an additive
constant) of a given quantity of a gas in this condition, as a function of its
temperature and others of its measurable properties. And when we have
evaluated both the entropy S and the energy E of a gas under any specific
conditions, we know that its absolute temperature is determined by the follow-
ing equation,

dS/dE=1/T (2)

which is the definition of absolute temperature.

If we had obtained by some independent way an adequate atomic picture
of entropy, so that whenever a distribution-function was suggested we could
compute the value of S: then necessarily the stable distribution would
be the one for which S has the greatest value compatible with the given
number of particles and the given amount of energy. We do not have an
independent way. But if instead we adopt some tentative atomic picture of
entropy, some function S of which we can compute the value for any given
distribution: then the test of our picture will be, whether the distribution
for which this tentative .S has its greatest value is verified by experiment
to be the stable one. It will be found that this distribution “of maximum S”
involves the derivative dS/dE, and therefore the absolute temperature;
so the temperature enters into the postulated distribution-function in the
course of its derivation, not by separate assumption or by an afterthought.

This method is the very notable one invented by Boltzmann, and con-
tinued by Planck. One choice of the function S which is to be identified
with entropy leads to the classical or Maxwell-Boltzmann distribution-law;
another leads either to the Bose or to the Fermi distribution, the difference
between these two entering in at another point.

Each of these suggested functions is logarithmic; it is proportional to
the logarithm of a function which is called probability. In theoretical physics
it is a fairly general rule, that when a theorist introduces the word proba-
bility he is abandoning all hope of explaining by cause-and-effect the phe-
nomena of which he is discoursing. This is the disadvantage of Boltzmann’s
method. The “distribution of maximum S” is baptized “the most probable
distribution;” there is even a numerical estimate of its “probability,” and
in general it turns out to have so much greater a probability than all the
others put together that one accepts without demur the conclusions that
in practice it will be stable. But there is no proof that the “most probable”
distribution is always or even usually followed by another exactly like it,
nor that an “improbable” distribution is always or even usually followed
by another of greater probability; there is no study of the way in which
one distribution is transformed into another, there are no assumptions
about the collisions or encounters which presumably offer to the particles
their means of interchanging speed and energy, and to the assemblage its
means of approaching the stable distribution. There are other statistical
methods in which account is taken of these things, and we shall have a
glimpse of one of them in the last section of this paper; but the notion of
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causality is absent from the method which will be followed in deriving the
distribution-laws of Maxwell and Boltzmann, of Bose, and of Fermi and
Dirac.

These three distribution-laws will be applied to freely-flying particles
in regions which are either field-free, or else pervaded by a field (electro-
static or gravitational) derivable from a potential. It may surprise the reader
to hear so little about oscillators, considering that the statistics which
Planck applied to these objects was the first of all the modifications of the
classical statistics, was the source of the entire quantum-theory, and there-
fore the most important advance of the physics of the last quarter-century.
The history of this period is very curious; but I cannot mention more than a
couple of the salient points.

The Planckian oscillators served two purposes: they enabled Planck
to derive the law of distribution of radiant energy at uniform temperature
in a cavity, by supposing the radiation to be entirely wavelike and to be in
equilibrium with myriads of oscillators in the walls of the cavity; and they
enabled various savants to develop, step by step, a progressively improving
theory of the specific heat of solids. The Bose statistics made them quite
superfluous for the first purpose: by applying this statistics to the radiation
supposed to consist of corpuscles, we can derive the same law of distribution
without invoking the oscillators at all. As for the second: as early as 1912
(which seems remarkable, now) Debye had replaced the concept of a solid
as a latticework of vibrating atoms by the concept of a solid as a system of
stationary waves agitating a continuum. I do not mean to imply, of course,
that the existence of the atoms was denied; I mean no more than to say,
that in these statistical reasonings the individual vibrating atom was re-
placed by an individual pattern of stationary waves. Today we are becoming
familiar with the idea that in certain reasonings, a freely-flying electron or
quantum or even an atom in a region bounded by walls may be replaced
by a pattern of stationary waves filling the whole of this region. Thus it
seems that the free particle, the oscillator, the stationary wave-pattern, are
in close affinity with one another; they may simply represent different ways
of looking at the same thing. Though on almost every page of this article
I shall write in the language of the strictest corpuscular theory, it is probable
that every one of the results could be translated into the language of oscil-
lators or the language of waves.

There are still assumptions to be made about the individual particles.
They are to have position, momentum and energy. Momentum may be
separated into mass and velocity; in many ways it is better left as an elemen-
tary concept. It will turn out that the essential difference between photons
on the one hand, electrons and atoms on the other—that is to say, the
essential difference between the particles out of which we shall try to build
a picture of radiation, and those of which we shall build models of gases
and of electricity in metals—Ilies in the relation between momentum and
energy.



98 KARL K. DARROW

Experience with matter in bulk leads to the well-known equations con-
necting kinetic energy K and momentum p with mass » and speed v:

K=%mv?, p=myv (3)

and these are supposed to hold for the ultimate particles of matter and of
electricity. During the years in which the corpuscular theory of light was
struggling into existence—for, it will be remembered, light was still con-
sidered to be entirely wavelike even after Planck had founded the quantum-
theory by his statistics of oscillators—Einstein proposed at two different
times (1905 and 1917) the following formulae for the energy and the momen-
tum of photons in terms of their wavelength:

E=hc/\, p=h/x. (4)

Historically it is interesting that he proposed the latter formula because of
certain statistical studies which he had made of the equilibrium between
photons and atoms. The verification of the latter by the Compton effect,
of the former by the photoelectric effect and many other phenomena, is too
familiar to require comment.

Now from equations (3) we deduce, for particles of matter and of elec-
tricity:

1 1
=""P2=“—(Px2+Py2+Pz2) (5>
2m 2m

and from equations (4) we deduce, for particles of light:
E=pc. (6)

The difference between these two relations is responsible for some of the
differences between radiation-gas on the one-hand, electron-gas and material
gases on the other; but by no means for the major part. The major difference
lies in the statistical theory as we shall now find out.

TaE CLASSICAL STATISTICS

We are going to represent three kinds of objects—ordinary or material
gases, radiation in enclosures, negative electricity in metals—as assemblages
of particles possessing location and momentum. We may visualize such an
assemblage first as a swarm of points in ordinary space, with a coordinate-
frame along the axes of which the coordinates x, v, 2z of the particles are
measured ; then as a swarm of points in momentum-space with a frame along
the axes of which the momenta p,, p,, p.are measured.

I will first illustrate the method of classical statistics by using it to
ascertain the most likely distribution of particles in ordinary space, a case
where seemingly the result may be foreseen. For it seems a truth of intuition
that inside a box of ordinary space, with nothing (e.g. no variations of po-
tential) to distinguish one region from another, the particles must tend to
distribute themselves uniformly. This is a conclusion to which the statistical
method must lead. The uniform distribution must be the most probable.
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How then should we define the “probability” of a distribution so that it shall
be greatest for the uniform one?

But in the first place, what <s a uniform distribution? We must divide
the space—mentally, of course—into compartments of equal volume. The
distribution will then be called uniform, if the numbers of particles in the
various compartments are about the same. But this clearly requires that
these subdivisions be of a certain size. Their linear dimensions cannot for
example be smaller than the average distance between particles, as then a
“uniform distribution” would be impossible. To partition the space too
finely would be like studying a painting with a microscope. The quality
which we wish to define evades too sharp a scrutiny. The compartments
should contain large numbers of particles, both for the stated reason and for
the convenience of a certain mathematical approximation which is made.

Denote then by N the total number of particles, by m the number of
compartments into which the volume V is divided, by N; the number of
particles in the 7th compartment. A distribution is described by stating
all the numbers Ny, N,....,N;,....N,.

The basis of the classical statistics is the fact that if the particles have
identities—if each of them is labelled by a distinctive letter, for instance—.
there are different ways of arranging them in the same distribution. One
starts with any arrangement compatible with the prescribed “populations”
Ni, N,,....N,, and obtains all the other arrangements by interchanging
particles ad lzbitum among the compartments, respecting only the condition
that each of these shall always have as many as it had at first. The total
number of distinct arrangements, the number of permutations of the com-
bination N1, Ny,....Nu, is by a well-known theorem 3

™)

This number has its minimum value of unity for a distribution in which
all the particles are crowded into one compartment, which would be the most
non-uniform conceivable; and its maximum wvalue for the uniform distri-
bution, as I now proceed to show.

3 Imagine yourself stationed beside a set of m baskets and an urn filled with N lettered but
otherwise indistinguishable balls, which are to be lifted out at random and dropped into the
baskets under the following rules of the game: the first Ny which come to your hand are to be
dropped into basket 1, the next N to come to your hand are to go into basket 2, and so on to the
end. Having acted accordingly, you note down the assortments of balls in the various baskets,
and repeat the process ad infinitum. Now there are N/ different orders in which the balls may
come out of the urn. When the inspection of the baskets after two drawings reveals different
results, the orders must certainly have been different. But two different orders need not reveal
two different results to the inspection. Take any order, to start with; then there are (Q—1) =
(Ny! No!-+ - N, !1—1) others which yield the same result. For there are N,! orders in which the
earliest V; balls to emerge might come out, without any of them losing its place among the first
Ny; there are N.! orders in which the next N; might come, without any losing its place in the
second basket; and so forth. Each of the N! orders then is but one among Q altogether which
lead to the same result; so that there are only N!/Q different results.

¢ What will actually be shown is that for the uniform distribution the function W is
stationary;that it is maximum (not minimum) seems fairly obvious from the physics of the case,
but can be proved.
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Let us use the logarithm of W instead of W itself. If W has a maximum
for any distribution so also will its logarithm, which is easier to handle,
and will presently be chosen as the representation of entropy. We have:

log W=log N!—. > log N,! (8)

Now we introduce Stirling’s approximation for the factorial of a large num-
ber—by far the greatest and the most frequently invoked of the mathemati-
cal aids in statistical theory. It is:

xl=(2rx)12(x/e)® ©

log x!=xlog x—x+ 3 log (27x)

The first two terms of this latter expression form an approximation singularly
good even when x is no greater than ten or thereabouts. Using it we have:

log W =const. — »_N;log N;. (10)

Denote by WO° the value of W for some particular distribution N,
NY,....N»% and by W=W'46W its value for some other only slightly
different distribution N,°+40N;, No*+06N,,....N,°+0N,. The difference
between the values of log W for these two distributions is to first order of
approximation:

dlog W=8W/W=— > (1+log N.°N.. (11)

If W° is a maximum for the distribution N,°....N,?9 then the difference
between log W9 and the value of log W for any other slightly different or
“slightly varied” distribution must vanish to first approximation. The
quantity on the right of (11), the “first variation” of log W, must be zero
for any permitted set of values of 6Vy,....0N,; meaning by “permitted”
any set of integer values adding up to zero, for we consider an assemblage
of an invariable number of particles.

Now one sees immediately that the right-hand side of (11) does vanish,
if all the populations N,® have the same value, say «; for then.

log W=— >.(14log a)s N;=const. D 8N; (12)

and the permitted variations are precisely those, for which the summation
>N, is zero.

We do therefore reach the result which was desired. Failing it, this
mode of “counting the ways in which a distribution may be realized” would
have been unprofitable. As it is, the quantities W and log W are greatest
for the uniform distribution which seems intuitively the most probable
and is the rule for gases, and least for the utterly non-uniform one which
seems the least probable. Tentatively the former is adopted as measure of
the “probability” of a distribution.
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I point out in passing that while the foregoing result is mathematically
valid for any value of the constant «, the total number of particles pres-
cribed for the assemblage determines the value of « which is physically
permissible: viz. N/m.

We proceed to apply this method to the swarm of points in momentum-
space representing the assemblage.

Like the coordinate-space, the momentum-space is to be divided into
equal compartments large enough to contain each a multitude of particle's.
We are to define a distribution by specifying how many particles are in
each compartment, and calculate as before the number W which is to measure
the “probability” of the distribution. The values for W, for log W and .for
the variation of log W are obtained just as before. There is however an im-
portant novelty. Since the energy of a particle depends on its position in
momentum-space, different distributions usually entail different values for
the total energy of the assemblage. If we compute the variation of 19g w
due to a slight change in distribution, we shall usually be computing a
variation in log W correlated with a certain variation of the total energy U
of the assemblage.

We now take the very great step of identifying the quantity log W with
entropy.

More precisely, we assume that the entropy .S is proportional to the

logarithm of W:
S=klog W (13)

introducing a constant factor k, and relying on subsequent experiments to
teach us its numerical value.

Now when a gas being initially in thermal equilibrium at temperature
T receives an infinitesimal amount of energy dE, and regains thermal equili-
brium with its augmented energy, its entropy ascends by the amount of d.S

given by the equation:
dS/dE=1/T. (14)

If then the foregoing model of the gas and the foregoing picture of entropy
are justified, the variation of log W in passing from the most probable dis-
tribution consonant with a total energy E to the most probable distribution
consonant with a total energy E+dE, (the total number of particles remain-
ing the same) must be equal to (1/kT)dE.

If we start from the most probable distribution for energy E and make
any slight change in it involving an energy-change dE, the new distribution
will presumably differ but little from the most probable distribution for
E+4dE. We therefore say: the most probable distribution for energy E
is the one of which the first variation is dE/k7T. This expression vanishes,
if we are comparing distributions for which E is the same; which is as it
should be.

It is now easily shown that such a distribution is the following

Ni=aexp (—e;/kT) (15)
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in which « stands for any constant and e; for the average energy of particles
in the 4th compartment, which is related to the average momenta of these
particles by the equation

1
€=_—(Px2+Pu2+?z2) (16)
2m

for we have only to write down the expression for 8.5 as furnished by equa-
tion (11), and introduce into it the value of log N; as supplied by equa-
tion (15):

8S=—k D (1+log N)sN;=—k(1+log &) Y oN; + D edN;/T=0E/T (17)

the result which was desired.

The value to be chosen for the constant a will be determined as before
by the total number of particles. Denote this number by N, and conceive
the compartments as tiny cubes of volume H, so that there are 1/H of them
per unit volume of the momentum-space. The density p of the particles in
momentum-space, which is no other than the distribution-function in the
momenta, is given anywhere by the value of N,/H computed for the value
of energy there prevailing:

p=N¢/H=Eexp (—e¢/kT) (18)

@ 2 2 2
=— Pz /kaTe——py /2kae—pz 12mkT

"

and it is the integral of this expression over the whole of momentum-space

which is equal to N:
v= [ [ [ eapaapip. (19)

The integration is easily affected; the triple integral is the product of three
identical single integrals, and we have:

o © 3
N=~—[(2mk T)1/2 f e—w*dw} (20)
yi 0
w being a symbol for each of the three momenta in turn; so that
NH
a=———: (21)
2@EmkT)3/?

The expression for the number of particles in any compartment thus be-
comes:

NH
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involving the four constants m, N, k and H. The first three are determinable
by experiment, in ways which I will later mention; the third is the universal
constant known in Boltzmann’s honor by his name, though he himself
never evaluated it. The fourth, the volume /I assigned to the compart-
ments, drops out of the distribution-functions—out of the function g, out of
the distribution-in-energy soon to be deduced, out of the fundamental dis-
tribution-function f in the coordinates and momenta defined by equation
(1), and which I now set down in place of p:

N 1:2 112 22
ep( pat? +P> (23)

2mkT

fr o ex
V(2rmkT)3?

V standing for the volume in ordinary space of the enclosure which con-
tains the assemblage. This evasion of H is very deceptive; for its suggests
not merely that the exact volume of the compartments is of no importance,
but that the compartments themselves were invented only as a momentary
stepping-stone to the distribution-functions, and should be allowed to shrink
to zero like the infinitesimals of the calculus. This however is precisely what
is not allowed. It is of the essence of the argument that there are compart-
ments of finite size. As will presently transpire, I suspect that the division
of momentum-space into compartments should be regarded as a quantum
postulate, even in this case of the derivation of the Maxwell-Boltzmann law
which seems to be at the opposite extreme from all the notions of quantum-
theory.

The next step is the derivation of the disiribution-in-energy. In preface
I point out that the distribution which we are considering is, in respect to
the directions of motion of the particles in ordinary space, 7sotropic. Mathe-
matically, this occurs because p,, p, and p, enter symmetrically into all the
distribution functions; physically it occurs because we have made no assump-
tion leading to a preference of any direction over any other. Later on we
may establish a preferred direction by introducing a field of force, and then
the impending steps may have to be reconsidered. Until then the distri-
bution which we shall study will be described completely by saying that they
are isotropic and giving the distribution-function-in-energy. This may be
obtained from the distribution-function-in-the-momenta by transforming
to a polar coordinate frame in the momentum-space.

I follow practically the same route.

Divide up the momentum-space into spherical “shells” by means of a
sequence of spheres all centered at the origin. Each sphere corresponds to a

¢ Denote by p the quantity (p.2+p,%+p.2)"2 which is the magnitude of the momentum;
and by 6 and ¢ the angles which with p constitute a spherical coordinate system. We have

o
pdp.dp,dp. =pp? sin 0d0dpdp = ;I e PU2mET 2 gin 6 40 dop dp

and the distribution-in-momentum is obtained by integrating over all values of 9 and ¢, the
distribution-in-energy from it by means of the relation (5).
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value of ¢, each shell to a range de of values of e. Take one of the latter at
random; call it shell s, denote by ¢, and by €4 or ¢,-+de the energy-values
at its boundary spheres, by 7, and 7;+dr the radii of these, by ¢V the volume
of the shell. Then:

m \1/2
rs=(2me;) /2, dr= (——) de

¢

2
AV =A4nrlddr dr=———27m)?/2(e;) /*de. (24)
"

Suppose to begin with that each shell is large enough to contain very many
compartments. The number Q; of compartments in shell s will then be:

2
Qs=dV/H ='Ez;)-1—/—2~(27rm)3/2es”2de (25)

and the average number of particles per compartment in shell s, call it N,
will be:

Ne=aexp (—e/kT) (26)
and the total number M, of particles in the shell will be:
Ms=Qst=—2—Aﬁr—es”23—”/”de=F(es)de. (27)
(wkT)3/2

This is the number of particles having energy-values in de at ¢, Hence the
distribution-function-in-energy F is the factor multiplying de (it would be
well to discard the subscript s in writing it). I have copied the value of «
from (21), but it could have been derived by integrating F from e=0 to e
= o0 and equating the integral to NV.

The separation of M, or F(e)de into two factors—Q, the number of com-
partments in the shell s, N, the average number of particles per compart-
ment—is highly advantageous in searching for the distinctions between the
various proposed statistical laws. We shall see that in passing from one to
another sometimes one of the factors is changed, sometimes the other,
sometimes both.

In particular, we may pass from the Maxwell-Boltzmann law to a distri-
bution like that which Planck derived for oscillators, simply by changing
the factor Q,. We have been dividing the momentum-space into compart-
ments of equal volume, so that the number comprised in a shell s between
spheres ¢, and ¢ +de, is proportional to e!/?de,. Let us instead divide it
into compartments of which the volumes increase steadily from the origin
outward, at such a rate that the number in a shell s is proportional to de,
without the factor ¢!/%.

This is, of course, not the way in which Planck’s postulate is habitually
stated, though it is substantially the way in which Planck stated it himself.
Usually it is said, that Planck restricted the energy of the particles of the
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assemblage to a set of “permitted values” spaced at equal intervals: say
the values a, a+b, a+2b, a+3b,.... where a and b stand for constants.
Each of these permitted values corresponds to a sphere in the momentum-
space. In the shell s there are approximately de,/b of these “permitted
spheres”; the approximation being closer, the larger ¢, and de, are in compari-
son to b. Now whether we conceive that the de,/b sets of particles in the
shell s are located on the surfaces of as many permitted spheres, or alter-
natively that they are scattered through as many compartments, is for the
‘statistical results of no importance. There may be other reasons for pre-
ferring one picture to the other; but the predictions of the statistical theory
are the same, whichever is adopted. I will therefore alternate between the
two pictures, retaining for the moment that of a subdivision of the momen-
tum-space into compartments; but now it will be expedient to think of these
as thin spherical films, centered at the origin and increasing in volume from
the innermost outward at the specified rate.

If the shell s is large enough to contain many of these compartments
or permitted spheres, we may use the first approximation for the number
which it contains:

Qs=de/b (28)

and putting the expression (26) for the number of particles per compart-
ment, we get:

Ms=Qst=iZ— exp (—e,/kT)dey=F (e)de, (29)

for the number of particles having energy-values between e, and ¢,+de,.
The value of the constant is fixed as heretofore by the condition that the
integral of F over the entire range of energy from 0 to « shall be equal to

N:
® akT =
f F(e)de=—— f e vdw=N (30)
0 b 0

so that we arrive at the following distribution-in-energy function:
F(e) ol (—e/kT) 3
7(e) =—— exp (— ) 1
‘ kT ph—e (31)

This function certainly does not display any feature which suggests
the achievements of Planck! It looks as smooth and continuous as the
Maxwell-Boltzmann function itself, and the constant b, the step or interval
between the successive permitted energy-values or the boundaries of suc-
cessive compartments, is nowhere to be seen. The constant b however has
slipped out for the same reason as the constant H from the function (23),
and the apparent continuity is due in both cases to the same cause. In
preparing and effecting the integration (30) in order to obtain a value for
the constant «, we assumed that the various permitted energy-values within
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the range de, are all sufficiently nearly equal to be identified with the single
value ¢. That is to say, we smoothed over the discontinuities which had
previously been brought in by the assumption of separate compartments.
No wonder that there is not a sign of them in the function(31), even as there
is not a sign of them in the Maxwell-Boltzmann law!

We might however avoid this smoothing-over, if we could attain the value
of a by an actual summation over the various compartments instead of by
integration. Now with Planck’s postulate this is mathematically feasible
and indeed easy. For the number of particles in the ith compartment
being

N¢=a exp (—ei/kT) (32)

the total number of particles is computed thus:

]
N= ZNi= ae—¢l kT Zeib/kT
i=0
ae—a/kT

— (33)

T bl

by virtue of the very convenient consequence of the binomial theorem that
(I4x+a+....)=(1—x)"1; so that for « we obtain the exact value:

a:Ne(a——b)/kT(eb/kT_ 1) (34)
and for the populations of the various compartments, the formula:
N;= Ne=b/kle—ib/kT (35)

Here the discontinuity implied in the classical picture of a momentum-space
divided into compartments is admitted and accepted, as it never was in
the process of deriving the Maxwell-Boltzmann law. Planck did not put
discontinuity into the classical statistics; it was there already; he refrained
from disregarding it. Instead of confining his studies to the circumstances
in which it can safely be ignored, he extended them to ranges where it had
to be taken account of, and he took account of it.

As I intimated, the distribution (35) was proposed by Planck not for
freely-moving particles, but for oscillators. The “Planckian oscillator”
may be visualized as a particle which executes simple-harmonic vibrations
back and forth in a straight line across a position of equilibrium, to which
it is attracted by a force proportional to its displacement. It is like a free
particle, in that its state at any moment is described by giving the values
of its position ¢ and momentum p, ¢ being measured from its point of equili-
brium; but it is unlike a free particle in that its energy depends not on p
alone but on both p and g, being a function of the form (4 p2+ Bg?). Therefore
we must envisage not the momentum-space alone but the phase-space of
the variables p and ¢. In principle it would have been better, had we envis-
aged the phase-space all along; but since for an assemblage of free particles
that space has six dimensions, it was impractical to visualize more than
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the momentum-space, and since the energy depended only on the momenta
that compromise was not detrimental except for one feature which I can
later introduce. Here the compromise would be ruinous, but it is unnecessary
since the phase-space has only two dimensions.

Visualize then this two-dimensional phase-space as a plane with p and ¢
axes at right angles to each other. Suppose all the oscillators to have the same
mass and the same natural frequency, which is to say, the same values of
the constants 4 and B in the above-mentioned formula for their energy;
but let them differ in amplitude. The point representing any oscillator in the
phase-space runs round and round in an elliptical orbit centered at the origin.
Different amplitudes correspond to different ellipses. The energy of an
oscillator depends on its amplitude; therefore different energy-values corres-
pond to different ellipses, and reversely. If we divide the phase-space into
compartments by a succession of ellipses centered at the origin, each of
these compartments corresponds to a specific range of energy-values. If
the dividing ellipses are so spaced that these compartments are of equal
area (equal volume of the phase-space), they correspond to equal ranges
of energy-values—an important difference between this case and the one
which was previously treated.

If the dividing ellipses are spaced to form equal compartments, they
themselves correspond to energy-values forming a linear sequence: call
these a, a-+b, a+2b,....a+1b... as before. Whether we call these the
“permitted” energy-values and allow the oscillators only the choice among
them, or whether we sprinkle the oscillators uniformly through the com-
partments, makes only a secondary difference. In this case, in fact, we can
easily see exactly what difference it makes. If the oscillators are sprinkled
uniformly in each compartment, then by applying the classical statistics
we get just the same distribution (35) as when we assume them restricted
to the energy-values (a+14b). But when we undertake to evaluate the aver-
age energy of all the oscillators, then in the one case we must put down the
mean energy of those in the 4th compartment as the arithmetic mean of
the values a+4b and a+ (4 1)b, while in the other case we must put down
the energy of those at the 7th permitted ellipse as a+4b. Hence to change
over from the picture of permitted energy-values to the picture of compart-
ments is the same thing as to replace the original sequence of permitted
energy-values by another sequence of values located midway between
them. I mention this chiefly in order to emphasize that the subdivision of
phase-space into compartments is 7pso facto quantum-theory.

As every reader knows, Planck postulated that the quantity b—the
interval between the permitted energy-values, or the energy-range within a
compartment, whichever picture is chosen—is the product of a universal
constant (4) and the frequency of the oscillators (v). The area of the equal
compartments is then equal to the universal constant® whatever the fre-

& The point in the phase-space representing an oscillator of mass m, frequency », and ampli-

tude C describes an ellipse having semi-axes C and 2wmvC and area 272mvC?; its energy is U
=272my2C?; hence the relation between energy U and area Fis
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quency of the oscillators. From this latter statement the general principle
is derived: To state it one must first adopt a symbol (say #) and a name
(say number of degrees of freedom) for the number of distinct coordinates ¢
required to describe the individual member of whatever assemblage one may
be considering; this is also the number of distinct momenta p, there being
one p for each g¢. Then the principle generalized out of Planck’s postulate
for oscillators is this: For an assemblage of individuals with n degrees of free-
dom the phase-space is to be divided into compartments of volume h».

We will now see what the classical statistics, supplemented by this princi-
ple, proposes for an assemblage of particles for which the relation between
energy and momentum is e=cp as it is for corpuscles of light, instead of e=
$?/2m as it is for corpuscles of matter. '

Different energy-values correspond as before to different spheres all
centred at the origin of the momentum-space, but the numerical relations
are changed. Instead of equations (24), we have:

€=Cls, de,=cdr,

AV =4xridr,= (4 /c®)esdes

(36)

dV standing for the volume of the shell s covering the energy-range between
€, and ¢,+de,. Divide the momentum-space into compartments of equal vol-
ume H. We derive the “smoothed-over” distribution-function for the case
in which NV, varies so little from one compartment to the next that even when
the shell s is thick enough to comprise very many compartments the values
of N, for all of them may be equated to a mean value N,. Under these con-
ditions we may write for the number of compartments in the shell s,

Q,=dV/H = (4r/c*H )¢, de, (37)

Putting down the classical value (15) for the number of particles in any of
these compartments, remembering that V; is identified with N, we obtain

for M, the number of particles in the shell s:
M= Q.N,=a(4r/c*H)ele* ! M de,=F () des (38)
and evaluate a by the same procedure as before. The result is:

€2

N
Fle) =——— (39

3k3T3 ee/kT ’

This is the smoothed-over distribution-in-energy predicted for the radi-

ation-gas by the classical statistics, it being assumed that the momentum-

space is to be divided into compartments of equal volume. Experiment how-
ever supplies a quite different distribution-in-energy, to wit:

87rV> e’de

o Je 1 (40)

ro=(

U=vF
and the area between two ellipses is equal to % if the energy-difference between them is equal

to hv.
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It looks as if (39) might be the limiting form of (40)—as if the actual
distribution-law might be obtained by avoiding the approximations whereby
we came to the formula (39), as Planck’s law of distribution for oscillators
was obtained by refraining from approximation. Such however is not the
case. True, the second factor in (39) is evidently the limiting form, for very
high temperatures, of the second factor in (40). But the first factor in (40)
contains nothing but the volume of the gas and some universal constants,
while the first factor in (39) contains the temperature and an apparently
disposable constant standing for the number of particles in the assemblage.
The former is not the limit of the latter. It will be noted also that although
I said that the volume of the elements of phase-space was to be set equal to
k3, this assumption in no wise enters into the function (39). Bose in fact found
it necessary to upset the basis of the classical statistics, in order to arrive at
(40) instead of (39).

TuE BOSE STATISTICS

The momentum-space of the photons is to be divided as heretofore into
equal compartments, and various distributions of the particles among these
are to be compared, in order that we may elect one of them as “the most pro-
bable” and make a picture of the entropy of the assemblage. But the manner
of defining a distribution, the manner of “counting the ways” in which it
may be realized and computing its “probability,” is to be changed, and
changed in a most thoroughgoing and fundamental way.

Start with any distribution of the particles, defined as heretofore: defined
that is, by saying that there are N, of the particles in the compartment 0, N,
in the compartment 1, and in general N, in the compartment 3.

Count the number of compartments containing no particle; call it Z,.
Count the number of compartments containing one particle apiece; call it Z;.
In general, let Z; stand for the number of compartments containing ¢ part-
icles apiece. Put down the values of all the numbers Z;.

Now change the terminology. Elect some neutral word, “arrangement”
say, to denote what we have heretofore denoted as a “distribution,” and use
the latter word in the following new sense: a distribution shall henceforth be
described by stating the values of the numbers Zy, Zy, Zy, - - - , Z;, - - - and
the total energy of the assemblage.”

This means that each distribution in the new sense comprises a number of
distinct distributions in the old sense. This we shall regard as the number of
different ways in which the distribution in the new sense may be realized.
Going over entirely to the new terminology: we shall now identify the
probability W* of a distribution with the number of arrangements which are
included in it. Previously we identified the probability W of an arrangement
with the number of permutations included in it, according to Eq. (7). This

7 It is of course confusing thus to change the meanings of words, but in the long run less
confusing (I think) than to use some other word than diséribution for the concept always called
by that name in the new statistics.
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we now must forget; we must proceed as if the probability of each arrange-
ment were the same.

The number W*is now to be evaluated. In doing this we must remember
that we have to count, not the total number of arrangements yielding the
prescribed set of values of the quantities Z;, but the portion of these which
give the prescribed value to the total energy of the assemblage.

As before, we superpose upon the partitioning of the momentum-space
into small compartments of equal volume H, another partitioning into spheri-
cal shells each of which is sufficiently large to contain many of the compart-
ments, yet sufficiently small so that the same value of e may be assigned to all
the compartments within it. The final result is thus to be a “smoothed-over”
formula. Itisrather singular that whereas Planck introduced the quantum
into physics by avoiding the smoothing-over which had been customary in
the classical statistics, the quantum-formula for radiation is now derived by
a method in which it is accepted.

Consider then any shell at random, say the “shell s.” Denote by Q,or by Z
the total number of compartments in it; by Z;; the number of these compart-
ments which contain ¢ particles apiece; by M, the number of particles in the
shell. According to the scheme now being tried out, the number of ways of
attaining the particular distribution characterized by the numbers Z;, is
given by the formula:

Q0s!
—ZOS!ZIS!ZZS! et

As the energy-values for all the compartments in the shell are (by hypothesis)
approximately the same, these various ways of attaining the distribution Z;,
all correspond to approximately the same total energy, as well as ‘the same
total number of compartments and the same total number of particles.
Suppose this process repeated for every one of the shells s. The total num-
ber of ways of attaining the actual distribution, compatible with the con-
ditions of constancy of total energy, total number of particles and total num-
ber of compartments, is then the product of all the quantities W,*: call it W*:

W= []w.*. (42)

s

Q= Zzis (41)

As before, and with the same end in view, we form the expression for log W*,
and employ Stirling’s formula (assuming thus in effect that none of the
quantities Z;, is smaller than ten or so) :

log W*= Y log W,*= Z[Qs log Qs— X _Z:slog Zis]. (43)

We now take the very great step of identifying not logW of equation (10),
but log W*, multiplied by a constant k, with the entropy of the assemblage.

S=Flog W*. (44)
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Then, when the numbers Z;, are changed by small amounts 6Z;,, the en-
suing change §E in the total energy E of the assemblage must be linked to the
ensuing change in (k log W*) by the equation:

5S=5(k log W*)=3E/T. (14)
The first variation of (k log W*) is given thus:
S(klog W*)=—k >, > (1+log Zi)sZ . (45)
Let us try the distribution: C
7 is= a el BT (46)

Substituting this expression into (54), we get:

5(klog W*)=—Fk 2 > (1+log ay— ies/kT)0Z s,

1
=—Fk Y (14+log a) Zsszmu7 S e D67 (47)
=0E/T

for the summation 3_:8Z;, vanishes because the number of compartments in
each shell is invariable, while the quantity €,>_iZ;, is equal to the total energy
of the particles in the shell s.

The new statistics, in proposing a new conception of entropy as embodied
in equation (44), therefore leads to a new distribution for thermal equilib-
rium. This distribution is expressed by equation (46) in the new-fashioned
way, by stating the number of compartments in each shell which contain
each of the permissible quotas of particles. We must translate it into a dis-
tribution-function-in-energy such as we used to express the results of the old
statistics.

Before undertaking this translation,we compute the values of the constants
a, by summing the numbers Z;, over all values of 7 for each shell separately,
and equating the sum to the total number Q, of compartments in the shell.
We obtain:

Os= DX Zu=a, Qe il kT = q (1 — e/ 7)1, (48)
On substituting these values of a; into (46) we get something which begins to

look familiar.
Next for the number M, of the particles in the shell s, we compute:

M= D iZi=a,e ! FT(1— g s/ kT)~2
i .

1 (49)

T

which begins to look very familiar indeed.
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Now for Q,, the number of compartments in the shell s, we put the value
already stated in equation (37), derived from the assumption that the com-
partments are all of the same volume H:

4 €2

St g 1o (50)

Here the function F (e;) is the “smoothed-over” distribution-in-energy in
which the new statistics culminates. Unlike those which we earlier derived
from the old statistics, it involves the volume of the elementary compartments
directly. Whereas from the old statistics we obtained formulae involving the
quantum only by avoiding the approximation, here we obtain a quantum-
formula even when we admit the approximation a contrast on which, I
think, it is worth while to insist.

Let us then, in preparing for the final assumption, accept the principle
generalized from Planck’s assumption about oscillators: let the elementary
cell of phase-space be given the volume #%. This is not yet an assumption
about the compartment of momentum-space. Supplement it, then, by sup-
posing that the compartment of phase-space 43 is the product of the compart-
ment I of momentum-space and the entire volume V occupied by the radia-
tion-gas. Then:

=n/V. (51)

This assumption—let me remark in passing—takes a very elegant form if
we replace the compartments by the permitted energy-values, and then the
corpuscler picture by the wave picture; for then we have a series of per-
mitted wavelengths, which are precisely those which can form stationary
waves in a cube of volume V.

So the new statistics leads to the distribution-law:

Pde= <4 5
(e) e—;;; ef/kT——_l €. ( 2)

Dividing out the factor V,we get the number of particles per unit volume
having energy-values between e and e-de, in an assemblage having the most
probable distribution at the temperature 7. Multiplying this by ¢, we get
the total energy per unit volume in the possession of such particles. Identi-
fying these particles with photons, we observe that they have wave-lengths
between ch/e and ch/(e+de), frequencies between e/k and (e+de)/h. Trans-
forming then from the variable e to the new variables N and », we obtain
distribution-functions which give the density of radiant energy as functions of
wave-length and frequency. It turns out that these agree absolutely with the
observed distributions, except that they lack a factor 2. This factor is at once
imported, and is ascribed to the fact that light is polarizable. So we arrive at
the black body radiation-formula:

o(Wydv=—- ———— (53)
63

ehvI kT 1

and the new statistics is justified by its success.
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It will be observed that the new statistics leads to a precise value for the
number of photons per unit volume, at any prescribed temperature; whereas
the old statistics led to nothing of the sort, but to a formula which contained
the number of atoms per unit volume as a disposable constant. This corres-
ponds to a profound physical difference between radiation-gas and material
gases. When I state the temperature and the volume of a box containing
helium, I am not giving data enough to fix the quantity of helium inside the
box; on the contrary, the quantity and the density of the helium in the box
can be varied ad libitum while the temperature and the volume are held con-
stant. But when I state the temperature and the volume of an enclosure
containing radiation, I am giving data sufficient to fix the amount of radiant
energy and the number of quanta in the enclosure absolutely. This is a.fact
of experience, and the new statistics is evidently in accord with it. But if one
were tempted to try out the new statistics upon a material gas, would there
be any way of avoiding the inadmissible conclusion that the number of atoms
in such a gas is also absolutely fixed by temperature and volume?

There is such a way. One might replace the distribution proposed in
equation (46) by a more general one involving a disposable constant B, as
follows:

7 1= iye— Bies| T | (54)

On substituting this into the expression for (k log W) we get instead of (47)
the equation:

1
5(k log W*)=—k D> (1+log &) ZBZiS-{-kB > ZM“JF"T > €D 1675, (55)

The right-hand member must as before reduce to 6 E/T if the distribution(54)
is acceptable; and this it will do, provided that not only >":Z; but also
ZszsiéZis is zero. Now the second of these quantities is zero for all variations
in which the total number of particles remains the same. The distribution
(54) enjoys a greater entropy than any other which is compatible with the
same total energy and the same total number of particles. The distribution
(46) was still more exalted; it enjoyed a greater entropy than any other com-
patible with the same total energy, even including those for which the total
number of particles was somewhat different. But the distribution (54) is
sufficiently distinguished to be qualified as the most probable distribution
for a material gas. It seems rather singular that the distribution (46) is re-
quired for radiation-gas. Here is evidently one of the deep differences be-
tween matter and radiation.

Following the same routine as before, we arive at the following expression
for the number of particles in the shell s:

1
M8=Q o 4 (56)

® eBres/ kT _
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and in dealing with radiation-gas we have put B =0 and have taken the value
of Q, from equation (37)..1f in dealing with a material gas we take the value
of Q, from equation (25) instead and put H="%43/V we obtain:

2V (es)1/2des

- 3/2 =
()i (2wm)® BT 1 =F(e;)de, 57

8§

and now it is obvious that we must evaluate B in terms of the total number
of particles N by the already so familiar way of integrating F(e;) over the
entire energy-range from 0 to « and setting the integral equal to N.

Einstein proposed this as an alternative to the Maxwell-Boltzmann law
derived from the classical statistics. It is not easy to decide which of the two
is supported by experiment, as with increasing temperature the formula (66)
becomes more and more nearly like the classical one, and it turns out that
throughout the convenient ranges of temperature and pressure the two are
indistinguishable. It would be very valuable to determine between the two
as then we should know which of the two ways of defining a distribution
and estimating the probability thereof, which of the two pictures of entropy,
is the proper one for a material gas. The reader may have remarked that if
one were to apply Bose’s method to the problem of determining the most
probable distribution of particles in ordinary space, one would reach a result
at variance with that of the classical statistics, and therefore at variance with
the facts. One must deal altogether with the six dimensional phase-space,
to be perfectly consistent. This is to be regretted.

THE FERMI STATISTICS.

The statistics invented by Fermi, and later independently by Dirac, in-
volves the same fundamental assumptions as that of Bose the same
manner of counting the ways in which a distribution may be realized, of de-
fining its probability, of picturing its entropy. But there is an additional
assumption, of the nature of a limitation: it is postulated, that a compart-
ment may contain not more than some specific maximum number of particles.
In particular for a gas towhich no external field is applied, it is postulated that
each compartment must either be empty, or else contain one particle only.

The “exclusion-principle of Pauli” gave the hint from which the Fermi.
Dirac theory sprang. This principle may be paraphrased as follows. In
Bohr's “atomic theory of the atom” the electrons belonging to an atom are
forbidden to revolve in any except certain specific orbits, set apart from the
rest as the “permitted” orbits, and labelled by specific “quantum-numbers”
In later versions of the theory the “permitted orbits” are less conspicuous,
the “permitted quantum-numbers” more so; but the picture is acceptable
at all events as a beginning. Upon this prohibition, then, Pauli superposed
another; not more than one electron is allowed in each orbit or to each set
of quantum-numbers. Perhaps it would be better to say “not more than some
definite small number of electrons . ... ” instead of “not more than one.”
The affinity of this to one of Fermi’s assumptions will soon be manifest.
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It would take much too long to give an idea of the successes of the Pauli
principle; they are however so great as to increase the inherent plausibility
of Fermi's idea very much—or perhaps I should say, so great as to render
the idea plausible, which otherwise it might not seem.

The reasoning follows exactly the same course as when we were deriving
the distribution-law (56), except that all the summations over the variable
i are now summations of two terms only, the term for =0 and the term for
i=1. For each of the shells there are only two numbers Z;; required to de-
scribe the distribution: viz. Zj, the number of empty compartments and
Z1; the number of compartments containing one particle apiece. We try the
distribution (54):

Zo=ay ; Z1s= o e Besl kT (58)

and easily find that it is the distribution of maximum probability, by com-
parison with all the others compatible with the same total number of part-
icles and the same total energy. We arrive then at the following expression
for the number of particles in the shell s:

1
Ms:QS;;/F_;i . (59)
There is no point in putting for Qs the value appropriate to radiation-gas,
since the Bose formula has already proved adequate for that case. Fermi
put the value appropriate to material gases, and obtained:
(es)llzdes

2V
—_—— /2 — = F
M. h‘"‘(w)lﬂ(zrm)a eBtesl KT 1 Fle)de.. (60)

This formula is the point of departure for the theory of the electron-gas
in metals revived and remodelled by Pauli and Sommerfeld, to the experi-
mental tests of which most of the rest of this article will be devoted.

APPLICATION OF THE FERMI STATISTICS TO THE ELECTRONS
IN METALS

We are asked to conceive of a piece of metal as a region populated with
“free” electrons, and surrounded by a wall; the electrons being distributed
according to the formula of Fermi.

The Fermi distribution-function involves the total number N of the elec-
trons,which is a disposable constant. Italsoinvolves the volume V which this
assemblage of IV particles pervades. For this we set the volume of the piece
of metal—a decision which is tantamount to ignoring the atoms,to supposing
the metal a vacuum inhabited by free electrons only. So remarkable an
assumption, even though it be made only in approximation, requires some
excuse. Its strangeness may be mitigated by recalling, first, that slow elec-
trons may go through atoms (at least through certain kinds of atoms) as im-
perturbably as if the atoms were not there; and second, that a wave-train
may gowithout being scattered at all through a crowd of particles individually
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quite able to scatter it, provided that the particles are arranged in a regular
lattice having a spacing smaller than the wave-length of the waves. The
speeds attributed to electrons in metals are so low and their wave-lengths
are so great, that perhaps they do behave in such a way.

The “wall” is the agency which prevents the electrons from escaping; it is
commonly imagined as a sharp and sudden gradation of potential at the
with a velocity of which the component normal to the bounding surface may
be denoted by #, is supposed to be driven back into the body of the metal if
the corresponding “component of kinetic energy” imu? is less than a certain
constant W,; while if 3mu®> W, the electron escapes, but with its kinetic
energy diminished by W,. According to newer ideas electrons may sometimes
escape even when their values of mu® are smaller than W,, and may some-
times fail to escape in the contrary case; but the earlier and simpler concep-
tion remains approximately valid, and I will abide by it for a time. The con-
stant W, may be named the work-function.

Like the constant N, the work-function figures as a disposable constant
in the theory. Itisan ambition of physicists to explain as many as possible
of the differences between different metals, by varying only the values of
these two constants. Later we shall find it necessary to introduce others,

' beginning with the one which in the older theories appeared as the mean free
path of the electrons; but there are several results of value which can be
obtained with no other but these two.

I repeat now from (60) the Fermi formula for the distribution-in-energy
of an assemblage of N particles in volume V at temperature T, with two
changes made to bring the notation into harmony with that of Sommerfeld:

F(e)=G—-——2 K(Zrm)3/2(e)1/2——1 — .
(w12 A—teel T4 q

(61)

Here the symbol 1/4 replaces e, and a factor G to which we shall assign
the value 2 is introduced for a reason which will be mentioned later. The
corresponding distribution-function in the coordinates and momenta is this:

G 1
f(x,%z,l?x:i’mpz):ﬁ e (62)
The first step now is the same as in the classical statistics: to determine
the constant 4 in terms of IV by integrating F (e) over the whole range of
energy-values from 0 to «, and equating the integral to NV:

wa(e)de=N. (63)

This was an easy step in the classical statistics, but here it is very hard.
The integral of F(e) is not one of the common well-known functions to be
found in mathematical tables, nor a combination of such; and we do not
get a simple equation to be solved for 4 in terms of N. Sommerfeld indeed
found it necessary to compromise by deducing two series-expansions for
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the integral, one being available for values of 4 smaller than unity, the other
for the opposite extreme. By a stroke of luck which seems almost too good
to be true, the first one or two terms of one or the other of these expansions
form an approximation amply good enough for all the cases where as yet
theory and experiment can be compared.

I consider first the approximation which is of #o importance in the theory
of electrons in metals—the one for values of 4 so very small that the second
term in the denominator of F(e) is negligible by comparison with the first.
Then the distribution-law approaches that of Maxwell and Boltzmann, and
of necessity the constant A must possess the value which in the limit makes
F(e€) identical with the classical expression written in equation (27): to wit,
the value:

A Nh3(2 RT)302 (64)
——GV ™ .

It would however be a great error to suppose that this value of 4 can be
substituted into the function F under all circumstances. This value is ac-
ceptable only if 4 is very small relatively to unity, which is to say, if the
quantity to which 4 is here equated is very small. So the question arises:
in any physical case, is the combination on the right-hand side of equation
(64) a small fraction of unity, or is it not?

Now for any material gas under any conditions usual in the laboratory,
A is indeed very small. The new statistics leads to a result indistinguishable
from that of the old statistics. To discriminate between the two by experi-
ments on material gases, one would have to work with temperatures so low
and densities so high that the gases would probably either be liquefied
already, or at least would be in a condition very different from that “ideal”
state to which the statistics is tacitly supposed to apply. Perhaps though it
is not impossible to make the test with helium or hydrogen.

At this point apparently Fermi stopped. But it occurred to Pauli that
if the new statistics were applied to an electron-gas as dense as that which
Riecke and Drude had supposed to pervade the interiors of metals, the devia-
tions from the classical distribution would be much more pronounced. For,
in the first place, the mass m of the individual electron is smaller by several
orders of magnitude than the mass of the atoms or molecules of any material
gas. And, in the second place, if the number N of free electrons in a piece
of metal is as great as or greater than the number of atoms, then it is thou-
sands of times as great as the number of particles in an equal volume of a
material gas. Now the quantity equated to 4 in equation (64) contains N
in the numerator and w32 in the denominator, and for the hypothetical
electron-gas within the metals it is no longer small. The expression (64)
for A is then no longer acceptable.

While the statement just made about m is based on a fact of experience,
the statement about N is not so firmly grounded. We have no direct knowl-
edge of the number of free electrons in a given volume, say the number #
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(=N/V) in unit volume, of a metal. This as I said above is a disposable
constant of the theory. One of the tests of the theory is whether one can ob-
tain correct numerical values of half-a-dozen properties of a metal by choosing
a single value of # for that metal. So long as the classical statistics was ap-
plied to the electron-gas, this was impossible. If the value of # was put as
high as the number of atoms in unit volume, the predicted value of specific
heat (and we may now add, the predicted value of susceptibility) turned out
to be too large; if » was lowered sufficiently to avoid this particular discor-
dance, other predictions were impaired. It was however the general impres-
sion, that one should put # equal to the number of atoms or a small multiple
thereof. I suspect that this decision was largely due to a feeling that since
the free electrons are detached from atoms, and since all the atoms are alike,
any atom should supply as many free electrons as any other. However
that may be, it was natural though not inevitable for Pauli and for Sommer-
feld to link the Fermi statistics with the postulate that there are as many
free electrons as there are atoms, and test the combination of these two
assumptions.

On putting for m the mass of the electron, for N/V the number of atoms
per unit volume of any metal, for 7" any temperature from zero absolute up
to several thousand degrees, and for G any small integer, one finds that the
quantity equated to A in (64) is very large. Thus with N/V=5.9.102
(thenumberof atomsina cc of silver), 7'=300°K, G =2, Sommerfeld computed:

(nh3/G)(2emkT)~32=about 2400 (65)

a result which invalidates equation (64).

We turn then to the other series-expansion of the integral [F (€) de, the one
which Sommerfeld proved applicable for large values of 4. The first two
terms of this expansion are as follows:

® GV 4r )
f F(E)d€=N=—h—3 ?(kaT log A)%/2 <1+—8—(10g A2 - ) (66)
0 A A

Taking the first term only of this expansion and putting the aforesaid values
of N/V and T and solving for log 4, one finds a very large value indeed
(log.4 =325). Assuredly then we may use the first two terms of this ex-
pansion by themselves when we are dealing with the electron-gas in a metal,
and indeed the first term will for some purposes be amply sufficient.

We have thus the following first—and second—approximation formulae
for 4 in terms of n or N/ V:

2mkT log A= h*(3n/4nG)?"? first approx.

2 2/3 (2mmkT)2( 3n N2 6
2mkT log A = h*(3n/4nG)?F [1“_——12—};1*”~ Zvr—&) :l 7

second approx.

(the second approximation being computed by putting the first-approxima-
tion value of log 4 into the second term of the series expansion).
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On substituting one or the other of these into the distribution-functions
(61) and (62), we have the postulated distribution of the free electrons
expressed to as high a degree of approximation as we require, with no dis-
posable constant except #; and we are ready for the applications.

The Specific Heat

As it was the notorious difficulty with the specific heat which spoiled
the old electron-gas theory in which the classical statistics was coupled with
the assumption that there are as many free electrons as atoms, let us first
of all find out whether this difficulty remains.

Any distribution-law for an assemblage leads immediately to a formula
for the total energy E thereof as function of the temperature, which is:

E= fweF(e)de. (68)

Putting the distribution-in-energy (28) derived from the classical statistics,
we find:

3
E=7NkT (69)

and putting the one just derived from the Fermi statistics with the first-
approximation value of 4, we find:

E=Eg+3yVT?
2 VGh2< 3n >2/3

5 2m \4G

T (2w k)2 / 3n \1/3
(TGl

M

(70)

h? 4nG
two exceedingly different formulae.

The derivatives dE/dT of these expressions are the formulae supplied
by the two statistics for the specific heat of the electron-gas. The classical
theory predicts for the specific heat a constant value, while the Fermi sta-
tistics makes it proportional to the temperature—being thus in harmony
with Nernst’s heat theorem, while the other is not— and gives it even at room
temperatures but a small fraction of the classical value.

Experimentally the specific heat of the electron-gas cannot be measured
separately from that of the lattice of atoms, which constitutes the metal—
an admission which seems to condemn as vain all hope of testing these formu-
lae. Nevertheless one can conclude with fair certainty that the classical
expression is inadmissible; for the specific heat of an ordinary metal agrees
so well with the value attributed by statistical theories both old and new #o
the atoms alome, that there is simply none left over for the electrons—no
such great excess, that is to say, as the amount 3nk/2 which the classical
theory requires. The device of reducing # to so low a value that 3nk/2
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would be inappreciable makes trouble in other directions,as I have intimated.
But with the new statistics the theoretical valuey VT is inappreciable even
when 7 is made as great as the number of the atoms and T as great as many
hundreds of degrees. Probably no one who did not often lament the defeat
of the old and so very desirable electron-gas theory by that hard fact about
the specific heat will ever quite realize the rejoicing caused by this victory
of the new, which by this achievement succeeded a se faire pardonner many
deficiencies in other fields.

Features of the Fermi Distribution.

I will now mention some of the features of the Fermi distribution which
has thus justified itself by passing its first test.

The most startling of these may be inferred from the distribution-
function (62) or (61), by inserting the first-approximation formula for
A presented in equation (67), and a new symbol W;:

G 1 h: [ 3n \?/3
i () ()
B3 el W Ik 4 2m \ 4G

At the absolute zero the exponential term is either infinity or zero, accord-
ing as the variable € is greater or less than W;. Therefore the density of the
electrons in phase-space is constant and equal to G/k® for all energy-values
less than W;, zero for all values of energy greater than W,.

This striking result can easily be deduced from Fermi’s basic assumption,
without any statistics at all. Absolute zero is by definition the temperature
of the state, being in which the assemblage can give away no energy what-
ever. If not more than one electron may occupy any compartment of the
phase-space, absolute zero is attained when there is an electron in every com-
partment from the origin outwards to a sphere which is centered at the origin,
and which has just the volume needful to contain as many compartments
as there are electrons. The number of electrons in unit volume of the phase-
space is and remains equal to the number of compartments in unit volume,
i.e. to the reciprocal of the volume of the elementary compartment, from
the origin outward to this sphere; there it suddenly sinks to zero, and so
continues. Cooling-down of an assemblage is settling-down of the particles
into this the most condensed of all permissible arrangements; it is like crys-
tallization upon a lattice, only the lattice is in the phase-space.

The foregoing statements may all be repeated, with the words phase-
space replaced by momentum-space. In the momentum-space, a sphere of
radius p, consequently of volume 4wp?/3, contains (4wp*/3)/(h*/V) of the
elementary compartments. If we set this number equal to the total number
of electrons N, and solve the resulting equation for p, we get the radius of
the sphere which would just contain all the electrons if there were one in
each compartment. If we set the volume of the sphere equal to N/G and
solve for p, we get the radius p,, of the sphere which would just contain all
the electrons if there were G of them in each compartment. But this is the
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maximum value of the momentum of the electrons, it is the momentum of
the fastest of the electrons. The corresponding speed v,, of the fastest of the
electrons is p./m, therefore given by the expression:

h/3n 1/3
vm=—<2ﬂ—r> (718,)
m

and the corresponding kinetic energy §mv,? is the same as W;.

It is expedient to set down for future reference the mean values of speed
v and of several integer powers of v, for a gas distributed according to the
Fermi law at the absolute zero. The general formula for the mean value of
any power v° of v is this:

1 1 Ym
v"=—f v*f(v)dv=—(4nG /m*h?) f vst2dy
n n 0
and in particular:
v 1=3/20,;  0=3u./4; *=30,%/5; 3 =31v,} (72a)

The corresponding values for the Maxwell distribution are these:

v l=2(m/2xkT)Y? ;9=202kT/am)*/? ;0¥ = (2kT/m) ;v3=4r(2kT /7m)3/2  (72b)

Plotted as functions of ¢, the distribution-function f in the coordinates
and momenta starts out as an horizontal straight line at a distance G/h8

1.0

0.5f-

.90 .95 1.0 1.05 110

Fig. 1. Graphs of the Fermi distribution-function f plotted against ¢/ W, asindependent
variable, for an electron-gas having 6.5 - 1022 particles per cc, at temperatures zero (rectilinear
curve) and 1500°K, (rounded curve). The value of W; is 6 equivalent volts.

from the axis of abscissae, while the distribution-function F in the energy
starts out as a concave-upward parabolic arc; these continue as far as the
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abscissa €= W;, and from then on the curves coincide with the axis of ab-
scissae.

The foregoing statements are valid for absolute zero; what happens as
the temperature rises? Sommerfeld has proved that the sharp angles in the
distribution-curve are very gradually and slowly rounded off, the curve always
traversing the midpoint of the vertical arc BC (Fig. 1). The far end of the
curve sinks down to the axis of abscissae in the fashion of the Maxwell
law. Even at room-temperature and even far above, however, the distribu-
tion departs so little from the absolute-zero form that many phenomena may
be interpreted in a qualitative way, simply by imagining the absolute-zero
distribution—the completely degenerate distribution, it is called—to per-
sist all through the observable range of temperatures. Indeed, in calculating
electrical resistance and certain other properties of metals, one may use the
mean values of the various powers of » which are tabulated in (72a). There
are however other properties of metals, thermal conductivity for instance, for
the estimation of which it is not sufficient to assume that the mean values
of the powers of v are always the same as at absolute zero, and one must
derive more nearly approximate values for them; for these however I refer
the reader to Sommerfeld.

In practice, the values of W; are rather astonishingly great; no less, for
example, than 5.6 equivalent volts for silver, 5.7 for tungsten, 6.0 for pla-
tinum. Obviously they depend on the compactness of the lattice, being
greater the more closely-packed the atoms are. In potassium and sodium
the atoms are relatively widely spaced, and the corresponding values of
W;are about 2.1 and 3.2 in equivalent volts.

The contrast between this and the classical situation is evidently enor-
mous. Where formerly we were asked to think of the electrons in a metal
at usual temperatures as being distributed Maxwell-wise about a very mod-
est mean energy, say about 0.02 of an equivalent volt, we are now invited
to conceive them as distributed all through a range of energies extending
from zero up to as much as [:jhalf a dozen equivalent volts, and more
abundantly the nearer one approaches to the top of this range, abruptly
though the distribution ceases when the very top is reached. This is “zero-
point energy” with a vengeance!

The pressure of the electron-gas is related to the energy-per-unit-volume
by the equation valid also in the classical theory:

2 E
? 3V
and therefore varies like the total energy—starting from a value absurdly
high at the absolute zero (hundreds of thousands of atmospheres) and in-
creasing therefrom very slowly at first, though according to a T? law, as the
temperature rises. I do not know of any manometer for measuring internal
electron-pressures, but if anybody should invent one he had better make it
strong.
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There is manifest ground for doubting these remarkable proposals:
thermionic data seem to show that the work-function which opposes the
egress of the electrons from a metal is itself less than half-a-dozen volts (in
the usual measure), for some metals less than two—what then keeps these
fast electrons confined within the metal? It turns out, however, that in
augmenting the vis viva of the electrons the new theory also raises the top
of the wall which they must overleap. Here indeed we meet with the first
of the new experiments which tend to confirm the new theory.

Thermionic Emission.

The simplest theory of the thermionic current is, that it consists of all
the electrons belonging to the interior electron-gas which fly against the boun-
dary-surface of the metal with velocities such that the component u thereof
perpendicular to the boundary-surface is great enough to make the “energy-
component” 3mu? greater than a constant W,—the said constant being in-
terpreted as the work-function or the retarding potential-drop at the edge of
the metal. The thermionic electrons are those which swim up to the surface
with an outward-bound velocity-component so large, that by means of the
kinetic energy of their outward motion they can climb over the wall.

Evidently any thermionic emission must distort the distribution of the
electron-gas inside the metal, as it is an unbalanced outflow of electrons.
The situation in which the efflux is balanced by a corresponding influx from
an electron-gas outside the metal is much regarded in thermodynamic theory,
but one cannot measure currents in that situation any more than one can
measure heat-flow between two bodies at equal temperature. In assuming,
then, that the distribution of the internal electrons is that of Fermi or that
of Maxwell, we shall probably be invalidating our conclusions except for the
limiting case of an infinitesimal emission. It seems probable, however, that
with the thermionic currents of practice the approximation is good enough.

The simplest theory of the thermionic current, then, consists entirely of

the equation:
m 3 ) °3 0 1
i=e(—> Gf duf dvf dw-u—— — (73)
A — o o A~ tee/ ¥ 1

This is a restatement of the first sentence of this section, plus the assertion
that even when electrons are leaking out through the wall of the metal the
distribution within remains practically that of Fermi. The factor e stands
for the electron-charge; the symbol 7 thus for the thermionic current-density
in electrostatic units. The factor m? enters because, in conformity with
usage, I have translated from the momenta into the velocity-components
u, v, w as independent variables. The quantities #, and W, are related by
the equation:

Wa = %mu02 ( 74)

In the integrand we are of course to put $m(u2+v2+4w?) for e.
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Setting for A the first-approximation value from (107) with the symbol
W, defined in (71), we obtain:

i= e( > f f f e(e——W )/kT+—1dudvdw (75)

The integration is perfectly straightforward if the second term in the
denominator may be neglected relatively to the first. This seems unnatural,
for we have just been noticing that over part of the energy-range, from
e= W, downwards, the second term is larger than the first. But if W, is
considerably larger than W —and by this I mean, if (W.—W;)/kT is posi-
tive and considerably larger than unity—then the electrons which escape
are those which belong to the extreme upper part of the energy-range, where
the first term is much the larger. Writing then « - exp[— (e— W;)/kT] for
the integrand, we integrate with ease by well-known formulae, and get:

. 2wemG ‘
1=—%—(kT)26‘(W““WU”‘T. (76)

The experimental test consists in plotting (log z—2 log T') against 1/T;
we should get a straight line provided that W, does not vary with tempera-
ture. The experiments do lead to precisely this result. The slope of the line
varies from metal to metal, and depends on the state of the metal surface;
identifying it with (W,— W,)/k, one finds that W, exceeds W; by amounts
ranging from one equivalent volt upward to five or six; so the approxima-
tion just mentioned is abundantly justified, even up to temperatures of
incandescence.

The contrast with the predictions of the classical theory is peculiarly
interesting. Assuming the Maxwell distribution for the interior electrons,
one arrives easily (the reader can do it by substituting the value of 4 from
(64) into (73)) at the formula:

en

e 1/2,~Wal kT
i (27rm)1/2(kT) e . (77
On testing this formula by plotting (log ¢—3%log 7°) against 1/7, it is found
that the experiments yield lines as beautifully straight as those obtained by
plotting (log 4—2log 7). Indeed—as everyone knows who has dabbled in
thermionics—a function of the type exp(—¢/T") varies so exceedingly rapidly
with 1/7 that it makes no perceptible difference to the graph whether or
not the function is multiplied by a constant or by any modest power of 7.
One cannot then use the graphs to distinguish between the theories, even
if one could be sure that W, is not a function of 7. But the classical theory
proposes that we identify the slope of the aforesaid line with W,/k; and it

has been the custom so to do.

Now if the Fermi distribution-funciton is the right one, physicists have
have been underestimating the work-function all along. They have plotted
experimental curves which agreed in shape with (76) and (77) and from
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these they have evaluated the constant figuring in the exponent, a constant
which they have denoted usually by —b/k; and then they have equated b
to W,, whereas if it is right to apply the new statistics they should have
added W, to b and then equated the sum to W,. Nor is the alteration slight:
for if there are as many free electrons in the metal as there are atoms, then
W, is six volts or thereabouts, and the quantity to be added to the observed
constant b is larger than b itself.

Is there then any other way of determining the work-function than out
of this apparently ambiguous current-vs-temperature curve? If there is a
direct and independent way, it may serve not only to decide between the
two statistics, but also—if it favors the new by yielding a value for W,
greater than the thermionic b—to give an experimental value for (W,—b) =
W; and hence for the disposable constant # which is the one uncertain quan-
tity in the theoretical formula for W;. It may, that is to say, serve to de-
termine the number of electrons per unit volume of the electron-gas.

Now it seems that the diffraction of electrons by crystals provides an in-
dependent and direct way of of determining the work-function. For in the
phenomena in which negative electricity behaves as a wave-motion, the
work-function figures in the index of refraction; and the index of refraction
of a metal may be determined from the diffraction-patterns which it forms
when irradiated with slow electrons. Ample data concerning one metal—
nickel—have already been acquired by Davisson and Germer, and from these
it transpires that the work-function is much in excess of the thermionic
constant b—so much indeed, that the corresponding value of W;implies that
there are twice as many free electrons as atoms in the metal, or even more3
The values deduced for the work-function from the refractive index vary
however with the speed of the electrons; and it is evident that much remains
to be understood.

The factor which multiples T2exp[— (W,— W;)/kT] in the right-hand
member of (76) involves universal constants only (supposing that G is such)
and is therefore the same for all metals—a principle derived by Richardson
from the first and second laws of thermodynamics twenty years ago, with-
out any assumptions at all about the distribution of the electrons. Its
actual value 27k?meG/k? differs only by the factor G from the value derived
by Dushman, which is numerically equal—in the customary units—to 60.2
amperes per cm? per degree squared. There are several metals for which
the experimental value of this quantity—commonly known as 4, a symbol
which in this article is monopolized by another meaning—agrees well with
60.2. One might infer that G must be unity, a choice which would demolish
the theory of paramagnetism; but there is another recourse; one may suppose
that half the electrons which come up to the bounding surface from within
with energy sufficient to escape are nevertheless reflected. A factor (1—7)

8 L. Rosenfeld, E. E. Witmer (I ¢. ¢nfra). From Rupp they cite values of refractive index
for six other metals (Al, Cr, Cu, Ag, Au, Pb) and compute values of #. In considering these,
however, the reader should assess G. P. Thomson’s criticism of Rupp’s values.
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—r being called the coefficient of reflection, and being put equal to % —then
enters into the formula, and balances out the factor 2 introduced by giving
the preferred value to G. Moreover one may explain values of the constant
still smaller than 60.2, or between 60.2 and 120.4, by adjusting 7 accordingly.
But there are also recorded values enormously greater than 120; so evidently
something remains to be understood.®

The methods of wave-mechanics have been applied by Fowler and
Nordheim to the problem of evaluating this coefficient of reflection. They
have attained some notable results in the fields of thermionics, cold dis-
charge, and photoelectric effect. These however are consequences not of the
new statistics only, but of a combination of the new statistics with the new
way of considering the transmission and reflection of electron-waves at sur-
faces. There is not space for me to deal with the latter, beyond indicating
its point of departure and its chief results.

Thus far I have been speaking of a metal as an equipotential region sur-
rounded by a surface at which there is a sharp potential-drop, and beyond
which there is the equipotential region of outer space. Fowler and Nordheim
however, like Schottky and others before them, conceive a metal as an
equipotential region surrounded by a surface, beyond which lies a region in
which thereis a field (or at all events an image-field) the strength of whichisa
function of the distance from the surface. The quantity W, appears as the
integral of this field-strength, from the surface to infinity. Electrons of a given
kinetic energy being supposed to fall against the surface from within, the
fraction which fails to pass completely through the region of the field depends
upon the kinetic energy of the electrons and upon the shape (not solely upon
the integral) of the field-strength-vs-distance curve. The average value of this
fraction for all the electrons of all speeds coming up to the surface from within
—the average being taken with due regard to the relative proportions of the
electrons of various speeds, that is to the distribution-in-velocity—is the
coefficient 7 aforesaid. For certain simple shapes of the field-vs-distance curve
it may be calculated. One thus arrives at the beginnings of a theory of the
effects of surface-conditions on thermionicemission,and of the cold discharge.

The Cold Discharge

Suppose that a potential-difference is now applied between the metal and
a neighboring electrode, such that near the metal the resulting field-strength
is very great. Does it penetrate the region which I have just been describing?
Assume that it does penetrate as far as the “surface” just defined. Then,
everywhere beyond the surface, the actual field is the resultant of this
“applied” and the previously-mentioned “intrinsic” field. The shape of the
field-strength-vs-distance curve is thus changed, in a way which is calculable

9 If the empirical equation is of the form ¢ = aT" exp (—b/T), then whatever may be
the values of the constants @ and b, one can always claim that it agrees with the foregoing
theory provided one assumes that W; or r or both vary with temperature in just the proper
way. But, as Fowler puts it: ‘“‘the variety of possible uncontrollable hypotheses (if such as-
sumptions are to be admitted) becomes too large for profitable disscussion.”
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if we have postulated some particular original shape; and in certain simple
cases it is possible to calculate the consequent change of the coefficient 7,
and thereforetheelectron-current—or theadditionalelectron-current—which
the applied field causes to emerge from the metal. This is the current known
as the “cold discharge.”

Nordheim adopted for the field-strength-vs-distance curve, in the absence
of applied P. D., the shape which is most commonly proposed—the inverse-
square curve, the law of the “image-force” which a charge in the vicinity of a
conductor experiences because of its “electrical image” in the conductor.
For the current 7 of the cold discharge he then derived this approximate
formula:

i=c'SF? exp (—c"/F) (78)

in which F stands for the applied field, S for the surface-area of the metal
exposed to it, ¢’ and ¢"’ for constants which can be calculated when W, is
known.

There are certain experiments (for an accont of which I refer to Nord-
heim’s paper in the Physikalische Zeitschrift) which indicate that the actual
relation between the current and the field-strength agrees in form with (78),
but that the predicted values of ¢’ and ¢’ are too large—too large by a
factor of the order of ten in the latter case, by several orders of magnitude
in the former. However it is possible to explain away these contradictions.
One may assume, for instance, that the actual surface concerned in the
discharge is a collection of small spots which altogether have but a small
fraction of the total area of the metal surface; and that over these small
spots, the field-strength is much higher than it would be if the metal were
everywhere uniform and smooth. The ratio of the observed to the predicted
value of ¢’ thengives the fractionof the total surface which is covered by these
“active” spots, and the ratio of the observed to the predicted value of ¢’/
gives the reciprocal of the factor by which the field-strength must be multi-
plied.

This explanation has the disadvantage of being not only plausible but
much too easy. So long as there is not any independent evidence about the
area of the effective spots or the field-strength prevailing over them, the
theory simply delivers an equation with two disposable constants, which is
not very valuable for testing the underlying assumptions. It appears from the
data examined by Nordheim, however, that the ratio of the predicted to the
observed value of ¢’ is always between 10 and 20, and the ratio of the
observed to the predicted value of ¢’ is always about 10~ (at least for
tungsten). This uniformity of the two quantities which figure in the theory
as the disposable constants may be taken as a confirmation of some weight.

Photoelectric: Effect.

According to the former theory, the elementary process of the photo-
electric effect runs thus: a quantum dives into a metal, and gives its whole
energy (say F,) to an electron initially at rest, which then may escape from
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the metal after suffering a reduction of kinetic energy equal at least to W,
and possibly more (more, that is to say, if the electron loses kinetic energy
on its way to the surface). Even if we suppose that the electron originally
belonged to an electron-gas conforming to the classical statistics, its initial
energy would almost always be quite negligible compared to that which the
quantum gives it. But if the electron-gas obeys the new statistics, it com-
prises electrons with energy-values ranging up to W;. However if the new
statistics is valid, then the reduction of kinetic energy at the boundary is
also greater by W, than we have hitherto supposed. The net result is, that
by the new statistics as by the old we derive Einstein’s equation for the maxi-
mum kinetic energy of the electrons expelled by quanta of frequency »:

Enae=E¢+W;—W .= hv+const. (79)

only the additive constant is now (W;— W,) instead of (— W,). This addi-
tive constant should as before agree with the thermionic constant b.

The new theory has one marked distinction, probably an advantage, over
the old: it implies a sharply definite maximum kinetic energy—that is to say,
the distribution-in-energy function of the escaping electrons should jump
suddenly from zero to some definitely higher value at the energy-value E =
E..x prescribed by (79); the slope of the curve representing this function
should make an acute angle with the axis of £ where they intersect at Eyax.
The Maxwellian distribution predicted by the classical statistics for the
interior electrons suggests however that the curve in question should ap-
proach the axis asymptotically. The new statistics leads also to certain in-
ferences about the shape of the curve for values of E less than E,,.x. A great
quantity of data bearing on this subject has been obtained by Ives and his
collaborators; but the interpretation is made difficult by the presumption
that some allowance must be made for the energy-losses suffered by electrons
after they absorb quanta but before they reach the surface, and will require
much study.

Paramagnetism of the Electron-Gas

The susceptibility of the electron-gas was calculated by Pauli even be-
fore the specific heat was evaluated by Sommerfeld, but as it involves an
extra complication I have inverted the historical order.

The complication is due of course to that assumption which is made in
order to explain why the electron-gas should be magnetic at all—the assump-
tion that electrons are magnets. Perhaps I am too cautious in referring to it
as an assumption, it being so well authenticated by the gyromagnetic effect
and by the general usefulness of the “spinning electron” in the explanation
of spectra. These phenomena impose a special value on the magnetic moment
uo of the electron, to wit, the value,

wo=eh/8wmqc (80)

my standing for the rest-mass of the electron. Further they require that
when the electron is floating in a magnetic field, its moment (considered
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as a vector) shall be either parallel or anti-parallel to the field. Denote
by @ the angle between the moment of the electron and the magnetic field:
then 0 must be either 0 or 7.1 Now when a magnet of moment M isinclined
at an angle 6 to a magnetic field H, its “extra magnetic energy” is — M Hcosf.1
In dealing with the electron-gas, then, we are in effect assuming that when
a field H is applied to it the energy of every electron is either increased or
decreased by the amount:

A=ehH /8mwmoc (81)

As I mentioned earlier, the idea of compartments in the momentum space
may be replaced by the idea of “permitted energy-values”, at least in some
situations. Let us for convenience return to the latter conception. Then
we may say that when a magnetic field is applied to an electron-gas of which
the particles are magnets, each of the permitted energy-values is split into
two. To any previously-permitted value e correspond a pair of new ones,
e+A and e—A; or let me say e+mA, using m as a symbol which may have
only the values +1 and —1.

Pauli assumed that the most probable distribution of the electrons
among this doubled set of energy-values is to be determined by the new
statistics, including Fermi’s postulate so modified as to state that not more
than one electron may possess any one of the permitted values.

Previously I used the symbol Z;, to denote the number of compart-
ments or permitted energy-values which lie in the shell s and are occupied
by 7 electrons apiece; and the symbol Q, to denote the total number of per-
mitted energy-values in the shell s, Now there are Q, permitted values
which are shifted upward by A from the original ones, and Q, more which
are shifted downward by A from the original ones. Let Z;,,: stand for the
number in this upward-shifted group which are occupied by ¢ electrons
apiece, and Z;,; for the corresponding number in the downward-shifted
groups; Z;.m shall be the general symbol for the two.

Now consider the distribution:

Ziom = Qlgme—B—i(estmA) [ KT m=+1,—1

82
i= 0, 1 (82

This answers the standard requirements for thermal equilibrium. For if
we define W* in Bose’s way, and then say that the entropy is & logW*, we
find that when the energy of the assemblage is varied by § E—the total num-
ber of cells and the total number of particles remaining constant—the first
variation of ‘the entropy is 6 E/T), as it should be. I leave it to the reader
to prove this statement as corresponding statements for other distributions

10 Tt comes to the same thing, and may on other grounds be preferable, to assign to u twice
the value given in (80), and to 0 the values 60° and 120°.

1 The magnetic energy, or energy due to the “interaction between the magnet and the
field“ is put equal to zero when the magnet is transverse to the field, which is consistent with the
picture that the field alters the energy of the magnet by speeding up or slowing down the
revolving electricity. ' The formula here given is a first approximation.
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(e.g. (47)) wer: earlier proved, and to determine the values of the quantities
asm; on doing which, and substituting the results into this distribution, he
should obtain

Qs
Zis 1= eB+(sa-I:A_)—/_kT__—{._1— 2 v
Qe=—— —(2mm)*'2(e)'2.  (83)
z e @ ()2 B
1s ,—1=

(B (=M /BT 1

It is best, perhaps, to regard these formulae as the descriptions of two
electron-gases, one composed entirely of magnets parallel to the field, the
other of anti-parallel magnets; the actual electron-gas is a mixture of the
two. The quantity Z;, i, for example, is the number of parallel magnets
having energy-values shifted downwards through A from the Q, originally-
permitted energy-values which lay in the shell s. True, these magnets are
no longer themselves in the shell s, owing to the shift; their energies lie
between (e;—A) and (e;—A-de,), not between €, and e,+de,; but for
ease of integration it is better to think of them as being associated with
the original unshifted energy-values. The total number of magnets com-
prised in the parallel gas is then given by the equation:

2 v © ()V2de
Ny= — 2am)¥2 f . (84)
(,”.)1/2 hs 0 eB+(e—A)/kT_+_1

For brevity denote by L the constant before the integral; and use the symbol
¢ for the function defined as follows:

@ €)1/%de
o) = f MO (85)

=0 gutel kT + 1

Then expanding N, as a power-series in the variable A/kT" which is uoH/kT,
we find:

H
N, =LI:¢(B) ——%—W(B) +terms of higher order in H} . (86)

Similarly one obtains, for the total number N, of electron-magnets in the
“anti-parallel gas,” a formula:

H
N2=L|:¢(B)+%¢’(B)+terms of higher order in H:l. (87)

Now the total magnetic moment of the “parallel gas” is Niu, in the same
sense as the field, and the total magnetic moment of the “anti-parallel gas”
is Nauo in the sense opposed to the field; so that the net magnetic moment
of the entire assemblage of electrons is (N;— Na)ue. We will carry out the
computations only for values of H so low that we may ignore all terms
beyond the second in the expansions for N; and N.. The net magnetic
moment is then approximately proportional to H; its quotient by H, the



THEORIES OF MATTER, RADIATION AND ELECTRICITY 131

susceptibility x of the electron-gas, is constant. It is a fact of experience
that with nearly all paramagnetic substances the susceptibility ¢s indepen-
dent of H up to the highest attainable values of this variable. The limitation
which we are here accepting will probably therefore not prove serious.
Our approximative formula for x is then as follows:

2Lug? Nuo* ¢'(B)

i Y B =07 #(B)

X=(N1—N2)M0/H=" (88)
and all that remains is to make the step made in every previous case—to
determine the last remaining unspecified constant, B, in terms of the total

"number N of the particles of the assemblage.

This number N is the sum of N, and N,. Ignoring the terms of higher
order in H, we have:

N=2L¢(B) (89)

and this is substantially the equation which was used to determine Sommer-
feld’s constant A in terms of N; for ¢? and 1/4 are one and the same. To
make this equation identical with (63), or rather to make (63) identical
with this one, we must there put G=2, as we did—this is the reason for
having introduced that factor G.

The procedure is then as follows: put —B for logd in the righthand
member of equation (66)—differentiate it with respect to B—insert into
the derivative the value of B obtained by equating to N the right-hand
member of (66), i.e., the value given in (67)—and substitute into (88).
The resulting value for x is this:

 \2/3
X= 12<—3_> u02n1/3m0h_2 . (90)

To pass now to the experiments: is it permissible to suppose that the
susceptibility of any metal is due entirely to the electron-gas within it?
This is the same sort of uncertainty as confuses the question of the specific
heat. Here we have every reason to expect that the magnetization of an
ordinary paramagnetic metal is a threefold effect, involving not only the
orientation of the electrons but also the orientation of the atoms, and finally
that alteration of the electron-orbits in the atoms which gives rise to dia-
magnetism. To disentangle these three contributions to the net magnetic
moment seems almost beyond the powers of any theory. With the alkali
metals, however there is strong evidence that the second may be absent.
Spectroscopic data show quite definitely that the magnetic moment of
the alkali-metal ion—the atom minus its valence electron—is zero. If
every atom in an alkali metal has surrendered its valence electron to the
electron-gas, then there will be no orientation of the ions by the magnetic
field, and the number of electrons forming the electron-gas will be equal to
the number of atoms. The values of x computed with this last assumption
should then be not less than the actual susceptibility ; they may be somewhat
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greater, because of the diamagnetic effect which is opposed in sign to the
paramagnetic effect and therefore neutralizes it in part. Of this diamagnetic
effect we can predict the order of magnitude, and we may expect that it
will be greater, the higher the atomic number of the metal.

The value of x proposed above is the value for absolute zero; for higher
temperatures a closer approximation can be obtained by using two terms
of the expansion in (66), instead of the first term only. It appears, however,
that the alteration is slight. Like the average energy and the pressure, the
susceptibility of the electron-gas should be very nearly the same at all tem-
peratures from absolute zero up through room-temperature and far beyond.
Now it is a fact that the susceptibility of the alkali-metals is independent
of temperature—a fact so surprising, that the desire to explain it seems to
have been Pauli’s principal incentive in undertaking this research. For if
the electron-gas were governed by the classical statistics, and the electrons
were as many as the atoms, the susceptibility of a metal would increase as
the temperature diminished and attain enormous values near the absolute
zero.

When Pauli published the theory to which this section is devoted, the
experimental data indicated that the susceptibilities of potassium and
sodium were somewhat lower, those of rubidium and caesium markedly
lower than the predicted values—divergences which might be charged to
the diamagnetic effect or to faults in the theory. Recent Canadian work,
coming out very much ¢ propos, has improved the situation remarkably.
This tabulation (taken from: E. S. Bieler, to whose article I refer for the
sources) shows the comparison:

Na K Rb Cs
Theoretical (Pauli) 0.66 0.52 0.49 0.45
Experimental:
McLennan et al. 0.61 0.42 0.31 0.42
Lane 0.65 0.54

(All numerical values to be multsplied by 10-¢

Singularly enough, the agreements are too good! one would expect the
diamagnetic effect to be more considerable than the very slight discrepancies
between the experimental and the theoretical values for sodium, potassium,
and caesium. Perhaps further work on the theory of the diamagnetic effect
would now be desirable.

Returning once more to the meaning of G, one sees that the placing of the
value 2 for Gin equation (61) and all of its descendants amounts to the making
of the assumption that the electron-gas is really a mixture of two equally
numerous and entirely independent assemblages of particles, each for itself
obeying the Fermi statistics. This seems a rather odd idea, but inevitable.

Theory of Conduction.

The new theory of conduction developed by Houston and Bloch is
based upon the wave-theory of negative electricity, in which the interior of
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a metal is conceived to be filled not with darting corpuscles, but with station-
ary waves—as many distinct patterns of loops and nodes, it may be, as in
the corpuscle-picture there are free electrons. It is not a consequence of the
Fermi statistics alone,.but of the Fermi statistics plus the wave-theory. Of
course, if we come to decide that the Fermi statistics implies the wave-theory
and vice versa, this warning will seem superfluous; but it is not superfluous,
so long as the new statistics is used with reference to corpuscles. Now the
corpuscle-picture of negative electricity is not only familiar, but seems
likely to survive as the most convenient for describing most of the phenomena
in which electrons figure. I will therefore express as much as possible of the
new theory of conduction in the language of corpuscles, although eventually
I shall be forced to make an assumption which will come to the same result
as converting the corpuscles into waves.

To realize the things to be explained, conceive a slab of metal, having a
thickness d measured along the x-axis; suppose a potential-difference V to
exist between its faces, so that a field E=V/d directed along the axis of x
pervades it.

If the electrons in the metal moved perfectly freely, then any which
was introduced without kinetic energy at the negative side of the slab would
fall forthwith to the positive side, arriving there with the full kinetic energy
eV and the full corresponding velocity of magnitude (2¢V/m)'? directed
along the axis of x. Certainly nothing of the sort occurs. When a potential-
gradient exists along a wire, for instance, heat is developed uniformly every-
where and there is nothing to suggest that the electrons are moving more
rapidly at the positive than at the negative end.

We must then suppose that the free flight of the electron is interrupted
at frequent intervals, and that at every interruption it loses the kinetic
energy and the component of velocity up the potential gradient which it
has acquired from the field since the last one previous. Or at least, the
average loss of kinetic energy and of “drift-speed” at interruptions must be
balanced by the average gain between interruptions.

In the corpuscle-theory these interruptions are pictured as actual im-
pacts or collisions of the electrons with the atoms. Evidently, if we could
assume that whenever an electron hits an atom it rebounds in some direction
perfectly transverse to the field, then we should have a mechanism in which
the drift-speed of the electron up the potential-gradient is annulled at every
impact. This would be much too artificial. But if we think of both the elec-
trons and the atoms as elastic spheres, the latter being so massive that they
never budge when struck, the result is in effect the same. For then, the angle
between the direction along which an electron approaches an atom and the
direction along which it flies away after collision is on the average 90°. The
rebound is as likely to be backward as forward; the rebounding sphere
retains on the average no memory of its former direction of flight. This I
will prove later.

There is a difficulty, which I must not leave unmentioned, although in
this place I can do nothing to clear it away. In the development of these ideas
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we shall in effect assume that at the end of each free path the electron loses
not only the forward drift-speed but the whole of the kinetic energy which it
acquired while traversing that free path under the influence of the field. But
if it collides with infinitely massive spheres it does not lose kinetic energy at
all. If it collides with spheres of the mass of an atom, it loses kinetic energy,
but does not completely lose its drift-speed. The theory of this latter case
has been developed by Compton and Hertz for use in the study of conduction
in gases, and might be applied to the problem presented by metals, but
probably fits them no better than does the other hypothesis.

With this elastic-sphere model, then, the average interval between im-
pacts is the average interval during which the electron is piling up drift-
speed, only to lose it all at the end of the interval and be forced to start
afresh from scratch. Denote by #, the length of this average interval. Since
the acceleration of the electron is eE/m, its drift-speed at the end of the
period ¢y is (eEty/m), its average drift-speed is half as great. Now I must
dispel the impression that the drift-speed is the whole of the speed which
the electron has. On the contrary, the mean speed of the thermal agitation—
let me call it #—is immensely larger than the small contribution which
any ordinary field (indeed, any not very extraordinary field) can impart to
an electron over a distance comparable with the distance between atoms.
The field must not be supposed to do more than bend very slightly the
rectilinear paths of the electrons from impact to impact. This statement is
true with the classical statistics, a fortiors with the new. Denote by [ the
average distance traversed by an electron between impacts. Then ¢, is
1/, and the average drift-speed is 3(eEl/m®).2 The corresponding current-
density is the product of this by the number of electrons in unit volume
multiplied by the charge of each. So, for the current-density produced
by unit-field-strength, which is by definition the conductivity o, we obtain
the formula:

o=3nel/mb. (91)

The constant [, the mean free path, is the third disposable constant of the
theory of electrons in metals.

I fear that the foregoing passage sounds very old-fashioned; but never-
theless it expresses the corpuscle-theory of conduction. The notion of elastic
spheres is only accessory—an image which may or may not be the best to
represent the central idea, the idea that the life-history of a corpuscle in a
metal pervaded by a field is an alternation of gradual gain and sudden loss.
The mean free path is the average distance of uninterrupted gain.

The common test of the formula (91) is the test by the temperature-
variation. The result of this, incidentally, was regarded as quite as grave
a demerit of the old electron-gas theory as the difficulty with the specific
heat.

22 It is the mean of the reciprocal of the speed, not the reciprocal of the mean speed,
which should figure here; but with so rough a formula the distinction is scarcely worth making.
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It isa fact of experience that the resistivity p=1/0 of any metal varies
rapidly with temperature. For many metals it varies directly as T over
quite a wide range; at low temperatures even more swiftly, not to speak
of the strange phenomenon of supraconductivity. Now in equation (151)
we have p set equal to a combination of two universal constants with three
quantities 3, #, I between which last the responsibility for these great varia-
tions must be divided.

According to the classical statistics # is proportional to T%% This is a
variation in the right sense, but not fast enough. To make p vary as T we
must then make #nl vary as 1/7Y2, With the Fermi statistics the require-
ment is harder. The mean speed of thermal agitation is almost independent
of temperature, and the burden of the whole responsibility for making p pro-
portional to 7" must be loaded upon #nl. The first step with the new statis-
tics is a step backward.

Can we reasonably assume 7 to be the cause of the variation? If so,
then it must diminish with rising temperature. It would seem reasonable
enough for # to increase with rise of temperature, for presumably the free
electrons arise from ionization of the atoms, and ionization is promoted by
heat; but for # to decrease would seem very odd, notwithstanding Water-
man’s successes in accounting for some of the data by such a theory.

Part of the burden, then, must be cast on the mean free path—indeed
the whole of it, if we adopt the new statistics so that 7 is held constant,
and suppose in addition that #» does not vary with temperature. But the
elastic-sphere conception cannot stand the strain. It gives for the mean
free path a value independent of temperature,® except insofar as the metal
dilates with increase of heat. This is pretty nearly checkmate.

If however we might suppose that an electron may sometimes go clear
through an atom without being reflected or deflected, and that the chance
of such a piercing is relatively smaller and the chance of a rebounding
relatively greater, the more violently the atom is vibrating—then by this
theory the mean free path would diminish as the temperature rises, which
is what is desired. This is an idea proposed long since by Wien.

The new idea is in result the same. The probability of the rebounding,
or let me say of the scattering of an electron by an atom, is supposed to in-
crease with the vigor of the vibrations of the latter. But for this a new
reason is advanced: the reason, that while vibrating the atom is most of
the time away from its equilibrium-place in the crystal lattice, and its
relations with its companions are distorted. The probability of scattering is
made to depend not only on the presence of the atom somewhere along the
path down which the electron is rushing, but also on the relative positions
of all the other atoms in the crystal.

To make such an assumption is, in effect, to compromise between the
corpuscle-theory and the wave-theory. For what is the evidence from which

13 The value 1/ N« R? familiar in the kinetic theory of gases, N standing for the number of
fixed spheres per unit volume, R for the sum of the radii of a fixed and a moving sphere.
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it is inferred that a beam of light falling upon a grating, say, or a beam of
x-rays falling upon a crystal, are undulatory? Essentially this: the way in
which the beam is scattered or diffracted by the regular array of rulings on
the grating or atom-groups in the crystal is different—greatly and strikingly
different—from the way in which we know that it would be scattered by a
single ruling, or suspect with good reason that it would be scattered by a
single atom-group. For instance, there are directions in which no light at
all is sent by the regular array, though assuredly light would be scattered
in those directions by any member of the array if it were solitary. These
facts are explained by invoking interference of waves. The wavelets ex-
panding outwards from the various rulings or scattering particles are sup-
posed to arrive in opposite phases at the “dark fringes” of the diffraction-
pattern, so that they cancel each other. But one might also say that the
beam of light is a stream of corpuscles which are deflected or scattered by
the atom-groups or rulings which they happen to strike, and that the law
of scattering of the individual atom-group is altered by the marshalling
of the scattering elements into a regular pattern, so that in particular the
probability of a deflection towards one of the dark fringes is reduced to
zero.

I am not prepared to say that such a compromise is a full alternative
for the wave-theory, though modern theoretical physics seems to be tending
in that direction. But if we wish to describe with the language of the
corpuscle-theory the phenomena of diffraction by a crystal, whether of waves
of light or waves of negative electricity: then we must certainly adopt the
idea of a probability-of-scattering, of a mean-free-path, which varies with
the irregularity of the placing of the atoms.

The principle is especially simple and especially startling, if we deal
with a beam of which the wave-length—considering it as a beam of waves—
exceeds the spacing of the lattice. Waves of such a magnitude would not
be diffracted at all by scattering particles placed exactly at the points of the
lattice. Though any particle singly would scatter them, they flow through
the lattice intact. If then we wish to interpret the beam as a stream of
corpuscles, the probability of deflection of any corpuscle by any atom must
sink to zero when the arrangement is made perfect; the mean free path
must then be considered infinite.

The resistance of a perfect crystal of an element should then be zero
when all the atoms are stationary in their places on the lattice—if they
ever are, which apparently they are not; and should increase steadily with
increasing temperature, in a way which can be computed if we know two
things: the way in which the scattering of waves by particles on a lattice
varies with the amplitude of the quiverings of the particles about their
lattice-points, and the way in which the amplitudes of the particles vary
with the temperature. The second of these questions is the subject of the
theory of specific heats of solids, developed principally by Debye. The
first has been profoundly studied by Debye and by several other physicists
interested chiefly in the scattering of x-rays by crystals. Transferring their
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results into the theory of the diffraction of electron-waves, Houston de-
monstrated that over a wide range of temperatures the resistance of a perfect
crystal should vary as the absolute temperature.

To determine not only the law of variation of resistance with temperature
but the actual value of the resistivity for any metal, it would be necessary
to evaluate the mean free path of the electrons. By the thoroughgoing
corpuscular theory, this depends on the size of the atoms from which the
corpuscles rebound; by the wave-theory, it depends on the scattering-power
of the individual atom, which thus takes the place of the “size of the atom.”
The problem of computing the scattering-power of an atom for electron-
waves belongs to the new mechanics. Houston was able to obtain good
numerical agreements for several metals.

Another way of introducing irregularity into a crystal of an element
consists in replacing a small fraction of the atoms, chosen at random here and
there on the lattice, by atoms of another element. Certain alloys, known as
“solid solutions,” are of this type; and it is not only known that the resistance
of such an alloy is greater than that of the element which is most abundant
in it, but it has been shown by Nordheim that the dependence of resistance
on percentage of substituted atoms follows the rule to be expected from the
diffraction theory of resistance.!

Since then the conception of mean-free-path can be reinterpreted in
terms of the wave-theory, and since it appears to be possible to deduce
from the wave-theory a law of variation of mean-free-path with tempera-
ture which can be incorporated intact into the corpuscle-theory it is per-
missible to return to the corpuscle-picture to set up a theory of conduction
of heat and of electricity, and of the thermo-electric effects in crystals.

We shall apply what I may call the method of the perturbed distribution-
Sfunction, developed by Lorentz. The idea is, to begin by deriving a distri-
bution suiting the actual case. The functions which we have hitherto em-
ployed, that of Maxwell and that of Fermi, are isotropic; it is only in the
combination (£2+472+{?), hereafter to be called #?, that the velocity-com-
ponents &, 5, { appear in them.’ These “standard” functions may be appro-
priate to a uniform metal in which the temperature and the potential are
uniform. Evidently they are not appropriate to a metal in which there is
an electric field, or a temperature-gradient, or which varies in its chemical
nature from place to place, as might an alloy. If in such a case we orient the
axis of x parallel to the gradient of the variable quantity—be it electric
potential, temperature, or whatever else—we must expect £ to enter differ-
ently into the distribution-function from % and £.

Various arguments show that as a rule the departures from the standard
function must be rather small. Lorentz therefore postulated that in the
presence of a gradient directed parallel to the x-axis, the actual distribution

14 The idea that the free paths of electrons extend from one irregularity of the crystal to
another was propounded before the advent of the wave-theory of negative electricity.

%5 I shall use the velocity-components hereafter in lieu of the momentum components, to
conform with the custom
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should differ from the standard function fo(v)—this he of course assumed
to be Maxwell’'s—by virtue of a small additive term, a new function of v
multiplied by the velocity-component £:

J="rfo(v)+£g(v) (92)

and he proceeded to determine the new function g by the condition that f
should remain constantin time despite the collisions of the electrons with the
atoms. More precisely, he found for each of the three cases with which we
shall be concerned a function g, such that the distribution-function obtained
by adding &g to fo conforms to that condition. This justifies the procedure.

Much the simplest case of the three is that of a uniform metal at a uni-
form temperature, subject to an electric field; for here the distribution-
function need not vary from place to place. It will be well to go through the
reasoning in this instance, though the formula for conductivity in which
it leads differs but little from (91).

It is required, to find a function g of the combination (§24 52+ (%)12
such that if at any moment the distribution (fo+£g) prevails, it continues
unchanged throughout time— the number of particles in any compartment
or cell of the velocity-space (the momentum-space of the earlier pages,
with its unit of length altered in the ratio m:1) stays constant. Choose a
compartment enclosed between planes £ and £4d§, 7 and n+dn, ¢ and {+d¢.
Call it the compartment C. Its volume is dédnd{, which to save a profusion
of Greek letters I will usually denote by dr. The number of particles in it
is f.dr. This number must remain unchanged, though individual particles
are constantly moving into and out of C in either of two ways—by “drift”
and by “collision.”

Owing to the field E, all of the particles have a steady acceleration
a=¢E/m, because of which they are continually and continuously drifting
from cell to cell. One easily sees that the number which thus drift out of C
per unit time (it is best to think of “unit time” not as one second, but as a
period small compared with the mean time between impacts) is equal to
first approximation to af(E4-d§, n, {)dndi.'* This loss is partly balanced by
an inward drift of particles which are accelerated into the compartment
from the one lying beyond the plane £; the balance is not perfect, for the
number drifting in per unit time is equal to af(&, 5, {)dndé and there is a
difference a(df/d¢)dr outstanding.!” This difference must be balanced by
the entrances and exits of particles which undergo collisions.

Let adt represent the number of electrons which, being initially in the
compartment C, suffer impacts during unit time and are thus suddenly

16 During a time df so short that adt is small by comparison with dg, the particles which ini-
tially lie between the plane (¢§+d¢ —adt) and the side (¢+d&) of the compartment move out of
it, while the particles which initially lie between the side & of the compartment and the plane
(¢ —adt) move into it; these two classes of particles number f(¢-+dg, 9, ¢) adt - dnd¢ and f(&, 1, §)
adt - dnd{ respectively.

7 This expression figures in the equations as a net loss, but in fact has a negative sign
(since df/dt<0) and therefore is actually a gain.
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bumped out of it; and bdd¢ the number which, being initially in other com-
partments, suffer such impacts during unit time that they suddenly turn up
in C. The function g must be so chosen, that the lack of balance between
the electrons drifting out and the electrons drifting in is just compensated
by the lack of balance between those bumped into the compartment and
those which are bumped out:

¢E df

b—a. 93
 dE a (93)

We must therefore evaluate (b—a) in terms of the distribution-function.

We already have a formula ready-made for the number of impacts
experienced per unit time by the particles of speed v; it is v/I for each particle,
so that:

a=(v/1) fdtdnds . (94)

Since however we have also to compute b, we shall find it expedient to classify
these impacts according to the destinations of the particles, so to speak—
according to the compartments of velocity-space into whichthey are bounced.
A particle of speed v is located, in the velocity-space, on a sphere of radius
v centered at the origin. Collision with an immovable atom changes the
direction, but not the magnitude of the velocity; in the velocity-space, the
particle suddenly moves to some other point on the same sphere. When
electrons jump out of the compartment C because of impacts, they land
in the other compartments which with C form a spherical layer around the
origin. When electrons jump into C because of impacts, they come from the
other compartments of that same layer. We shall derive an expression
for the number of particles leaping from C into any other cell C’ of the layer,
and an expression for the number leaping reversely. The difference or lack
of balance between these numbers, integrated over all the cells C’, will be
the required quantity (b—a).

We begin by inquiring how many particles make such impacts that their
paths (in the coordinate-space, of course—not the velocity-space) are
deflected through angles between say 6 and 8+df. To be deflected through
an angle 6, an electron must strike an atom at a point where its surface is
so oriented, that the normal (which is the line of centres at the instant of
collision) is inclined to the line of approach of the electron at the angle
¢ =%(r—0). Denote by R the radius of the atom, and suppose that the
radius of the electron is negligibly small.8 Think of all the f-dfdnd{ electrons
which at some particular moment of time are in unit volume of the metal,
and belong to the compartment C of the velocity-space. Imagine each of
these to be the centre, in the coordinate-space, of a pair of circles lying in
the plane perpendicular to its path, and having radii R siny and R(siny+

18 The formulae remain valid even if the diameter of the electron is supposed not negligibly
small, provided that we interpret R as the sum of the radii of atom and electron; but the
generalization is not, so far as I know, of any practical value.
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dsiny) = R(siny+cosydy). As time goes on, let these circles travel in the
direction normal to their plane with the speed v. During unit time each
pair of circles traces out a pair of cylinders of length v, containing between
them a cylindrical sheath of volume v-27wR¥inycosydy. Multiplying this
by the number f-dfdnd{ of the electrons, we get the total volume included
in all of these sheaths. Multiplying this by the number N of atoms in unit
volume, we get the number of atoms located with their centres in these
sheaths—which is the number of atoms so placed that in unit time, electrons
of the stated cell impinge on them at angles between ¢ and y+4dy—which
is the number of impacts per unit time in which electrons are deflected
through angles between 8 and 8+d0, which accordingly is this:

N - fdtdnd - 2wvR? sin § cos Ydy = fdtdnd§ - NwR% - § sin 6d9 (95)

It will be convenient to express this as a fraction of the total number of
impacts—call it Zdr—experienced per unit time by all the electrons in
question, which by integrating (95) is found to be:

Zdr=aNR%- f-dr (96)
substituting which into (95) we get:
Z-2siny cosydy=2Z-%sinf db. (97)

It will be observed that deflections smaller than 90° are equally numerous
with deflections greater than 90°, so that on the average the electrons after
impact have no reminiscence of their prior direction of motion, as I men-
tioned earlier. Also, comparing (96) with (94), one derives the expres-
sion for mean free path,

I=1/NzR? (98)

cited already in a footnote. To appreciate the most important feature of the
expression (97) we must however return to the velocity-space.

In the velocity-space, the electrons of which the paths in coordinate-
space are deflected through angles between 20 and 20+4d26 execute leaps
from the compartment C into other compartments of the spherical layer
aforesaid, located on a certain region thereof. These occupy a belt or collar
on the sphere, intercepted between two cones drawn with their common
apex at the centre, their common axis pointing towards C and their apical
semi-angles equal to 6 and 6+4df respectively. Now the area of this belt is
itself proportional to sin8df. This is very important: for it means that the
electrons which are bounced out of C by collisions are sprinkled uniformly
over all the rest of the sphere. More yet: it means that the electrons which
are bounced out of any cell of the spherical layer are sprinkled uniformly
through all the rest of the layer.

Consider then the interchange of electrons between two cells of the layer,
say C at (& 9, ) with volume dr, and C’ at (¢/, 3’, ¢’) with volume dr’. The
number leaping from C to C’ is equal to the total number of impacts occur-
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ring in C multiplied by the ratio which the volume of C’ bears to the volume
V of the layer. The number leaping from C’ to C is equal to the total number
of impacts occurring in C’, multiplied by the ratio which the volume of
C bears to the volume of the layer. The excess of the latter over the former
is then:

Z(E ', §"dr' (dr/V) —Z(E,n,§)dr(dr" V) (99)
which with the aid of (96) and (98) may be written thus:

vdr
—l—[f(s'ﬂ?,,f/)—f(E,ﬂ;f)]dT'- (100)
This is the quantity of which the integral with respect to £/, %', {’, extended
over the spherical layer, is equal to (b—a)dr—the net rate at which com-
partment C gains particles through impacts.

Making Lorentz’ postulate about the form of the distribution-function
f, and remembering that throughout the spherical layer the combination
(£'249"24+¢'2)Y2 is confined within a narrow range of values around v we
obtain:

b—a= (/1) g(0)- f @ -5V (101)

To effect the integration it is expedient to change over to polar coordinates
in the velocity-space. Leaving the origin where it was, and directing the
polar axis towards C, we make the radial coordinates and the colatitude-
angle identical with our » and 6, and for the meridian-angle we use the
symbol ¢. Dividing up the layer into compartments by latitude circles and
meridians, we have for ‘any one of them:

dr'/V = (1/4x) sin 0d6d¢ (102)

Consequently we obtain:?
. 27
b—a=(v/41rl)g(v)-f do sinef do(¢ —¢§) (103)
0 0

Everything therefore hinges on the evaluation of (&’ —£)—the change in
the x-component of velocity which the electron incurs when it leaps from
C’ to C—as a function of § and ¢. Now it may be shown without much
difficulty,?? that:

19 Lest someone be disconcerted by the apparent difference between this equation and that
given by Lorentz, I remark that I am using 6 to designate an angle twice as great as the one
which he denoted by 6.

20 et v,v’ represent the vector velocities of the electron before and after impact,c; the unit
vector along the line of centres at the moment of impact. The components of v and v’ along the
line of centres are equal in magnitude and opposite in direction; the components perpendicular
to the line of centres are equal in magnitude and direction. Writing these statements down in
vector notation:

v.er=v’ ey v—(v-ci))er=v'— (v’ -ci)e;=v’+(v -c1)cy, hence
v/—v==2(v c))c;=—2wcosy ‘c; £ —£=—2vcos ¥ cos w



142 KARL K. DARROW

§—f=—2vcos ¢ cos w= —2v sin 16 cos w (104)

wherein y stands as before for the angle between the line of approach of the
electron and the line of centres at the instant of impact, and w stands for
the angle between the line of centres and the axis of x. Thereisalso a stand-
ard formula?! relating cos w toy, ¢ and the angle 8 =arc cos (§/v) between the
initial path of the electron and the axis of x, as follows:

cos w=cos B cos Y-+sin B sin Y cos ¢. (105)

We now have everything necessary to do the integration in equation (103),
and we find:

b—a=(vE/l)g(v). (106)

Substituting this into equation (93), the condition that the distribution-
function (fo+£g) shall be stable by virtue of perfect balance between the
rates at which electrons are shifted from compartment to compartment
by the impacts and by the accelerating field, we get:

d
(eE/m)d—g(meég) = (e&/D)g. (107)

If the term £g(v) is truly small by comparison with the term f,(v), we may
neglect the second term on the left; and since (df,/dv) = (dfo/dv) (dv/dE) =
(&¢/v) (dfo/dv), the culmination of all the argument is in the formula:

tgo) =— — —— (108)
v

for the alteration which the applied electric field imposes on the distribution.
Notice that g involves £ and 5 and { only in the combination v; this justifies
the procedure of Lorentz.

Now each electron which during unit time crosses any surface imagined
in the metal contributes an amount ¢ to the current through that surface;
but the contributions made by electrons crossing in opposite senses are
opposite in sign—what we perceive as current is net current, the excess of the
flow of charge one way over the flow the other. Conceive a plane surface-
element of area da, normal to the field, therefore normal to the axis of x.
We must classify the electrons which traverse it according to their values
of £. Let H(£)dida represent the number which pass through in unit time,
having at the moment of passage x-components of velocity in the range

2 Imagine two planes P; and P, intersecting along a vertical axis, the dihedral angle be-
tween them being ¢. Through a point O on the axis draw a horizontal plane N, and from O
draw two lines of unit length OR, and ORj, the former in plane P; and inclined at § to the verti-
cal axis, the latter in plane Pand inclined at ¢ to the vertical axis; w is the angle between them.
The points R; and R, are at heights cos 8 and cos ¢ above the plane H. On the vertical line
through R, put a point R, at distance cos 8 above H. Expressions for the sides of the right-
angled triangle RiRyR; are easily obtained, and (214) is derived by applying the theorem of
Pythagoras to them.
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d¢ at & This is equal to the number which at any instant have their x-
components of velocity in this range, and are situated in the right prism
having da for its base and extending a distance £ down the direction of x:22

H(§)dtda=tdadt f dn f defEm,0) (109)

Since for electrons crossing in opposite senses & is of opposite signs, the
integral of this expression over all values of £, multiplied by e, gives the net
current through de when the proper distribution-function is inserted. Evi-
dently the integral will vanish when f is isotropic; there are enormous flows
of charge both ways through da, but they are balanced. Unbalance is brought
about by the non-isotropic perturbation-term in the distribution-function.
Making the postulate of Lorentz, we obtain for the net current through
unit area perpendicular to the field, the current-density J, the expression:

= [ m@d=c [ | [ Esdndm?g(v). (110)

Set for g(v) the expression in (217), and to effect the integration transform
into polar coordinates in the velocity-space, orienting the polar axis along
the axis of £; integrating over the angles, one obtains:

Ie*E A > dfo
J=—— — v>——dv. (111)
m 3 Jy dv
The final integration is easy if one chooses for f, the Maxwell function, not
quite so easy if one chooses that of Fermi. A further step will be of some
advantage. Integrating by parts, and noticing that v vanishes at the lower
and f, at the upper limit, we find:

J=—(8xle*E/3m) f wfovdv (112)

and the integral remaining, divided by # the number of electrons per
unit volume, is seen to be 1/47 times the mean value of v~1,—the average
of the reciprocal of the speed of the electrons, in the absence of the field.
Denoting this by ¢!, we may write as the general formula for conductivity:

J 2 le*n
o= = -—-—1)_1, (113)
E 3 m

The analogy with [(91) is obvious, but we must not be misled into identifying
the average of the reciprocal speed with the reciprocal of the average speed;
they are not quite equal.

%2 This would be immediately obvious, if all the electrons were moving parallel to the
x-axis and made no impacts. Electrons having y and z components of velocity in addition to the
x-component will drift obliquely out of the prism, and electrons making impacts will be thrown

out of the range d¢; but each electron thus lost will be balanced by another coming in from
outside.
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The actual final formulae obtained by the old and the new statistics
—substituting, that is to say, the appropriate values of y~! from (72b) and
(72a, and putting G =2—are as follows:

4 eln

0’=~§‘ W (Old) (114&)
8 el [3n\*

o =—3— 7(5) (new) (114b)

As Sommerfeld has shown, all of the reasoning by which (108) was reached
remains intact even when it is supposed that / is a function of v; in that case,
! remains under the integral sign in (111), and the integral itself is equal to
n/47 times the mean value of v~2d(lv?)/dv. This generalization may be of
some value.

Uniform Metal with a Temperature-Gradient; Thermal Conduction.

We have now to find a function g such that the distribution (fo+£g
is stable in a metal in which there is a constant gradient of temperature
along the axis of x. When we find it, we shall be able to evaluate the integral

wein [ [ [ deinis-gee (115)

which is like the integral in (219) except for the differently-chosen form of
g and the substitution of $mw? for e, and therefore represents the net rate
of flow of kinetic energy borne by electrons through unit area perpendicular
to the gradient—the contribution of the electrons to the flow of heat, under
the circumstances stated.

The standard distribution-function fo, involving as it does the tempera-
ture T, is in this case itself a function of x. One might expect that this
dependence of f, on x would be sufficient to fulfil the requirements. An
isotropic distribution which varies from point to point cannot however be
stable; the particles conforming to such a one at any given moment would
proceed to drift off down the gradient. A stable distribution cannot be iso-
tropic. We must repeat the process of balancing the rates at which particles
enter and leave each compartment of the phase-space through collisions
and through drift. I say the phase-space now, instead of the velocity-space;
for this case is made more complicated than the previous one by reason
of the fact, that we now must make the balance separately for the electrons
contained in each of the six-dimensional cells dédnd{dxdydz, whereas pre-
viously we could make it en bloc for all of the particles in the entire metal
comprised within any velocity-cell dédndf.

Consider then the six-dimensional cell dédnd{dxdydz =ds, and the f(§, 7, {,
x, v, 2)ds electrons in it. The first three factors in ds denote the range of
velocity, the last three the range in position, within which an electron must
lie if it is to belong to ds. Electrons in the proper range of position are con-
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tinually entering or leaving the proper range of velocity, because of impacts.
The net rate at which ds gains electrons in this way is given, as before, by
(106). Electrons in the proper range of velocity are continually drifting
into the proper range of position, coming into dxdydz from the region ad-
jacent to it on the side towards smaller or greater values of x, according as
¢ is positive or negative. By the same sort of reasoning as led to the term
adf/d¢ in (93), one sees that the net rate at which ds loses electrons in this
way is £df/dx. Equating the two, we have:

tdf/dx=b—a=(¢v/)g(x) (116)

and when we put f, for f as before, on the ground that the term (£g) in the full
expression for f makes but a small contribution to the left-hand member,
we have all that is required for computing g from (116) and W from (115)
for whatever standard function we elect.

At this point, however, there arises a difficulty. If having adopted this
way of determining g we proceed to compute the electric current J in the
metal by formula (110) we find that it is not zero. The reasoning has led
to the conclusion that wherever there is a net current of heat in a metal,
there is also a net current of electricity. This conclusion is not in accord
with experiment. Yet there is apparently no other way to circumvent it,
than to suppose that when a gradient of temperature is maintained in
a metal there arises a spontaneous internal electric field, of just such a
magnitude as to counteract the electric current which would otherwise per-
sist. The gradient of temperature calls forth a gradient of potential; the
actual distribution-function is the one which is stable under both these
gradients combined. In the bookkeeping of the compartment ds, the net
gain from impacts (b —a) is balanced against the sum of the net loss through
drift in the coordinate-space (£df/dx) and the net loss through drift in the
velocity-space (adf/dE). Putting these statements into the form of equations,
and denoting by E the hypothetical electric field and by a(=¢E/m) the
acceleration which it imparts to each electron, we have:

a(df/dg)+£(df/dx)=b—a=(bo/l)g (117)

J/e= fffdzdndg-‘g?g:O (118)

a pair of equations for determining E and the function g.

Lorentz, adopting the Maxwell-Boltzmann function for f,, solved the
equations, and obtained:

8 nlk?T aT 1 %k dT
_8 <__) g (119)
3 QumkT)V2 \dx 2 m dx
Sommerfeld adopted the Fermi function, and obtained for the degenerate
case:®

® To derive this formula it was necessary to proceed to the second-approximation expres-
sion for the Fermi distribution-function (equation 107a); the first approximation (equation
107b) merely yielded zero for W.
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83 1k2T/3n\23/dT
2 Ty a1y 0
9 h \8r dx

The coefficient of d7'/dx in these expressions for W is by definition the
thermal conductivity, usually denoted by k. One notices that these expressions
for « like those for ¢, involve the more or less disposable constants » and .
This however is not true of the ratio of the conductivities.

The Wiedemann-Franz Ratio.

For the ratio of thermal to electric conductivity, the old statistics and
the new supply expressions involving nothing but 7" and the ratio of the
universal constants k and e, and differing only by a slight numerical factor:

k/o=2(k/e)?T(=4.2X10~11 at T=291°K) (121)
by the old statistics, and
k/o=3r%k/e)?T(=T.1X10"11 at T=291°K) (122)

by the new.

This “Wiedemann-Franz ratio” seems to have been predestined to
encourage the devotees of the electron-gas theory. Every other formula
offered by the theory contained either # or I or both, and therefore could
not serve as an ultimate critical test; for any discrepancy with the data
could be removed by adjusting these constants. True, the ensemble of the
formulae provided by the classical theory ran counter to the data in so
many different ways, that the net result was quite unfavourable; but one
could not point out any single prediction which was certainly wrong. If
however the Wiedemann Franz ratio had departed by an order of magnitude
or more from the value of 2(k/e)?T, the electron-gas theory could hardly
have survived the blow. But in this one case where disagreement would
have been fatal, there was agreement; not perfect, but rather too good to be
discarded as fortuitous. For many of the familiar metals the ratio, when
measured at room-temperature, turned out to be around 6 or 7 - 10~1. This
more than any other one fact was what kept alive the feeling, that in spite
of all its difficulties the electron-gas theory must be fundamentally right.

For the twelve metals Al, Cu, Ag, Au, Ni, Zn, Cd, Pb, Sn, Pt, Pd and Fe,
the average of the values of x/o at 291°Kis 7.11-10"". The agreement with
the prediction of the new statistics is more than good. It is so very good,
that it must be partly accidental, especially as the individual values from
which the average is formed depart from it by varying amounts. One may
still doubt whether it is to be admitted as one of the items which compel
the adoption of the new statistics. Drude, be it recalled, obtained the value
6.3-10~! out of the crude assumption that all of the electrons in any volume-
element have the same speed. It used to be regarded as rather amusing

24 Drude of course could evaluate the ratio k/e without knowing either & or e accurately or
at all, since it is the same as the ratio Nok/Noe — Ny standing for the number of molecules in a
gramme-molecule, the Loschmidt number—and Nk is the gas-constant R while Noe is the Fara-
day constant of electrolysis.
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that the elaborate calculations of Lorentz merely impaired the agreement
which Drude had attained in a naively simple way.

Both theories require that the ratio be proportional to T'; this is fairly
well satisfied over wide ranges of temperature, but at extreme degrees of
cold there is marked divergence, which is inconvenient. It may be desirable
to invoke other mechanisms of conduction to supplement the free electrons—
as for instance the passing-along of electrons from atom directly to atom
to assist in the conduction of electricity, or the transmission of elastic vibra-
tions to aid in the transfer of heat. Indeed, when one reflects that insulators
though they lack free electrons yet have some device for the transmission
of heat, one wonders why this device should not be available to metals
also, and exalt their values of « and of x/¢ above the predictions of the
electron-gas theory.

Intrinsic Potential Difference.

We have seen that in a metal where there is no electric current and
yet there is a current of heat, an internal electric field must be imagined.
We shall now see that in a metal where there is no electric current, but the
number of electrons per unit volume varies from point to point, there must
also be an internal electric field. This sounds plausible to intuition, for one
would expect the electrons to diffuse from regions of higher to regions of
lower density unless they were impeded by some force. The equations (117)
and (118) enable us to evaluate this force.

Returning to these equations, introduce polar coordinates v, 0, ¢ in the
velocity-space as we have formerly done; then £=wvcosf. Multiply both
sides of equation (117) by cosf; the right-hand member of the new equation
is then proportional to £%g. Integrate both members of this new equation
over the entire velocity-space. The integral on the right then vanishes by
reason of (118), and for the integrals on the left we have:

a fdr(dfo/dg) cos 0+ fdré(dfo/dx) cos =0 (123)
By obvious transformations we get:
d d
« f d.rlﬂ COS20‘}“—def(ﬂ) cos? =0 (124)
dv dx

Integrating over the angles:

4 dfy 4w d

—a | —v2dv+— —ffovgdv=0. (125)
3 dv 3 dx

Leaving the second term as it is, but integrating the first by parts, we find

that as fo vanishes (whichever statistics we use) at one limit and v at the

other limit of integration, we get:
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2 1 d
——a f47rfgv“~v2dv+— ——f47rfov-v2dv=0. (126)
3 3 dx

The integrals are written in this curious fashion, to bring out the feature
that they are proportional to the mean values of functions—the functions
v~! and v, respectively—averaged over the electrons in question; which is
to say, all the electrons contained in the compartment dxdydz of coordinate-
space, to which equation (117) has reference. They are in fact equal to the
products of these mean values, to wit the mean reciprocal speed and the
mean speed, by the number ndxdydz of the electrons in the compartment
dxdydz. Rewriting (125) accordingly, with overlinings to signify averages,
and dividing out the factors dxdydz and 1/3, we get:

—2amy ' +d(nd) /dx=0 (127)

and this is the equation for the acceleration « or the accelerating field E =
ma/e, required to counteract the electric current which otherwise would be
produced in the presence of the gradient d(#?)/dx of the quantity »d. This
is the gradient which evokes the hypothetical electric field; gradients of
temperature or of concentration act indirectly, by making #? vary.

With the classical statistics the development is extremely simple, for
7 depends on temperature only, while » may be varied at will. Heretofore
we have tacitly assumed that # remains the same while 7" and therefore o
vary along the axis of x, so that:

d(nd) /dx=ndv/dx=n(dD/dT)(dT/dx) (128)

and the reader can verify the expressions for @ and W given in (119) by
starting from this point. But now we will assume that 7 and 7 remain the
same while » varies along the x-direction with a gradient dn/dx. Then:

d(nd)/dx=70-dn/dx. (129)

Putting this into (127), and recalling that in the Maxwell distribution the
mean values of » and v! are thus related,

b= kT /m)vt (130)

one perceives that 7 disappears by division from the two sides of the equation,
leaving this:

an=(eE/m)n= (kT /m)dn/dx (131)
the desired equation for the necessary electric field. Integrating it, we
obtain another of very familiar aspect:

n=mng exp (eE/kT)(x— x0) =nq exp (— [V—=Vol/kT) (132)

This is the celebrated equation of Boltzmann embodying the statement
that if in an assemblage of particles at uniform temperature there are varia-
tions in the number-per-unit-volume from place to place, then there must
also be a field of force against which work must be done to move a particle
from place to place—and wvice versa. Specifically: if at any two points P
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and O the number-per-unit-volume of the particles has values # and n,,
there must be a field of force such that when a particle is moved from O
to P its potential energy is increased by —k7T -log(n/n,). If the particles
are electrons and the field of force is electric and derived from a potential
having values V at P and V, at O, then of course this change in potential
energy is expressed by e(V —V,).

Boltzmann’s equation is so deeply rooted in modern physics, that it
seems strange and suspicious that the new statistics should substitute another
but it does. The reason for the innovation stands out very clearly in (127)
when the absolute-zero extreme of the Fermi distribution is applied. Owing
to the dependence of ¥ on n, owing to the interrelation between average speed
and number per-unit-volume which distinguishes a system conforming to the
new statistics, the second term in (127) is no longer proportional to dn/dx.
Instead, we have:

3 3hnf 3n \2/3 _
N =—Nv,y, =————<——~> ; v 1=3/29,, (133)
4 4m \4%G
substituting which values into (237), we obtain:
h2 3 2/3
—_— ey — —1/3 .
eE/m—a—-3m2<4WG) n=1%dn ) dx (134)

and integrating:

E =+(V—Vo)= h2[<3n 2/3—<3"° " 133)
~se—a=+0=v= 1 (50) () | (13

This is the formula which supplants Boltzmann’s equation.
Consulting (71), we see that (135) may be rewritten thus:

e(Vi=Vo)=(W1— (W (136)

which is to say: if there is equilibrium between two samples of electron-gas,
both being at absolute zero and distributed according to the Fermi law, and
the fastest electrons of the two having values of kinetic energy W, and W,
respectively—then there is a potential-difference between the two, such
that if the fastest electron of either group were to cross over to the other,
its kinetic energy on arrival would be equal to that of the fastest electron of
the group which it joins. So stated, the proposition is easy to remember, and
one might even come to think it obvious.

Consider now a pair of pieces of different metals, in contact with one
another. One may conceive that they are welded together by an alloy in
which the proportion of either varies continuously from zero to one hundred
percent, if one feels the need for a mathematical continuity. If the two
pieces were separate, the number of electrons per unit volume would prob-
ably not be the same for the two; certainly it is not the same if the
number of electrons is equal to the number of atoms per unit volume, for
this varies from metal to metal. If the process of welding the metals together
does not alter the concentration of the electrons in either at points remote
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from the junction, then a potential-difference given by (132) or (135)—
according as the old or the new statistics is the proper one—must arise
between the metals. Taking Sommerfeld’s example of potassium and silver:
if in unit volume of each of these metals there are as many electrons
as atoms, and if this state of affairs continued when the two are welded
together, then between the interiors of the metals across the weld there
must be a potential-difference of 4.2 volts,? potassium being negative. This
figure is calculated by the formula (135); the classical formula gives a value
considerably lower, about 0.04 volts. This contrast is characteristic. Both
the new and the old statistics associate an internal or intrinsic potential-
difference with a difference in electron-concentration, and wice versa; but
the amount of the P. D. associated with a given pair of concentrations is
by no means the same by the two theories; and in actual cases, the new
statistics gives much the larger amount.

Though it is not actually possible to measure the potential in the interior
of a metal, there are phenomena which indicate that between two metals

A
2
P |
P
EPSN
B
Fig. 2.

touching one another, or between two parts of a metal maintained at different
temperatures, there is a difference of potential. These are the thermoelectric
phenomena—Peltier effect, Thomson effect, thermal electromotive force.
The internal potential-gradient reveals itself through the fact that when an
electric current is sent through the region where it exists, the rate of genera-
tion of heat departs from that which s calculated by Joule’s law. We must
therefore apply the statistics—this will be the last application which I
shall consider—to the problem of evaluating the transport and the generation
of heat in an electron-gas, in which the distribution-function is perturbed
by an electric field and simultaneously by either of the two other influences—
varying temperature, varying concentration of electrons—which we have
heretofore considered separately.

Before undertaking this T had better dispel any notion that the “contact”
or “Volta” potential-difference between a pair of metals is the measure of
the P. D. between their interiors for which we have just been deriving
theoretical expressions. It is in fact a measure of something else, as one sees

2% Sommerfeld originally computed 5.7 volts, having put G =1; the value 4.2 corresponds
to G=2.
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by examining an arrangement like that of Figure 2, where 4 and B signify
pieces of two metals which are in contact at 1, and face one another across
a gap between 2 and 3. Consider an electron anywhere inside 4, and estimate
the potential-barriers which it must cross in order to arrive at the point
P, just outside of the boundary 2, and also those which it must cross in
order to pass through the metal B and reach the point P; just outside of
the boundary 3. Recalling the symbols and the relations introduced in
the section on thermionics, one sees that there is a potential-difference
between P, and P; given by the expression

(War—Wap)—(Wia—Wip) =bs—bg. (137)

This is the contact potential difference; and we see that if the new statistics
is correct, it is equal (at the absolute-zero limit) to the difference between
the values, for the two metals in question, of that quantity b which appears
in Richardson’s equation and used to be regarded as the surface work-
function. By the old statistics, it differs from (b4—bg) by the amount of
the internal potential-difference between the metals across the junction 1.
Perhaps this difference between the consequences of the two theories could
be tested by experiment.

Theory of the Thermoelectric Phenomena.

We turn now to the problem of evaluating the rate of generation of heat
in a metal through which an electric current is flowing, and in which (accord-
ing to these theories) there is an intrinsic electric potential-gradient due
to a temperature-gradient, or to a gradient of electron-concentration, or
both together. The process leads to formulae which can be tested by ex-
periment, furnishing thus some additional ways of finding out whether these
ideas of the new statistics, of the perturbed distribution-function and of
the internal electric field are justifiable.

The expression for the rate of generation of heat per unit volume in a
conductor traversed by currents of electricity and heat flowing along the
axis of x and having current-densities J and W respectively, is (JE —dW/dx).
Here £ stands for the electric field—not in general for the applied electric
field alone, but for the sum of this and the hypotheticalinternal field. I denote
the corresponding acceleration by «, as before, and the rate at which heat
is generated per unit volume by 7; then:

—r=(maje)J —dW /dx. (138)

The current-density of heat is given by the formula (115), which I repeat:
W=1im f vt cos? Ogdr. (139)

Here g stands as always for the non-isotropic perturbation-term in the
distribution-function. This and the acceleration « are to be determined from
the two equations,
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a(dfo/dt)+E(dfo/dx) = (vE/1) g = (v* cos 8/1)g (140)
J/e=f Egdr= fv”cos” 6gdr (141)

which are the same as (117) and (118) except that the electric current is no
Jlonger set equal to zero.

Multiply both sides of (140) by $mv’cosf, and integrate over the entire
velocity-space. The integral of the right-hand member is W/I; developing
the integral of the left-hand member, we find:

W = tml(— dan i+d(nv®) /dx) . (142)

Multiply both sides of (140) by cosf, and integrate over the entire velocity-
space; the integral of the right-hand member is J/le; developing the integral
of the left-hand member, we get the equation of which (127) was a special

case, to wit: -
—2anv'+d(nd)/dx=23J /el (143)

Evidently these equations suffice to translate (138) into an expression for »
in terms of the mean free path, the universal constants, and the averages
of various powers of v. .

Postulating the Maxwell-Boltzmann distribution-function for f,; working
out the expressions for a and for dW/dx, and importing the formulae for
¢ (equation 114a) and « (equation 119), one finds:

1 k dT J? -d< dT)

J =] — — ——— AW /dx=—
(marfe) 2 e dx o /d dx

k dT
— | F2J— —  (144)
dx

X 4

so the value predicted for the rate of generation of heat per unit voume
amounts to this:
J* d/ aT 3 k dT] (145)
et (de)+2 ¢ dv
The first term is obviously the Joule heat; the second is not directly a con-
sequence of this current-flow, as it would occur whatever the agency which
set up the temperature-distribution in question. It is the third term which
concerns us; this is a “reversible heat,” proportional to the first power of the
current, so that when the current flows in one sense heat is absorbed and
when it is reversed heat is evolved. The sign is such, that heat is absorbed
when the electrons are flowing towards the hotter part of the metal; the
magnitude is such, that as the electrons move onward they acquire just
enough energy to raise their temperature to that of the regions which they
enter. The coefficient of this term therefore represents the specific heat of
the electron-gas, which is the same as that of any other monatomic gas
when referred to equal numbers of particles.
Adopting instead the Fermi distribution, and inserting into (142) and
(143) the values of % and 7! and #* prevailing at absolute zero, we find on
making the substitutions in the expression (138) for » that the terms con-
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taining the first power of J balance one another out. This might have been
expected; for we have just seen that these terms form a sum which is propor-
ional to the specific heat of the electron-gas; and if this result may be ex-
tended to an electron-gas conforming to the Fermi distribution, then since
the specific heat vanishes at zero so also must this “reversible heat.” Working
through the second approximation, Sommerfeld found that the net coeffi-
cient of the term in J in the expression for 7 is in fact proportional to the speci-
fic heat of the electron-gas, being therefore proportional to 7', and given by

the formula:

2w mk?(2nG\??

= —(——) T. (146)
3 eh®\3n

Now it is a fact of experience that when an electric current flows along a
uniform wire of uneven temperature, heat is generated at a rate which in-
volves a term proportional to the current and which changes sign when the
current changes sense. This “Thomson heat,” like the maximum value which
experiments allow us to admit for the specific heat of the electron-gas, has
always been much smaller than the value which the classical statistics requires
provided that the free electrons are about as numerous as the atoms. For the
Thomson heat as for the specific heat, the new statistics sharply reduces the
amounts demanded—to about one percent of those on which the classical
theory insists, at room-temperature that is to say and assuming always that
the free electrons are equal in number to the atoms. Agreement in order of
magnitude is now attained, and for some metals the advantage is possibly
greater; there are indications, too, that the Thomson heat is proportional
to T" over wide ranges of temperature.

Finally we consider the “Peltier heat”———a term proportional to the cur-
rent and changing sign when the current changes sense, observed when there
is a flow of electricity across a weld or area of contact between two metals.
This is clearly to be interpreted as a term in the first power of J, occurring
when into the combination J(ma/e)—all that remains of the expression (138)
for 7, when the gradient of temperature is annulled—we substitute the value
of a derived from (143) with the assumption that # varies continuously across
the weld from the value appropriate to the one metal to the value appropriate
to the other. Using the classical statistics, we find that there is such a term;
denoting by 7 and #, the electron-concentrations in the two metals, we find
for its value:

(kT /e) log (n/n0)J . (147)
Its value for unit current is obviously the intrinsic potential-difference be-
the metals. Using instead the new statistics, we find that at the absolute zero

there is no such term; we must proceed to the next approximation, doing
which, Sommerfeld obtained the expression:

B (SR N 149
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Putting the current equal to unity, we find a value very considerably smaller
than the intrinsic potential-difference between the metals—a fraction of a
millivolt. This is the order of magnitude of the Peltier heat as it is actually
observed in many cases. Curiously enough, this fact by itself is in accord
with both the theories. By the classical statistics, the intrinsic potential-
difference between two metals is generally small, and the Peltier heat for
unit current gives its value directly; by the Fermi statistics, the intrinsic pot-
ential-difference is generally large, but the Peltier heat for unit current is
only a small fraction of it.

OMISSIONS

Among the subjects omitted from this article there are several of much
interest, which the reader may trace from the annexed bhibliography; in
particular:

Sommerfeld’s theory of the Hall effect;

Houston's extension of Sommerfeld’s theory of intrinsic potential differ-
ence, including especially an explanation of the Peltier heat arising when
current flows between two differently-oriented crystals of a single substance;

Bloch’s use of the new methods of quantum mechanics to make allowance
for the influence of the atoms on the conduction-electrons; )

Fermi’s application of statistical methods to the problem of determining
the distribution of electrons in the individual atom;

Fuerth's work on the fluctuations in the new statistics.

The bibliography will indicate other interesting advances in a variety of
problems.
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