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SECTION 1. ELEMENTARY PRINCIPLES OF WAVE MECHANICS
1. HisToRrRICAL INTRODUCTION

ROM the empirical standpoint the most striking features in the develop-

ment of twentieth-century physics have been (a) the discovery and ex-
ploitation of the corpuscular characteristics of radiation; (b) the discovery
and exploitation of the existence of discrete atomic and molecular energy
levels, bringing into mechanics a new kind of atomicity superposed on the
atomicity of electron and proton; (c) the discovery of the wave-like char-
acteristics of matter as exhibited in the now famous experiments of Davisson
and Germer. The quantum mechanics is the fruit of the efforts of theoretical
physicists to provide a concise and unified description of these new experi-
mental facts and of the great mass of empirical data on which the “classical”
physics of the nineteenth century was built.

Roughly speaking we may divide the history of twentieth-century
theoretical physics into two periods. In the first period, extending from the
initial discovery of the Planck radiation formula until 1925, the leaders
in theoretical physics were Planck, Einstein, Bohr, and Sommerfeld. Einstein
led the way in the formulation of the corpuscular theory of radiation
which proved so stimulating to experimental physicists. The many successes
of this point of view culminating in its interpretation of the Compton effect
served to place it on an equal footing with the classical wave theory. The
older theory was not completely overthrown, however, as it gave the only
natural interpretation of the facts regarding interference and diffraction. In
practice physicists were led to the adoption of a dualistic mode of thought in
which they treated light as waves in the discussion of one class of experiments
and as corpuscles in the discussion of another.

In parallel with the development of the corpuscular theory of radiation
went the formulation of the Bohr quantum theory of atomic structure
with its marvelously useful interpretation of line and band spectra and of
the collision experiments of Franck, Hertz, K. T. Compton, and others.
This theory performed most admirably the function of correlating the
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empirical facts in the field which it covered and through the correspondence
principle laid the foundation for the matrix mechanics of Heisenberg,
Born, and Jordan. It was at all times, however, confessedly incomplete and
in many respects inaccurate.

The second period witnessed the simultaneous development of the
matrix mechanics and of the wave mechanics of de Broglie and Schrédinger.
These theories, now fused together into what we call quantum mechanics,
correct the deficiencies of the Bohr theory as a tool for investigating the
structure of matter, remove its restriction to periodic motions, relate the
diffraction of electrons to the problem of atomic structure, and throw a
great deal of new light on the dilemma regarding the nature of radiation.

In the form of quantum mechanics now most widely used, the dual-
istic nature of radiation is accepted as a brute fact to be described rather
than explained or exorcised. A similar dualistic nature is ascribed to matter
and thus a unification in the treatment of matter and radiation is attained.
The discovery of the fundamental similarity between matter and radiation
is one of the most striking features of present physical theory. Differences,
of course, remain and we can by no stretch of the imagination identify these
two fundamental modes of existence, but the analogy is far-reaching enough
to permit the use of observations regarding the characteristics of radiation
as guides in the formulation of a theory of matter. The de Broglie-Schrédinger
theory was the result of a conscious attempt to follow such guides and this
method of approach to the quantum mechanics seems to the present writer
to be more natural than any other.

2. Tue DvuaListic THEORY OF RADIATION

The importance of optical analogy in the development of quantum
mechanics lies primarily in the fact that the dualistic nature of light is
much more obvious than the dualistic nature of matter. In the region of
long waves the wave-like characteristicsof radiation are strongly predominant,
while in the x-ray region the corpuscular characteristics are predominant.
As the transition from the one part of the spectrum to the other is continuous,
the dualism is inescapable.

Let us then begin our survey of the quantum mechanics with a brief
preliminary examination of the problem of radiation. What is the upshot
of the battle between the wave theory of light and the corpuscular theory?
The answer is, “A deadlock.”* The wave theory gives a simple and accurate
account of interference, diffraction, and dispersion besides making proper
connection with quasi-static electromagnetic phenomena in the limiting
region of very long waves. The corpuscular theory gives a simple and ac-
curate account of the fundamental laws of the photo-electric effect and the
Compton effect; it is a logical corollary of the fundamental law of spectro-

1 Here we explicitly ignore the recent -“double quantization” theory of Jordan and his
collaborators which achieves a genuine fusion of the two theories by treating theelectromagnetic
vectors E and H as matrix quantities. This development should logically follow that of the’
quantum mechanics.



QUANTUM MECHANICS 159

scopy E'—E' =hv; and it accounts for the abrupt changes in momentum
experienced by emitting and absorbing atoms and molecules in a radiation
field. Neither point of view gives a satisfactory description of the whole
field of optics. In the case of a few phenomena, notably the Doppler effect,
the predictions of the two theories are identical and agree with experiment.
In other cases the two theories supplement each other. For example, in
the case of the inverse photo-electric effect or the production of the con-
tinuous x-ray spectrum, the corpuscular theory is needed to account for
the sharply defined limit to the spectrum, but must be supplemented by the
wave theory in order to take into account the polarization phenomenon.
Either point of view gives a qualitative explanation of the variation in hard-
ness with direction of emission, which is, in fact, a kind of Doppler effect.

Evidently we need a fusion of these two theories. Perhaps the most
obvious mode of procedure for uniting the two points of view is to assume
that light consists of “wave packets” or wave disturbances occupying a
small volume in space. Such a fusion of the two theories meets insuperable
difficulty, however, in the fact that wave packets except under very
special circumstances spread out indefinitely as they progress, instead of
remaining small. Moreover, the facts regarding interference and diffraction
require spreading wave fields rather than wave packets. To see this; we
observe first that to account for the passage of light through small holes
and for the basic phenomena which have given rise to the corpuscular con-
ception, we must assume that the wave packets are very small. Interference
would have to be accounted for as due to the overlapping of different packets.
But the experiments on interference in weak light show clearly that inter-
ference fringes are perfectly formed even when the photons are so far apart
that such overlapping is out of the question.

A more successful way of uniting the two theories is to adopt a frankly
dualistic point of view by assuming that light consists of both spreading
waves and corpuscles. The familiar fundamental formulas of Einstein for
the energy and momentum of a light corpuscle, i.e.

E=hy (1)
p="hv/c=h/\ (2)

point directly to such a dualism, since they are really merely a basic lexicon
for translating wave language into corpuscle language. If we postulate
such a dualism, we can suppose that the electromagnetic waves of Maxwell’s
theory act as guides to the corpuscles and thus produce interference phenom-
ena,? while the localization of energy and momentum in the photons ac-
counts for the photo-electric effect, etc.

Of course, the existence of two apparently conflicting sets of character-
istics for radiation has been a commonplace for many years and to many
physicists the adoption of a dualistic point of view as the starting point for
a fresh attack on the fundamental problems of physics will seem an evasion

2 Cf. W. F. G. Swann, Science, 61, p. 433 (1925).
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of the fundamental question, “Why does light act in some respects like an
assemblage of corpuscles and in other respects like a spreading wave phenom-
enon?” We assert, however, that in the last analysis the function of theoret-
ical physics is to describe rather than to explain. Science seeks to interpret
the infinitely complex world of direct experience as the outcome of funda-
mentally simple laws. The reduction of complexity to simplicity is the goal,
and when it is attained, we prove that order underlies chaos and leave
the question, “Why” still essentially untouched. Hence, discarding this
question as ultimately unanswerable, we may address ourselves to the task
of describing what we observe in the most compact manner possible. If
the behavior of radiation can be at least approximately described by means
of the dualistic point of view, its temporary adoption will be a step in ad-
vance. No claim of ultimate validity is made for the theory, however.

An apparently essential feature of any such fusion of the wave and cor-
puscle theories is its statistical character. As the corpuscles are discon-
tinuously distributed in space while the waves are continuous, it is evident
that if the waves are to determine the positions of the corpuscles, they
can only do so statistically. In other words we must regard the intensity
of light of frequency » in any small volume G as a measure of the probable
number of photons of energy /v in G. This mode of correlating the positions
of waves and corpuscles we will carry over directly from the radiation prob-
lem to the matter problem.

3. AN ANALOGY BETWEEN GEOMETRICAL OPTICS AND
CLASSICAL MECHANICS

The wave or “optical” theory of matter has its roots in the formulation
of the principles of least time for geometrical optics and of least action for
Newtonian mechanics by Fermat and Maupertuis, respectively. The prin-
ciple of least time states that the path of a ray of light (wave-front normal)
from a point 4 to a point B is always such as to make the integral

B ds

A W

an extremal (usually a minimum) with respect to all other conceivable
paths for rays of the same color or frequency. w in this formula denotes the
phase velocity of light and is a function of the frequency and of the space
coordinates x, v, 2. As the frequency » is treated as a constant in varying
the integral, and as the wave-length X\ is equal to w/v, the principle may
equally well be stated in the form

B ds .
Bf —=0. (v unvaried) (3)
4 A
This means that the path length measured in wave-lengths is an extremal.
As the spreading of light waves in space is fully determined by the “wave

equation”
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1 %y

w(x,y,3,v) 9

(4)

VA =

we may conclude that Fermat’s principle is deducible under suitable condi-
tions from this equation. The proof is very simple in the case of plane waves
moving in homogeneous media bounded by plane surfaces of discontinuity.
The generalization to non-homogeneous media is not given in the classical
treatises on optics, but de Broglie? has shown how to carry it through. For this
purpose it is necessary to assume that the wave whose rays are to be deter-
mined is progressive and only slightly curved. Also the fractional change
in the phase velocity w or in the wave-length N in the distance X must be
small. These restrictions create no difficulty in the formulation of a wave
theory of matter.

Let us now compare Fermat’s principle in the form of Eq. (3) with the
principle of least action. In case of a single particle of total energy E, kinetic
energy 7, and mass u, moving through a force field with potential energy
V(x, v, 2) the latter principle requires that the action integral

S= fBszt= fB [2u(E—TV)]'%ds (5)

over the natural or mechanical path between two points 4 and B shall be
an extremal as compared with its value for all adjacent paths using the same
value of E. For such a particle the integrand [2u(E—V)]"? is identical
with the absolute value of the instantaneous momentum p which the particle
would assume at x, y, 2 so that the principle may be stated in the form

B
6f p(E,x,y,3)ds=0. (E unvaried) (6)
A

The analogy between these two principles was seized upon by Sir William
Hamilton in the early part of the nineteenth century and used as a guide in
the development of dynamical and optical theory. Hamilton regarded it
as an analogy only, however, and it remained for de Broglie and Schrédinger
to show that in view of this analogy Newtonian mechanics may be regarded
as a limiting case of a suitably defined wave problem.

A comparison of equations (3) and (6) shows that the paths of particles
in the Newtonian dynamics may be identified with the “rays” in a wave
problem in which the index of refraction and phase velocity are made suit-
able functions of x, y, 2, and the energy E. To be exact, the condition imposed
on the wave problem is that

C Cv

~ =B, 3,5 = ([ E=V(x,5,9)]), (7
w

where C is an arbitrary constant.

3 L. de Broglie, Journ. de Physique 7, p. 321 (1926).
4 Radius of curvature large compared with the wave-length.
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4. WAVE PACKETs AND GROUP VELOCITY

We have set out to develop a theory of mechanics parallel to our theory
of light. Hence we must demand ab iniito that the relation between the mo-
tion of photons in optics and the motion of the associated optical waves
shall be duplicated in the relation between the motions of large scale bodies
and the associated “mechanical waves.” Now the nearest that we can come
to observing the motion of an individual photon is to form a “wave packet”
or localized disturbance of an approximately monochromatic nature. To
this end we may shine plane parallel monochromatic light on a small aper-
ture provided with a shutter. If this be opened for a brief interval of time,
it will allow a short train of waves to pass through. Such a train is called a
wave packet, since it is a localized bundle of energy which may be resolved
into a superposition of plane waves spread over a narrow range of directions
and frequencies. The path of such a train may be approximately mapped
out and its velocity can be approximately measured. In theory, at any rate,
there is nothing to prevent the observation of the orbit of such a train even
in an inhomogeneous dispersive medium. Of course, such a train will ordin-
arily contain more than one photon, but since the behavior of such packets
is known to be independent of the light intensity, it is clear that the result
would be the same if only one photon were involved. Diffraction will make
trouble if we try to define the path too accurately by using an excessively
small aperture, but diffraction will be minimized by using x-ray wave-lengths.
We will return to this question later on.

Clearly if we are to associate a wave motion with the orbital motion of
a large scale body such as a golf ball, the wave function must be of the same
nature as that of the optical wave packets just described. Otherwise we
could not interpret the observed properties of our golf ball (simultaneous
position and velocity) by means of waves. Hence if the analogy between
Fermat’s principle and the principle of least action really means anything,
it must be possible to show from it that the orbit and orbital velocity of a
large scale “particle”® are identical with the orbit and orbital velocity of a
wave packet in a suitably defined wave problem. We must then show (a)
that wave packets travel along the rays of geometric optics and (b) that
the speed of the packet is the same as the speed of the corresponding me-
chanical particle.

The first of these two propositions is commonly assumed without proof.
Professor Slater has worked out a simple elementary proof (unpublished) for
the general case of a non-homogeneous medium, but we shall not reproduce
the argument here. Consider then the second of these two propositions.
The speed of the packet is the same as the group velocity of the waves,
v,. According to a well-known formula

o ®
v, 9 x)'

5 Of course, a large scale body is an assemblage of many particles. The justification for
treating it as a single particle in the wave mechanics follows from a center of gravity theorem
as in Newtonian mechanics.
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If this is to be the same as the velocity of the particle v, Eq. (7) gives

1 9 (p). 0 {.[2u(E— V)]W}_ u OE ©
v w\C/ o C Cp v
As p is equal to ww, this reduces to
C=9E/ov, (10)

a relation which immediately suggests the assumption that the Einstein
energy-frequency relation (1) holds for matter as well as for radiation. If
we accept (1) as an hypothesis for matter, Eq. (10) is satisfied and we see
that the required relations between the motion of the particle and the packet
will be fulfilled if

p=pv=[2u(E=V)]"2=h/\. (11)

This equation has been confirmed experimentally by the electron diffraction
experiments of Davisson and Germer,® Thompson’, and Rupp.® The wave-
lengths involved are almost inconceivably small when (11) is applied to
bodies of microscopic dimensions. In the case of agolf ball weighing 47
grams the ratio A/u is 1.4 X10-28, If the ball moves with a speed as low as
a millimeter in 10 seconds, the wave-length is 1.4 X10~2 centimeters! This
means that diffraction effects are hopelessly beyond the reach of experiment
in the case of large scale bodies. On the other hand, the computed wave-
length is not inappreciable when Eq. (11) is applied to atomic and molecular
problems. For example, the wave-length of an oxygen molecule with a
speed corresponding to the mean thermal energy at 300°K is approximately
1.45X10-% cm, while that for an electron with a 10-volt kinetic energy is
5.3X107% cm. As these wave-lengths are of the order of magnitude of
atomic diameters, it is clear that diffraction effects must play a prominent
part in atomic dynamical problems.

It is important to note that by introducing a vector é having the magni-
tude 1/\ and the direction of the wave normal, we can throw equation (11)
into the vector form

p=1é. (12)

We shall call ¢ the vector wave number. Its components o, ¢,, ¢, denote
the number of waves per centimeter crossed by lines parallel to the x, y,
and z axes.

5. THE ScHRODINGER WAVE EQUATION

In view of the above results we may assume that the differential equation
(4) is valid for matter waves if we set

¢ C. Davisson and L. H. Germer, Phys. Rev. 30, p. 705 (1927); Proc. Nat. Acad. 14, p. 317
(1928). ’

" G. P. Thomson, Proc. Roy. Soc. 117(A), p. 600 (1928); 119(A), p. 651 (1928).

8 E. Rupp, Ann. d. Physik 85, p. 981 (1928).
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( J=) E E hv
w(x,y,2,r)=kv=—= = .
A b [2wE-M] [2u(—V)]u2
As in the optical case the differential equation holds for monochromatic
or “monoenergetic” wave functions only, it being assumed that all possible
wave forms can be built up from monochromatic waves.

This restriction means that all solutions of Eq. (4) are to be of the form

Yy=u(x,y,2)T() (14)

(13)

were T'(¢) is of the form

T(f) =cos 2mw(vi+e) or er2mitvete
Then substitution from Egs. (13) and (14) into Eq. (4) and elimination of
T yields

8ru

2
Viu-+t P

(E=V)u=0. (15)

This latter equation is quite as general as (4). The factor u(x, v, 2) is some-
times called the amplitude. The term “space factor” is also appropriate and
will be used in this review.

For many purposes Egs. (4) and (15) are adequate, but we frequently
have to do with problems in which ¢ is made up of a sum of terms of the
type of Eq. (14) and for which we need a more general differential equation
which does not contain the parameter E or its equivalent ». Such a differ-
ential equation becomes a necessity when we have to do with problems in
which the potential energy depends on the time, or in which for any reason
the energy of the system is not conserved. A most important example is
the perturbation of an atom by an external light wave which is the basis
of the theory of dispersion. Here the assumption that we have to do with a
single monochromatic wave function or a fixed combination of such functions
breaks down completely. ,

The obvious procedure for deriving a differential equation applicable
directly to a wave packet, or to the sum of several monochromatic waves
is to eliminate » from Eq. (4) by differentiation. Schrodinger® has shown
that in this way one obtains the rather awkward fourth order equation

[2 8m? V:|21P+ 16m2u? 9% 0 (16)
VTt wooae

This equation is correct for any monochromatic ¥ function which obeys
Eq. (4) or Eq. (14), or for any linear combination of such functions. A sim-
pler equation of the second order, however, is adequate for our needs. Again
following Schrédinger we observe that if we specialize 7(¢) [Eq. (14)] making
the assumption that the basic monochromatic functions have the form

¢/=u(x,y,z)6+2”m”h (17)
9 E. Schrédinger, Ann. d. Physik (4) 81, p. 109 (1926).
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we can replace E ¢ by (h/2wi)(d¢/0t) thus converting Egs. (4) and (15) into

8m? 4rut 9
Ty - ¥ o, (18)

This latter equation® is much easier to handle than (16) and is equally
adequate for the description of the physical facts. The specialization of the
function 7'(¢) involved in Eq. (17) is of the nature of a convention. It is
justified by its convenience, and by the fact that waves of this type have all
the characteristics needed for our physical problem.

Eq. (18) also makes a simple connection with the Hamiltonian function
of the classical mechanics which is of great importance when we come to
extrapolate our formulas to non-conservative systems where wave functions
of the form (17) do not exist.

Of course the convention (17) could not be used for optical problems
since the electric and magnetic vectors which obey the optical differential
equation have an intrinsic physical meaning which requires them to be real.
Our freedom to adopt Eq. (17) comes from the fact that while |¢|® has a
direct physical meaning, ¥ has not.

6. APPLICATION OF RESTRICTED RELATIVITY PRINCIPLE TO FREE
PARTICLE

Historically the first step in the development of wave mechanics was the
application of the restricted relativity principle to the problem of the cor-
relation of waves and free particles by de Broglie.! Symmetry demands
that a stationary particle be associated with a stationary wave system. In
other words the wave function for a free particle must be of the form

Y= f(x0, Yo,50) €2 " (19)

when referred to a system of coordinates x, yo, 20 with respect to which the
particle is at rest. To get the form of the wave for an electron moving in
the direction of the z axis de Broglie applies the Lorentz transformation,
z—ot t—vz/c?

[—w/e]is ' T imgyapn’ rTEY

Z20=

which yields

’ f< z—ut ) { 27y ; Vg } 20
=fl %,9,7—————) exp {————t——) ;.

Y [1—02/c2]1r2 P [1—92/c2]12 c? (20)
This expression may be made to describe either an infinite plane wave system

or a wave packet according to the hypothesis regarding the amplitude
f(x0, ¥0, 20). In either case the frequency defined by the phase factor is

10 L. de Broglie, Nature, 112, p. 540 (1923); Thesis, Paris (1924); Ann de Physique, (10)
3. p. 22 (1925).
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Vo

T=waps
If the zero level of energy is fixed in accordance with the usual relativity
expression

E=pit=—— 21

[1__7)2/62]1/2 ( )

E and v transform in the same way so that the fundamental relation (1) is

invariant of a Lorentz transformation. Thisfact isthe first great contri-
bution of de Broglie. The wave-length required by Eq. (20) is

c2 [1_.1,2/62]1/2 bk

—_—— ——— = —_

b Vo Ev wo

in agreement with Eq. (11). The phase velocity is ¢?/v as may be read directly
from (20) or deduced from Eq. (1), the above expression for A, and the
relation w=Av.

The variation in mass with velocity can also be taken into account when
the particle moves in a force field of potential energy V. The action integral
in this case takes the form

B B
S=L (F—{—E—V)dzf=j:1 pds (22)

where F=uo2[1—02/c2]1"? and p =pv=pw/[1 —v*/c*]'/%. A comparison of (18)
and (3) shows that as in the Newtonian theory the rays defined by Fermat’s
principle and the mechanical orbits agree if C/N=p. In this case the ex-
pression for the momentum in terms of the energy is

1.
P=—C‘[(E*V)2-E02]”2 (23)

but as before we find that
dp n 0E 1 OE

so that the group velocity of the waves is equal to the velocity of the particle
if we identify C with dE/dv or h. :

7. THE PROBLEM OF # PARTICLES

Egs. (15) and (18) can be generalized without difficulty to include the case
of a system of # particles moving under the influence of conservative forces.
It is convenient for this purpose to introduce the idea of a many-dimensional
“coordinate space” similar to that used in the classical statistical mechanics.
We need a number of dimensions equal to the number of coordinates of the
system, i.e. 3n, rather than twice that number, as in statistical mechanics.
Let the Cartesian coordinates of the particles be x1, 2 - - * %3, and let the
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corresponding masses be ui, us, - - - 3. Where, of course, the three masses
associated with the cordinates of any one individual particle will be the same.
Then any point in our coordinate space will represent a possible configura-
tion of the system and the complete motion of the system is represented by
the orbit of a representative point in configuration space. We shall show that
the motion of this representative point may be identified with the motion
of a wave packet derived from a suitably defined wave equation operating in
the coordinate space. To this end the principle of least action is conveniently
stated in the form

B B 3n
6S=f 2Tdt=6f > prdar=0 (E unvaried) (24)
4 A k=1

where 4 and B are the initial and final configurations and p; denotes the
momentum u%; (or d7/d%;) associated with the coordinate x;. Fermat’s
principle for waves derived from the 3n-dimensional equation

3n 32¢ 1 62‘#

= 25
k=1 0xp?  wi(xy - - X3,) OF 25

would be

B 3n d
5f Sy, (26)
A

k=1 MX1 - X3)

where A=w/v and the o’s are direction cosines subject to the condition
3n
a1, (27)
k=1

In order to throw Eq. (24) into the form (26), it is necessary to introduce
slightly different variables, viz.:

Xo= /2. E=1,2, -+, 3n. (28)
Then the momentum associated with X is

oT @ 1. .
Pi=—— = —X:2) =X, 29
FTeX, am(‘?ﬁz k> ‘ (29)

and the principle of least action becomes

B
8 f > PidX,=0. (30)
A k

The energy equation yields

D(P2=2T=2(E-V) (31)

and (30) can be written in the form
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B
5 f 28 [2(E=V) ] 2dX =0 (32)

if we define the g;’s by
gi=Pi/[2(E=V) ] 2. (33)

This definition and (31) show that the g’s are of the nature of direction
cosines being subject to the same condition as the «'s, viz.,

3n
ng2= 1.
k=1

The g's[cf. (33)] are clearly determined by the path of the representative
point of the system in configuration space and are independent of the speed
with which the path is traversed.

Equation (32) states the principle of least action in a form entirely
analogous to the generalized Fermat’s principle (26), and the problem of
identifying the solutions of the two problems is solved if we first assume that
equations (25) and (26) are valid only if we replace the x;'s by X;'s and
then fix the form of the hitherto arbitrary function w to agree with

Cv C
== [2AE-V)] . (34)
w A

As before we may identify [2(E~ V)]'2with the resultant momentum or
resultant velocity of the representative point in X, - - - X3, space and can
show that this velocity is equal to the group velocity or packet velocity of the
waves if C=0E/dv. Introducing the assumption that E=hy, we find that
the motion of wave packets in configuration space is in agreement with the
Newtonian mechanics if the wave equation has the form

3n 92 1 02
L id (35)
10X wi( Xy, -, Xgn) 082
and
h2y2 E2
wi= (36)

2w—v] 2[E—V]

Returning to our original coordinates and adopting the assumption (17),
we derive from Eq. (35) the familiar Schrédinger equation

n 1 8 2
> VUt ——(E—V)u=0 (37)
=1 i h*

where
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and 7 is a particle index replacing the cordinate index & of Eq. (35). Eliminat-
ing the energy as before we obtain

1
> =V = —V§ —— —=0. (38)

While the above discussion clearly reveals the possibility of developing
a wave mechanics of which the classical mechanics is an appropriate limiting
case it brings out one important distinction between radiation waves and
matter waves. The latter must be thought of as functions of as many in-
dependent variables as there are coordinates in the mect anical system under
consideration, whereas the former are functions of only three independent
variables. We may say, if we like, that the matter waves are waves in a
3n-dimensional space, but this is only one way of describing the fact that
there are more than three independent variables in Eq. (27) and Eq. (28).
The idea of a many-dimensional space is by no means essential to these
equations or to their application. The reason for this difference between
matter waves and light waves lies in the fact that matter corpuscles exert
forces on each other, while photons do not. Consider the two-body problem
of astronomy. If we try to describe the orbital motion of the two bodies by
two independent wave packets in three-dimensional space, we confront
immediate difficulty in that the behavior of each packet is affected by the
instantaneous position of the other. Then the index of refraction for the
waves of one packet must be a function of the coordinates of the other packet.
Thus the waves of each packet must befunctions of six independent variables
instead of three.

In special cases, however, such as streams of electrons or atomic rays, we
have to deal with assemblages of particles under circumstances which permit
us to neglect the forces between them. Such streams can be treated like
photons by means of three-dimensional waves.

8. THE STATISTICAL INTERPRETATION OF THE WAVE
THEORY OF MATTER

Let us now return to the three-dimensional waves of Egs. (4), (15) and
(18) and consider their interpretation in somewhat greater detail. Our
assumptions up to this point comprise the following:

(a) Matter, like radiation, is both waves and corpuscles.

(b) In the case of a single particle in a conservative force field 2'l the
waves are to be built up out of monochromatic solutions of the wave equation
(18).

(c) The behavior of large scale bodies as described by the Newtonian
mechanics is to be interpreted in wave language by means of wave packets
compounded from elementary approximately planet waves with a variety
of frequencies and wave normals.

t That is, plane over the volume of the packet.



170 EDWIN C. KEMBLE

(d) The energy of a particle and the frequency of the associated waves
are related according to the optical rule

E=hy. (1

(e) The vector momentum of the particle and the vector wave-number
¢ are related according to the rule

p=rhd. (12)

(f) The “intensity” of the wave function in any element of volume
dxdydz at the time ¢ is to determine the probability that the particle lies
in that element just as the intensity of light waves in an element dxdydz
determines the probability that any given photon lies in the corresponding
element.

This last assumption requires some clarification. In the case of radiation
the intensity is given by the sum of the squares of the electric and magnetic
vectors. For simplicity we shall regard the wave function ¢ for matteras a
complex scalar quantity for the present, however, since such a scalar is
adequate to describe all that we know of the wave characteristics of matter.
The term “intensity” is accordingly identified with ]gb [2 or with yy* where
Y* is the complex conjugate to ¢.

To give precision to the relation between Yy* dxdydz and the probability
that the associated particle lies in dxdydz we note that in the case of a complex
radiation field the intensity (€*+$?) determines the probable energy density
of the photons rather than the “number density.” If, however, we have
given a wave function ¢ such that ¢¢* dxdydz measures probable energy
density, we can always set up a second function ¥ which obeys the same
differential equation and such that y¥* dxdydz is at least a plausible measure
of the desired number density of the particles. To do so we have merely to
analyse ¢ into monochromatic constituents, divide the amplitude of each
by (hv)1? and sum up again. This statement will be justified in the discussion
of the Fourier analysis of wave packets which follows. Since number density
rather than energy density is fundamental in the theory of matter waves
we assume that the wave functions we are dealing with are so formed that
we may identify Yyy¥* dxdydz with the former type of density at least to a
constant of proportionality. If we have to do with a single particle we may
fix the absolute magnitude of ¥ by means of the normalization condition

fffwtlng*dxdydz=1, (39)

in which case Y¢* dxdydz gives directly the probability that the particle
lies in the volume element dxdydz."!

1 It is easily proven by the aid of Green's theorem that if y is any solution of Eq. (18)

which vanishes at infinity
a
5 f f f ww*dxdydz::().
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It is but a short step from these assumptions to the formulation of the
Heisenberg uncertainty principle which forbids the assignment of precise
simultaneous values to the coordinates of a particle and to the corresponding
momenta. In order to develop this principle, we observe first of all that the
frequency v and the vector wave-number ¢ are uniquely defined only for
infinite plane monochromatic waves. A wave packet, like an experimental
spectrum line, contains a narrow continuous spectrum of frequencies and
also a continuous “spectrum” of wave normals. Hence the right hand members
of Eq. (1) and Eq. (12) are to a certain extent ambiguous. Conceivably we
may interpret the symbols » and ¢ as mean values over the packets under
consideration, or we may assume that the range of values of » and é contained
within a wave packet is to be correlated with a corresponding uncertainty
in the energy and momentum of the associated particle. The former assump-
tion, however, is readily shown to be untenable. To prove this let us consider
the case of a wave function composed of the sum of two disturbances ¥,
and ¥, each of which is a typical wave packet having a fairly well defined
frequency and direction of motion. In the optical case such a disturbance
could be obtained experimentally by allowing a beam of plane parallel
monochromatic radiation to fall on an aperture covered by a shutter. Opening
and closing the shutter momentarily would form a primary packet which
could be split into two parts with different wave-lengths and directions
of motion by suitable reflection from a moving half-silvered glass mirror. If
a disturbance of this kind is associated with a single particle, whether
electron or photon, hypothesis (f) requires that the particle have a certain
probability of moving with packet No. 1 with its corresponding velocity
and a certain complementary probability of moving with packet No.2 with
its velocity. But these two possible positions are correlated with two
different momenta whose probabilities are determined by hypothesis
(f). Hence in this case the correlation of a single energy and single
momentum with the wave function is impossible, and since no divid-
ing line can be drawn between such a case as this and the case of
the typical single packet we conclude that it is equally impossible for
a single packet. In fact we know by direct experiment in the optical
case that such a single packet always contains a range of possible
energies and momenta. If the packet be formed with the aid of an
aperture and shutter as suggested above, diffraction will cause the radia-
tion to diverge by an amount varying inversely with the dimensions of the
aperture. If the intensity is large and the aperture is small compared with
the wave-length, photons will proceed in all directions from the slit carrying
with them momentum directed along the radius vector from the slit.
At the same time the interruption of the primary beam by the shutter will de-
stroy its monochromatic character and scatter the photons over a narrow con-
tinuous spectrum. Diffraction experiments involving prolonged photo-
graphic exposures and very low intensities show that the distribution of energy
over the pattern is independent of the intensity. We infer that if the intensity
of the radiation in the packet under consideration is so low that only one or
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two photons pass through the aperture during its formation, the relative
probability of each energy and direction of motion is the same as if the in-
tensity were very large.

The determination of the relative probabilities of the different momenta
associated with a wave packet moving in a field free space is fundamental for
our theory. As a first step in the derivation of a formula for this purpose we
observe that the usual elementary theory of Fraunhofer diffraction phe-
nomena in which one sums up the contributions of Huygens’ wavelets from
different parts of the aperture is equivalent to an analysis of the radiation
emerging from it into plane waves having different wave normals. At large
distances from the aperture where the Fraunhofer theory applies, the energy
of the radiation in any elementary cone of solid angle dQ is equal to the energy
of a corresponding set of plane waves in what we may call the “plane wave
spectrum” of the complete wave system at the aperture. Hence to find the
probability that any particular photon in a monochromatic diffracted train
has a momentum vector lying in the solid angle dQ we have to analyse the
beam emergent from the aperture into plane waves and compute the ratio of
the sum of the intensities of all elementary waves having normals in dQ to
the intensity of the entire beam. Similarly if we have radiation which is not
monochromatic, (whether due to a finite length of train or not) we can find
the probability that any photon has an energy in the interval between iv and
h(v+dv) by a Fourier analysis of the wave function into rigorously mono-
chromatic constituents. The complete analysis of a finite wave group or
packet into a three-dimensional system of plane waves characterized by the
three independent parameters o, oy, 0, will then serve to determine the rela-
tive probability of the three components of the momentum and of the
different energies of the associated particle or particles.

The formulas for this analysis are simpler for matter waves than for
radiation since in the former case the waves are described in terms of com-
plex numbers. The normal form for the description of a plane matter wave

is then
¢ =(2milvt—(2oatyoy+202) ] = (Cg(2milh) [E t—(zpatypytzpz)] (40)

where C is a complex constant. This expression is a solution of the wave
equation (18) for a homogeneous medium (zero force field) if the frequency
satisfies the relation
Z2 |
—‘=“_=Ux2+”y2+0'22:h¥2<lbz2+?u2+?z2)- (41)
w? A2
The desired analysis is accomplished by the aid of Fourier’s integral which
permits us to resolve any wave packet into exponential components by the
use of the formulas
1

¢(5,x;)’;2)=m

ffo(t’pz,pyypz)e—(%ri/h)(xm-f—ymﬁzzu)dpxdpydpz’ (42)

1
Q(t,j)z,py,pz)=}1‘;/—2 fffll/(l,x,y,z)e+(21ri/hl(xpﬁ-ypy-(»zm)dxdydz‘ (43)
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The packet may be defined either by ¢ or by Q. If the latter function has
the form

QU pas bys p2) =G(pa, py, p)e > (44)

where v is defined by Eq. (41), the expression (42) for ¥ becomes a solution
of the wave equation (18) for the case of a free particle where V'=0. It can
be fitted to arbitrary initial conditions provided only that at £=0 y vanishes
at infinity, and so will represent any wave packet. Moreover, it may be

proved that!?
fff¢u/x*dxdydz= ffoQ*dpzdpydpz (45)

and we conclude that as Y¥* dxdydz measures the probability that the
particle lies in the volume element dxdydz in ordinary space, so QQ* dp. dp,
dp., or GG* dp, dp, dp., measures the probability that its momentum vector
terminates in the element dp, dp, dp. of ‘‘momentum space.”’® ( describes
a stationary wave motion in momentum space and satisfies a differential
equation that is closely related to that of Y. Jordan calls ¢(¢, x, v, 2) the
probability amplitude for the positional coordinates and Q(¢, ps, Py, p.)the
probability amplitude for the momentum.

In case we have to do with the motion of a particle in a force field the
momentum varies with ¢ and the plane wave (40) is not a solution of the
wave equation, though it may approximate to a solution in a suitable small
neighborhood. Hence y(¢, x, v, 2) as defined by Eq. (42) does not describe
the movement of the packet in time if p., p,, p. are treated as independent
of ¢, but we can still use equations (41) and (43) to determine the instantaneous
probability distribution for the momentum components of the particle. This
extension of equations (42) and (43) to the more general case is justified by
our initial correlation of wave-length and momentum through the principles
of least time and least action.

12 This is a limiting case (in three dimensions) of the well-known theorem that if
flx)= Zcre%rir/T, a<x<a+T,
T

at+T
Tear= [

Cf. Schuster, Phil. Mag. 37, p. 509 (1894); Schuster and Nicholson, Theory of Optics, 3rd Ed.
1924, p. 334.

1B If QQ*dp.dp,dp. gives the probability that the momentum vector terminates in the
element dp.dp,dp., it is clear that hvQQ*dp.dp,dp. gives the energy associated with that ele-
ment. Then if ¢(¢, x, 3, 2) is defined by

1 2
= f f fgngzo exp I:—%%(xpﬁym-kzpz)] dpdp,dp.

$¢*dxdydz must give the energy associated with the volume element dxdydz in ordinary space.
Conversely, given ¢ we can pass to  as stated on p. 170.
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9. HEISENBERG'S UNCERTAINTY PRINCIPLE!

The qualitative discussion in the preceding article shows clearly that
a reduction in the size of a wave packet to ¢ncrease the precision with which
it locates the associated particle in space is always accompanied by a de-
crease in the precision with which its momentum is defined. The question
immediately arises ‘‘Is the impossibility of forming a wave packet which
will describe a particle with a perfectly definite position and momentum a
weakness of the wave mechanics or does it correspond to an inherent experi-
mental difficulty in making precise simultaneous observations of position
and momentum?’”’ Heisenberg has shown that the second of these alternatives
is correct and on this basis formulates the principle: Under ideal conditions
the product of the experimental uncertainty in the value of any coordinate ¢ and
the experimental uncertainty in the value of the corresponding momentum p
has a minimum value of the order of magnitude of Plank’s constant h.'®

If we grant for the moment that the minimum experimental uncertainties
are those inherent in our wave packet theory we may deduce Heisenberg’s
principle from equations (42) and (43). Consider the case of a packet bounded
at t=0 by a rectangular box such that in the region S defined by the in-
equalities —a<x<-+ta; —b<y<+b; —c<z<-4c¢, yohas the value

Yo=Ae@milbem

whereas outside S, Y, vanishes. In this case we may identify the uncertainties
in x, y, and 2z with a, b, and ¢ respectively. The momentum of the packet
is as sharply defined as is possible for a packet of this size, the mean values of
the components being po, 0, 0. Applying Eq. (42) we have

8abc
Q(O;Px’pyxpz) ZG(.PZ)pU:pZ) =;;/_2G1(PZ)GZ(1>11)G3(I)Z)

where

sin { 2ra(po—p2)/ b}

1 +a
Gl(pz)=_—f e il (ppa) g =
2a

—a 21ra(p0—p,)/h
sin 2wbp,/h sin 2wep./h
_onem C o Gy(p) =
2(p4) 2rbp/h i(P2) e, b

(|A| takes on the value (8 abc)'? if adjusted to satisfy the normalizing
condition Eq. (39)). The probability that p, lies in the interval dp, is then

proportional to
sin? 2za(po—p o)/ h

= e M

14 W. Heisenberg, Zeits. f. Physik 43, 172 (1927); N. Bohr, Nature 121, 580 (1928).

15 The uncertainty postulated is, of course, quite unimportant for the dynamics of large
scale bodies. If the uncertainty in any one of the positional coordinates of the golf ball of p. 163
is of the order of magnitude of an atomic diameter the corresponding minimum uncertainty in
velocity is of the order of magnitude of 1072 cm/sec!
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This distribution function is the familiar one met with in the theory of
diffraction by a single slit and illustrated by Fig. 1. The half spacing of
the central pair of minima ({= +m in Fig. 1) gives a fair measure of the
uncertainty in the value of p,. Hence ép.=%/2a and

8a0p (= 06y8p,=0626p.) = h/2 (46)

in agreement with Heisenberg’'s principle.

~Tr % _ Zga(Po_px) U g —_—

Fig. 1

The same type of formula may be used to relate the uncertainty in the
energy of the particle and the uncertainty in the time at which it takes on
a certain coordinate value. For example, the above wave packet will cross
the plane x =0 in the time 26 given by

0o, 2a 0p,

251f=2a/v=2a —_—— e,
o h v

Hence the product of the uncertainties in ¢ and E is

a 0P,
sEst= o 22— asp=1)2.
h Oy

In the Hamiltonian theory of classical dynamics ¢ and —E are canonically
conjugate variables like x and p,. Hence a plausible extrapolation would
lead us to expect the same relation between the uncertainties in any two
canonically conjugate dynamical variables.

Heisenberg justifies the conclusion that these uncertainty relations
are experimental as well as theoretical by an analysis of the various possi-
ble experimental means for determining simultaneous values of coordinate
and momentum. We may determine the position of a particle, for example,
by observing the direction of motion of photons or electrons which have been
scattered by collision with it or by allowing it to pass through a slit or
small aperture. In each case, however, if one assumes the validity of the
ordinary theory of the Compton effect and also the applicability to matter

t In the one-dimensional case if the packet is defined to give yy* the form of a Gauss error
curve GG* has the same form and 8x8p, =h/2w. Cf. W. Heisenberg, reference 14.
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of the optical theory of diffraction by apertures, one finds that the observa-
tion of any positional coordinate introduces an uncontrollable alteration in
the corresponding component of momentum such that even if the latter were
uniquely known before the position was observed, Heisenberg’s uncertainty
relation would hold true after the observation of position. Conversely if
one measures the positional coordinate first and the momentum afterward,
the measurement of momentum introduces an uncontrollable alteration in
position with the same ultimate result regarding the minimum values of the
uncertainties.’ This savors of arguing in a circle since we assume the dif-
fraction of matter in order to derive from a conceptual experiment a relation
previously obtained directly from the theory of diffraction. The point is,
however, that there is no way of sidestepping the diffraction effect if it is
real—a qualification which need hardly be considered.

As Bridgman!” has shown, the uncertainty relation is bound up with our
inability to trace out the details of collisions between photons, electrons,
and apertures. This inability, in turn, is due to the absence of tools finer
than complete collisions for making the measurements necessary to give reality
to such details.

The perfect harmony which exists between our dualistic theory and the
experimental limit of the uncertainty product 8¢ép is a strong indication
that the former is on the right track. It shows that the theory is marvelously
adapted to the description of observable magnitudes without introducing
others which are unobservable as did the Bohr theory. The desirability of
eliminating unobservable quantities from the theory was in fact one of the
basic ideas in Heisenberg’s original development of the matrix mechanics.

It is hardly necessary to dwell here on the philosophical significance
of the uncertainty principle which gives final precise form to the hypothesis
of indeterminism in physics. This hypothesis may be said to have originated
in the discovery of the law of radioactive decay. It received important
support in Einstein’s speculations on the transition probabilities which
govern the jumps of atoms from one energy level to another and now seems
permanently enthroned in the quantum mechanics. To be sure, many physi-
cists still regard the indeterminism of the quantum theory as a temporary
phase in the development of the science and look for a return to determinism
later on. To the writer, however, it seems quite clear that such a return is
impossible unless some wholly revolutionary discoveries of an experimental
character give us tools which we now lack for the detailed investigation of
collisions. Moreover, the quantum mechanics has so many of the character-
istics of ultimate perfection in theory that the possibility of unlimited re-
volutions in the future can no longer be granted without question. If the

18 For a detailed discussion of the various possible types of experiment the reader is referred
to the original papers of Heisenberg and Bohr (note 12). It is perhaps desirable to note here
that we always observe pairs of coordinates and not single coordinates. Thus the ‘‘simultaneous”
measurement of a coordinate ¢ and conjugate momentum p means the correlation of the values
of g and p with the same value of some third variable x, which may be either some independent

space coordinate or the time.
17 P, W. Bridgman, Harper’'s Magazine, March, 1929, p. 443.
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purpose of science is to reveal the orderliness and inner simplicity of nature,
scientific theory is to be judged by the extent to which it reduces chaos to a
single formula or group of formulas. If we look back over the history of
science and forward to the future with this criterion in mind, we can hardly
resist the conviction that we are within sight of the goal. The past has seen
the reduction of existence to the two modes, matter and radiation, the re-
duction of matter to the 92 chemical elements and their isotopes, the re-
duction of the various atomic species to electrons and protons, and most
recently the lowering of the barrier between matter and radiation through the
discovery of their common dualistic nature and of the possiblity of trans-
muting one into the other.!®* Many problems have yet to be solved before
the territory already within our grasp shall have been fully consolidated,
but in view of the uncanny power of the tools now available the discrepancy
between the present state of physical theory and the ideal is almost uncom-
fortably small.

SECTION 2. THE CHARACTERISTIC VALUE PROBLEM OF THE
WAVE MECHANICS

1. THE LINEAR OSCILLATOR

It is a well-known empirical fact that each species of atom has a
characteristic set of discrete energy levels. From the wave mechanics
point of view these levels are to be identified with a corresponding set
of standing wave monochromatic solutions of the equation (38) for the atom
in question. In order to obtain such a set of solutions Schrédinger has
introduced the hypothesis!® that the only solutions of the wave equation
having physical meaning are those which are finite, single-valued and
twice differentiable over the whole of coordinate space.?’ The hypothesis
is justified by its results and by the fact that infinite or multiple-valued
functions would be hard to interpret physically. It is equivalent to a bound-
ary condition (and will be referred to hereafter as such) since in many cases
must either become infinite at singular points of the differential equation
or satisfy typical homogeneous boundary conditions there.

The problem thus presented is of the familiar type known to the math-
ematicians as the characteristic value problem (Eigenwertproblem).2
Solutions are obtainable only for certain characteristic values (Eigenwerte)
of an adjustable parameter involved in the differential equation—in this
case the parameter E or its equivalent ». The solutions of the equation which
satisfy the boundary conditions are called characteristic functions (Eigen-

18 The evidence for transmutation is primarily astronomical.

19 E. Schrédinger, Ann. d. Physik (4) 79, p. 361 (1927).

20 It now seems necessary to modify the first part of this hypothesis in certain cases to
permit the wave function to become infinite at isolated points provided that fyy*dr is finite
when extended over small regions surrounding and including these points. Cf. A. H. Wilson,
Proc. Roy. Soc. A118, p. 635 (1928). ‘

% For a comprehensive mathematical discussion the reader is referred to Courant-Hilbert
“Methoden der Mathematischen Physik I,” Berlin 1924, or to Riemann-Webers “Differential-
gleichungen der Physik I,” 7th ed. Braunschweig, 1925.
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funktionen). The normal modes of vibration of various elastic systéms
are familiar examples of such characteristic functions.

As a first example of the characteristic value problem of the wave me-
chanics let us consider the case of a particle of mass u vibrating in one dimen-
sion under the influence of a potential energy function V(x) which for
simplicity we assume to have the form shown in Figure 2 with a single
minimum at %o, a pole of the second or higher order at x =0, and an asymp-
totic finite limit at x= 0.2 (The potential energy V is defined only for the
range of values 0 <x < o since the discontinuity in ¥V at x=0 would in any
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Fig. 2. Potential energy function for one-dimensional oscillator
and typical integral curve for Eq. (48).

case destroy the continuity of the solutions #(x) at that point. In the general
case of a differential equation to be solved subject to boundary conditions
the region defined by the boundaries is called the fundamental region. In the
applications to wave mechanics values of the independent variable outside
the fundamental region have no physical meaning). The wave-length
is

w h
A =2 (47)
v [2u(E-T)]
and the wave equation for the space factor u reduces to the form
d*u  8w’u
— E=V)u=0. (48)
dx® K ( )

2 This is the characteristic type of potential energy function for the problem of the vibra-
tions of a diatomic molecule.
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A\ has a minimum value at xpand if E< V() X becomes infinite at two points
x' and x’ where E=7V. The classical motion is confined to the region G
between x’ and x”/ if E<V (o) (Case I) and extending from x’ to infinity
if E2 V() (Case II). Outside this region the kinetic energy, defined in
the wave mechanics by

h? \ 1 d?
r-5-v=- () o

g;r2,u 1_[/— dxz’

is negative, while the momentum and wave-length are imaginary. Such nega-
tive values of the kinetic energy have no meaning in the classical mechanics
but in the present theory they play an important réle. The wave functions
of the linear oscillator problem under discussion are spread out over the
whole of the positive x axis including the part outside of G. Since YY*dx
(=uu*dx) gives the probability that the particle is in the elemental region dx,
it is clear that it must spend a definite fraction of its time in the region of
negative kinetic energy. This fraction is small, however, especially for the
higher modes of vibration or upper energy levels.

2. GRAPHICAL DiscussiON OF THE INTEGRAL CURVES?

As the coefficients of Eq. (48) are real, the real and imaginary parts
of #(x) must be solutions of the equation which satisfy the boundary con-
ditions. Real solutions are readily shown to be unique except far a con-
stant multiplicative factor and hence any characteristic function #(x) may
be resolved into the product of a real function of x and a complex constant.
Obviously it suffices to search for real solutions. Each will be characterized
by two constants of integration o and 8 of which one (say «) is multiplicative.
An “integral curve” representing a solution of the equation will pass through
any predetermined point of the #, x plane with any predetermined slope, but
in general these curves will not fit the boundary conditions. Clearly each
curve will be concave to the x axis if

1 d*u L m

— — or —(V—E)

u dx? h?
is negative and convex to the axis if it is positive. Consequently each curve
(Cf. Fig. 3) is of an oscillatory character like a distorted sine curve in-
side G, while outside G it is convex to the axis and acts as if repelled
from the axis by a force proportional to V—E and to its own absolute
value. x’ and %'’ are points of inflection.

It is easy to show that if V becomes infinite at x=0 as 1/x?, or more
rapidly, as we shall suppose, #(x) can remain finite at the origin only by
vanishing there. Similarly in Case I, where E< V (), u(x) must vanish at
x= o in order to remain finite there. Moreover, as % is convex to the axis
outside of G, it cannot have more than one nodé on either side of G. The
boundary conditions are satisfied and # becomes a characteristic function

2 Cf. F. Hund, Zeits. f. Physik 40, 742 (1927).
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if the two possible nodes outside G occur at the limiting points x=0 and
x=00,

Consider now the adjustment of the parameters «, 8, £ which must be
made in order to locate a characteristic function and characteristic value.
The multiplicative parameter « is useless since a variation in its value
does not affect the “zero’s” of the function #. The condition at the ori-
gin can be met by the adjustment of B only. In Case II this is the only
boundary condition and every value of E is a characteristic value. In this
case the classical motion of the particle would be aperiodic and the continuous
“spectrum” of energy values permitted by the wave mechanics corresponds
to the continuous spectrum of E values permitted for an aperiodic motion
by the Bohr theory. On the other hand in Case I the classical motion is
periodic and in the wave mechanics the additional boundary condition at
x = o can be met only by a suitable adjustment of E.

It is of interest to note the exact way in which the variation in E affects
the integral curves and makes it possible to meet the boundary conditions.
Starting with any initial value, let E be increased by a small amount AE.
Let B be adjusted for each value of E to fit the boundary condition %#=0
at the origin. The increase in E makes the curves less convex to the axis out-
side G and more concave to the axisinside G. Hence it may be proved either
graphically or analytically that all the nodes are shifted to the left.* As
E increases continuously new nodes appear at x= o, then move to the left,
and finally enter the region G where they accumulate. The first appearance
of each node at x= o marks a corresponding characteristic function and
characteristic value of E. The minimum number of nodes between the
boundary points is zero, and the characteristic function havingno nodes ex-
cept those at the boundary points is associated with the lowest characteristic
value of E. Two characteristic functions having the same value of E must
have the same zeros and can differ only in the multiplicative constant a.
For our present purpose they may be identified with one another. Thus we
have the rule that the nth characteristic function, or wave function, divides
the region between the boundary points into exactly » parts. The number
of nodes plays the rdle of the quantum number in the Bohr theory. It is
an integer which defines the characteristic function and characteristic
value, giving the ordinal number of the latter in a series arranged according
to magnitude. Conventional practise counts only the nodes between the
boundary points so that the quantum number for the lowest state is zero.*

Figure 3 shows the qualitative form of the characteristic functions u
for the lowest energy levels.

The general appearance of these lowest wave functions is unaffected by
considerable changes in V(x). Suppose, for example, that V remains finite
from x=-4© to x=—o, with a single minimum between. As before
there will be a continuous spectrum of E values for Case II and a discrete

24 Cf. Courant-Hilbert, p. 367 or Riemann-Weber, p. 281.
2% Half-integral quantum numbers do not appear except in connection with the electron
spin which we ignore for the present.
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spectrum for Case I. The lower wave functions for Case I will be qualita-
tively unchanged in character. If V becomes infinite at x= + ©, as in the
case of the ideal linear oscillator where V'=1/2 ka2, the continuous spectrum
disappears, but the lower wave functions are substantially unchanged.
This remark holds good also if V has two poles of the second or higher order
at finite points xo and x, with a single minimum between them.
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Fig. 3. Energies and wave functions for one-dimensional oscillator.

3. THE STURM-LIOUVILLE PROBLEM

All the above mentioned variations in the linear oscillator problem
and also most if not all of the exactly solved characteristic value problems
of the wave mechanics are ultimately referable to one-dimensional equations
of the Sturm-Liouville type

d dy B
Ecl:j)(x)ﬁ] —q(x)y+No(x)y=0 (49)

in which N is the variable parameter playing the réle of E in Eq. (48).25* Solu-
tions of this equation subject to the homogeneous boundary conditions

y(@+vy(a)=0;  y(b)+ny(5)=0 (50)
have been studied in detail and shown to have the characteristics described

%" In Eq. (49) we have adhered to the notation of Courant-Hilbert despite the fact that p
and X are used in a different sense throughout most of this review.
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in the preceding paragraph.?® (It is possible to show that if Schriédinger's
requirement that the wave functions remain finite at the boundary points
leads to any boundary condition at all, it will lead to one of the type (50).)
The characteristic functions also satisfy an “orthogonality” condition to
which we will return later on.

4. CORRELATION OF CHARACTERISTIC VALUES WITH ENERGY
LEVELS OF THE BoHR THEORY

The possibility of deriving the experimental energy levels of atoms from
the wave theory was first indicated by de Broglie?” who showed that the Bohr
quantum condition for circular orbits in hydrogen is identical with the
condition that the “optical path” around the orbit is an integral number
of wave-lengths. Later Schridinger?® showed that in a number of important
special cases the energy values given by appropriate solutions of the wave
equation are in substantial agreement with the Bohr theory and with experi-
ment.

A more general proof of the agreement between the Bohr theory and the
wave mechanics is due to the work of Brillouin, Wentzel, and Kramers.2? The
oscillatory character of the wave functions in the range of the classical
vibration G suggests the possibility of describing them approximately by
means of a cosine function with a variable amplitude and wave-length. This
type of approximation is of no value outside the range G but that fact does
not destroy its usefulness. Substitution shows that the formula

dx
u=AN2 cos {wa—)\—} (51)

[\ is defined by Eq. (47)] describes the integral curves very well at points
not too close to the boundaries of the range G. At each of the points %’
and «’’ the oscillatory portion of each of the characteristic functions must
make a smooth junction with the exponential-like curve outside of G which
then approaches the axis monatonically as one moves away from G. Thus the
boundary conditions determine the phase angle of the cosine function in
Eq. (51) at the points &’ and x’’. The exact phase will vary with V(x)
but Kramers has shown that normally we obtain a good approximation if we
give it the values —m/4 or —57/4 at «’ and w/4 or 5r/4at x”’. Hence the
phase difference between the points &’ and x’’ is an odd multiple of m/2 or

2 f do 2m (e (Gn )T 0,1,2 (52)
—— —_ J— n= , R
T . N 7 J pax n 5 ) R

26 Courant-Hilbert, Kap. VI, esp. pp. 366 7; Riemann-Weber, Kap. VII.

27 1, de Broglie, Thesis, Chap. III; J. de Physique 7, p. 327 (1926). Cf., however, M. Brill-
ouin, Comptes Rendus 168, p. 1318 (1919); 169, p. 48 (1919); 171, p. 1000 (1920); J. de Phys.
3, p. 65 (1922).

28 E, Schrodinger, 1. c. and Ann. d. Physik (4) 79, 489 (1929).

29 1, Brillouin, Comptes Rendus 183, p. 24 (1926); J. de Physique 7, p. 353 (1926); G.
Wentzel, Zeits. f. Physik 38, p. 518 (1926); H. A. Kramers, Zeits. f. Physik 39, p. 828 (1926).
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which is the Wilson-Sommerfeld quantum condition for the problem with the
quantum number made a “half-integer.” As this quantum condition with
half-integral quantum numbers is known to give a satisfactory expression
for the energy of a vibrating molecule, we conclude that the characteristic
values of E given by the wave equation may be identified with the corre-
sponding experimental energy values.

5. TuEg PranNck IDEAL LINEAR OSCILLATOR

The characteristic values and characteristic functions have been worked
out exactly for a number of special cases of the linear oscillator problem
among which we may mention here the Planck case where V=3kx2
The corresponding wave equation and boundary value problem were well
known to mathematicians before the advent of the wave mechanics.3°
The characteristic functions are the Hermitian orthogonal functions

=A== 2, (a'?%) (53)

where A4, is an arbitary constant amplitude factor, o is the constant
(2m/h) (ku)'? and H, is the nth Hermitian polynomial

1 —1 -2 -3
D gy g MmO DO L (s

n(n—
1! 2!

H,(8) =(28)"—

If we determine 4, in accordance with the normalization condition (39)
it takes the value 2~#%(n!)~'2, The energy levels are identical with those
of the Bohr theory using half-integral quantum numbers, viz.,

E,=(n+3%) v n=0,1,2, - (55)

vo denoting the classical vibration frequency (1/27)(k/u)Y2. The wave func-
tions are alternately even and odd as may be proved directly from the differ-
ential equation.

The polynomial method described by Sommerfeld® gives a valuable direct
mode of attack on this and other exactly solvable Sturm-Liouville charac-
teristic value problems. It does not work in all cases but has a wide range of
applicability.

6. THE Two Bopy PROBLEM

This is one of the most important characteristic value problems of the
theory. We assume that the potential energy V depends only on the distance
7 between the particles. Let M denote the total mass u;-ue and let u be a
mass coefficient defined by the relation

1 1 1
—_——— (56)
M ML M2

Let &, 7, { denote the coordinates of the center of gravity and let %, v, 2
% E. Schrédinger, Ann. d. Physik (4) 79, p. 489 (1926); Courant-Hilbert, p. 261.

8t A. Sommerfeld, “Atombau und Spektrallinien Wellenmechanischer Ergénzungsband,”
Braunschweig, 1929, Kap. I, 2.
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denote the projections of 7 along the three axes. Then the space factor equa-
tion (37) takes the form

1<a?+aﬁ+a2>+1<a2+aﬁ+a2> SrZ(EV 0.
agr | an? | o p\ax2 ' 9y 9z ut gy (E=Tu=0.

Let us seek particular solutions of the form

“=%1(57%§)%2(x73’72)~ (58)
Substitution of this expression into Eq. (57) breaks the equation into the two
parts
< 92 n 92 n 62> +87r2ME 0 (59)
—_— — B, =0,
ae opr o) T e
and
62 a? . 62
— ——E—V =0 60
<6x2+6y2+ Y >%2+ (Ea—TV)u, (60)

where E,4E,=FE. Clearly E; is the energy of the translational motion
of the center of gravity and E; is the internal energy of the system. Equation
(59) is the amplitude equation for a free particle. Itssolution is a plane wave
or superposition of plane waves. A packet may be built up from such solu-
tions to locate the center of gravity in space if desired.

In order to solve the wave equation for the internal motion one may make
another change of variables introducing the spherical coordinates 7, 8, ¢. We
repeat the process of splitting the differential equation or “separating the
variables” by seeking for particular solutions of the type

us=R(r)Y(0,4). (61)
Eq. (60) then breaks into two parts with the separation constant «, viz.,
! d( dR)JrS”[E V()+ ]R 0 (62)
el (09 St I — V() e — =0,
r2 dr dr : wiur?
1 9%y 1 9 Y
BRI U Y 1S [y 9
sin?f d¢% sinf 96 a0

The latter equation is familiar from potential theory® where it must be solved
in such a way that Y is single valued and continuous over the entire sphere.
The variables in (63) may be separated in turn and a solution of the problem
is then

V= 3(¢)0(F) X const. (64)

where the values of ® and © are
() =eim? m=0,+1,+2, - (65)%
O1,m(6) =P, ™I (cos 6) I=|m|,|m|+1, . (66)

32 Courant-Hilbert, p. 265, p. 420.
38 The functions sin m¢, cos m¢ (m =0, 1, 2 - - +) are equally valid.
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Here P;*(x) is the associated Legendre spherical harmonic

Pﬁ(x):(l—ﬂ)’“”%;}’l(x), (67)

P,(x) being the Legendre polynomial of degree . « has the characteristic
values

a=—I(l+1) 1=0,1,2,3, - . (68)

Inserting this expression for « into Eq. (62), dropping the subscript in
the symbol E3, and changing the dependent variable from R to R =7R, we
obtain

a*R 8’ W+ 1)hr?
™ u[ 1 ( ) ] =0,

| BV () ————

69
dr? h? 8m2ur? (69)

an equation identical in form with Eq. (48). Comparing this with the energy
equation of the classical theory for the radial motion

R I

where M is the angular momentum, we see that in the wave mechanics
(h/2m) [1(I1+1)]*2 plays the role of angular momentum. This interpretation
will be justified later from another point of view.

The solution of Eq. (69) depends on the form assigned to V(#). In the
special case of the atomic Kepler problem V= —Ze?/r where Z is the atomic
number of the nucleus. V vanishes at « and if £ is negative (Case I, p. 35)
there is a discrete set of energy values given by the familiar Bohr formula

2m2ue’Z?
E,=————-. (71)
hin?
Here n—1 is the sum of the nodes in R(7), ®(6), and the real part of ®(¢).
If E is positive (Case II) we have a continuous spectrum of E values.

The wave functions R may be expressed in terms of a complex integral in

both cases.’® In Case I they may also be written in the form

R, (7) =plL(2i‘lF”(p)e“P/2><const. (72)
where
8mw2ue?Z 27
p= < ——)r=—-r (73)
hen nay v

and L (x) is the 7" derivative of the Laguerre polynomial of degree k. a, is
the radius of the innermost Bohr orbit for hydrogen.

In contrast to the linear oscillator problem we have here a multiplicity of
characteristic functions for each energy level paralleling the multiplicity of
orbital types which exist for each level in the Bohr theory. This multiplicity
is called degeneracy and is of a two-fold character. Due to the epherical sym-
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metry of the force field each of the characteristic values of «a (i.e., each value
of ) is associated with 2/+1 wave functions of the type of Eq. (64) and
characterized by the values 0, +1, .., &I for the quantum number .
This degeneracy is destroyed by the application of an external magnetic or
electric field to the atom. In the former case each of the wave functions given
by Egs. (64), (65), and (66) is associated with a separate energy level. Hence
m is frequently called the magnetic quantum number. In the absence of
disturbing influences the most general solution of Eq. (63) for any given
characteristic value «; is

I/l= ch,me)l,md)m-

Such a function is called a tesseral harmonic.

A more special type of degeneracy is exhibited by the radial Eq. (62) in
the special case of a Coulomb force field. The energy depends only on the
“total quantum number” %z and is independent of the “azimuthal quantum
number” I. As [ takes on all values between 0 and #—1 there are in all

n—1

> (214-1) or n? different sets of values of / and m for each energy level. The
1=0
most general possible wave function for the energy level £, may be proved to

be an arbitrary linear combination of terms of the type R, i0:n®mn.

7. ORTHOGONALITY AND THE EXPANSION PROBLEM

The last statement of the preceding article leads us to the question of
orthogonality and series expansion which is one of the most important as-
pects of the characteristic value problem.

Consider first the case of a one-dimensional motion where the differential
equation for the space factor #(x) has the form of Eq. (49). Let us assume
that there is no continuous spectrum of energy values. A very general solu-
tion of Eq. (18) will then be given by the series

Y(t,6) = D catta(x)e@TiME, (74)
n=0

in which %,(x) is the n** characteristic function of the space factor equation
and E, the corresponding value of £. The ¢’s are arbitrary constants which
must be so chosen to insure the convergence of the series. Now Eq. (18)
shows that ¥(¢, x) is in the most general case fully determined by its value at
t=0. Thus Eq. (74) does give the most general solution of the problem
provided that it can be fitted to an arbitrary complex initial function f(x)
which meets the boundary conditions. Hence it must be proved that such a
function can always be expanded into the infinite series

J(@) = 2enttn(2). (75)

Such an expansion is most easily carried out in the case of a normalized
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orthogonal system of functions u,(x).3* Here we use the word normalized in the
sense of Eq. (39) to indicate that for every value of

b
f Un(X)u,*(x)dx =1, (76)
where x=a, b are the boundaries of the region of definition of the functions.
This equation can always be satisfied by suitable adjustment of the arbitrary
multiplicative constant o. The term orthogonal®® is applied to the series of
functions u,(x) when

fbun(x)um*(x)dx=0, nFEm. (77)

If the given wave functions form such a set, the coefficients in Eq. (75) may
be determined like those in a Fourier series.t Multiplication of the equation
by #*,(x) and integration yields

Cr = fbf(x)u,*(x)dx; r=0,1,2,- - . (78)

A slightly more general case is that in which the given set of functions is
not orthogonal as it stands, but may be converted into such a set through
multiplication by a suitable real common factor [p(x)]*/2. The condition that
the modified functions form a normalized orthogonal system is then

fbr)(x)un(x)um*(x) dx=208,m, (79)

where the symbol 8., stands for unity if m =7 and zero if m>n. Eq. (78)
becomes

b
6= f 50 (x)u,* () dx (80)

The characteristic functions of the Sturm-Liouville problem are readily
proved® to have this modified type of orthogonality, the function 5 being

# Cf. Courant-Hilbert, Chapter 1I; Riemann-Weber, Chapter VIII, 1, Chapter XII, 3.

% A continuous function of x may be regarded as a vector in a space of infinitely many di-
mensions and Eq. (77) is a limiting case of the condition for the orthogonality of two complex
vectors Uy, U, in a space of many dimensions. Cf. pp. 210, 211 below.

1 Obviously if the expansion (75) is to be valid, the series of functions #,(x) must be
complete, i.e., no function can exist not identically zero which is not in the series and is orthog-
onal to all members of the series. Cf. Courant-Hilbert, pp. 35-38.

% If N and \; are two different characteristic values of Eq. (49), v, ¥, being the charac-
teristic functions,

b v
()\1"')‘2)f py1y2*dx +f — (v =y * dx=0.
a a dx

The second expression vanishes due to the boundary conditions and since A\, 7\, the orthog-
onality condition follows at once. Cf. Courant-Hilbert, p. 239; Riemann-Weber, p. 366.
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identical to a constant factor with the p(x) of Eq. (49).] Moreover, the
development of Eq. (75) is valid in every case 3 so that the series (74) does
give the most general solution of the one-dimensional wave equation which
meets the boundary conditions.

In the case of the linear oscillator equation (48) under consideration, p is
a constant and we may normalize the wave functions in accordance with
Egs. (76) and (39) to preserve our original simple physical interpretation of
Yy*dx for the case where ¢ has the monochromatic form = u,et@7ilhEnt

8. CONTINUOUS SPECTRUM

The above results have been generalized to include the case where there
is a continuous as well as a discrete spectrum. In this case one of the bounda-
ries is at infinity and a part of the series expansion (75) goes over into an
integral analogous to the Fourier integral. Thus if f(x) is a function which,
together with its second derivative is continuous and quadratically integrable
over the fundamental region a <x < e, it can be expanded in the absolutely
and uniformly convergent representation3?

) = S eatin () + f c(Eyu(x, E)dE. (81)

Here u(x, E) is the space factor for the energy E and € is the minimum energy
value for the continuous spectrum. (We assume that the constant of integra-
tion B (p. 179) is determined by the boundary condition at one end of the
fundamental region so that, except for the multiplicative constant «, u(x, E)
depends on x and E only.)

The discrete functions u,(x) are normalized and their coefficients ¢, de-
termined as before. The normalization-orthogonality relation Eq. (79) does
not apply to the characteristic functions of the continuous spectrum, how-
ever, since the integrals do not converge. This difficulty is met by the use of
the modified condition that??

© E,
f dap(x)u*(x,\) u(x,E)YdE=F(\) or 0 (82)
a El
according as E; <A< E,, or not. Then the formula for determining the co-
efficients ¢(Z) of the continuous spectrum is

1 a4 5
AB) = f dxp () (%) f w* (e \)dM. (83)

For our present purpose F(E') is arbitrary and Schrédinger sets it equal to

{ p can always be eliminated by an appropriate change of the dependent variable as in
Eq. 69.

37 Courant-Hilbert, p. 278; Riemann-Weber VII §4, XIII, §1.

3 H. Weyl, Math. Ann. 68, 220 (1910).

39 Cf. E. Fues, Ann. d. Physik (4) 81, p. 281 (1926); E. Schrédinger, Ann. d. Physik (4)
81, p. 109 (1926). Other forms of this condition are used by Oppenheimer, Zeits. f. Physik 41,
p. 268 (1927); Phys. Rev. 31, p. 66 (1928).
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unity. Oppenheimer, on the other hand, finds it convenient from the stand-
point of statistical weights to give this function the constant value 4.

The following heuristic procedure will serve to make the above formulas plausible. If we
should try to determine the coefficients ¢(E) by the same method as that used for the c,'s we
would multiply Eq. (81) by p(x)u*(x, E’) and integrate formally over all values of x. It may
happen, however, that the integral f:,}(x)f(x)u*(x, E")dx does not exist. Hence we must
replace #*(x, E’) by the “wave packet” ff‘”u*(x, N\) d\ which approaches zero rapidly for large
values of x due to interference of its elements. The resulting equation is

@ ol ) E'
f dacﬁ(ac)f(ac)fe w*(x, N)dN= D cnf dx;;(ocmn(x)fe w*(x,N)d\
E/

+fw ﬁ(x)dxf ( u”‘(oc,)\)dkjw0 c(Eyu(x,E)dE.
a € €

Due to difficulty about interchanging the order of integrations in the right hand side of
Eq. (84) we make use of the fact that the characteristic functions of the continuous spectrum
may be regarded as limiting cases of discrete characteristic functions obtained by a suitable
modification of the potential energy function. [E.g., if the potential energy Vy(x) has the form
indicated in Fig. 2 with a continuous spectrum, we may consider a modified problem in which

(84)

V="Volx)+ Vi(x)
where V; vanishes if x <x; and has the value V;=a(x —x;) if x>x;. Then the modified prob-
lem has no continuous spectrum since V()= o, but if x, is allowed to increase without limit
the energy levels above the critical value V,(®) become indefinitely close together and the
wave functions approximate more and more closely to those of the original problem.] On this
basis we may prove (¢) that the sum which forms the first term of the right hand member is
zero, and (b) that [’dxpu*(x, )\)fgéc(E)u(x, E)dE vanishes unless E; <\ <Ejand is independent
of Ey—E,. The value of the integral is then proportional to ¢(\) and by the introduction of a
suitable normalization factor can be reduced to ¢(\) F(A\) where F is arbitrary [Cf. Eq. (82)].

Then Eq. (84) yields
o jol B’
f dxaf () f RS f CNF(N.

Differentiating with respect to E’ we obtain Eq. (83).

An important auxiliary relation similar to Eq. (45) is

f i ffrda= D cac*+ f wc(E)c*(E)dE. (85)

From the above development it follows that the most general solution of
the one-dimensional wave equation for ¥(x, ¢), viz.,

d2¢+81r2/u[ h 0 V] 0 (86)
da2 ' hr L2ri a1 ¥=0,

in harmony with the boundary condition is

Y(x,0) = D cattye@milh Ent —}-f c(E)u(x, E)e@milMELE, (87)
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9. ORTHOGONALITY AND EXPANSION PROPERTIES OF THE CHARACTERISTIC
Funcrions or THE Two-Bopy PROBLEM

By means of Green'’s theorem one may prove that any two characteristic
functions of the Schrédinger equation (60) corresponding to different energy
levels are orthogonal to one another and to any packet formed from charac-
teristic functions belonging to the continuous spectrum.* Furthermore, if
the variables are separated, mutual orthogonality relations are readily estab-
lished which, when combined with a suitable normalization, are expressed by
the formulas

2w ™
f (I)mq)ml*d(,'b:Bm,mf . f ®l,m®l’,m sin 0d9=51,l'
0 ) 0

w w (88)
f Rn,an,l r2dr = f ?.Rn,lmn’,ldrzan,n'-
0 0
Hence
fffun,l,mu::',l',m'dxdyd,z: fffRn.l®l,mq)mRn’,l’®l’.m'q)m’*r2 sin 0drdode
% ) (89)

=6n ,n’al ,l’6m ,m! .

It can also be proved that an arbitrary function of 8 and ¢ which, together
with its first and second derivatives, is continuous over the entire sphere may
be developed into an absolutely and uniformly convergent series of spherical
harmonics** ©;»®,. Combining this fact with the corresponding theorem
for R(r) which follows from the Sturm-Liouville character of the differential
equation (62), we conclude that a suitably continuous arbitrary function of
x, y, zor of r, 0, ¢ may be expanded in the form

0 0 +°O
f(xd’;z): Z Z ch,l,mRn,l®Z,mq>m

n=l+1 I=|m]| M=—00

n fo wdE{ > fc,_m(E)Rl(E,r)(a,,m@m}. (90)

I=|m| Me=—cg

As in the simpler case of the one-dimensional oscillator, we have only to
insert appropriate time factorsin the right hand member of Eq. (90) to obtain
the most general solution of the wave equation for the internal motion of the
two-body problem in the form (18).

Similar orthogonality relations and expansion properties hold, no doubt,
for most, if not all, of the characteristic value problems of the wave mechan-

4 Cf, Courant-Hilbert, p. 255. Two functions #n, #. of the space coordinates x, ¥, z are
by definition orthogonal in the region consisting of all space if

fff Untn ¥ dxdydz =0, nEm.

4 Cf. Courant-Hilbert, p. 422.
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ics, though the writer knows of no comprehensive and rigorous discussion of
the subject. The plausibility of these relations may be made evident in
various ways which lie outside the scope of this review and is so great that
they have been assumed without question by most theoretical physicists.
They are of the greatest importance not only for expressing the most general
“solution of the basic wave equation (38) in terms of characteristic:functions
defined by the space factor equation (37), butalso in the development of
perturbation theory and in the study of the problem of the emission of radi-
ation by matter.

SECTION 3. OPERATORS AND MOMENTA IN THE WAVE MECHANICS

1. MEAN VALUES OF FUNCTIONS OF THE COORDINATES
Mean values play an important réle in any statistical theory. In fact we
may say that the function of any statistical theory is to determine mean
values of one kind and another. For example, yy*dr may be regarded as a
mean value for the number of particles in the volume element dr.
“To find the mean value of any function of the coordinates f(g) we have
to multiply the probability that the system lies in any particular element in
coordinate space by the corresponding value of f(¢) and sum. Thus

9= ff(q)W*dr. (91)

As an example of the use of this type of mean value we may cite the rigorous
derivation of Newton’s laws of motion for wave packets in the form

w=— (92)

by Ehrenfest.**

2. THE LINEAR MOMENTUM OPERATOR

Consider next the average values of the components of momentum. In the
case of a single particle we have already shown that by analysing ¥(¢, x, v, 2)
into plane waves we may derive a wave function Q(¢, p., p,, p.) such that
QQ*dp.dp,dp. gives the probability that the momentum vector terminates
in the element of volume dp.dp,dp. in momentum space. Then clearly the
mean value of any component of momentum, say p, is

[ L $200*dp.dpydp.. (93)

By means of the operator (—%/2wi)d/dx we can replace the above mode
of averaging by a more direct one which does not involve the evaluation of
the Q function. When applied to a wave function corresponding to a single

42 P, Ehrenfest, Zeits. f. Physik 45, p. 455 (1927). Ehrenfest’s proof for the one-dimen-
sional case has been extended to the general case of a conservative system composed of %
particles by Ruark, Phys. Rev. 31, p. 533 (1928). Cf. also Sommerfeld “Erginzungsband,”
pp. 287-9.



192 EDWIN C. KEMBLE

definite value of p, [and hence of the form f(¢, y, 2)e-@7i/h=»:] the operator
yields the relation

— —=P2¢~ (94)

Hence, differentiating Eq. (42) with respect to x, we have
h oY

" 2mi 0x WD f f f P=Qe2miID Gratvnstarddp dp,dp. (96)
™ X

Now by a slight extension of the theorem of Eq. (45)% we may show that if
Y1, Q1; ¥a, Qs are two pairs of functions which satisfy the relations of Egs.

(42)and (43)
fff %%*dxdydz:ffole*dpxdpydpz,* (o7

Hence, identifying ¥, with — (h/2mi)d¢/dx and ¥, with ¢, we obtain

f f w*(—; a;)wdxdydz— [ f [o*s00p.apip=p..  ©8)

Thus the mean value of each of the components of momentum may be
evaluated by a rule formally the same as that used for f(¢) but with the sub-
stitution of the operator — (h/274)d/dq for the momentum p conjugate to the
coordinate ¢. Similarly we may determine the mean value of p” by the rule

f—fffz//*(—m 25) Ydxdyds. (99)

The above mean value formulas are valid for a particle moving in a force
field as well as for a free particle and are readily extended to cover a system
of particles. In the latter case the Fourier analysis may be applied to one

coordinate only as follows.#
+oo

tﬁ(t,xi,xg, Cee ) = hT2 ¢>(t,x1, e, x3n)e—(21ri/h)xkpkdﬁk
(100)
d>(t,x1,--~ y Pry c ,xsn) i
= j~1/2 w(t;xl, e X, x3n)e<21ri/}z)xkpkdxk
f¢*< h 9 >¢d A p
—— X1 A%z,
4 2w1 6xk v :
=f¢*pk¢dx1~ o dpr - dxsa=pr. (101)

42 The mode of procedure is suggested in Riemann-Weber, p. 299 in connection with the
proof of Eq. (16).

4 Jt follows from the analysis of Sect. 1, that the fundamental formula (12) can be
used to correlate the components of the momentum of the individual particles in such a system
with the corresponding components of the wave-number in configuration space.
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Evidently the total momentum in the direction of the x axis may be averaged
by similar use of the operator D, (—k/2m)d/dx..
=1

As Sommerfeld* has pointed out, the use of the operator (—%/2m)d/dqx
for the momentum p; conjugate the coordinate g; is intimately related to a
fundamental theorem derived by Schrédinger®® and interpreted by him as
a statement of the law of the conservation of electricity. In its simplest
form for a single particle in three dimensions using Cartesian coordinates
this theorem is

] h

—(W*) =—— div [y grad y*—y* grad y]. (102)
at drrut

Multiplying through by the charge e and interpreting eyy* as the charge

density (statistical mean), Eq. (102) takes the form of the equation of con-

tinuity with the vector current density S defined by

eh
S=——[y grad y*—y¢* grad y]. (103)
4wt
Multiplication of S by u/e should give the vector momentum per unit volume,
and integration over all coordinate space should give the total average mom-
entum. In this way we find

_ v
pz_mfgff |:¢;x——¢ (—9;:|dxdydz. (104)

The equivalence of Eq. (104) and our previous expression for p, [Eq. (98)]
may be proved by partial integration of Eq. (104) or by reference to Egs.
(94) and (95).

The theorem of Eq. (102) is given by Schrodinger in a general form
applicable to a system of # particles described by means of any sort of
generalized coordinates. Sommerfeld has used it to resolve Eq. (92) into
the pair of equations

po=ud  (105); 5.=—3V/ox. (106)
3. THE ANGULAR MOMENTUM OPERATOR

The angular momentum of a system of particles is defined in the classical
mechanics by the vector formula

M= Zrkka- (107)

k=1
As this formula when expressed in terms of a Cartesian coordinate system
involves all the coordinates and all the momenta it might appear at first
glance that the above methods of computing the mean value of M would

4 Sommerfeld “Erginzungsband,”pp. 284-5.
4% E. Schrédinger, Ann. d. Physik (4) 81, p. 136 (1926).
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break down due to the impossibility of assigning exact simultaneous values
to the coordinates and conjugate momenta. Ignoring this possible dif-
ficulty for the moment, however, we observe that by means of the Car-
tesian expressions for the components of M in terms of the components of
the linear momentum we may write out operators to be associated with
M., M, M,, respectively. Thus, in the case of a single particle

h d a
ﬂh=xm—wpr»—-(w——y—)

. 108
2ri\ dy o (108)

Now the definition of M given in Eq. (107) is, of course restricted to
wave packets in the limiting case where the uncertainties in coordinates
and momenta can be ignored. Outside this special realm of the classical
mechanics we are at liberty to define the components of angular momentum
as we please, provided only that our definitions are in agreement with Eq.
(107) in cases where the latter is valid. Hence, in harmony with Eq. (94)
we define M, for ¢ functions which give it a unique numerical value by means
of the equation

) < a9 (109)
27i\ oy y6x>‘l/ -

If the quantity « is independent of x, vy, 2z, we indentify it with M,. Other-
wise we assign no definite value of M, to the wave function under considera-
tion but assume that it has a certain probability of taking on any one of a
variety of values like the components of linear momentum for a wave
packet. As a means for determining the probability amplitude for M, in
such cases we adopt the scheme of analyzing the wave function into a linear
combination of functions which satisfy Eq. (109) and the usual boundary
conditions for some value of « independent of the space coordinates. Thus
Eq. (109) is to be made the basis of a characteristic value problem like the
Schrédinger equation (15). The characteristic values of o are the possible
values of M,. The characteristic functions are the types of wave function
which have definite angular momenta along the z axis.

Before formulating a mean value theorem for M, we must give the dif-
ferential equation (109) a brief examination. If we introduce the same
spherical coordinates as in the two body problem [ Sect. 1, 6] the operator
(h/273) [x(8/0y) —y(d/dx) | becomes (k/2mwi)d/d¢ and our differential equa-
tion takes the simple form

h oY

— —+Ma4=0. 110
- a¢+ ¥ (110)

Its solution is
Y=x(t,7,0)¢ e, (111)

Continuity of ¢ regarded as a function of #, y, and z requires that 27 M,/h
be restricted to integral characteristic values. M, has no continuous spectrum
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This is the origin of the quantization of angular momentum as it occurs
in the Bohr theory. From our present point of view non-integral values of
2w M./h have no meaning.

As an arbitrary continuous function of x, y, z expressed in terms of the
spherical coordinates 7, 0, ¢ has the period 27 in ¢, it follows that such a
function can be expanded into the series of characteristic functions

4o
Y(t,7,0,6)= 2 xm(t,r,0)e=im. (112)
Mm=—0c0
xn(t,7, 0) plays the réle of probability amplitude for the three independent
variables 7,0, M,. To get the mean value of M, for the given ¢ function we use
the same procedure as for #..

Zf * M xmdr = fw*(—m £>¢df (113)

where dr is the element of volume dxdydz or 72 sin 6 drdfdé.

The definition of M, involved in equation (110) can now be justified
by applying it to a wave packet having a precisely defined position and
momentum as required by the classical mechanics. In the case of such a
packet one can readily prove that

xpu f‘p*( x-é;r—t ———)\Pd‘r—xp,,

Hence M, is approximately equal to &p,— .. As the classical values of
coordinates and momenta are identical with the mean values for the packet,
this shows that our definition reduces to the classical one in the realm of
validity of the older theory.

Sommerfeld* has proved the additional theorem that

M =rXgrad V=mean applied torque. (114)
This he calls the integral form of the angular momentum law for the wave
mechanics.

The possibility of assigning an exact value to M, and hence also to M,
or to M,, does not carry with it the possibility of assigning an exact value
to the vector angular momentum M, for simultaneous solutions of Eq. (110)
and the corresponding equations for M, and M, do not exist. On the other
hand, unique values for M?= M2+ M 2+ M2 are possible. The correspond-

ing operator is
ol 55) + () + () |
— G — g— —
4 y(‘)z dy ox 0z ay yax

Introducing spherical coordinates, applying the above operator to ¢, and
identifying the resulting expression with — M?%/, we obtain the differential
equation

4 Sommerfeld “Erginzungsband,” p. 290.
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h? 1 9 Y 1 oW
——[—_— ——(sin 0——)—}——-—— v—:l—Mz\P:O. (115)
4%l sin 6 90 a0 sin? @ d¢?

This is identical with the differential equation (63) whose solutions are the
tesseral spherical harmonics. Thus one of the differential equations obtained
on separating the variables in the two-body problem is identical with the
condition that the wave functions for the various energy levels in that pro-
blem shall have definite values of M? or of |M|.*" The characteristic values
of M? for the one-body problem or for the two-body problem are given by
the formula

2
M2=—1(+1) 1=0,1,2, - - - (116)
4qr?
first derived by the matrix mechanics.® The extension of this formula to
the problem of # particles presents no difficulty.

As Egs. (110) and (111) are also valid for the special solutions of the
two-body characteristic value problem of Sect. 2, 6 in which the variables
are separated, we see that these solutions have unique values of M, as well
as of M?% As previously noted, M, and M, cannot have unique values for
functions which make M, unique. Their mean values are zero for the special
solutions under consideration and the sum of the mean squares is

— R
M,2+M,,2=M2——Mz2=Z;[Z(H—1)—m2]. (117)
™

4. Tue ENERGY OPERATORS

The entire theory developed up to this point is based on the hypothesis
that all ¢ functions are linear combinations of functions of the form
u(t, g)e®/MEt Hence if any particular wave function is monochromatic
(i.e., has a unique energy value)

ho oy

— —__ —Fy. 118
2wi Ot v (118)

47 It is hardly necessary to note that if we start from the definition

M.= kgz[J’k(Pz)k—Zk(Py) %]

and introduce the coordinates of the center of gravity £, 5, ¢ together with the relative coor-
dinates x, ¥, z as in Sect 2, 6, the operator for M, splits into two parts, one of which is

h ( 0_.3
27 \"or "o

and gives the angular momentum of the center of gravity, while the other is formally identical
with the operator used in Eq. (110) for a single particle and gives the angular momentum of the
two bodies about their center of gravity. Applying the same procedure to the other components
of M we justify the direct application tothe two-body problem of the operators developed
above for a single particle.

48 Born, Heisenberg, and Jordan, Zeits. f. Physik 35, p. 557 (1925).
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The mean value of E for any normalized wave function is readily shown to be

- h 9
E= f¢*< — —)wdT. (119)
w 2w 01
Thus the operator (h/27:)3/9t bears the same relation to the numerical
values of E as — (h/2wi)d/9x bears to the numerical values of p,. [Classically
E and —tare canonically conjugate variables like p, and x].

There is another operator, however, associated with the energy and deriv-
able from the classical Hamiltonian function. In the case of a set of # parti-
cles moving in a conservative force field the expression for the energy in
terms of coordinates and momenta (classical Hamiltonian) is

3n Pk2
H= 3, ——+V(wy, -, o).
k=1 2Mk
If we replace the p;'s by the corresponding operators we obtain a new operator
which we will designate as H(xy, —9/dxx). Thus*®

a 3n h2 82
Hoap, — —)== > —— ——4V. 120
( * 3xk> g 8m2ur 0xx? (120)
If this operator is applied to ¥ and the resulting expression is equated

to —(h/2mwi)dy/dt one obtains

1 9% 8x2V 4rx 9
[ s L& S A —]¢=0. (121)
k=1 ME 6x;c2 h? hi 0t

This is the basic equation of the Schrédinger theory (36). Eq. (36) is there-
fore equivalent to a statement of the identity of the two operators for £ when
applied to physically permissible wave functions. In view of this relation
between the fundamental wave equation and the Hamiltonian function it is
customary to write the differential equation in the symbolic form

m-—2. (122)
271 Ot
The disclosure of the intimate relation between the Hamiltonian function

of classical theory and the operator I of Eq. (122) when Cartesian coordin-
ates are used immediately raises the question of the relation between these
expressions in other coordinates. This problem has been investigated by
Schrédinger® and by Podolsky® who find that given the Hamiltonian func-

4 V as an operator is interpreted to mean “multiply by the numerical value of the func-
tion V.”

50 E. Schrédinger, Ann. d. Physik (4) 79, pp. 747, 748 (1926).

8 B. Podolsky, Phys. Rev. 32, p. 812 (1928). Cf. also P. A. M. Dirac, Proc. Roy. Soc.
Al113, p. 621 (1927). Schrédinger’s method gives what Podolsky calls ¢, i.e. the ¢ function of
Egs. (18) and (36) with the physical interpretation “Yu,*dx; -+ + dxs,=probability of con-
figuration in the element dx; + - - dxs, of Cartesian coordinate space.” Dirac’s transforma-
tion theory introduces a different function, v, for the generalized coordinates g, * * + , g such
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tion in any system of coordinates one can deduce the corresponding operator
H without the intermediate step of reverting to a Cartesian system. The
operator H is frequently written as FH(g, 9/dq) suggesting that it can be
formed in any set of cordinates by the mere substitution of — (k/2mi)d/dq
for the component of momentum conjugate to gin the classical Hamiltonian.
The problem is not quite so direct and simple as that, however, since the
suggested procedure is ambiguous. Consider, for example, the kinetic energy
term p,%/2u of the classical Hamiltonian in spherical coordinates which goes

over into the operator
—h? 9 < 6)
—_— 72_
8m2ur? or o7

So long as p, is a number the factor p,? can be replaced by [1/f(r) |p.f(7)p.
with f(r) arbitrary, but when we convert p, into an operator we must use
the definite form r2p,72p,. Hence a rule is needed for choosing that par-
ticular way of writing the classical Hamiltonian which will yield the correct
operator when one makes the substitution p—(—h/2m:)d/dqs.

The converse step of deducing the classical Hamiltonian function H(g, )
from the wave equation in generalized coordinates involves no such difficulty.

Incidentally the possibility of deducing the wave equation in any set of
coordinates from H(q, ) and the above operator substitution suggests that
we define numerical values of the generalized component of momentum
conjugate to any coordinate ¢ as we defined the numerical values of M,
in Eq. (110), i.e. that we ascribe the value « to p), when y satisfies the differ-
ential equation

h 9
— o g, ) =t g, gan) (123)
2w Oqs

and fix the probability of various values of p; for a normalized ¥ function
by an analysis of the function into a linear combination of the solutions

¢=X(t7q1’ s, Qk—l,Qk+1, SR qan)e—wﬂ'i/h)q}cl’k'

5. CONSERVATION OF ENERGY AND MOMENTUM.

In the classical mechanics the law of the conservation of energy ascribes
to every conservative system a function of its coordinates and momenta
which is called its energy and which is constant in time as the motion pro-
gresses. In the wave mechanics we have in general no single definite energy,
but in general a distribution function giving the probability of various
possible energy values. By “conservation of energy” we may therefore imply
the constancy of this distribution function in time, or, what comes to the
same thing, the constancy of the mean values of E and its various powers.

that ygbo*dg1 -+ + dgsn is the probability that the configuration lies in the element
dgy + + - dgs. of the corresponding coordinate space and Podolsky gives a method of writing
out the Hamiltonian function such that the substitution of — (k/2:)3/dqx for pi yields directly
the wave equation for Y. ¥, is equal to ¥, multiplied by the square root of the Jacobean of the
transformation from the Cartesian coordinate system to the system gi, - * * , gsn.
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In deriving this law it will be sufficient to deal with the special case of
the linear oscillator. Eq. (87) shows that the most general physically ad-
missible solution of the wave equation is a linear combination of monochro-
matic solutions. The relative probabilities of the different discrete energy
values and the different elementary intervals of the continuous spectrum are
given by the squares of the absolute values of the coefficients ¢, and ¢(E)
respectively [Cf. Eq. (85)]. As these coefficients are constants the theorem
is proved.

Defining the laws of the conservation of linear and angular momentum
in the same way, we note that a sufficient condition for the conservation of
any mechanical quantity « assocated with an operator O, is that { shall be
expansible into a linear combination of orthogonal functions each of which
is monochromatic and also a characteristic solution of the equation

Oy =ay. (124)

This means that every non-degenerate solution of the wave equation
(37) must also be a solution of Eq. (124) In the case of an energy level
exhibiting 7-fold degeneracy there exist an infinite number of sets of » mutual-
ly orthogonal solutions of Eq. (37) for the given energy. Each of these
sets is derivable from any other by a suitable change of axes or by taking
suitable linear combinations of the other solutions. In this case the conserva-
tion law holds for « if there exists some one set of 7 orthogonal solutions of
Eq. (37) each member of which is also a solution of Eq. (124). In the case
of a free particle the plane waves of Eq. (40) have the required character-
istics for the conservation of linear momentum. In the case of the two-body
problem referred to its center of gravity as origin, the solutions obtained in
Sect. 2, 6 by separation of the variables in spherical coordinates have the
required characteristics to prove the conservation of the z component of
angular momentum Evidently a rotation of axes will suffice to give new
solutions exhibiting the conservation of M, and M,.

Sommerfeld® defines what he calls the differential form of the “surface
law” or law of the conservation of angular momentum by the equation

(H—E)My=0. ’ (125)
in which M is the operator ¢M,+jM,+kM, This equation is derivable

from Eq. (37) if the operators H and M commute, i.e., if MHY=HMYy. It
shows that if ¥ is a solution of Eq. (37), My is also a solution. Then if Eq.

(37) has the » mutually orthogonal solutions Y1, ¥s, - - - ¥»
My,= chklﬁk- (126)
ke=1

Sommerfeld’s form of the conservation law reduces to that given above
if the operators M., M, M,, or M? are substituted for the vector operator
M. In each of these cases the required set of simultaneous solutions of Eq.

52 Sommerfeld “Erginzungsband,” p. 295.
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(37) and Eq. (124) are derivable from the relation (126). In the case of
the vector operator M, however, the equation (124) has no solutions except
the trivial one where « is zero. Hence the above statement of the conserva-
tion law in terms of the distribution function applies to M only in so far as
it is true for each of the components of M taken separately.

The constancy in time of the mean value of the quantity a may be proved
if the operator O, commutes with H(qx, —3/9qs).

SECTION 4.* PERTURBATION THEORY

1. THE CHARACTERISTIC VALUE PROBLEM AND PERTURBATIONS
WHICH DO NOT INVOLVE THE TIME.

In the quantum mechanics as in the Bohr theory, perturbation methods
are of fundamental importance due to the fact that so few problems can be
rigorously solved by direct attack. The fundamental idea of these methods
1s that by starting from an approximate solution of the problem in hand one
may compute by “hammer and tongs” a series of corrections designed to im-
prove the degree of approximation. The procedure is easy or difficult accord-
ing to one’s success in choosing a happy starting point. The successive ap-
proximations may not converge on an exact solution of the problem in hand,
but usually the first few steps do yield an appreciable improvement on the
initial wave functions.

Consider first the solution of a typical Schrodinger characteristic value
problem by the perturbation method. The best type of initial approximation
consists in a complete® orthogonal function system in which one may expand
any solution of the actual problem. Such a system may be obtained by the
rigorous solution of a simplified related characteristic value problem® whose
equation we write in the symbolic form

(Ho— E)u=0. (127)

We call this the unperturbed equation and designate the corresponding un-
perturbed characteristic functions and characteristic values by #;° and E,°
respectively. Let the differential equation to be solved (the perturbed dif-
ferential equation) be of the form

(H— Eyu= (Hy+H,— E)u=0. (128)

A formal solution of this equation can be obtained by the expansion of %
in terms of the u,"s as follows:

w= Ecnun"—}—f c¢(E)ug’E. (129)

€

Here ug® is a wave function associated with the continuous spectrum of Eq. (127). Dueto
degeneracy in the wave functions of the continuous spectrum the integrand of the above integral
will usually be a sum as in Eq. (90) but to avoid undue complication we use the above simplified

* Mostly machinery—a necessary evil!
B Cf. Note 1, p. 187.
84 Cf, Section 2.
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form of expansion. In fact we shall omit the integral entirely in carrying through the detailed
application of Eq. (129) to the solution of Eq. (128). This is permissible in view of the fact that
in some cases Eqs. (127) and (128) have no continuous spectrum while in other cases a good
approximation to the lower characteristic forms of # can be obtained without considering the
continuous spectrum.

Let the function H#,° have the corresponding expansion
Hu,® = H(n,m)u,® + f H(n,E) ug"dE. (130)

The two-dimensional array of coefficients H (n, m) forms a matrix which we
designate by {H(n, m) } The elements of this matrix are given by the for-
mula

H(n,m)= fum”*Hu,,“dr. (131)
{ H(n, m)} has what is called the Hermitian character, i.e., the symmetrical
elements H(m, n) and H(n, m) are conjugate complex quantities. The proof
of this statement will be given in §3 of this section. Since the operator
H(g, —9/dq is real, it follows that

H(m,n)=H*(n,m)= f wnHub*dr . (132)

0

A matrix is a function of two independent variables (sometimes two sets of independent
variables) which take on only discrete values. The coefficients H(n,E) appearing in Eq. (130)
and the additional coefficients H(E’,m), H(E',E) obtained from the expansion of Hug/° may
be combined with the H(n,m)’s to form a single function of two sets of independent variables,
which take on discrete values in certain regions and continuous ones in others. Each set must
of course be just sufficient to pick out one member of the complete orthogonal set of wave func-
tions under consideration. Consider, for example, the important case where H,is the Hamilton-
ian operator for the central force field problem of Eq. (60). The arbitrary ordinal number
n used above can then be replaced by the three variables M., M2, E, or, using the quantum
numbers for the first two variables, by m, I, E. The function H(n,m) then merges with H(n,E),
H(E',m) and H(E',E) above to form a single function H(m’, V', E'; m'’, "', E”") in which m’,
I', m", 1" take on only discrete values while E’ and E” take on either real or discrete values
according to the region under consideration. Such functions form the stock in trade of Dirac’s
g-number theory. Due to the manner in which they are used and to their symmetrical Hermit-
ian character expressed by the relation

H*(m//’ l//’E//;ml’ ZI,EI) =H<ml’l/’El; m/l’ l/I’EII),
such functions may be regarded as generalized matrices.

Introducing the expansion (129) into the wave equation (128) and neg-
lecting'_the continuous spectrum, we have

> ea(Hu— Eu,®) =0.

Expanding Hu, in turn by Eq. (130), and neglecting the continuous spectrum
again we obtain

%:cn[ %:H(n,m)umo—Eun":l =0.
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In this equation the coefficient of each individual function #;° must vanish.
To prove this we multiply the equation by #;°* and integrate over all coordi-
nate space. This yields the set of equations

ch[H(n,k)—Ean,k];O. (134)

Written out in full for the successive values 1, 2, 3, - - - of k these equations

are
a[H(1,1) = E]+eH(2, 1) +e:H(3,1)+

aH(1,2)+c[H(2,2)—E]+¢H(3,2)+ - - -
aH(1,3)+cH(2,3)+c;[H(3,3)—E]+ - - -

It

0
0 (135)
0

————

J

The solution of this infinite set of equations with its infinite set of unknowns3®
gives the values of the ¢,’s and in case there is no continuous spectrum fully
determines the character of the perturbed wave functions. If there is a con-
tinuous spectrum it may still give a good approximate description of the
wave functions for the lower energy levels. A similar set of equations is
derived in the matrix theory of Heisenberg, Born, and Jordan.5¢

Such a set of equations forms an obvious extrapolation of the familiar
case of a set of » homogeneous linear equations in » unknowns whose theory
is so familiar.” According to this theory a solution of the equations differ-
ent from the trivial one where all the ¢’s vanish exists only if the determinant
of the coefficients vanishes, i.e., if

| H(n,k)— Es,| =0. (136)

If we limit the expansion of Eq.(129) to the first » characteristic functions
this determinant is a polynomial of degree r in £. Hence Eq. (136) has
roots.58 The limiting values of these roots as 7 approaches infinity are the

8 If there is no continuous spectrum the number of discrete characteristic functions of
Eq. (127) is infinite. Otherwise it may be either finite or infinite.

5 A set of equations of the form (134) holds for each characteristic function of Eq. (128).
The totality of these equations is equivalent to the single matrix equation (20) given by Born,
Heisenberg and Jordan in Zeits. f. Physik 35, p. 557 (1926).

It will be observed that the use of the expansion (129) and replacement of the differential
equation (128) by the set of equations (134, 5) does not depend on the assumption that the
#%'s are solutions of the approximate differential equation (127). That assumption is of im-
portance, however, for the practical problem of solving Egs. (134) by successive approximations.

57 The solution of these equations is equivalent to finding the principal axis transformation
for the infinite quadratic form Q=Y. cac»*H(n,m) as explained in Sect. 4, 2 below. The theory

of this transformation for infinite forms has been carried through for an important class of cases
(limited forms) by Hilbert [Nachr. d. K. Ges. d. W. zu Géttingen, Math. Phys. KI. pp. 154
and 439 (1906)] and Hellinger [Crelle’s Journal 136, p. 210 (1909)]. It shows that in some
cases the transformation cannot be carried through without the use of the continuous spectrum.

58 These roots are all real due to the Hermitian character of the matrix H(zn,k) Cf. Made-
lung, “Math. Hilfsmittel des Physikers” First Ed. p. 6. An equation of the form of (136)
is called a “secular” equation as a consequence of the important rdle of this type of equation
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energy levels of Eq. (128) if the unperturbed equation (127) has no con-
tinuous spectrum. In other cases they may give good approximations to the
energy levels in question. Corresponding to each simple root Ej there is a
set of ¢’s, say ¢, uniquely determined except for an arbitrary common factor.
If the perturbed wave function #y is to be normalized like the unperturbed
functions, the common factor is fixed by the resulting condition

D ocra2=1. (137)

Any two sets of ¢’s, say ¢, 1, belonging to different roots of Eq. (136) will
automatically satisfy the orthogonality condition

D Cintin = fukuld7=0. (138)

If two or more roots are equal, the c;,'s are not uniquely determined and
we have a case of degeneracy in the wave functions similar to that of Section
2, 6. Different sets of ¢’s associated with the same root need not be ortho-
gonal in the sense of Eq. (138) but it may be proved that if # roots fall to-
gether one can (in an infinite number of ways) choose # mutually orthogonal
sets of ¢’s such that any other set is necessarily a linear combination of them.
In other words, in the case of an #-tuple root there exist exactly » linearly
independent corresponding solutions of the wave equation.

In practice the solution of the secular equation (136) and the evaluation
of the ¢'s is impracticable except by a method of successive approximations
such as that described below.

The matrix of the Hamiltonian of the unperturbed equation in terms
of an orthogonal system of its own solutions, i.e.,

{Ho(n,m)} = { fumo*ngn“dr},

0

is diagonal. In other words, all elements vanish except those for which n =m.
(As H,is any Hamiltonian operator which we happen to choose as the starting
point of our perturbation theory this means that the matrix of any Hamilton-
ian is diagonal when referred to an orthogonal system of its own characteristic
functions.) Since Hou,'=E,%,% this matrix has the explicit form

{Ho(%,m)} = {Enoanm} .
H(nym)=En06nm+H1(ﬂ,m)

Consequently

and we may express the system of equations (134) in the modified form
D i [Hi(n,m) — (Ey— E,0pm| =0. m=1,2,3, - - (139)

n
which is particularly convenient for solution by successive approximations.

in the astronomical theory of secular perturbations. The roots are called the characteristic
values of the matrix H(n,k). If the matrix is brought to diagonal form by a suitable trans-
formation these characteristic values will form its diagonal terms.
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As the next step in the development of the perturbation theory we
write the Hamiltonian of the perturbed equation in the form

H=Ho+Nn (140)

where N\ is a parameter which we arbitrarily introduce into the problem if
necessary and which may eventually be given the value unity. The wave
functions and energy values will then depend upon A and by allowing this
parameter to approach zero we can carry the perturbed problem over into
the unperturbed problem. It is now plausible to assume that the energy
values and the coefficients ¢z, which determine the wave functions are ex-
pansible in power series in A.

Eszk(0)+)\Ek(1)+)\2Ek(2)+ e
Ckn=ckn(o)+)\Ckn(1)+)\zckn(2>+ R

These expansions need not be valid but we proceed on the hopeful assump-
tion that they are permissible.? '

The first step in the evaluation of the coefficients in the above expansions
is to note that the E,(®’s must be the energy levels of the unperturbed system.
If the perturbed energy levels are numbered in the same way as the unper-
turbed, we may identify E;© with E.;°% Also the limiting value of the
perturbed wave function in the case where becomes equal to zero, i.e.,
D wCrn®u, 9 must be a solution of the unperturbed equation for the characteris-
tic value E;° If E;°is non-degenerate, as we shall assume for the present,
the above expression has the unique value #,° and we conclude that ¢z, = 6,.

Using the values thus obtained for £, and ¢, %, inserting the series (141)
into Egs. (139), replacing H;(n,m) by Nu(n,m), and equating the coefficients
of the first and second powers of N to zero, one obtains

(141)

NE, O =Nu(k, k) =Hy(k, F) (142)
Hi(k,n)
P =0; NepnV=————, nx*k; (143)
E)—E,°
Hi(k,n)H *(k,n)

NE®D =X Y 00 Ohy(n, k)= (144)

n E/co_EnO
These equations carry the approximation far enough for most purposes.

5 As an example of an instance in which the above expansions are not rigorously valid
the case of the Stark effect as worked out by Schrodinger may be mentioned. If one assumes
a uniform electric field extending to infinity in all directions the perturbing potential is infinite
at infinite points in the direction of the negative electric force and no monochromatic solutions
of the perturbed problem exist. Nevertheless the solutions obtained by Schrodinger using
the above series do agree with the experimental observations Evidently the mathematical
difficulty here is introduced by an excessive idealization of the experimental conditions for
observing the Stark effect.

The form of perturbation theory developed in this article is due to Schridinger, though
he does not separate the two steps, expansion in terms of the unperturbed wave functions
and development in terms of the parameter, as we do. Cf. E. Schrédinger, Ann. d. Physik
(4) 80, p. 437, (1926). The conditions for the convergence of the series (141) have been worked
out by A. H. Wilson. Cf. Wilson's papers, Proc. Roy. Soc. A122, p. 589 and A124, p. 176 (1929).
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Eq. (142) states that in first approximation the change in the energy
due to the perturbing Hamiltonian operator H; is equal to the “mean value
of H;” averaged over the unperturbed function #,° This is the wave mechan-
ical equivalent of a familiar corresponding theorem of the classical mec-
hanics.t® Egs. (143) and (144) may be interpreted as the description of an
interaction between the unperturbed wave functions and the unperturbed
energy levels produced by the operator H;. This interaction is small for
widely separated energy levels both on account of the energy difference
E°—E,° in the denominators and on account of the fact that the matrix
elements H;(k,n) for widely separated wave functions are normally quite
small. This result justifies our previous statement that the lower energy
levels of the discrete spectrum will be very slightly affected by interaction
with the continuous spectrum.

The second order energy correction A2E;® is wholly due to interaction
between the primary level E;° under consideration and the other energy
levels. The contribution of any other level E,° is positive if the latter lies
lower than E;° and vice versa. Moreover, the perturbing effect of £,° on
E;Y is exactly equal and opposite to that of £,° on E,°. Hence one may say
that the perturbative Hamiltonian introduces a set of repulsive forces be-
tween the different energy levels.

Consider next the case where the energy level E,° 1s degenerate. Let the

r+1 energy levels E;° Ej.° - - - Epy,® associated with the wave functions
ui®, - - - ury,® fall together. Any perturbed wave function w#, such that
A0
must reduce to the form
k+r
@ =D Chn O,
n=k

when N becomes equal to zero. Due to the degeneracy, however, the above
sum does not reduce to a single term. The values of the ¢x,(®'s and of the first
order correction to the energy may be deduced from Egs. (139) if the coeffi-
cients of the first power terms in N are set equal to zero. By this means one
obtains the r+1 equations

0) 0) €0)
¢k il bk, k) — Ex® J4cp, wprhi(b b+ 1)+ - - cpprkn(k k+7) =0

oI (k41, B+ s (k1 kA1) — B

ook k) =0
(145)

o) ©
(b7, )+ cppshn(kr, k1)
©
ook r B ) — By 0] =0.
These equations admit of a solution different from zero only in case the

determinant of the coefficients vanishes. The corresponding secular equation
for E;® has 741 real roots. If they are all different, the primary energy

60 Cf, M. Born, “Vorlesungen iiber Atommechanik,” Springer, Berlin, 1925, p. 287.
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level E,° is split into 71 sublevels by the perturbing operator I, and the
initial degeneracy is completely removed. In this case the ¢(’s are uniquely
determined by Eqgs. (145) and the normalization condition. The %(®’s form
a second complete orthogonal set of solutions of the unperturbed differential
equation.®!

As an opposite extreme to the case where all the roots of the secular equa-
tion are different comes the case where all are equal due to the fact that the
diagonal elements of the (#+1)-rowed matrix {hl(k,n)} are all equal while
the off-diagonal elements vanish. The initial degeneracy remains unaffected
by the perturbation and the ¢(®’s from ¢, 1® to cx,1+~? are arbitary except for
the normalization condition. It is then convenient to give one of them the
value unity while equating the others to zero.

Intermediate cases in which the degeneracy is partly removed by the
perturbation are of practical importance but need not receive detailed con-
sideration here. Neither shall we take up the computation of the first order
corrections to the characteristic functions for the case where E.° is de-
generate. For a discussion of this question, of the relation of the continuous
spectrum to the perturbation theory, and of many other related questions
the reader is referred to the original papers of Schrédinger.5!®

2. THE VARIATION METHOD AND ITS APPLICATION TO THE
PERTURBATION PROBLEM.

A very different and instructive derivation of the fundamental equations
(134) can be worked out from a variation principle equivalent to the Schrsd-
inger wave equation and boundary condition. In its more general form this
variational principle constitutes a wave-mechanical equivalent of Hamilton's
principle in the classical dynamics. In a less general form it gives a valuable
formulation of the characteristic value problem of Egs. (15) and (37). The
possibility of reducing the boundary value problems of the classical physics
to calculus of variations form has long been recognized by mathematicians
and has been of fundamental importance in the development of the general
theory of these characteristic value problems. In the wave mechanics the
variational method is as old as the differential equation method, for Schrsd-
inger’s first contribution to the subject begins with a deduction of the wave
equation from an assumed variational principle.®?

To set up the variational equivalent of the wave equation for a single
particle in the general form (18) one may proceed as follows.®® Let the wave
equation be reduced to the simple form Ly =0 by the introduction of the
operator o9 B2 )

L=H—— —=——=—V4+V(%,y,2) ——— — 146
271 ¢ 812y (,9,2) 2mi Gt} (146)

% The problem of Eqs. (145) is identical with that of the principal axis transformation
of the quadratic form having the matrix {hl(k, n)} as explained in Sect. 4, 2. The orthogona-
lity of the u;(9’s is a simple corollary on the theory of such transformations.

8ta E. Schrodinger, Ann. d. Physik (4) 80, 437 (1926); 81, 109 (1926); 83, 556 (1927).

%2 E. Schrodinger, Ann. d. Physik (4) 79, 361 (1926).

8 Our discussion of this subject is a modification of that given by Sommerfeld in his
“Erginzungsband,” Kap. I 9d.
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andlet M denote the conjugate operator H+ (h/27:)d/3t. By Green’s theorem
applied to any pair of suitably continuous functions u(x,v,2), v(x,y,2) de-
fined throughout a volume G enclosed by a surface S

h* (0w dv Au 0v Odu v
fffvl,ud7=fff|: { ——t— }—l—m)V
@ 8r?uldx dx dy dy 9z 9z
o v——] T— ff v—dS (147)
271 s
h? (0w dv Ou dv Ou v
fffqudr— fffl: { —_t— —+— }—i—qu
dx dx dy dy 0z 9z

+—-— u——:] ffu———dS 148
271 9t 8wy S (148)
Subtraction yields

fffG [vLu—uMo]|dr= ~2 :ﬁfffm)dT
87r,uff <u§—?-—va—:>dS. (149)

Let v be the complex conjugate of % and let the region G be a sphere whose
radius approaches infinity. If [[[ uu*dr exists, the surface integral will
vanish in the limit. Mwu* is the complex conjugate of Lz and must vanish
if the latter quantity does. Hence Eq. (149) may be used to prove the con-
stancy of [[[,uu*dr for functions which are quadratically integrable and
satisfy the differential equation (18).%

Consider now the integral K defined by

K= f’h dtfffg\p*b[/dxdydz. (150)
to

0K = f f fG ’T[a¢*L¢+¢*L(5¢)]de¢. (151)

Its first variation is

where T denotes the time interval £, <t <t;. Using the theorem of Eq. (149)
with # and v set equal to & and ¢* respectively, we obtain

oK = f f f fGT[6¢*L¢+6\//M¢*]drdt
e f f f (W*ow) o, — (W*o) ldr
87r 1 fffs T [Bwa_‘//j_‘p* (W/)] asat. (152

64 Cf, foot-note on p. 170; also p. 193.
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Then if 6K vanishes for all variations in & which reduce the last two integrals
of the above equation to zero, we may conclude that Y satisfies the wave
equation (18) [Ly'=0] in the region G, T.

To prove the above statement it is convenient to separate ¥ and Ly
into real and imaginary parts as follows

‘/’=1//1+i¢2, kb*:kbl—’i%,
Ly =¢1+ i, My* = ¢1—i¢s.

Then Eq. (152) reduces to

5K=2ffffw (691140 acbs |drdi.

oy, and &Ys are independent and arbitrary except at the boundaries of the
space-time region G, 7. Hence, if 6K =0, ¢1, ¢, and ¢;1+1i¢p, must vanish.
This proves the theorem.

Now let the region G take the form of a sphere whose radius approaches
infinity. Let K approach a finite limit K. If 6K =0 for arbitrary variations
in ¥ which vanish at infinity and for which

ffﬁ[(ww»;(.p*aw)to]dT:o (154)

we may conclude that Eq. (18) holds over all space and through the time in-
terval 7. This theorem (I) is a wave-mechanical analogue of Hamilton’s
principle.

By means of Eq. (147) we may give the principle a slightly different
form (II) in which K is replaced by the integral K’ defined by

4 h? Toy* oy oy* oy oyp*
Kw/:f dtfff {___[i _‘l/_}__l’,/_ _l//+_‘!/_ G_lk:l
t w (872l dx dx dy 0y 9z 9z
koY
HYYV ——y* }df. (155)
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A restricted form of the principle (III) is obtained if one seeks to fulfill
the variation principle (I) by means of a monochromatic function

= ue2iEt/h

Then K, can be replaced by

J= fffwu*(H—-E)u dxdydz (156)

where H is the Hamiltonian operator. The requirement that 8J vanish for
all variations in # which vanish at infinity and for which 6E =0 is equiva-
lent to the requirement that « satisfy the wave equation (15) or that

Hu=Eu. (157)
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The variational principle (III) may be written

6J=6Q—E5fu*udr=0 (158)

0

where

Q= fu*Hud'r. (159)

If E is fixed in the proper manner, Eq. (158) is the same as the pair of
equations
Q=0 ; 6N=5fu*udr=0. (160)

From Egs. (156) and (157) it is clear that the desired characteristic value of
E is given by

E=[Q/N]wn; N=fu*udr. (161)

if the subscript m be used to denote the “extremalized” value of the bracketed
ratio. This last form of the variation principle (as stated in Egs. (160) and
(161)) we call (IV). It presupposes the existence of the integrals Q and N*,
and is therefore restricted to energy levels belonging to the discrete spec-
trum, but is of great importance in the approximate theoretical determina-
tion of these levels and of their wave functions.

The variational principles (III) and (IV) can be modified like (I) through
the substitution of the quantity A= (h%/87%) (grad «* grad u)+u*uV for
u*Hu in the integrands of the integrals to be varied. It is in these last forms
that the variational principles are stated by Schrédinger®® and Sommerfeld
(L.c.). The extension of these principles to the n-body problem is obvious.

In the classical mechanics one of the most important uses of the variational
principles is in deriving the differential equations of motion in generalized
coordinates. To change from one coordinate system to another one has only
to transform the integrand of the integral to be varied from the old system
to the new and then write down Euler’s equations for the minimization of
the integral using the transformed integrand. The same use is made of the
variational principles in the wave mechanics.

After this rather lengthy introduction, we turn to the application of
the variational method in the form (III) to the perturbation problem. To
this end we use the Ritz direct method of attack on the variational prob-
lem.8” Let :° u2% - - - #,% - - - denote as before a complete normalized or-
thogonal system of discrete functions in terms of which we can expand any
suitably continuous quadratically integrable comparison function u to be
considered in connection with our vael;iational problem. Let the expansion be

= Y cotty” (162)
n=1

% E. Schrédinger, l.c. and Ann. d. Physik 82, 265 (1927). Cf. also W. Gordon, Zeits. f.
Physik 40, 117 (1926).
% E. Schrodinger, Ann. d. Physik (4) 79,734 (1926); V.Fock, Zeits. f. Physik 38,242 (1926).
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the ¢,’s being arbitrary except for the fact that the sum of their squares must
converge to a definite limit. Let Hu,° have the expansion

Hu,'= > H(n,mu,'. (163)

m=1

Then term by term integration of J converts it into the infinite quadratic

form.
J=2 Dcutn*[H(n,m)—Edun]. (164)

In order to minimize J we differentiate with respect to the real and imaginary
parts of ¢, and equate the derivatives to zero. By adding the two equations
for each value of % one obtains the infinite set of equations (134, 5).68

The coefficients ¢i, ¢z, * - * s, * + » may be regarded as an infinite set of complex coor-
dinates which determine the function #. In the special case that these coefficients are real they
may be interpreted as the orthogonal components of a vector in a space of infinitely many
dimensions (function space).®® In the more general case where the ¢’s are complex it is still
helpful to use a geometrical language based on the above-mentioned possibility to describe
the characteristic value problem. As indicated in Eq. (138) the orthogonality of two functions
U, V with components a. and b,, respectively, is equivalent to the statement that

Zanbn* =0.

As this is a generalization of the formula for the orthogonality of two vectors in three dimen-
sions we may say that when two functions are orthogonal in the sense of Eq. (77) the corre-
sponding vectors in function space are mutually perpendicular. Normalized functionsare
correlated with points on the unit hypersphere

Nlca)= D cncn*=1.

If we express the integral Q= f.u*Hu dr in terms of the components of « it becomes a
homogeneous quadratic form and the equation

Qlew) =2 2cnon*H(n,m)=E

represents an infinite family of similar “ellipsoids” in function space. In extremalizing J and
Q we determine the directions in which the unit hypersphere is tangent to one of these ellip-
soids, i.e., the principal axes of the family. The lengths of these principal axes for any fixed
ellipsoid are inversely proportional to the square roots of the characteristic values E;, Es,....
Hence the lowest characteristic value E; is the absolute minimum of Q for any point on the unit
hypersphere or the absolute minimum of Q/N. The other values are minima with respect to
displacements in certain directions and maxima with respect to others. It is possible, however,
to set up a restricted variation problem for which any particular characteristic value, say
E., is an absolute minimum. To do so we must find all linearly independent characteristic
functions #,, #s, + + * %y, for the energy levels below E,. Then E; is the absolute minimum
of Q/N for comparison functions which are orthogonal to uy, #s, * * * ;1.7

The process of minimizing or extremalizing J and Q and the location of a complete
normalized orthogonal set of solutions u#, of Eq. (128) is the equivalent of performing the

87 W, Ritz, J. reine angew. Math. 135, 1 (1909); Courant-Hilbert, p. 157.

6 For a more rigorous discussion with due emphasis on the dangers of the procedure see
Courant-Hilbert, l.c.

69 Cf, Courant-Hilbert, pp. 38, 39, 40.

70 Cf, Courant-Hilbert, Kap. VI, § 1, 2.
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principal axis transformation upon the quadratic forms J(c.) and Q(¢+).” In the expansion
U= ;Enmumo

for a normalized orthogonal set of #.’s the coefficients £,, must constitute a normalized orthog-
onal solution of Egs. (134). If we describe the comparison function # of Eq. (162) in terms
of the u,'s instead of the #,"s the expansion becomes

U= Zdnu"

where
en= 2_Emndn. (165)

This equation describes an orthogonal linear transformation of coordinates in function space.
If J is expressed in terms of the d's by means of this transformation it takes the normal form

J= Y dudu*(En—E). (166)

By analogy with the analytic geometry of the conic sections we call this the “principal axis
‘transformation”. Such a geometrical interpretation is of course equivalent to saying that
the matrices {H(n,m)} and {H(n,m)—Eanm} of Q and J are reduced to diagonal form when
referred to the correct characteristic functions of the problem in hand.

It seems probable that the variational method of deriving the perturba-
tional equations (134) can be extended to cases where continuous as well as
discontinuous spectra are involved but so far as the writer is aware the details
have not been worked out.

The variation principle suggests an important method of attack on the
problem of securing an approximate theoretical determination of the lower
energy levels of a given system and their characteristic functions which does
not involve the conventional expansion in powers of N\. In the case of the
lowest energy level, for example, let an expression u#(q) be given, perhaps
by the solution of one or more related problems, which constitutes a reason-
able first approximation to the wave function desired. #(g) can be generalized
by the insertion of one or more parameters a;, as, - - - ar in order to give
u(g, a1, * - + ;) maximum flexibility consistent with reasonable mathematical
simplicity. It is then plausible to suppose that by a proper choice of the param-
etersay, - - - o, we shall obtain a much better approximation than the origi-
nal #(g). To get the best values of the o's and also an approximate energy
value one may insert #(q, ) into Eq. (159) and determine Q/N as a function
of thea’s. Minimization with respect to these parameters fixes the best values
of the o’s and at the same time locates the best energy values obtainable
by this method. It is, of course, impossible to predict in advance the success
of such a procedure, but the computed energy is sure to give an upper
limit to the correct value (Cf. p. 81) and comparison with experimental
data usually permits an estimation of the error after the completion of the
calculation. In practice the uncertainty of this method is usually shared by
the N-series procedure owing to the excessive labor involved in working out
the higher terms in the series.

The method just described can be applied to a few of the upper energy
levels in case the wave functions have suitable symmetry characteristics.

7 Cf. Madelung, “Math. Hilfsmittel” pp. 2, 3; Riemann-Weber I, Kap. 2, 2; Courant-
Hilbert, Kap. I, § 3.
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Thus if the lowest wave function is known to have a certain type of sym-
metry it may be po sible to insure the orthogonality of this lowest function
and a flexible comparison function u(q, @) by giving the latter a different
type of symmetry. Then in accordance with the theory of p. 81 minimization
of Q(a)/N(c) yields an approximate energy value and wave function for
the lowest of the energy levels having the corresponding type of symmetry.”

A quite distinct method of successive approximations has been de-
veloped by Brillouin who expands log ¢ as a power series in 2. The first
approximation to the energy levels is then given by the Bohr theory with
half-integral quantum numbe.s. Cf. Sect. 2, 4 and the references in foot-
note 29, p. 182.

3. PERTURBATIONS INVOLVING THE TIME

The problem of perturbations involving the time has been treated by
Schrédinger,” Dirac,” Born,”™ and Slater.”" It is of fundamental importance
for the discussion of the absorption, dispersion, and emission of radiation
by matter—a problem to be considered in Section S.

The most general form of wave equation derived up to this point is
Eq. (38) in which V denotes a function of the coordinates only. We assume
the possibility of modifying this equation, however, to include an inter-
action between the atom and a variable external electromagnetic field.
Anticipating a result to be justified in the next section we write the modified
equation in the symbolic form

<H h a> —<H—|—I—I h a>\/x—0 (167)
omi o)V \ ot 5 )y =

Here H, represents the unperturbed Hamiltonian operator of Eq. (120)
or an equivalent in generalized coordinates. H; is a perturbing operator
which in the simplest case is merely a potential Vi, depending on ¢ as well
as on the coordinates.

Following Born (l.c.) we assume that I; vanishes outside the time in-
terval 0<t(<T. For negative values of ¢ any permissible wave function
must then reduce to the form

Y= chune2ﬂiEnt/h+f c(E)uger Bt E (168)

€

72 The first application of the variation method to the characteristic value problem was
the computation of the energy of normal He and normal Lit by Kellner (Zeits. f. Physik 44,
91 and 110 (1927). The most conspicuous success is that attained by Hylleraas in his recent
recomputation of the energy of normal He (Zeits. f. Physik 54, 347 (1929)). The well-known
computation of the energy of normal H, by Heitler and London, although carried through
along lines closely paralleling the usual \-series procedure for degenerate systems, is perhaps
best justified as an example of the variation method. An excellent example of the application
of the method to an excited state is contained in the paper on the B state of the H; molecule
by Zener and Guillemin (Phys. Rev.—in press).

" E. Schrédinger, Ann. d. Physik (4) 81, 109 (1926); 83, 956 (1927).

7 P. A. M. Dirac, Proc. Roy. Soc. A112, 661 (1926).

75 M. Born, Zeits. f. Physk 40, 109 (1926).

% J. C. Slater, Proc. Nat. Acad. Sci. 13, 7 and 104 (1927).
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where u, and wup are characteristic functions of the unperturbed problem
(Eq. (127) ) with the characteristic values E, and E respectively. (We
drop the superscript “0” for the unperturbed wave functions used in Sect 4, 1
as no other characteristic functions appear in our present discussion). In
case the energy levels E, are degenerate, we assume the u,’s form a complete
normalized orthogonal set of characteristic functions.

As the expansion (168) is valid for any continuous function of the coor-
dinates which behaves properly at infinity, it will hold for all values of ¢
if the ¢’s are made suitable functions of the time. As in the preceding articles
we give formulas for the ¢'s only in the idealized case where there is no con-
tinuous spectrum. The general case is discussed by Schrodinger. (l.c.).

Replacing H, by NF{q, (1/27i)d/dq, t} in accordance with Born’s nota-
tion and following the procedure of Sect. 4, 1 we find

Hu,= D Hm,m)tn=F, . ,A+N D Fp()thr. (169)
with " "

Fom(t) = fum*Fundr

£

Introducing the expansions (168) and (169) into Eq. (167) one obtains the
following infinite set of homogeneous differential equations for the ¢’s

?—cn=)\ > e i (£) 2T En—ED UL =1 D 3 (170)
™ m

These relations take the place of Egs. (134), (139) of Sect. 4, 1. For negative
values of £ the right hand members vanish as they should. The corresponding
arbitrary constant initial values of the ¢’s we indicate by the symbols ¢,°.

In order to retain our fundamental hypothesis regarding the physical interpretation of
Yy* it is necessary that any generalization of the wave equation such as Eq. (167) shall conform

to the theorem of foot-note 11, p. 170 (3/d¢/ ¢ *dr=0). In view of the discussion on p. 207 it
follows that the basic operator H must satisfy the relation

f [W*Hy —pH*y*)dr=0. 171)

If this important restriction is obeyed, we can reverse an argument due to Dirac (l.c.) to prove
that the matrices {H(n,m)} and { Fo,(f)} are Hermitian. Then by hypothesis

ad a 172
Py f ‘”‘”d’:a?( chcn*>= 2 (e*inFin*cn) =0. (172)
By the aid of Eq. (170) we can throw the above equation into the form
21;1)\% Z [Cn*cmpmn(t)e27ri(Em—E'n)¢/h _ cnc,,,*FW,n*(t)e””(En‘Em)”h]
. (173)

2wiN
=_1r__zcn*5m [an(t) —an*(t) ]ezﬂ(Em—En)t/h=O .
Since this quadratic form vanishes for arbitrary values of all the variables (subject only to
the normalization condition) it follows that all the coefficients must vanish or that

Fon(t) =Fun*(?) . (176)

This proves the theorem for {an(t)}. As {H(n,m)} = {E,,am+>\an} it is true also for
{H(n,m)}.
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The approximate solutions of Egs. (170) given by other authors are con-
tained in the following complete power series expansion due to Born (l.c.).

en= 2 nfmn(l). (177)

Here :
Frn(®) = 22 frn P (DN (178)

with "

2wt
SO === | LSO )
I

0

(179)
Fmn @ (8) = .

For values of ¢ greater than T (i.e., after the perturbation is over) Eq. (177)

becomes
en= D cmfmn(T). (180)

The effect of the perturbation is thus expressible as a linear transforma-
tion of the ¢’s with coefficients depending on the time. This transformation
is orthogonal, for by Eq. (172)

D (Cnbn®—0a2a"%) = D culc1* [( ;fmnfzm*) - 6mk:| =0. (181)

n m,k

As the above statement is true for all values of the ¢’s, we conclude that

menfkn*= menfnk=6mk- (182)

Born bases his physical interpretation of these results on the postulate
that an atomic system cannot occupy two energy levels at once. On this view
the wave functions are to be used as the basis of a statistical mechanics deal-
ing with ensembles of identical independent systems like the classical
statistical mechanics of Gibbs.”” Since Y cac* =1, cac,* is interpreted as the
probability that an arbitrary system chosen from the ensemble is in the
n'k state, or will occupy the nt* state if the perturbation is removed at the
instant in question. Itfollows from Eq. (180) that if initially all the atoms are
in the m! state the final probability that any one of them will be in the

n'* state is

Born interprets the induced changes in the ¢’s as quantum jumps and
calls ®,,, the transition probability for jumps from the n®* state to the
mt, The quantum jumps are not independent, however, since c.c,*=

[2enfma(T) [2.

7 Cf. J. C. Slater, J. Franklin Inst. 207, 449 (1929).
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Born derives the Ehrenfest adiabatic theorem in the wave mechanics as
a special consequence of Eqs. (177)—(179). He also treats perturbations in-
volving the time in which the applied field is not removed after the time 7.
For details the reader is referred to the original paper (l.c.).

Foot-note added at reading of proof: All formulas in this article are based on the assumption
of Eq. (17) that the sign of the exponent in the frequency factor of a monochromatic ¢ function
is positive. While this sign convention has been much used, notably in Sommerfeld’s “Ergin-
zungsband,” the author is inclined to the opinion that the opposite choice is preferable. The
formulas for this alternative convention are obtained from those given above by replacing the
symbol ¢[(—1)¥2] by —i throughout. The operators used above are replaced by their con-
jugates which may be obtained direct from the appropriate classical formulas by the substitu-
tion px— +(h/2xi)d/ gx.



