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INTRODUCTION

Some of the most important results of physical science are embodied,

directly or indirectly, in the numerical magnitudes of various universal con-
stants;, and the accurate determination of such constants has engaged the
time and labor of many of the world’s most eminent scientists. Some of these
constants can be evaluated by various methods. Each has been investigated
by various persons, at various times, and each investigation normally pro-
duces a numerical result more or less different from that of any other investi-
gation. Under such conditions there arises a general and continuous need for
a searching examination of the most probable value of each important con-
stant. The need is general since every physical scientist uses such constants.
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2 RAYMOND T. BIRGE

The need is continuous since the most probable value of to-day is not that of
to-morrow, because of the never-ending progress of scientific research. These
remarks appear to the writer so self-evident that the mere statement of them
may be deemed superfluous. However, in spite of these facts, an investi-
gation of the values of general constants in current use in the literature re-
veals a surprising lack of consistency, both in regard to the actually adopted
values and to the origin of such values. This is probably due to the fact that
it is almost impossible to find a critical study of the best values, sufficiently
up-to-date to be really reliable, and sufficiently detailed to explain the in-
consistencies found among older tables.

The situation is much better in the case of selected groups of constants.
Thus the best value of the atomic weight of each element is determined
annually by certain atomic weight committees, and the need of such a list
of atomic weights is obvious to every chemist. There is certainly a similar
need in the case of the even more important constants such as the velocity of
light, the charge of the electron, the Planck constant %, etc. In attempting to
respond to this need, the writer has become only too well aware of the in-
trinsic difficulties involved, but at the same time he has become increasingly
convinced of the existence of the need itself. The present investigation was
undertaken only at the express request of others, and the results given here
should be considered more as a presentation of the situation than as a final
solution of the problem. To obtain a satisfactory and thoroughly reliable
judgment in such matters, there is required the unbiased cooperation of
many persons situated in scientific laboratories throughout the world. In
the preparation of this paper, I have endeavored to obtain such cooperation
by means of an extensive correspondence, but because of a necessary limita-
tion of time, such correspondence has been confined almost entirely to this
country. In addition I have received valuable advice and suggestions from
various persons on the campus of this University. To the many persons—too

"numerous to name individually—who have thus aided by voice or by letter
in the preparation of this paper, I desire to express my sincere thanks. At the
same time I wish to request a continuance of such cooperation, not only from
those who have already aided, but from all readers of the present article. The
character of such assistance, and its need, will be clearer after a discussion of
the situation.

The decision as to the most probable value, at a particular time, of any
given constant, necessarily demands a certain amount of judgment. It how-
ever demands, far more, a knowledge of the facts, and such knowledge is not
always easy to obtain. Similarly, each investigator uses a certain amount of
judgment in the selection of his data and in the final conclusions reached.
Here also, apparently, it is the facts which are even more important. For
example, there is scarcely an important constant which does not require, in its
evaluation, a knowledge of the values of certain other constants. I call these
“auxiliary constants.” What value of each auxiliary constant did the in-
vestigator use? Is this still the best value, and if not, what effect will the re-
quired revision have on the final result? The writer has found, to his surprise,
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that in many cases it is quite impossible to determine, from a printed article,
what values of certain auxiliary constants actually were adopted. Often it is
not possible to determine even the formula used in calculating the final result.
Many approximations are made in actual calculations, and these are ordina-
rily justified by the precision—or better, lack of precision—of the investi-
gation in question. Occasionally, however, an investigator makes an approxi-
mation which is not justified by the circumstances of the case, and which pro-
duces an appreciable change in the final result. The precise method of cal-
culation employed also affects the result, and often the adopted method is
capable of improvement.

In the preceding paragraph I have listed several sources of possible error
in a final published value, quite distinct from the excellence of the experi-
mental work itself. Whether it is worth while for the reviewer to attempt
to improve a result by investigating such potential sources of error, depends
entirely on the particular case considered. Thus if an investigator has
spent many years collecting certain experimental data, and the reduction
of these data, to give the final desired result, can be made in several weeks,
by the most reliable analytic methods, while a less trustworthy method of
calculation can be made in several days, it seems obvious which method of
calculation should be employed. Yet the writer has found in the literature
cases where an appreciable part of the accuracy obtained by years of the
most skillful experimental work has been sacrified, naturally unintentionally,
by approximate or ill-advised methods of computation. In such cases it has
seemed imperative to make a recalculation of the results, and this has accord-
ingly been done. In many cases no recalculation was possible, since the ori-
ginal data needed for such a calculation had not been published. In other
cases it was impossible to determine even what method of calculation had
actually been employed.

In the present paper the writer has, then, attempted to carry out the fol-
lowing general procedure

(1) Each general constant has been determined from the available data,
beginning with that constant whose value depends least on other constants.
The value thus adopted has then been used consistently in the calculation of
each succeeding constant for which it is an ‘‘auxiliary constant.” No attempt
has been made to compare the results of different investigators until these
have been made properly comparable by the use of the same value of each
auxiliary constant. Failure to make such revision, in the present paper, in
certain cases, is due to lack of available information on the matter, and simi-
lar failure in the case of previous articles of this nature may well be due to a
similar cause. This point I should like to emphasize above all others.

(2) Each constant has been calculated from the available data by the use,
as far as possible, of formulas which involve no approximations. Various speci-
fic cases will appear in the later sections of approximations which have thus
been eliminated, as well as cases in which, from lack of information, it has not
been possible to make an intelligent revision.
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(3) Each constant has been recalculated, whenever it seemed necessary,
by analytic methods—usually by the method of least squares. The proper
reduction of data is a very extensive subject, and is treated in detail in numer-
ous text-books and articles. It seems however desirable to call specific
attention to.certain points.

In the present investigation I have endeavored to obtain not only the
most probable value of a given constant, but also its ‘‘probable error.”’ Some
estimate of the probable error is often quite as important as the constant it-
self, but published lists of constants contain, in general, no precise estimate of
error. The term ‘‘probable error’ is a technical one, applied properly only
when the errors are distributed on a Gaussian error curve. Itis defined as the
numerical magnitude which the true error is as likely to exceed as not. Thisisa ‘
definite concept and as such furnishes an objective criterion of error. The
writer strongly advocates its use in all cases. Expressions such as “the maxi-
mum error,” “the limit of uncertainty,” “the possible uncertainty,” etc, are
inherently vague and technically undefinable. It may be noted, in passing,
that in some cases one cannot tell whether the published error is intended to
represent a probable error or a limit of error.!

With a Gaussian error curve (y =e¢~2"), there is one chance in 4.5 that the
true error is at least twice the probable error, one in 22 that it is at least three
times the probable error, one in 142 that it is at least four times, etc. One can
arbitrarily choose, as the limit of error, a quantity which the true error will
exceed only once in a thousand times. This quantity, called the “huge error,”
is 4.9 times the probable error. One can however equally well adopt a ratio
of one to the million, or one to the hundred, as defining the limit of error.
One of the greatest difficulties in the present work has been the proper weight-
ing of various results, one of which is stated in terms of “limit of error,”
another in terms of a “probable error,” another possibly with the error un-
defined, and still another with no definite statement as to accuracy. This
is quite aside from the reliability or correctness of the method used by each
investigator in arriving at his stated error.

Now in order to evaluate the probable error it is necessary to use the me-
thod of least squares. One great objection,it appears to me, to certain methods
which have been proposed as substitutes for least squares, is that they give no
objective criterion for the error. These substitute methods often have the
additional objection that they give no unique solution of the data. The in-
vestigator is permitted to combine the data in various different ways, each
leading to a different result.? A third objection is that they are usually less
reliable than least squares. Graphical methods combine all of these objections.
They are never as accurate as an analytic method, and have no unique so-
lution. Not only will each different person obtain in general, a different result

! German scientists often use the term “mean error.” This is a quantity which, when
multiplied by 0.6745, gives the probable error.

2 This is quite aside from the question of wezghting, which does require the judgment of the
investigator and should be made in all cases.
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from the same set of data, but the same person will obtain a different result,
each time he makes such a graph of a given set of data. Graphical methods
are invaluable for a preliminary survey of the results, especially in order to
determine, if possible, the proper functional form to be used. They should,
however, never be employed in the final accurate evaluation of important
constants.?

The chief objection to least squares work is the time required. This objec-
tion is hardly valid for simple functions such as y =a, and ¥y =a¢;+a1:x, and
as a matter of fact, the great majority of all calculations involved in this paper
concern only these two simple functions. The least squares formula for the
value of ao; and of a;; can be found in numerous texts. The corresponding
formula for the probable error of these two quantities (7; and 7,;) is, however,
practically never given. One can find the general formula applicable to any
function, and the particular formula for g, but not the explicit formulas for
ro1 and 715, Since the error formulas involve quantities occurring in the ori-
ginal formulas for ao; and ay;, I quote these also. If p is the weight of any
observation,

_ @p0)(Epay) — Ep)(Epa)

ao1

D
du = Epx)Zpy) — Ep)ESpxy)
11— D
where
D=(Zpx)*—(2p)(Zpa?).
Then
ro1=0.6745 [(_227)_2)_(?1@:'1/2
(n—2)D
r11=0.6745 [(_Z?E%EPE]UZ
(n—2)D

where 7 is the number of observations, and v, the residual, is the difference
between the observed y and its value as calculated from the values of ag;
and a1, just given. The well known expression for the probable error of a
weighted average is

¥ Because graphical methods have been used in the literature, in one or two such cases, the
writer has made some objective experiments on this point. With a set of data which could be
satisfactorily represented by the equation y=a,+ax, it was found that the value of a, and also
of a1, as determined from a graphical solution, deviated on the average from the least squares
values by just the probable error of the least squares solution. This result was obtained with the
cooperation of a number of persons having considerable experience in the drawing of graphs.
For real experts the graphical error can probably be made as small as one-half the least squares
probable error. Now one of the most fundamental rules of computing is that theerror introduced
by the calculation itself shall be negligibly small, compared to the probable experimental error.
A graphical solution obviously fails to satisfy this criterion in the case cited, and I believe that
the result deduced is fairly typical of graphical solutions of simple functions.
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_ _ G
1'00—0.6745[(7;*1)(2?):] .

Before closing the discussion of methods of calculation it seems necessary
to call attention to the fact that one must use some judgment in applying
the method of least squares. Otherwise the results may well be absurd. Such
a solution applies only to observations which are affected merely by acciden-
tal errors of observation. If a particular observation deviates too widely from
a smooth curve,? it should be rejected before attempting to treat the data
by least squares. If the data are so few in number that the residuals can-
not be expected to fall on any symmetrical error curve, the results of least
squares are relatively uncertain. Fortunately one can judge this uncertainty.
Thus the “probable error of the probable error,” or the “uncertainty of the
probable error,” is given by

ur=0.4/69r/n'l?

where 7 is the probable error, u its proportional uncertainty, and » the
number of observations. This shows that with only two observations, the
probable erroy has an even chance of being in error by more than 33.7 per-
cent of itself,’ while for nine observations this drops to 15.9 percent, and for
25 observations to 9.5 percent. These results lead naturally to a consideration
of the number of figures to be retained in all experimental values. The
standard rule of computing is that one should retain two doubtful figures and
should express the probable error to two significant figures. Thus 126.944
+0.046. This rule is based on the preceding formula. If one wrote, for
instance, 126.94+0.05, the change in the probable error is nine percent
of itself, and in the number also, in this case,nine percent of the probable error.
These arbitrary changes are of the same magnitude as the uncertainty of the
probable error, for 25 observations, and so are not justified.

In most experimental work, in addition to the probable error due to purely
accidental errors, to which least squares properly applies, there are many
other sources of error, constant or systematic. Some of these may be known,
others may be quite unsuspected. The investigator endeavors to make some
estimate of the magnitude of each such error, and in this case also, it seems
greatly preferable to give what appears to be the probable error. If each error
can be either plus or minus, the final probable error is to be obtained from
the square root of the sum of the squares of all the probable errors, including
the least squares accidental error.® If on the other hand the assumed “limit

4 The criterion of “huge error” already mentioned is a convenient one for the rejection of an
individual observation, where now the probable error is calculated for any one observation,
instead of for the average. Other criteria have been proposed and can be found in texts on
methods of calculation.

5 In the case of only two unweighted observations of a constant quantity, the mean error
of the average equals merely the common deviation of each observation from the average.
It is however more in harmony with the idea of probable error to take this mean error as a
measure of the probable error, and this is frequently done.

6 If the various quantities concerned appear as factors, one uses the proportional error.
If they appear as terms, one uses the absolute error.
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of error” is given for each source of error, then obviously the final “limit of
error” must be taken as the arithmetic sum of the component limits of error.”
Since in many, if not most cases, the uncertain systematic errors are much
larger than the least squares probable error, it is sufficient to use only one
digit in stating the final probable error and only one doubtful figure in the
actual result. This is common scientific practise. Fortunately, in the case
of some of the most important general constants, the final error is, on the
face of the evidence, due almost entirely to the accidental errors of the in-
dividual observations.  In such cases one is fully justified in giving the
error to two digits. The writer has accordingly stated the errors to one or to
two digits according to circumstances Often two digits are used when the
first numeral in the erroris a1, 2, or 3, but only one digit for higher numerals.
In this connection it is to be noted that more significant figures should be
carried in the calculations than it is desired to retain in the final result, in
order that this final result may be unaffected by any error arising purely
from the calculation. Failure to observe this rule is the cause of several
apparent discrepancies in published data.

Before proceeding to the detailed discussion of each constant, attention
should be directed to two important sources of information now available.

(1) The International Critical Tables (McGraw-Hill Co., 1926)8 publish
on page 17 of volume I, a list of nine so-called “Accepted Basic Constants,”
each with its “Uncertainty.” On page 20 is given a list of 21 constants
derived from these basic constants, and also certain other conventional and
experimental constants. One of these conventional constants (the normal
atmosphere) is actually an experimental constant, and this with the other
experimental constants and the nine basic constants make up essentially
the list of constants considered in the thirteen sections (A to M) of the pre-
sent paper.

Although the ICT list of constants was published in 1926, it had been
adopted in 1923, and since then much important work on nearly every con-
stant has appeared. It was prepared with the aid of various scientific
societies as well as of individuals. The values given are not claimed to be
the best values available at that time, although obviously an attempt was
made to obtain the best values. The chief weakness of this list of constants
is the lack of any statement as to the origin of each value. By correspon-
dence and in other ways the writer has obtained such information, and speci-
fic references to this are made in the various sections to follow.

(2) The Geiger and Scheel “Handbuch der Physik”? contains, on pages
487-517 of volume II, an article by F. Henning and W. Jaeger on “The
General Physical Constants.” On pages 516-517 there is a list of 52 con-
stants, basic and derived, and on the preceding pages, a brief statement as

7 All rules for combining errors involve approximations of the type (1+4b)"=1--nb, where
b is the error of the quantity 1.

8 Throughout the present paper, this publication will be abbreviated to ICT.

9 This publication will henceforth be denoted as HP.
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to the theoretical and numerical basis of each value.!® In their article many
approximations and sources of inconsistency in the literature are pointed
out, but with one or two exceptions no attempt is made to recalculate data
in order to improve the published values. The writer has been greatly aided
by this article, and without it and the ICT tables, it is doubtful if the
present work would have been attempted.

The Henning and Jaeger article was written in 1926, and so contains
more recent information than that in the ICT. Part of this is reflected in
the fact that these two tables do not exactly agree on the value of a single
basic constant, with the exception of the electronic charge e. Even since
1926, however, much new experimental material has appeared, and one
result is that practically every constant adopted in the present paper differs
more or less in value from that given in either of these two preceding lists.
In fact in the case of the great majority of the constants considered in sec-
tions A to M, the finally adopted value is based primarily on work which
has appeared since 1926. In the case of most of the constants, the situation
is now much more satisfactory than it was a few years ago. Specific con-
clusions on these matters are given in section O.

The values adopted in this paper are based on data available to the writer,
from published articles or private communications, on January 1,1929. Ref-
erence to later work has been made in footnotes, and in practically all cases
such recent work merely furnishes further confirmation of the adopted values.
Because of the great amount of correlation of data, especially in connection -
with the numerous derived constants, it has not seemed feasible to make any
changes in the adopted values of the basic constants, after the date just
given. The present section, and the conclusions in section O, are being
written in April 1929, and in the latter section especially the general situation
is considered as it appeared at the date of writing.

A preliminary report on this work was made to the American Physical
Society' in December 1928, and at that time a mimeographed table of con-
stants was sent for suggestions to a number of persons. No changes have
been made since then in the magnitudes of the constants printed in the ab-
stract, but several of the probable errors have been revised, and this revision
affects many of the derived constants.

Section A

Ture VeELociTY oF LiGHT IN VACUUM (c)

The history of the experimental attempts to measure the velocity of
light is a long and brilliant one. An accurate summary of all numerical
results to 1927, in which many errors in the literature are corrected, has

10 In other volumes of the HP there appear special articles on “A” and on “e/m”, as men-
tioned in the appropriate sections of this paper.
1t R, T. Birge, Phys. Rev. 33, 265 (1929), abstract 6.
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been given by de Bray.! A good recent account of the experimental methods
for measuring ¢, as well as the numerical results, is that by Ladenburg.?

The latest and most accurate direct determination of the velocity of
light is that by Michelson,® in 1921-26. In fact this investigation so far
surpasses in accuracy any of the preceding that it alone need be considered.
Michelson* lists eight results, obtained from eight sets of observations taken
at different times with different mirrors. Each of these results is weighted
and the weighted mean is 299796 km/sec. The usual least squares formula
for the probable error of the weighted mean, I find, gives +2.6 km/sec.
The mean error is 3.9 km/sec. Michelson writes 299796 +4 km/sec. and thus
evidently uses the mean error of the weighted average. No other explicit
statement about the error is made. When the various sets of results are
collected under the five different mirrors used, the agreement is quite re-
markable, all five results varying only from 299797 to 299795 with a mean
of 299796 as before. Ladenburg? considers somewhat critically the possi-
bility of various constant errors and concludes that all such errors are
negligibly small. Aside from the possibility of unsuspected constant errors
it is thus evident that the probable error is at most 2.6 km/sec. and may
be much less. It seems however more conservative simply to adopt as the
probable error the +4 km/sec given without comment by Michelson, and
now being generally used. I accordingly adopt

¢=1(2.99796-+0.00004) X 10'° cm - sec™!. (1)

The velocity of short standing electric waves has also been measured
and shown to agree approximately with the velocity of light, within the
rather large limits of error. Probably the best work on this is by Mercier.5
He shows that the formation of stationary electric waves on wires is a much
more complicated phenomenon than had previously been realized. His
measured velocity along a wire is corrected, by the use of various theoretical
considerations, to give the velocity in free space. His final result is 299700 +
30 km/sec for the velocity in free space, but because of uncertainties in the
theory, the error may be (and according to Michelson’s result actually is)
much greater.

The velocity of electromagnetic waves may be obtained indirectly from
the measured ratio of the electrostatic (es) to the electromagnetic (em)
system of electrical units, according to the generally accepted electromag-
netic theory of light. The best value of this ratio, which is here denoted by
¢’, is undoubtedly that found by Rosa and Dorsey.® They obtained ¢’ =
2.9971X10' cm-sec™'. This result is regularly quoted?” as 2.9971+0.0003.

L E. J. G. de Bray, Nature 120, 602 (1927).

2 R. Ladenburg, Hand. d. Exp. Physik 18, 1-36 (1928).

3 A. A. Michelson, Astrophys. J. 65, 1 (1927).

* A. A. Michelson, loc. cit. (reference 3) Table VIII.

5 J. Mercier, J.phys. radium 5, 168 (1924).

¢ E. B. Rosa and N. E. Dorsey, Bur. Standards, Bull. 3, 433-604 (1907). See also pp. 605-
622 for the various possible methods.

" See, for instance, Bur. Standards, Circular No. 60 (1st ed.) 14 (1916) and Ladenburg.?
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The authors themselves, however, state® that the maximum uncertainty is
1 in 10000, and Dr. Dorsey has written me that he believes the accuracy is
even greater. Their final result is the average of a very large number of
individual results, taken at different times, under varying conditions, and
showing remarkable consistency. Rosa and Dorsey make in addition an
exhaustive study of the sources of systematic error. It therefore seems to
the writer that about one part in 30000 is a very conservative estimate for
the probable error, giving ¢’=2.9971+0.0001. This is an interesting con-
clusion for it indicates that the Rosa and Dorsey value of ¢’ has been more
accurate than any direct determination of the velocity of light, up to the
time of Michelson’s latest work.?

This result is however in terms of international electrical units.'® The
relation of these to the absolute electrical units is discussed in section E
ahead. Henning and Jaeger!! show that, to obtain the true ratio between
the es and the em system, in absolute units, the result of Rosa and Dorsey
must be multiplied by p'?, where one int. ohm=p abs. ohm. According to
section E, p=1.00051+£0.00002. This gives a corrected value of ¢’ =(2.9979
+0.0001) X10* cm-sec®. It is in beautiful agreement with Michelson's
recent value of ¢, and has, on the above assumptions, a probable error only
about 2.5 times as large. Hence we conclude that ¢’=¢, within limits of
error. A strict weighted average of ¢ and ¢ would give 2.99795, but in view
of the uncertainty in the relative probable error of ¢ and ¢', it does not seem
worth while to make this very slight change in Michelson’s value.

Section B

THE NEWTONIAN CONSTANT OF GRAVITATION (G) AND
THE MEAN DENSITY OF THE EARTH

The HP! gives a table of seven determinations of G, ranging from 6.60
to 6.70X1078 dyne-cm?-g~2.  After comparing the most probable values
adopted previously by various persons, Henning and Jaeger adopt 6.65.
In their list of previous critical reviews, they omit Poynting’s value? of 6.66
+0.01. The ICT? adopt as one of their basic constants G =6.66 +0.01,

Since the publication of these reviews, Heyl* has made what is un-
doubtedly the most reliable determination of G. His final result is

8 Rosa and Dorsey, loc. cit. (reference 6) page 601.

9 This of course implies the assumption that ¢’ should theoretically be equal to c.

10 Tn giving the units of ¢/ as cm-sec™ we have implicitly assumed that the unit of resis-
tarice in the em system is one cm - sec™!. This is strictly true for the absolute em unit, but is not
strictly true for the international unit (see section E). Rosa and Dorsey (reference 6, page 601)
write more correctly ¢ =2.9971 X101 cm!/2-gec™V/2-int Q71/2,

1 HP 2, 507-508.

1 Henning and Jaeger, HP 2, 491.

2 Poynting, article on “Gravitation,” Encyl. Britannica, XI Edition.

3 ICT. 2, 17.

4 P. R. Heyl, Proc. Nat. Acad. Sci. 13, 601 (1927).
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G = (6.664 +0.002) X 10~ dyne - cm?- g~

This result is adopted here. It is based on five separate determinations vary-
ing from 6.661 to 6.667.

Assuming R=06.371X10% cm as the mean radius of the earth, as given
in the HP!, and® g4s=980.616 cm-sec™?, one obtains! G-d(earth) =236.797X
10-% sec™2, where §(earth) is the mean density of the earth. From the HP
result G=6.65, one gets d(earth) =5.53 g-cm~. With the new result G=
6.664, one gets

d(earth) =5.522+0.002 g-cm™®

Section C
RELATION OF THE LITER TO THE CUBIC DECIMETER (1000 cm?)

The liter is defined as the volume of a kilogram of air-free water at its
maximum density. In other words, the maximum density of water is, by
definition, one kg-1=!. The kilogram is defined as the mass of the prototype
kilogram preserved in Paris. This original prototype kilogram was intended
to be the mass of a cubic decimeter (dm?) of water, at maximum density,
but later determinations have shown that there is a slight discrepancy.
The various experimental results are discussed by Henning and Jaeger.!
The mean of the best determinations? is 1 liter =1000.027 cm?, and this
value has been accepted in all recent tables.? Henning and Jaeger give no
probable error for the result, but one unit in the last place seems a not un-
reasonable assumption. Hence I adopt

1 liter =1000.027+0.001 cm? =1.000027 4+ 0.000001 dm?
The maximum density of water §,(H,0) is accordingly
1/1.000027=10.999973+ 0.000001 kg -dm= or g-cm™3

[t should be noted in conclusion, that it is customary to define 1 cc as
liter/1000, while 1 cm? =liter/1000.027.

Section D

Tue NorMaL MoOLE VOLUME OF AN IDEAL GAs
(v» cm®.- mole™, or R, liter- mole™)

The normal mole volume of an ideal gas is the volume occupied by one
gram mole of an ideal gas, at 0°C, under one normal atmosphere pressure.

5 This conventionally accepted value of g4 is due to F. R. Helmert, Encycl. Math: Wiss.
VI, 1B, 96 (1910). See HP 2, 489.

1HP 2,491-2.

2 Three of the best determinations give 1000.029, 1000.026, and 1000.027 respectively.

3 ICT. 2, 18, Smithsonian Tables (7th edition), HP, reference 1.
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This quantity can theoretically be determined from any real gas, by mak-
ing the correction necessary to reduce the real gas to an ideal gas. Actually,
however, only oxygen is used for accurate determinations. Oxygen is chosen
because its atomic weight is 16.000 by definition, and hence there is no
error in the resulting value of v,, due to error in the atomic weight. This
is not the case for any other gas. Moreover, as a result of extensive investi-
gations, the necessary correction to change oxygen to an ideal gas is now
known with considerable accuracy.

The ICT! gives as one of its basic constants, v, =22.4115X10® cm?.
The HP? gives v, =22.414;X10% cm?® or R, =22.413y liters. The discrepancy
must be due to the use of different values of §,(O,), the normal density of
oxygen, or of (1-a), the correction factor due to the deviation of oxygen
from an ideal gas.? Thus

32(1—a) 32(1—a)

Vo= = 1000.027 = R,,(1000.027) (1)
5,(02)  L.(0y)

where », is the normal mole volume in cm?, R, the same in liters, 6,(0,)
the normal density of O,, in grams per cm?, and L,(0O,) the normal density
in grams per liter. All these values correspond to normal gravity (g, = 980.
665). It is however customary among chemists to express the experimental
results in terms of gqs (980.616). Such values will be denoted by », §, L, and
R. Thus

R=M({1—-a)/L (2)

where M is the molecular weight.

LICT 1, 17.

2 HP 2,494. See pp. 492-494 for a discussion of the factors involved in the determination
of vu.

3 The most general definition of « is (1/pv) d(pv)/d(p), (temp=constant), so that it
measures the proportional change in pv, per unit change in pressure, and has the dimensions of
pressure™. To make the numerical values more definite, it is customary to write a=[1/(pv)]
d(pv)/d(p), where (pv), refers to unit pressure. In investigations on normal density or normal
mole volume, it is natural to choose one atmosphere as the unit of pressure. Henning and
Heuse (Zeits. f Physik 5, 285, 1921) use one meter of mercury as the unit of pressure, and
denote o by & (see section H). Since the numerical magnitude of « is directly proportional to
the size of the unit of pressure, we have x;=100a/76. On the other hand, Henning (HP 9,
528) uses the symbol «, but states that p is measured in atmospheres.

Within limits of error, the isothermal pv has been shown to be a linear function of p, for the
so-called permanent gases Oy, Ny, Hy, etc., so that for such substances « is independent of p
but is a function of temperature, and is more properly written e;. The linear extrapolation of
pvto p=0gives then (pv)o = (1 —a) (pv);. Now in the limit p =0, any gas becomes, by definition,
an ideal gas. Hence (pv), is the constant pv of an ideal gas, and (1 —a) is the factor which con-
verts the real (pv); corresponding to unit pressure, into the ideal (pv)o, both at some definite
temperature. (1—a) is often denoted by (1+4)), and (1 —a) or (14\) may be defined as the
ratio (pv)o/(pv); (See reference 7, ahead). Frequently v is so chosen (in magnitude or unit)
that (pv); is unity. a(or «¢) is then numerically (but not dimensionally) the slope of the pv
isothermal (see HP 9, 528 and 538).
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Henning and Jaeger! give a full table of experimental values of L, taken
from a critical summary by Moles.® The mean value is L =1.42892 g-1-1,
They give also a table of values of (1-a), leading to the mean value (1 —a) =
1.00092. This table does not contain a more recent result by Baxter and
Starkweather® (L =1.42901), but this is included in the discussion by
Henning and Jaeger, and raises the mean L to 1.42893. From this, and the
value of (1-«) just quoted, the HP gets its value of »,. The more recent
values of (1—a), however, average 1.00086, and this, taken with the Bax-
ter and Starkweather value of L, gives v, =22.4119 X 10? cm?, in close agree-
ment with the ICT value.

Since the HP article was written, Moles” has critically discussed the
most probable value of v,. This article, as well as all recent experimental
work is in turn discussed in the latest (8th) report of the German committee
on atomic weights.® Moles obtains an average L =1.42892 +0.00002, but in
getting it, he quotes? L. =1.42892 as a more recent value of Baxter and Stark-
weather.! Their true value is 1.42897, and the correct mean L is accordingly
1.42893 4+ 0.00002, as pointed out by the committee.® Moles’” mean value
of (1—a) is 1.00091 4 0.00003, and these last two values give R=22.4148 +
0.0007 liters. The discussion of the German committee, however, indicates
that the recent results of Baxter and Starkweather!? (L =1.42897, and 1 —a=
1.00092) are the most trustworthy. They give R=22.4144 liters.

Very recently Baxter and Starkweather!! have recalculated their 1926
data in a more logical manner and obtain L=1.428965 grams per liter,
(1—a)=1.000927. These values are adopted here. As just noted, Moles
assumes 2X 1075 as the absolute probable error in L, and 3X107% as the
absolute probable error in (1 —«). The latter error seems to be a conservative
estimate, but in the case of L, it seems better to take 3 X 1075 as the error,
in view of the difference between the adopted value and the older values.
Hence we write

L= (1.428965 +0.000030) gram - liter~! (g =980.616)
1—a=1.000927 4 0.000030:

This gives

R=22.4146+0.0008 liter -mole™" (g4 =980.616)
R, =22.4135+0.0008 liter - mole™! (g,=980.665)
vy=(22.414140.0008) X 10 cm?®-mole™! (g, =980.6635).

+HP 2, 493.

5 E. Moles, J. chim. phys. 19, 100 (1921).

8 G. P. Baxter and H. W, Starkweather, Proc. Nat. Acad. Sci. 10,476 (1924).
" E. Moles. Zeits. f. anorg. allgem. Chem. 167, 40 (1927).

8 Berichte, 61B, 1 (1928).

® E. Moles, reference 7, page 46.

10 G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. 12, 699 (1926).
11 G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. 14, 57 (1928).
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Section E

RATIO OF INTERNATIONAL (INT) TO ABSOLUTE
(aBs) ELECTRICAL UNITS

For practical convenience, the ohm, ampere, and vclt have been defined,
by international agreement,! in terms of definite physical apparatus.?

The international chm (int. ohm) is defined as the resistance offered to
an unvarying- electric current by a column of mercury at the temperature
of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and
of a length of 106.300 centimeters.

The international ampere (int. amp.) is the unvarying electric current
which, when passed through a solution of nitrate of silver, in accordance
with certain specifications, deposits silver at the rate of 0.00111800 of a gram
per second.

The international volt (int. volt) is the electrical pressure which, when
steadily applied to a conductor the resistance of which is one int. ohm will
produce a current of one int. amp.

These international units are to be compared with the corresponding
absolute units, with which they were of course identical, within limits of
experimental error, at the time of adoption in 1908. One abs. ohm =10?
em units of resistance, the em unit, under the assumption that permeability
is dimensionless, being one cm-sec™. Measurements of the abs. ohm have
been made in a variety of ways, but all methods necessarily involve the
measurement of length and time. The abs. ampere is 107! em units, the em
unit being one dyne!/?, again with the assumption of dimensionless permea-
bility. The older measurements of the abs. ampere were made usually with
the tangent galvanometer, but the best measurements have more recently
been made with the current balance, the force between a moving and a
fixed coil carrying a current being compensated by a known weight (in
dynes).

The definition of the int. amp. just given is the primary definition, and
I shall follow the ICT in designating the int. amp. so defined, and all quan-
tities involving it, by the symbol “(a).” Now let

1 int. ohm=p abs. ohm (1)

1 int. amp. (a) =gq abs. amp. (2)

then 1 int. coul. (a)=gq abs. coul. 3)
1 int. volt (a) = pq abs. volt 4)

1 int. joule (a) = pq? abs. joule (5)

! Intern. Conference on elect. Units and Standards (L.ondon, Oct. 1908).

2 For a complete account of electric units and standards, see Circular, Bureau of Standards
No. 60 (First edition 1916, second edition 1920). For a short account see Smithsonian Tables
(7th edition) pp. XXXVI to XLIV. For a very clear popular description of the principles
involved in measuring electrical quantities in terms of absolute units, see F. E. Smith, Phys. Soc.
London, Proc. 37, 101 (1925).
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1 int. henry =p abs. henry (6)
1 int. gauss =g abs. gauss. (7

The int. ohm can be constructed as a definite laboratory standard.
This is not true of the int. amp. (a). Hence the 1908 London conference!
appointed a committee to determine the e.m.f. of the Weston normal cell,
in terms of the int. ohm and int. amp. The final value adopted by the
committee (Jan. 1, 1911) was 1.0183 int. volts, at 20°C, which, to avoid
ambiguity, is written 1.01830. This is effectively a new definition of the int.
volt and to distinguish it, if necessary, from the primary definition, I again
follow the ICT in writing int. volt (v). Similarly all units involving the Wes-
ton normal cell will be designated by “(v).” Let

1 int. volt (v) =7 abs. volt v (8)

as contrasted with Eq. (4). It is now possible to use the int. volt (v) and the
int. ohm to obtain a new (subsidiary) definition of the int. amp. Thus

1 int. amp. (v) =#/p abs. amp. 9)

as compared to Eq. (2). Finally, in many investigations, a so-called“semi-
absolute” volt has been used. This is defined as the e.m.f. required to
force one abs. amp. of current through one 7xnf. ohm resistance. Hence
from Eq. (1)

1 semiabs. volt=p abs. volt. (10)

From Eqgs. (8) and (10) one obtains
1-int. volt (v) =7/p semiabs. volt. (11)

We have now to consider the most probable value of p and of ¢, and the
difference, if any, between 7 and pg (or between 7/p and ¢g). These ques-
tions are discussed by Henning and Jaeger in the HP3, and they conclude,

g=1, p = 1.0005, r=pq=1.0005,.
On the other hand, the ICT* gives
¢=0.99993,  $=1.00052, r=1.00042, while  pg=1.00045.

Hence 7/p=0.999905¢q. The correct determination of the best values of
p and ¢ is a very technical and extremely involved matter. Unfortunately,
as just seen, there is no exact agreement on the subject, even in the most
authoritative compilations, and it is therefore necessary to consider the
original sources. Part of the present disagreement in the values of p and ¢
is due to the fact that there is no standard international unit of resistance
or of voltage. Each national laboratory has its own standards which differ
more or less among themselves, and also may change with time. The values
of p and ¢ finally adopted here represent, as well as possible, mean values

s HP 2, 498-502.
4ICT 1, 18 and 27.
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both in respect to place and to time. Fortunately the accuracy of these
quantities is so great that any possible error in the finally adopted values
is entirely immaterial in its effect on the many constants derived later in
this paper.

The numerical relation of the int. and abs. ohm (value of p) rests at
the present time chiefly on two extensive investigations, one by Smith,’
at the National Physical Laboratory (NPL) of England, and the other by
by Griineisen and Giebe,® at the German Reichsanstalt. Smith obtained
»=1.00052 £+ 0.00004, while Griineisen and Giebe found p=1.00051. The
latter investigators estimate their own probable error, as well as that of
Smith, as about 3 parts in 105. In 1925 a special committee was appointed
at the NPL to make a general investigation of the relation of the int. and
abs. electrical units. This work is not yet complete, although statements as
to progress are given in the Reports of the NPL for 1925, 1926, and 1927.
It was stated in 19257 that a comparison of various manganin resistances
with mercury resistances indicates that the former have all increased in
resistance by about 2.5 parts per 105,since 1912, 0r that the mercury standards
(defining the int. ohm) are really smaller by this amount. The latter assump-
tion would give p=1.000495, in place of Smith's value of 1.00052. In a
very recent investigation at the Reichsanstalt, Steinwehr and Schulze?
evidently assume that the NPL 1925 standards are 2 parts in 10° less than
the older 1912 standards, giving a mean value of $ in exact agreement with
the 1920 Reichsanstalt value. Their own experiments in 1928 agree with this
same mean value to +1 in 10°. Furthermore, various intercomparisons of
standard resistances at the NPL® show that the German and American
standards lie between the 1912 and 1925 NPL values. Hence it seems
quite certain that the best value of p, at the present time, is 1.00051, while
the probable error seems to be not more than 2 parts in 105,

The most probable value of ¢ is more uncertain, in spite of extensive
investigations on the subject. In the older work, the abs. amp., determined
with either a current balance or a tangent galvanometer, was compared
directly with the int. amp., as measured by a silver voltameter, thus evaluat-
ing ¢ of Eq. (2). In other words, there was measured by means of a silver
voltameter, operated under certain specifications, the amount of silver,
in grams, deposited per sec. by a current of one abs. amp. This mass of
silver was then compared with 0.00111800 grams, the defined amount de-
posited, under the same conditions, by one int. amp. per sec.

Such a procedure determines ¢ unambiguously, but does not necessarily
evaluate the electrochemical equivalent of silver (E,,) per abs. coul. As
discussed in detail in section J, ahead, the electrochemical equivalent of a
substance is the mass actually associated with unit charge, and is indepen-

5 F. E. Smith, Phil. Trans. 214, 27 (1914).

¢ E. Griineisen and E. Giebe, Ann. Physik 63, 179 (1920).

7 National Phys. Lab. Reports p. 94 (1925).

8 H. v. Steinwehr and A. Schulze, Ann. Physik 87, 769 (1928).
9 Nat. Phys. Lab. Reports p. 8 (1927).
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dent of experimental imperfections, while the mass deposited in an electro-
lytic cell per unit charge,—the only quantity we can actually measure,—1s
subject to experimental imperfections. This distinction has no bearing on
the value of ¢, so long as one accepts the official definition of the int. ampere.
It concerns only the value of electrochemical equivalents and the resulting
value of the Faraday, considered in section J. The matter is mentioned here
because it is common practise among investigators to ignore the distinction,
and instead of stating their real experimental values of ¢, to give the so-called
corresponding E4, per abs. coul. (=0.00111800/¢). The various experi-
mental values of ¢, determined as explained above, are listed by Henning
and Jaeger.!® They are stated in terms of the assumed corresponding E 4,
the actual values of which vary from 0.0011179 to 0.0011192 grams (i.e., ¢
varying from 1.00009 to 0.99892).

In the later work (1906 to date) the current is measured in abs. amp.,
usually with a current balance, and this current is sent through an int. ohm
resistance, using a Weston normal cell. From the known current in abs. amp.
and the known resistance in int. ohms, one obtains the e.m.f. of the Weston
cell in semi-absolute volts. By Eq. (11) the ratio of this result to the e.m.f.
in int. volt (v), (1.01830 by definition), is 7/p. Hence this later work evalu-
ates only 7/p, and not g. A

The value of the e.m.f. of the Weston cell, in semi-abs. volts, the assumed
corresponding electrochemical equivalent of silver per abs. coul., and the
true resulting value of 7/p, are listed by Henning and Jaeger.!! Omitting a
probably less accurate value by Guthe,”? the remaining four values of #/p
range from 1.00006 to 0.99989. Henning and Jaeger!' give correctly as
1.01822 semi-abs. volts the Rosa, Dorsey and Miller!3 value of the e.m.f. of
the Weston cell, but misquote and use in their averages the resulting £ 4, and
7/ P, giving 0.99995 for 7/p in place of the true 0.99992 (=1.01822/1.01830).
Using 0.99992, the unweighted average of the four investigations! is 7/p
=0.99995. The Bureau of Standards' considers only (a) (c) and (d) of re-
ference 14 and gives 0.99991 as the best average value of #/p. The ICT
value (0.99990) is based! on (a) and (d) only, of reference 14. Henning and
Jaeger!! take the unweighted average of all four values of reference 14, and
the writer has done the same, since there seems to be considerable difference
of opinion among experts as to the relative weighting of these four values.

10 HP 2, 499,

L HP 2, 500, Table 6.

12 K. Guthe, Bur. Standards, Bull. 2, 69 (1906).

¥ E. B. Rosa, N. E. Dorsey, and J. M. Miller, Bur. Standards, Bull. 8, 269-393 (1912).
See page 362.

1 (a) Ayrton, Mather and Smith (NPL), 1908, r/p=0.99989, (b) Janet, Laporte and
Jouaust (Lab. Central d’Electricité, Paris), 1908, 7/ =1.00006, (c) Haga and Boerema (Univ.
of Groningen, Holland), 1913, 7/p=0.99994, (d) Rosa, Dorsey, and Miller (Bur. Standards,
Washington), 1912, 7/ =0.99992,

15 Bur. Standards, Circular No. 60, page 38 (1916).

1 Private communication from Dr. N. E. Dorsey.
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In particular, it is very probable that (c) should be given a relatively lower
weight, but the final average is fortunately not thereby changed.

The next question concerns the equality of 7/p and ¢. Rosa, Vinal and
McDaniel'” determined the e.m.f. of the Weston cell as 1.01827 int. volt (a),
by using a silver voltameter and an int. ohm resistance. Hence by Eqgs.(4)
and (8), knowing 1.01827 int. volt (a) =1.01830int. volt (v), pg/r =1.01830/
1.01827=1.00003. Hence ¢=1.00003 »/p. These investigators naturally
assumed 7/ =0.99992, from reference 14(d). Hence ¢=0.99995. This is the
figure misquoted as 7/p, by Henning and Jaeger.!!

The above result indicates that ¢ differs from 7/p by 3 parts in 10,5 and
that, to agree with the primary int. units, the Weston cell should have been
taken as 1.01827 int. volts. But at the Reichsanstalt,!® the corresponding
quantity was found, in 1908, to be 1.01834 int. volts, and in 1922, 1.01831.
The average of these three results indicates that theaccepted value of 1.01830
int. volts is correct, within limits of error. In other words, ¢=7/p, and one
int. volt (a) =one int. volt (v). This agrees with the view of Henning and
Jaeger.’® The relative values of ¢ and 7/p adopted by the ICT* are based
directly on the work of the Bureau of Standards!?:'".

Henning and Jaeger!® consider that the variation from unity of either
v/p or q is less than the experimental error, and under the circumatances
think it more practical to assume 7/p=¢=1.0000. It seems best, however,
to accept the mean value of #/p=0.99995, as determined in four different
laboratories,' but to take the probable error as+0.00005. Assuming then
no distinction between int. volt (v), and int. volt (a), we write equations
(1) to (7)as

1 int. ohm=p abs. ohm, $=1.00051+0.00002 1
1 int. amp.=g¢ abs. amp., ¢=0.99995 +0.00005 29
1 int. coul.=gq abs. coul., (39
1 int. volt=pq abs. volt. £¢=1.00046 1+ 0.00005 4"
1 int. joule = pq* abs. joule, .pg*=1,00041+0.00010 (5"
1 int. henry = p abs. henry, (6"
1 int. gauss =gq abs. gauss, (7
Section F

Tue Aromic WEIGHTS OF CERTAIN ELEMENTS
(H, He, N, Ag, I, C, Ca).

In evaluating some of the general constants, it is necessary to use the
atomic weights of various elements. Since it is only relative magnitudes of

17 K. B. Rosa, G. W. Vinal, and A. S. McDaniel, Bur. Standards Bull. 10, 475-536 (1914).
See pp 477 and 486. See also reference 13, page 367.

18 W. Jaeger and H. v. Steinwehr, Zeits. f. Instrumentenk. 28, 327 and 353 (1908), and
H. v. Steinwehr and A. Schulze, ibid, 42, 221 (1922).

19 HP 2, 501-2.
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atomic weights which have physical significance, it follows that in the ulti-
mate analysis, only ratios of atomic weights enter into our formulas for the
general constants. All atomic weights are likewise derermined from ratios,
but in general not directly from the particular ratios in which we are in-
terested. Hence it is necessary to consider individual atomic weights, and
for convenience, all those relevant to this paper are collected in the present
section. The elements here discussed are hydrogen, helium, nitrogen, silver
iodine, carbon, and calcium.

The present system of atomic weights is based on the purely arbitrary
assumption that the weight of oxygen is 16 exactly. Any other assumed value
for oxygen would be equally permissible, since as noted, atomic weights
are entirely relative quantities. In choosing oxygen as a basis, it is tacitly
assumed that this element has always the same atomic weight; in other words,
that it has no isotopes. This however is seemingly not the case, for Giauque
and Johnston! have very recently found an isotope of oxygen of atomic
weight roughly 18, from an analysis of the atmospheric absorption bands of
oxygen. The relative abundance of the two species of oxygen is not yet
known, so that one cannot give accurately the new atomic weight of the“16”
isotope, in terms of the standard mixture of the two isotopes taken as exactly
16. One practical result of this discovery is that the atomic weights deter-
mined recently by Aston,? from the mass spectrograph, need not be identi-
cal with those determined by chemical means, since Aston’s atomic weights
are based on the mass 16 isotope of oxygen considered as exactly 16, while
the chemical atomic weights are based on the ordinary mixture of the two
isotopes considered as exactly 16. As we shall see presently, Aston’s values
of the atomic weights of hydrogen, helium, nitrogen and iodine seem to agree
with the chemical values within his lémit of error(one part in ten thousand
to one part in five thousand). If this is really the case, it means that, in ordin-
ary oxygen, Oy is more than one thousand times as abundant as Oxs.

The most detailed account of the very numerous investigations dealing
with atomic weights, so far as I am aware, is that by F. W. Clarke.? This
document of more than 400 large pages gives complete material on the sub-
ject, up to the date of publication. The method adopted by Clarke is to
collect together all published determinations of a given atomic weight made
by a given method, assign to each a probable error based entirely on the in-
ternal consistency of the data, and obtain a weighted average value with 4ts
probable error, using standard least squares formulas. No attention is given
to the possibility of systematic errors, the author claiming that such errors
will, in the end, more or less cancel out. His weighting of the results of differ-
ent investigators is thus quite impersonal, being based wholly on internal
consistency. He then collects together the determinations of a given atomic

! W.F. Giauque and H. L. Johnston, Nature 123, 318 (1929), J. Am. Chem. Soc. 51, 1436
(1929), and private communications. For more recent information see section O.

2 F. W. Aston, Proc. Roy. Soc. 1154, 487 (1927).

*F. W. Clarke “A Redetermination of Atomic Weights,” 4th edition (1920). Printed as
Part 3, Vol 16 of Memoirs, Nat. Acad. Sci.
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weight, made by the various methods previously considered, and obtains
a final weighted average and probable error. As might be expected, the aver-
age results from different methods often differ from each other by many times
the probable error of each, thus clearly showing the presence of systematic
errors in some or all of the methods employed. Whether such systematic
errors do in fact cancel out in the long run may seriously be debated. The
atomic weight committees, to be mentioned presently, seem more inclined
to base the final value on what appears to be the most accurate determina-
tion by the most reliable method; in other words, on the determination in
which it is most probable that systematic errors have been eliminated. The
atomic weight committees also try to use ratios connected most directly
with oxygen while Clarke considers all possible ratios.

Since the world war, there has been one report on the atomic weights of
the elements by a so-called international committee.* Since 1925 the annual
report on atomic weights by G. P. Baxter, for the American Chemical Soc-
iety, has contained a table of atomic weights, for which he alone is responsi-
ble. Since 1918, a German committee on atomic weights has published
annual reports. These various sources do not agree in many cases on the
best value, and—what is more important for our purpose—do not give the
probable error. There does not seem to be even a consistent practise in re-
gard to the number of stated figures. Sometimes the last quoted figure is
definitely doubtful, while in the great majority of cases it is certain. In the
case of hydrogen the first five significant figures are certain, while only four
figures are given by Baxter® and by the German committee.® The writer
however is informed that the 1929 reports will give hydrogen as 1.0078.
[t is therefore necessary to investigate the probable values and probable
errors, for the elements previously mentioned.

HyYDROGEN

Baxter® quotes Moles? as deciding, from a critical review of gas density
measurements, that H=1.0078. This value, as given by Moles’ is actually
taken from a previous article® where full details are given. Moles lists nine
results lying in the narrow range 1.00766 to 1.00783, with a mean value of
1.00777 +0.00002, or a -rounded figure of 1.0078. These nine results are
given in Landolt-Bérnstein?, while Moles’ article® is discussed in the 6th
German report.!® The final average represents the result of 223 different
measurements by five different investigators, using four different methods,
and seems to be the most reliable now available. It is quite possible that

¢ Second Report of the International Committee on Chemical Elements, J. Am. Chem.
Soc. 47, 597 (1925). This committee did not include German and Austrian scientists.

5 G. P. Baxter, 34th annual report, J. Am. Chem. Soc. 50, 603 (1928).

6 German committee (8th report), Berichte, 61B, 1-31 (1928).

7 E. Moles, Gazz. chim. ital. 56, 915 (1926).

8 E. Moles, Zeits. f. physik. Chem. 115, 61, and 117, 157 (1925).

9 Landolt-Bérnstein, Physik. Chem. Tables, 5th ed. (E), p. 3 (1927).

10 German committee (M. Bodenstein, etc.), Berichte, 59, SII (A) (1926).
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the probable error should be larger than that given by Moles, but even
if it were many times larger, this would not affect any of the conclusions
regarding the general constants. I accordingly adopt H=1.00777 +0.00002.
Aston,? from positive ray analysis, obtains H =1.00778 with a limit of error
0.00015. This last result is quoted by Baxter,’ and is the only value for
hydrogen mentioned in the latest German report.® As already pointed out,
the recent discovery of an isotope of oxygen makes it now permissible to
use Aston’s value only as an indication of the relative abundance of O3 and
Oq4, and not as an atomic weight determination. It is in perfect agreement
with the chemical value, which indicates a very low abundance of Oys.

HeLiuMm

In obtaining the best atomic weight of helium, one need consider only
the most recent determinations. Baxter,’ in his latest report, refers to an.in-
vestigation by Baxter and Starkweather,!! giving L =0.17846 g-1-! as the
density of helium, for g4;. They also conclude that helium behaves like a
perfect gas. Hence, using our adopted value!? of R in the equation

R=M(1—a)/L (1
we obtain
M =(22.414640.0008)(0.17846) =4.00011 (2)

as the atomic weight of helium. Baxter® then quotes unpublished work by
R. B. Ellestad. and himself,'yielding (1—a)=0.9995. With this value, in
Eq. (1), one obtains M =4.0021. As far as chance variations are concerned,
the probable error in L is one part in 20000 or less. The probable error in
(1 —a)is not stated,'?* but it is presumably at least one part in 10000. Hence
the final probable error in M is at least +0.0004. Aston? obtained 4.00216
with a limit of error 0.0004, in perfect agreement with the revised Baxter
and Starkweather value. As in the case of hydrogen, this indicates a small
prevalence of O3 and encourages one to use Aston’s values for other elements
as true determinations of atomic weight.

The German committee® criticises the original Baxter and Starkweather
value of (1 —a) =unity, and points out that all previous work indicates that
(1—a)=0.9995. It therefore also decides that He =4.002, in agreement with
Baxter.® It is evident that the true atomic weight of helium must be close
to the value found by Aston. The chemical value is at present slightly less
accurate than Aston’s, and I shall accordingly adopt his value but his
assumed error as the probable error, although such a procedure may well be

1 G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. 12, 20 (1926).

12 See section D.

122 Just before this paper was to go to the printer, the writer received from Professor Baxter
his individual values of (1—a) for He. There are four of these, averaging 0.99958, with a
maximum variation of only 14 parts in 105. This new result would give He =4.0018, with a
final probable error of possibly 0.0003 or less. Since the limit of error of Aston’s value is 0.0004,
the chemical value is still the less accurate and no change is required in the final adopted value.
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open to criticism, in view of the present situation regarding the oxygen
isotopes. I accordingly write

He=4.00224+0.0004.

NITROGEN

The atomic weight of nitrogen is not used directly in any of the following
sections, but the error in this atomic weight produces practically the entire
error in the atomic weight of silver. Since the great majority of the accepted
atomic weights are derived more directly from silver than from oxygen, the
atomic weight of silver is of the highest importance. It is therefore nec-
essary to consider carefully the best value of N and its probable error.

The atomic weight of nitrogen can be obtained by direct comparison
with oxygen, and also from density measurements, using the adopted value
of Rin Eq.(1). According to Clarke,? the final average of these two methods
gives N =14.0076. The atomic weight can be obtained indirectly in many
ways. The results of all methods, including the two just mentioned, are
summarized by Clarke®® and give N =14.0081. This was presumably the
best value in 1920. At the present time it is generally agreed that, just as in
the case of helium, the atomic weight of nitrogen can be determined most
accurately from its density and deviation from a perfect gas, by the use of
Eq. (1).

The various results have recently been discussed in full by Moles.!* As
explained in section D, Moles derives R=22.4148 +0.0007 g-1"*, from data
on oxygen, while we have adopted R=22.4146 +0.0008. For nitrogen, Moles
quotes six values of L, varying from 1.25032 to 1.25071 g-1-!, with a mean
value 1.25048 +0.00006. Omitting the first two values, which he considers
uncertain, the mean is 1.25046 +0.000045. This last value is adopted by
Moles. Among the four values used in getting this average is 1.25049,
obtained by Moles and Clavera.’® This work represents probably the most
accurate single investigation on nitrogen. The individual results are quoted
in full by Baxter.® Moles and Clavera discuss carefully the various sources
of systematic error, and conclude finally that L =1.25049+£0.00003. The
chief reason for not adopting this as the best value of L is the lower result
obtained by Baxter and Starkweather.’ Their result is 1.25036, and they
give no estimate of probable error, but remark-that the result is slightly
lower than the results of previous observers. Itis therefore difficult to de-
cide on the relative weighting of these various values. Moles and Clavera'
give 1.25048 as the weighted average, including their own result. Moles,"
as noted, gives 1.25046-0.000045, based on the same available data. It
appears to the writer that this result is not unreasonable, and it is adopted
here.

1B F, W. Clarke, reference 3, p. 118.

1 E, Moles, Zeits. f. anorg. allgem. Chem. 167, 40 (1927). See also section D.

15 E, Moles and J. M. Clavera, Zeits. f. anorg. allgem. Chem. 167, 49 (1927).

18 G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. 12, 703 (1926). See ibid
14, 57(1928) for a better method of calculation which yields 1.25037.
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The value of (1—ca), or (14)\) as it is often denoted, is known with
greater certainty for nitrogen than for oxygen.’? The four best determina-
tions, as quoted by Moles,* vary only from 1.00042 to 1.00046, with a mean
of 1.0004374+0.000014. The value of (1—a) has been determined, in-
directly, by Baxter and Starkweather,' as 1.00033. By another method of
calculation, to which Moles'* takes exception, they get 1.00051. Their
recalculation'® gives 1.00040. Moles himself concludes that, including also the
Baxter and Starkweather value, (1 —a)=1.000424+0.000014. Moles and
Clavera® give 1.00043 as a final best value. Baxter and Starkweather give
1.00047 as the average of all work, excluding their own, but do not decide
on a final average. I shall adopt (1 —a) =1.00043 4 0.00002.

With the adopted values of R, L, and (1 —«), we have in Eq. (1),

M(1.0004340.00002)
1.25046 +0.000045

Hence M =28.01651, or M /2 =N =14.0083 +0.0008, the value adopted here.
The error is larger than that adopted by Moles.”* His own estimates
of error for the three factors lead to one part in 20000 for the final probable
error in N. He however states that the probable error is one part in 30000
(£0.00045). Then in his summary he writes N =14.0082 +0.0002, an error
of only one part in 70000. This is presumably a misprint. Moles and
Clavera, ' with slightly different assumed values and errors for (1 —a) and
L, deduce'” N =14.0082 + 0.0004.

In reviewing the literature on this subject, one is struck by the fact
that, in the cases of both oxygen and nitrogen, the values finally adopted
for both (1—a) and L tend to rise and fall together, so that the final result
(value of R for oxygen, and the atomic weight for nitrogen) remains almost
constant. A cursory survey of various critical summaries would thus indi-
cate that the probable error in R and in the atomic weight of nitrogen is
much smaller than that assumed here. Since the evaluation of (1—«) is
quite independent from that of L, this seeming connection must be purely
accidental. It is however quite possible that the error in N assumed above is
a little high. Aston? ebtains N =14.008, but his assumed accuracy in this
case is only one part in 5000. It is to be recalled, in this connection, that
Aston gives always the limit of error, and his probable error should be much
smaller. Fortunately his values all agree beautifully with the chemical
values, so that the decision as to his actual probable error may be left
open.

22.4146+0.0008 = 3)

SILVER

As has already been stated, the best atomic weight of silver is at the
present time directly dependent on that of nitrogen. A good summary of
the situation is given by Moles and Clavera.’® Of the many methods for
obtaining the value of Ag, it is now generally agreed that the most accurate

.1 Written accidentally as +0.00004, but stated correctly as 3 parts in 105, and given in
their summary correctly as +0.00042.
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is that based on the reduction of AgNO; to Ag. Since O =16.000, by defini-
tion, the sole error in Ag is due to that in N. Moreover, the proportional
error in Ag is due to that in NOs, and is therefore only about one-fourth the
probable proportional error in N. The ratio AgNO;/Ag can be determined
with great precision. Clarke!® gives all the values of this ratio, up to 1920,
the weighted average being 1.57479. Of these the most accurate, by far,
is that by Richards and Forbes,'? yielding also 1.57479. Since then a very
elaborate investigation has been carried out by Hénigschmidt, Zintl and
Thile,?® which gives again exactly the same ratio. This latter work is dis-
cussed by Baxter® and by the German committee,® and is specifically ac-
cepted by the latter. There are twenty published values of the ratio which
show a maximum range of only two parts in 150,000, and the probable
error in the final mean is only about one part in 105, Hence, except for
unsuspected systematic errors, the error in this ratio is quite negligible.
With our adopted value of N, and with the above value of the ratio AgNO;/
Ag=r, one has

=107.8799+0.0014

A NO; 62.0083+0.0008
&=, 17 0.57479

If we had used the Moles!* or the Moles and Clavera' value N =14.0082,
we would have obtained Ag=107.8797. These results seem to indicate very
strongly that the best value of Ag=107.880. Honigschmidt, Zintl and
Thile?® use the rounded figure N =14.008, and therefore get Ag=107.879.

The atomic weight of silver can be obtained in many other ways. Clarke*
lists 43 different methods, yielding a final weighted average of 107.8804.
It seems however clear at the present time that only the AgNO;/Ag ratio
results need be considered, with a final real error in Ag due merely to that
in N. It has already been pointed out that the error assumed here for N
is larger than that assumed by others. It therefore does not seem unreasona-
ble?* to adopt

Ag=107.880+0.001

In order that the true result for Ag should be 0.001 more or less than this,
N must be respectively 14.0089 or 14.0078.

IopINE

The atomic weight of iodine enters into the discussion of the value of
the Faraday, in section J, and is therefore considered here. As in the case
of silver, the atomic weight of iodine may be obtained in various different

18 F. W. Clarke, reference 3, page 98.

19 T, W. Richards and G. S. Forbes, J. Am. Chem. Soc. 29, 808 (1907) and Zeits. f. anorg.
Chem. 55, 34 (1907).

20 Hnigschmid, E. Zintl and P. Thilo, Zeits. f. anorg. allgem. Chem 163, 65 (1927).

21 F. W. Clarke, reference 3, page 116.

2a O, Hénigschmid and R. Sachtleben, Zeits. f. anorg. allgem. Chem. 178, 1 (1929),
have very recently been able to get a precise determination of silver in terms of oxygen, from
the reduction of Ba (ClOy); and subsequent titration with silver, yielding finally Ag=107.880 +
0.001.
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ways. Clarke® lists eight methods, with a mean result of 126.926. This re-
sult will, however, bear closer scrutiny. Of the eight methods, the most
accurate is the direct determination of the I/Ag ratio, assuming the atomic
weight of silver as known. All of the experimental results for this ratio are
listed by Clarke.” There seems to be no more recent work on the subject.
Among the values of this ratio, that obtained by Baxter,? in 1910, is the
most reliable. His value of I/Ag is 1.176603, with an apparent probable
error (from 13 determinations) of only 3 parts in 10%. Clarke, following his
usual custom, lists all determinations of this ratio. Now the four earlier
results are all approximately 1.1753, while the later results run much higher.
It therefore seems evident that these earlier results are vitiated by some sys-
tematic error. They are however quite self consistent, and so by Clarke’s
method are given a high weighting. Clarke’s final weighted average is
1.176454. With the four earlier results eliminated, I obtain a new weighted
average of 1.176549, in much closer agreement with Baxter’s 1910 result.
This revised ratio, combined with Ag=107.880, gives 1=126.926, while
Baxter’s result gives 126.932. Using the revised average value for the I/Ag
ratio with Clarke’s results'® for the other seven methods, I obtain a final
weighted average of 1=126.932, in place of Clarke’s value 126.926 pre-
viously quoted, and in exact agreement with Baxter’s result. The Inter-
national atomic weight committee,® in 1925, adopted I=126.932, based
entirely on Ag=107.880 and Baxter’s 1910 value of the I/Ag ratio. The
German committee still retains?* the older international value 126.92.
The above results seem to indicate quite definitely that 1=126.932, with a
proportional error only slightly in excess of that for Ag. Hence I conclude
1=126.932+0.002.

Among the experimental values of the ratio I/Ag, as listed by Clarke?
is that by Vinal and Bates,* from electrolysis. Their final value of the ratio
is® 1.176235, leading to 1=126.892. This appears to be a relatively in-
accurate determination of I, and is mentioned again in section J, in con-
nection with the value of the Faraday. In conclusion it is of interest to note
that Aston? gets 1=126.932, in exact agreement with our adopted value.

CARBON

The atomic weight of carbon can be determined directly from oxygen.
The final result of all such determinations, as obtained by Clarke, is
12.0000 4+ 0.00026. This result (written 12.000) was accepted in 1925 by
the International atomic weight committee,* and has since been used by
Baxter.® There are however a number of other methods for obtaining C.

2 F, W. Clarke, reference 3, p. 84.

2 G. P. Baxter, J. Am. Chem. Soc. 32, 1591 (1910).

20 G. W. Vinal and S. J. Bates, Bur. Standards, Bull. 10, 425 (1910).

% F. W. Clarke, reference 3, quotes 1.176260 (the reciprocal of 0.85015) while the true
Vinal and Bates' value of Ag/I is 0.85017.

22 The 1929 report, Berichte 62, 1 (1929), which has just appeared, gives 126.93. It also
gives Ag=107.880 in place of the older 107.88, and H =1.0078, in place of the older 1.008.
The other atomic weights of interest here are unchanged in value.

2% . W. Clarke, reference 3, p. 47.
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Thirteen methods, including the above direct result, are listed by Clarke,?”
and- give a weighted mean of 12.0025+0.00019. Aston? finds C=12.0036,
with a limit of error 0.0012. It seems difficult to decide on the best chemi-
cal value. Clarke’s printed probable errors as usual seem far smaller than
the actual probable errors. We have now found that in the cases of H, He,
N, and I, Aston’s result agrees with the best chemical value well within
his limit of accuracy, and this, it seems to the writer, furnishes sufficient
justification for adopting a value of C which lies within Aston’s stated
limit of error. The mean of the final Clarke value (12.0025) and Aston’s
value (12.0036) is 12.003, and is adopted here. To be conservative, however,
I adopt as the probable error essentially the value given by Aston as his limit

of error, and write
C=12.003+0.001.

CALcium

The atomic weight of calcium, as well as that of carbon, is needed for
the evaluation of the grating space of calcite. The value of Ca which has
been universally accepted since 1911 is 40.07. When this value was re-
adopted in 1925 by the International committee, reference was made to
the work of Richards and Hénigschmid.?® These investigators precipitate
calcium chloride by a solution of silver, and determine the amount of
silver chloride produced. They assume Ag=107.88 and Cl1=235.457. These
are still the accepted atomic weights, that for Cl having recently been
verified by Honigschmid, Chan and Birckenbach.?®* The final result is
Ca=40.075, based on four determinations ranging from 40.085 to 40.070.
Clarke?®® gives as the final result from all methods, Ca=40.0902, but in ob-
taining this result he uses values for Cl, Br, and S not accepted at the present
time. It seems probable that the Richards and Hénigschmid value of 40.075
is the best and is adopted here. The probable error seems to be about 0.005,
and this figure is adopted, although it is admittedly very uncertain.

The atomic weights adopted in this section are then as follows:

H=1.00777+0.00002 1=126.93240.002
He=4.0022+0.0004 C=12.003+0.001
N=14,008340.0008 Ca=40.075+0.005

Ag=107.880+0.001

Section G

THE NORMAL ATMOSPHERE (4 ,)

The normal atmosphere is defined as the pressure exerted by a column
of mercury 76 cm high, of normal density (i.e., at 0°C, 4,), under normal

271 F. W, Clarke, reference 3, p. 120.

28 T, W. Richards and O. Hénigschmid, J. Am. Chem. Soc. 32, 1577 (1910) and 33, 28 (1911)

29 0. Honigschmid, S. B. Chan and L. Birckenbach, Zeits. f. anorg. allgem. Chem. 163,
315 (1927).

30 F, W. Clarke, reference 3, p. 144.
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gravity. The very small change in the density of mercury, with change of
pressure, permits an approximate value of 4, to be used, in determining
the normal density. The normal atmosphere has been used in connection
with certain preceding constants, but in such a way as not to involve its
value in absolute units, as discussed in the present section.

The ICT! gives 4,=1.013250X10% dyne-cm™2. This is based on the
definition? of A, as the pressure of a column of a liquid of density 13.5951
grams per cc, under normal gravity. The HP?® gives 4,=1.01325;X 108,
from the defining equation

An = Hn : Pn(Hg) : 5m(H2O) “8ny

in which H, =height of normal barometer =76.000 cm,
p.=normal specific gravity of Hg (at 0°C, 4.,), referred to air-free
water of maximum density,
6 »(H:0O) =maximum density of water,
g, =normal gravity*=980.665 cm-sec™2.
The ICT value of 4, follows directly from its definition, i.e.,
A,=76X13.5951X980.665=1.013250X10% dyne - cm™?
Henning and Jaeger,® using the density of mercury in the definition, in-
vestigate the most probable value of p,, and give a table of values taken
from Scheel and Blankenstein,® which leads to an average value 13.59546.
This table includes their own result of 13.59549. Henning and Jaeger then
adopt p,=13.5955. The value of 6,(H:O) is” 0.999973 g-.-cm=3. The
product p,(Hg) -6, (H.0)=D,=13.5955X0.999973=13.595133 g -cm™3,
agreeing with the ICT value of D, to the six significant figures given
by the ICT, but, with the use of seven figures, leading to 4,=1013253,
as given by the HP.2 Hence the discrepancy in the seventh significant figure
between the ICT and HP values of 4, seems to be due to carrying that
result to seven figures, while the factors entering into it are given only to six.
I shall adopt as the most probable value of p,, the figure calculated by
Scheel and Blankenstein,® viz. 13.59546. This should have a probable error
of a few units in the last digit. Then D,=13.595460.999973 =13.59509
g-cm™, and 4,=13.59509X76X980.665=1.013249 X 10% dyne-cm™—2. This
in turn should have a probable error of not more than two or three units
in the last digit. I adopt +0.000003.
The 45° atmosphere is obtained by the mere substitution of g4(980.616) &
for g,. Hence

A45=13.59509X76X980.616=(1.013199+0.000003) X 10® dyne-cm™2.

LICT. 1, 18.

2 ICT. 1, 34, definition of “Atmosphere.”

3 F.Henning and W. Jaeger, HP. 2, 495.

4 Adopted by the Fifth General Conference (1913), C. E. Guillaume, Trav. et Mem.
du Bur. int. 16, 114 (1913), See HP 2, 490.

5 HP. 2, 490 and 494-496.

8 K. Scheel and F. Blankenstein, Zeits. f. Physik 31, 202 (1925). Given also in Landolt-
Bérnstein, Sth ed. (E) p. 12.

7 See section C.

8 See section B.
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Note added in proof. It is evident from the preceding discussion that the
definition of the normal atmosphere given by N. E. Dorsey in the ICT?
is technically quite different from that given by Henning and Jaeger in the
HP.* In particular, the ICT definition makes the normal atmosphere a con-
ventional constant, with therefore no probable error. The writer had some
correspondence on this matter with Dr. Dorsey,leading to the conclusion that
the HP definition was correct. The adopted value is therefore based on this
HP definition, as given in the first sentence of this section.

The writer unfortunately overlooked a recent article by G. K. Burgess®
in which the “standard atmosphere” is defined as “the pressure due to a
column of mercury 760 mm high, having a mass of 13.5951 g-cm™?, subject to
a gravitational acceleration of 980.665 cm-sec™, and is equal to 1,013,250
dyne-cm~2.” It is thus a conventional constant, with no error. From direct
correspondence with Dr. Burgess I now learn that this definition was adopted
in 1927 by the International Commission of Weights and Measures. For-
tunately this new definition makes no change in either the magnitude or
error of any derived constant. It should be noted, in conclusion, that no
temperature is specified in the definition and that the word “mercury”
technically superfluous. This seems to the writer very objectionable, since
there is thus technically no simple method for reducing to standard atmos-
pheres an actual barometer reading at an actual observed temperature.
The HP definition, as used by the writer, therefore seems preferable, in spite
of international agreement to the contrary.

Section H

THE ABSOLUTE TEMPERATURE OF THE IcE-PoInT (7))

The generally accepted value of T, was, for many years, 273.09°K.
This is based on Berthelot’s analysis! of the data of Chappuis? giving 1/T%
=v=366208 X108, anid of Joule and Thomson for the porous plug experi-
ment. The final average value was y=36618 X10~7, or 7,=273.09°. The
ICT? gives T9y=273.1 as one of its basic constants, a value apparently taken
from Berthelot.

A most extensive series of observations on the volume and pressure
coefficients (o and () of certain gases has recently been carried out by
Henning and Heuse,* at the Reichsanstalt. The value of v was obtained
by two different methods.> In the first it is assumed that the volume and
pressure coefficients (a and (8)¢ are linear functions of the pressure, so that
their linear extrapolation to p =0, givesy (=a=fof an ideal gas=1/7y). In

9 G. K. Burgess, Bur. Standards, J. Research 1, 635 (1928).

1 D. Berthelot, Trav. et Mem. du Bur. inter. 13, 12 (1907).

2 P. Chappuis, ibid. vols 6 and 13.

3$ICT. 1, 17.

4(a) F. Hennmg Zeits. f. Physik 5, 264 (1921). (b) F. Henning and W. Heuse, ibid. 5,
285 (1921) (c) W. Heuse, ibid. 37,157 (192

5 See F. Henning; HP. 9, 527-529, for a descrlptlon of these methods.
S (ve/v0)p=1+aty, (Pt/PO) v=1 ‘H%v
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the second method it is assumed that the isothermal pv is a linear function
of p. Choosing one meter of Hg as the unit of pressure and making pv
unity for unit pressure, Henning and Heuse! denote the slope of the result-
ing pv curve by ;7. It can then be shown? that

v=B+3.73(a—B)+1.367poke- 1072

where « and # are the coefficients for pressure po, taken from the data of
the first method, and «, refers to the 0°C isothermal.

From the first method they obtained for the gases He, Hs and No,
v X 107=36600, 36607, and 36606 respectively, or T(=273.224° 273.172°
and 273.179°. The mean is v X 108=366043 or T,=273.190°+0.015.

From the second method they get for He (two determinations at slightly
different py), He and N, ¥ X107=36598, 36597, 36617, and 36604, respec-
tively. The mean is 36604.0 or 7,=273.194°. They conclude that the
best mean value of all the experiments is v X 107=36604. The reciprocal of
this is 70 =273.19°. They write it, however, as 273.20°.

In the later article* by Heuse, neon is used, and the above value of ¥
is confirmed. Because of a discrepancy between their value of kj, and that
obtained by other observers, using high pressures,® a discrepancy which
occurs in all the four gases used, Heuse writes the final probable error as
+0.03°, rather than the +0.01° which the above data seem to indicate.

The only other determination of 7 of comparable accuracy-is that by
Roebuck,'® using the Joule-Thomson effect in air.! This method requires
a knowledge of «, the volume coefficient, as well as of the Joule-Thomson
coefficient u. Roebuck measured u, but for « used older data, mainly by
Chappuis. Henning and Jaeger'? make note of this fact, and as the most
probable value of 7, they adopt merely the Henning and Heuse value
273.20° (which as previously noted should be 273.19°). Roebuck obtained
three results, 273.18°, 273.16° and 273.12°, with an average of 273.15°.
He gives a list of all previous determinations of 7%, and as the most probable
value chooses 273.17°, a value lying midway between his own result and that
of Henning and Heuse. He gives +0.02° as the probable error of the final
average result. The writer feels that these two results (273.15° by Roebuck,
and 273.19° by Henning and Heuse) are entitled to far more weight than
any of the older work, but that the second result is probably the most ac-
curate, being based on new determinations of . Hence I adopt T,=273.18
+0.03°K. The probable error is that given by Henning and Jaeger,'? and
is a very conservative estimate. Roebuck’s 40.02° may well be more
reasonable.

7 See footnote 3, section D, for the relation of «; to «, and the meaning of « (or «;) in terms
of an ideal gas.
4b) 8 F. Henning, Temperaturmessung, Braunschweig 1915, p. 68. See also references 5 and
9 See reference 4b for references.
10 J, R. Roebuck, Proc. Am. Acad. Arts Sci. 60, 537 (1925).
11 See HP. 9, 526-527, for the theory of this method.
12 HP. 2, 496.
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Section I

THE MECHANICAL EQUIVALENT oF HEAT (J) AND THE
ELEcTRICAL EQUIVALENT OF HEAT (J')

A detailed description of the methods which have been employed for
the evaluation of J, and a critical discussion of the results, is given by
Jaeger in the HP.! The value adopted by Henning and Jaeger in the HP?
is one cal;;=4.184, int. joule=4.186; abs. joule. The ICT value? is one
cal;;=4.185 abs. joule. The caly; is defined as the amount of thermal energy
required to heat one gram of pure water from 14.5° to 15.5°C.

In the original work by Joule, mechanical energy was turned directly
into thermal energy, and J was thus directly evaluated in abs. joules. In
most of the modern work, however, electrical energy is turned directly into
thermal energy, thus evaluating the electrical equivalent of heat (J’, meas-
ured in int. joules). Since the relation between the int. joule and the abs.
joule (107 ergs) is known with considerable precision,* the value of the
mechanical equivalent of heat may be obtained from the observed value of
the electrical equivalent.

The value of J adopted by the HP results from the work of Jaeger and
Steinwehr.® These investigators determined J’, for many different mean
temperatures® lying between 4.75°C and 49.60°C. This is undoubtedly
the most extensive and accurate work on J’ now available. They list 67
results in all. These results, plotted against temperature, are represented
as a parabolic function of £. The resulting least squares equation is

J'(int. joule) =4.2047,—1.768X 10-%-+2. 644, X 1052, (1)

where ¢ is measured from 0°C, on the thermodynamic scale. This equation
gives 4.18420 int. joules for the 15° calorie. The HP writes this 4.184.,.

On examining their data,thewriter finds that a parabola is not a sufficiently
complex function to give a proper representation of the observations. Their
residuals show pronounced trends, and unfortunately the largest trend is
just in the vicinity of 15°C, where it is most important that the curve give
a true most probable representation of the data. I have accordingly made a
separate investigation of the best curve for the representation of their
data. The detailed work will be presented in a separate paper, and only the
final result is quoted here. This is in the form of a fourth degree polynomial

J'=4.21040—2.78958 X 10~3+7.73723 X 1052
—8.52567X10773+4+3.7540 X 1094 (2)

1'W. Jaeger, HP. 9, 476-495.

2 HP. 2, 497.

3ICT. 1, 18.

4 See section E.

5 W. Jaeger and H.v. Steinwehr, Ann. Physik 64, 305 (1921). See also HP 9, 490-493.

6 The temperature change in the calorimeter was usually about 1.4°C, for the six minute
run used.
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This gives J’15=4.18327 int. joules, and is, I believe, the true most probable
value resulting from the work of Jaeger and Steinwehr. It differs by 9.3 X10~*
joules from their own deduced value.

These investigators consider with great care all of the possible errors,
both systematic and accidental. They conclude that the electrical standards
(normal resistance and normal Weston cell) together involve a possible
uncertainty of one or two parts in 10000, and that the calorimetric meas-
urements have the same accuracy. Jaeger, in quoting this work’” gives
two parts in 10000 (i.e., 8 X 10~ joules) as the probable error. I therefore
write Ji' =4.1833 +0.0008 int. joules as the revised Jaeger and Steinwehr
result. Using the results of section E, we have one int. joule=pg* abs.
joule, where pg?=1.00041+0.00010. Hence there results

J15=1(4.1833+0.0008)(1.00041+0.00010) =4.1850+0.0009 abs. joules.

The most accurate direct determination of the mechanical equivalent of
heat J is that resulting from the work of Laby and Hercus,® which has
appeared since the HP was compiled. These investigators use a continuous
flow calorimeter and make 23 determinations, grouped about six different
mean temperatures, the temperature change in the calorimeter being al-
ways about 5°C. These are then averaged to give six determinations at
different temperatures, weighted arbitrarily in rough accordance with the
self consistency of the individual results within each group. Their weight-
ing is certainly more logical in the present case than the strict least squares
weighting, and is accepted by thewriter. They then obtain a weighted average
of the six results, a corresponding weighted mean temperature, and the
probable error of the weighted average, by the usual least squares formula.
This result is J=4.1841+0.0001 abs. joules, at 16.67°C. This method of
averaging would be legitimate if the actual f(¢) representing J could be re-
placed by a straight line, over the range of temperature used, and if the
residuals of all the six points, for the true f(¢) curve, are such as to indicate
only the usual accidental errors.

A more precise method of averaging is first to adopt a curve for the vari-
ation of the specific heat of water with temperature. Such a curve is given
immediately by Eq. (2). If it is desired that the specific heat at 15°C be
unity, Eq. (2) is to be divided by 4.18327. Laby and Hercus, later in their
article, assume that Callendar’s revision of Barnes’' data for the specific
heat of water? gives the most reliable data, in terms of the thermodynamic
scale. This matter will be discussed by the writer in the separate paper to
which reference has been made, with the conclusion that the Jaeger and
Steinwehr results, because of the later date of the work, are the more re-
liable. Owver the limited temperature range now being discussed, the two
specific heat curves differ by almost negligible amounts.

" W. Jaeger, HP. 9, 493.

8 T, H. Laby and E. O. Hercus, Phil. Trans. A227, 63 (1927). See also T. H. Laby, Proc.
Phys. Soc. London 38, 169 (1926) for a critical review of all previous determinations of the
electrical equivalent of heat.

? See Landolt-Bornstein, Sth Ed. p. 1250, for all data on the specific heat of water. The
Callendar reference is Phil. Trans. A212, 1 (1912).
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Using Eq. (2) as a basis for a specific heat curve, I have reduced each
Laby and Hercus result to the 15° calorie, the six temperatures involved
being15.97, 15.88, 16.15, 16.74, 15.62, and 20.50, all in °C. It then appears
that the reduced result for the 20.50°C temperature is quite inconsistent
with the other five.!® Thus the first five results yield a weighted average of
4.18526 abs. joules for the 15° cal., with a weighted mean residual of 3.0 X 10~
joules, while the residual of the sixth determination is 22.1 X104, If the
Callendar specific heat curve is used, the corresponding results are 4.18545,
3.1X107%, and 31.5X 1074, respectively. An observation with a residual
7 to 10 times the mean residual should be rejected, according to any of the
well known criteria of rejection. Hence I obtain from the Laby and Hercus
data, J;5;=4.18526 abs. joules.

Laby and Hercus discuss the accuracy of the various elements entering
into the determination of their result, but make no estimate of the probable
error in the final result, due to the various possible sources of error. The
only error given (40.0001) is, as noted, merely a least squares error, due
to accidental variations of the individual results. Jaeger and Steinwehr, on
the other hand, make no specific allowance for such an error, and their stated
error (4+0.0008) seems to be their estimate of the various possible errors,
constant and otherwise, affecting the result. Both these investigations
have been carried out during the past decade, with every possible experi-
mental refinement, and it is natural to assume that the final probable error
in the two cases cannot be greatly different. Of the 67 individual determina-
tions by Jaeger and Steinwehr, six show very large residuals, and have been
rejected by the writer, in deriving Eq. (2). The remaining 61 have a mean
residual, in terms of Eq. (2), of 11.7 X 10 joules. In the case of Laby and
Hercus, the four individual determinations made at the relatively high
mean temperature, 20.50°C, have been rejected as a group, because of their
very large mean residual. The remaining 19 determinations forming the
other five groups have an average residual of 8.8 X 10~ joules, assuming the
weighted result 4.18526 abs. joules for the 15° calorie, and the specific heat
curve given by Eq. (2). The purely accidental errors, as anticipated, are
thus roughly the same for the two investigations, and in lieu of more definite
evidence it seems best to assume that the tofal probable error in both cases is
the same as that given by Jaeger and Steinwehr for their own work. Hence
I take as the final Laby and Hercus result, Ji;=4.1853 4 0.0008 abs. joules.

This is to be averaged with the reduced value 4.1850 +0.0009 abs. joules,
resulting from the work of Jaeger and Steinwehr. Because of the greater
accuracy claimed by Laby and Hercus, I adopt for the mean value 4.1852,
rather than 4.1851. The probable error of the mean can however be taken
slightly less than that of either determination. My final assumed result is

one 15° calorie (Jy5) =4.1852+0.0006 abs. joules.

10 This is most probably due to some constant error at the 20.5° temperature. All other
observations, it should be noted, are close to 16°C mean temperature.
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Using now the assumed value pg*=1.00041+0.00010, we obtain
one 15° calorie (J35") =4.183540.0007 int. joules,

as a slightly more accurate value than the direct determination by Jaeger
and Steinwehr of 4.1833 £+ 0.0008 int. joules.
Finally, using Eq. (2) one obtains J2p/J15=0.999058. Hence one 20°
calorie
J0=4.18134+0.0006 abs. joules

J20'=4.1796 £0.0007 int. joules.

In conclusion it should be noted that the revised Jaeger and Steinwehr
result, Ji;’ =4.1833 +0.0008 int. joules, when taken with the revised Laby and
Hercus result, J;5=4.1853+0.0008 abs. joules, gives directly one int. joule
=1.00048 4+-0.00027 abs. joules. Thisis an entirely independent method for
evaluating pg?, but the probable error is about three times as large as that
assumed for the more direct method discussed in section E. The good agree-
ment of the two values, 1.00041 and 1.00048, is therefore probably more or
less accidental. Attention should be directed also to an investigation by W.
Groth!! of the electrical and mechanical equivalents of heat. He found that
within the limits of error of his work (one part in two thousand) the two
quantities were identical. This agrees with our adopted values, the differ-
ence between J and J’ being slightly less than one part in two thousand.

Section J

TuE FARADAY (F)

The Faraday is defined as the quantity of electricity carried in electrol
ysis by one gram equivalent of any element. It is believed to be a general
constant of nature, and its true value is accordingly independent of experi-
mental conditions. According to modern ideas, each univalent ion carries
a charge numerically equal to the electronic charge e. The Avogadro number
N, gives the number of atoms (or molecules) in one gram equivalent. Hence
one may define the Faraday (F) more precisely as equal to the product Ny-e.
The fact that, as a matter of experimental practise, F can be most accurately
evaluated from electrolysis, and Ny is then evaluated from F and e, does
not affect the validity of the definition.

The electrochemical equivalent of a substance is the mass associated
with unit electric charge. Like the Faraday, its true value is independent
of experimental conditions, and depends only on the adopted unit of charge.
On the other hand, as noted in section E, we can measure only the amount of
a substance deposited or released in an electrolytic cell, per unit current
per second. This amount is affected by experimental conditions, and may
or may not equal the electrochemical equivalent. The Faraday is then, by
definition, the ratio of the gram equivalent of a substance to its electro-

' W. Groth, Ann. Physik 82, 1156 (1927).
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chemical equivalent. It seems to be almost universal practise to ignore the
distinction between mass deposited per unit charge, and electrochemical
equivalent. This practise has resulted in considerable confusion in the
literature regarding the best value of certain electrochemical equivalents,
and the resulting best value of the Faraday.

In spite of the above remarks, it is convenient to assume, for the moment,
that the amount of silver deposited per unit charge in a silver voltameter,
operating under the conditions laid down in defining the international am-
pere, is in fact the electrochemical equivalent of silver (E4.). With this as-
sumption, the value of Faraday follows immediately from constants already
adopted. The gram equivalent of silver, or of any univalent substance, is
numerically equal to its atomic weight in grams (Ag). The amount of silver
deposited in electrolysis by one international coulomb is, by definition,!
0.00111800 grams. Hence

1

F=——w——— int. coul. (1)
0.00111800

Using our adopted value? of Ag, we have
107.88040.001

F=———————=96494+11 int. coul. (2)
0.00111800

With our adopted value! of ¢, there results

(107.88040.001)(0.99995 +0.0005)
B 0.00111800

r

=96489+ 5 abs. coul. (3)

If one uses ¢ =1, as adopted by the HP?, one gets F=96494 int. coul. or abs.
coul. This is the actual value of the Faraday adopted by Henning and Jaeger3
If one uses ¢=0.99993, as adopted by the ICT,* there results

, (107.880)(0.99993)
T 0.00111800

The ICT, however, adopts® F=965004+10 abs. coul., which with its
adopted value of ¢, leads to® F=96507 int. coul. This last value, if
substituted in Eq. (1) obviously requires Ag=107.893, in direct contra-
diction to the known facts. The value F=96500+10 abs. coul. is evidently
taken from the work of Vinal and Bates,” and in order to understand the
seeming discrepancy, it is necessary to examine in some detail this last
quoted investigation, and to employ the distinction just mentioned be-
tween mass carried in electrolysis and mass deposited.

=96487 abs. coul. (4)

1 See section E.

2 See section F.

3 Henning and Jaeger, HP 2 502.

4ICT. 1, 18.

5ICT. 1, 17.

6 ICT. 1, 26.

7 G. W. Vinal and S. J. Bates, Bur. Standards, Bull. 10, 425 (1914). See page 447.
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Vinal and Bates were investigating the iodine-voltameter, and connected
such a voltameter in series with a silver voltameter. They then measured
the ratio of the mass of silver to the mass of iodine, deposited (or liberated)
by the same current. If these masses truly represent the amounts of silver
and of iodine required to carry a specified quantity of electricity, their ratio
should, by Faraday’s law, equal the ratio of the atomic weights of silver
and iodine. The final measured value of this ratio (Ag/I) was 0.85017,
with an apparent probable error of a few parts in 10°. This result has been
mentioned in section F. Combined with Ag=107.880, it gives I =126.892,
while as discussed in section F, the best chemical value of the ratio leads to
1=126.932+0.002. The Vinal and Bates value is thus in disagreement with
the chemical value by about 32 parts per 105, and this discrepancy must be
due to the fact that in the silver voltameter, or in the iodine voltameter, or
in both, the measured amount of deposit does not represent the true mass
carried by a given electric charge.

This question has been investigated in great detail, in the case of the
silver voltameter. In particular, the possibility of inclusions in the silver
deposit has been studied by various persons.® The final conclusion is that
there is likely to be about 0.004 percent of inclusions in the silver deposit
of a silver voltameter, operated under the specifications used in defining the
int. amp. Applying this correction to the Vinal and Bates results, one gets
Ag/1=0.850136, accounting for only 3.4 parts per 105, out of the total dis-
crepancy of 32 parts. It would therefore appear that, barring unsuspected
sources of error inthe silver voltameter,such as secondary chemical reactions,
etc., the main cause of the above discrepancy lies in the iodine voltameter.

Vinal and Bates, working before the above facts as to inclusions were
known, did not draw this conclusion. Their actual procedure was to use Eq.
(1) to get F=96494 int. coul. from the silver voltameter, and then to use I =
126.92 (the accepted value at that time), and a calculated electrochemical
equivalent of iodine (£y), to get a new value F=96514 int. coul. from the
iodine voltameter. Their value of E;(0.00131502) was obtained by dividing
0.00111800 by their measured ratio 0.85017.  They then take the arithmetic
average of 96494 and 96514, or 96504, as the best value of the Faraday in
int. coul. They state, finally, that the value of ¢ (as we have defined it in
section E) is uncertain, but that 96500 4 10 abs. coul. can be considered the
best working value of F. This assumed value in abs. coul. evidently corre-
sponds to ¢ =0.99996, in close agreement with our accepted value.

Their adoption of 96504 int. coul. as the mean value of the Faraday nec-
essarily implies the following conclusions. From Eq. (1), with F=96504
int. coul., and Ag=107.880, we obtain E;,=0.00111790 grams. Hence one
must conclude that although 0.00111800 grams of silver are deposited
apparently by one int. coul., and serve as its definition, the true electro-
chemical equivalent is only 0.00111790 grams per int. coul. Using the Vinal

8 E. B. Rosa, G. W. Vinal, and A. S. McDaniel, Bur. Standards, Bull. 10, 475 (1914);
G. W. Vinal and W. M. Bouvard, ibid 13, 147 (1916).
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and Bates value of I, we have 96504 =126.92/E;. Hence E;=0.00131518,
as compared to 0.00131502 deduced by them, from the amount of iodine
liberated. We must thus conclude that in this case, the amount of the sub-
stance (iodine) liberated is Jess than that required to carry the charge. This
may very well be the case, due to the loss of liberated iodine, and the matter
is discussed by Vinal and Bates. There does not, however, seem at the pres-
ent time to be experimental justification for dividing up the discrepancy
practically equally between the silver and iodine voltameters. The only
known fact appears to be the observed 0.004 percent inclusion in the silver
deposits, and the proper correction for this would give 0.00111796 grams
as the true Ej, per int. coul., or, with our adopted value of ¢, 0.00111801
g as the true E,, per abs. coul. These values in turn lead to F=96498 int.
coul., or 96493 abs. coul.

In a later paper Vinal and Bouvard® do in fact discard entirely the iodine
value, and by this same method deduce F=96494 abs. coul., based on ¢g=
0.99996. Theyhowever again recommend 96500 abs.coul.as thebest rounded
value. On the other hand, Henning and Jaeger® make no distinction be-
tween mass carried and mass deposited, writing Ea, =0.00111800 g per int.
coul., with no indicated error. It seems evident from the work of Vinal and
Bouvard that there are inclusions in the silver deposit, tending to make E,,
too large by 4 X 1078 g, and F too small by 4 coulombs. On the other hand,
there may well be small parasitic chemical reactions in the silver voltameter,
tending to decrease the value of E,, and hence to increase the value of F.
Under the circumstances it seems to the writer best to adopt the values of F
given in Egs. (2) and (3),but to assign to E,, a probable error of 5 X 10~8¢, i.e.,
an error slightly greater than the measured effect of the inclusions. Then

107.88040.001
" (1.11800 4 0.00005) X 10~*

H

=96494+ 35 int. coul. (5)

and
(107.880+0.001)(0.99995 + 0. 00005)

(1.11800+0.00005) X 103
Eq. (5) thus assumes £, =(1.11800 4 0.00005) X 10~ ¢ per int. coul., while

Eq. (6) assumes E,, = (1.11805+0.00007) X10~® g per abs. coul. Finally
from Eq. (6),

=96489+ 7 abs. coul. (6)

F=9648.94+0.7 abs. em units
Fc=(9648.9+0.7)(2.99796 + 0.00004) X 1010
=(2.892704+0.00021) X 104 abs. es units.

Section K
Tue ELEcTRONIC CHARGE (e)

A relatively large number of important constants have values which de-
pend directly on the value assigned to the electronic charge e, and in most
cases the final probable error in these values is due mainly to the error in e.
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From- this standpoint the electronic charge may be considered the most
important of the general physical constants, and it is therefore highly desir-
able that its value should be determined in many different ways, and by
many different persons. Until veryrecently the situation hasbeen the reverse
of this. Only one really precision method for the evaluation of e was known,
and the precision work, by this method, had been carried out by a single in-
dividual. Under such circumstances it is very fortunate that the investi-
gations referred to represent a masterpiece of experimental technique, in
which every possible cause of error, systematic or accidental, was studied in
minute detail, and after many years of work reduced to a final minimum.
Millikan’s investigations on this subject, by the oil-drop method, extend
over more than a decade, the latest value of e having been published! in 1917.
Because of the great importance of this resulting value of e, and because of
higher values which have recently been obtained, the writer has investi-
gated the matter in more than usual detail.

Millikan found that if the viscosity of air is taken as constant, in Stokes’
law of fall, the apparent value of e is a function of the radius of the drop and
of the pressure of the air. The true value of e can be found by assuming a
modification of Stokes’ law. If the pressure p or the radius of the drop a
is sufhciently large, the final equation for determining the true e is

e228=c*3(14b/ pa) (1)

where e; is the apparent value, ¢ the true value, and b an undetermined con-
stant. This equation can be written

3’=ao+alx (2)
when
le/pa, y=612/3, ao=62/3, a1=¢23.p.

Hence if e,*® is plotted against 1/pa, the resulting graph should be linear,
and its intercept on the y axis gives /3, leading to the desired quantity.

Millikan found that for values of 1/pa less than about 700 (p in cm
Hg, @ in cm), the resulting graph was definitely linear. For larger values
of 1/pa, the slope of the graph increases to a new larger value, and then
remains constant. The complete law for the fall of such drops in air was
discussed? in 1923. Only that part of the curve corresponding to 1/pa less
than 700 was used in precise detevminations of e. The 1917 value of ¢ was
deduced from data on 25 oil-drops, each drop giving one point on the graph.
The 25 observations form a beautifully consistent set of data,® lying on a
linear graph. The least squares solution, as calculated by the writer, gives
for the intercept ¢o=(61.11140.032) X10~8. The plotted data are however

! R. A. Millikan, Phil. Mag. (6) 34, 1 (1917). For previous work by Millikan see Phys.Rev.
29, 60 (1909), Phil. Mag. 19, 209 (1910), Phys. Rev. 32, 349 (1911), Phys. Rev. 2; 109 (1913),
and Physik. Zeits. 14, 796 (1913). See also R. A. Millikan “The Electron,” Chap. V.

2 R, A. Millikan, Phys. Rev. 22, 1 (1923).

3 See R. A. Millikan, Phil. Mag (6) 34, 12 (1917), or “The Electron” page 121 (first edition).
for the plot of these data.



38 RAYMOND T. BIRGE

based on the 1913 value (0.0001824) for the viscosity of air. The value of
ao(=e?3) is directly proportional to the assumed viscosity. With the im-
proved 1917 value of the viscosity (0.00018227), ¢y becomes 61.0676 X 1078,
Hence e=a¢2=(4.7721 +0.0038) X 10710 ¢s units.

Millikan stars 18 of the points, these having been taken when the con-
ditions of observation were considered as perfect as possible. These 18
drops give a,=61.121+0.038 (or ¢=4.7733+0.0045, based on the 1917
viscosity). As a matter of fact, these 18 drops deviate from the best straight
line more than do the other 7. Thus the standard deviation (mean error
of a single observation) of the 25 drops is 0.121X10~8, while for the 18
drops it is 0.123X1078, each referred to its own least squares solution.
The drops of smaller radius fall more slowly, and therefore can be more
accurately timed. This might make them appear more reliable. Actually
they are less reliable, due presumably to other errors. Thus 13 smaller
drops whose radii lie between 12.17 and 15.92X10~% cm, have a standard
deviation of 0.134, when considered as part of the 25 drops. This is de-
finitely larger than the 0.121 average of the entire 25. A least squares
solution, based on these 13 drops alone gives a,=61.1434+0.050, and a
standard deviation of 0.132.. This standard deviation is so close to 0.134
that we can conclude that the 13 drops fit on the graph of the entire 25
essentially as well as on a graph designed to fit them alone. On the other
hand, the 12 larger drops (for which ¢ =16.57 to 23.40X 1075 cm) give for
the least squares solution, a,=61.078 +£0.045, and a standard deviation
0.117. They are thus definitely more reliable than the smaller drops, as
judged by their mutual consistency. The resulting value of e, reduced to
the 1917 viscosity, is 4.775940.0058 for the 13 smaller drops, and 4.7683
+0.0053 for the larger drops. The weighted mean is 4.7718, in essential
agreement with the value (4.7721) obtained from all 25 drops. This of
course is just what we should expect.

The average deviation from the average of the two results (for small
and large drops respectively) is 0.0038, and this is much less than the pro-
bable error of either. This is an analytic proof of the contention made by
Millikan in 1913 and again in 1917, that the true value of e (intercept of the
graph) is not.in any way a function of the radius of the drop. The above
results also indicate that the larger drops are, if anything, more reliable
than the smaller. If the larger are given a higher weight, the resulting
value of e would lie between 4.772 and 4.768, according to the weighting.
It has been noted already that the 18 starred drops are slightly less consis-
tent than the others. The final conclusion is then that there is no particular
reason for giving different weights to the different drops, and that any
such weighting, if made, would slightly lower e. I therefore take 4.772
X 10710 gs units as the best result of the 1917 work.

In 1913 data on 58 drops were obtained. These show practically the
same consistency as the 25 drops just considered, the standard deviation
being 0.135. Millikan actually used, in evaluating e, the 23 drops (out of
58) of smallest 1/pa. These 23 are more consistent, having a standard
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deviation of only 0.092. They lead to ¢=4.7665+0.0058, based on the
1917 viscosity, while the entire 58 drops give 4.7703 +0.0022. This last
figure might appear to be a more reliable value of e than that obtained in
1917, but such a conclusion ignores the errors due to other factors. In
1913 Millikan estimated that there were four such factors, each with a maxi-
mum uncertainty of 0.1 percent. In 1917 he estimated that there remained
only two such factors of any consequence, each with a maximum of un-
certainty of only 0.05 percent. His final estimate, in 1917, for the maximum
of uncertainty in e is 0.1 percent, based mainly on these two factors. The
above calculations show, however, that there is a probable error of 0.08
percent (£0.0038) in the 1917 value of ¢, due merely to accidental errors.
The final maximum uncertainty is therefore several times as large. 1 esti-
mate that the final probable error is about 0.1 percent, and write e=(4.772
+0.005) X 10710 g5 units.

This value is now subject to two further corrections. The equation for
e (or e;) can be put in the form

e=k/F (3)

where F is the electric field intensity, and k represents a number of factors,
all mechanical in nature. F is measured directly in int. volts per cm, using a
calibrated Weston cell. In reducing the result to es units per cm, Millikan
used ¢=2.999X 10 cm-sec!, and made no distinction between inter-
national and absolute electrical units. Since the time of his work it has been
shown definitely that the int. volt differs from the abs. volt by an appreciable
amount, as discussed in section E. We have also now the new value, ¢
=2.99796. Both the resulting corrections tend to lower e. That due to the
change in ¢ is of course obvious. It lowers e in just the proportion 2.99796/
2.999, and so changes ¢ from 4.772 to 4.770. The other change, due to the
electrical units, seems to have been overlooked by everyone. Thus Henning
and Jaeger, in the HPY state explicitly that Millikan used international
volts, and that the resulting e is therefore in int. coulombs. The difference
between int. coul. and abs. coul. being negligible, they therefore make no
correction. This conclusion is however incorrect. Because the electrical
potential forces the charged drops against the viscosity of air, instead of
against electrical resistance, one has only electric voltage coming into the
calculations, as shown by Eq. (3). It has been shown in section E that one
int. volt=1.00046 +0.00005 abs. volts. Hence the true value of F, in abs.
volts, is larger and the true value of ¢, in abs. es units is smaller, by just
this ratio. Hence, finally, the value of ¢ is reduced® from 4.770 to 4.768.
Since the error in each of these corrections is negligible, the final result is

4 HP 2, 503.

5 These two corrections to ¢, due to the change in ¢, and to the electrical units, were first
noted by the writer in Sept. 1928, and transmitted immediately to Professor Millikan who
agreed with them. They were later presented to the Am. Phys. Soc., at the Pasadena meeting
in December 1928 (Phys. Rev. 33, 265, 1929).
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e=(4.768 +0.005) X 10710 gbs. es units. This, the writer believes, is the most
reliable value that can be deduced from Millikan’s oil-drop work.

Very recently there has been devised an entirely different method for
measuring e, which bids fair to become more accurate than the oil-drop
method. The two results by this method which have already been published
are, however, apparently less reliable than the oil-drop value. This new
method measures directly the Avogadro number N,, and from this and the
known value of the Faraday, ¢ immediately follows.® The method utilizes
the absolute wave-lengths of x-ray lines, determined with an ordinary ruled
grating at grazing incidence, as compared with the wave-lengths deter-
mined with a crystal grating. The latter values are given by

A=2d-sin 6 (4)

where d is the grating space. It has been pointed out by Siegbahn,” and by
Compton, Beets and DeFoe,? that in order to obtain the frue x-ray wave-
length A, it is necessary to use an effective grating space d in Eq. (4). Such
an effective grating space automatically corrects for the actual refraction
of the x-rays at the crystal surface. For first order spectra, and for the
high frequencies of ordinary x-rays, the #rue grating space d’ is connected
with the effective space d by the relation

d=d'(1—0.000135). (5)

In evaluating N, Siegbahn uses for the calcite grating space d=3.02904
X10=% cm, at 18°C. This is a more or less arbitrary value, based on the
assumption that d for rock-salt, at 18°C, is 2.81400X 108 cm. Weshall
denote by d’1s this 3.02904 value, and by A’ the resulting wave-length.

Hence
)\”—_—Zdlg” sin a. (6)

)\/xll=d13/dlg” (7)

in which X is the true wave-length of an x-ray, as determined with a ruled
grating, ds the effective grating space of calcite at 18°C, N\’ the supposed
true wave-length resulting from measurements with a calcite crystal with
d'1s as an assumed effective grating space at 18°C. Thus knowing N/,
d"'13, and N, one calculates dis. Then from Eq. (5) we obtain d'is, the true
grating space of calcite. The temperature coefficient of calcite? is 1.04 X 10-5
and the value of d’y is accordingly 2.08 X 10~ larger. This 20° value of d’
is given theoretically by the following formula,

|t ®

in which #=1/2, M =molecular weight of calcite (CaCOj;), p=density of
calcite at 20° C, ¢(B8) =a geometrical constant depending on the crystal

From Eqs. (4) and (6)

8 See section J.

7 M. Siegbahn, “Spectroscopy of X-rays” p. 26.

8 A. H. Compton, H. N. Beets, and O. K. DeFoe, Phys. Rev. 25, 625 (1925).
9 M. Siegbahn, reference 7, p. 85.
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structure of calcite, Ny,=Avogadro’s number= F/e where F=Faraday.
Thus knowing d’s we can calculate N, and finally e.

The best value of M follows directly from the atomic weights adopted
in section F. It is

M=3%X16.000+(12.003+0.001)4(40.075+0.005) =100.078+0.005 (9)

The best value of p is 2.7102£0.0004 g-cm™3, at 20°C, as determined by
DeFoe and Compton.l® The best value of ¢(8) is 1.09630 +0.00007 at 20°C,
as determined by Beets.!! The adopted value of the Farady'¥ is (2.89270
+0.00020) X 10 abs. es units. Solving Eq. (8) for ¢, and making the above
substitutions, we have

Fo(8)(d)
e=p—i<6—;;—)—=(1.7176i0.0003)><1013~(dgo’)ﬁ. (10)
n

The two published determinations of dis, based on absolute x-ray wave-
lengths, are by Bicklin,®* and Wadlund.!* Using Eq. (7), Wadlund obtains
1.5373+0.0008A for the Ka; line of Cu, and this, combined with Siegbahn’s
values of d7;5 and N, gives dis=(3.0290+0.0016) X10-8 cm. The corres-
ponding value of dy is then 3.02906, and the true grating space d’y is by
Eq. (5), (3.0295+0.0016) X10~8 cm. This value!® is to be substituted in
Eq. (10). It gives e=(1.7176+0.0003) X 10'3(3.0295 +0.0016)3 X 10—
= (4.775740.0076) X 10719 abs. es units. Wadlund, using other values of
the auxiliary constants, obtained 4.77440.007. This is not asaccurate
as the oil-drop value, and Professor A. H. Compton writes me that later
work indicates that Wadlund’s published probable error may be a slight
underestimate.

It is very difficult to appraise the work of Bicklin,' especially as regards
its accuracy. He gets 8.333 +0.008A for the absolute wave-length of the
Al Ka line. Comparing this with an unpublished result by A.Larsson
(8.3229 +£0.0008A), obtained with a crystal, Bicklin obtains d;s=3.033
+0.003A. This gives d’5=3.03347A, and by Eq. (10), e=(4.794+0.015)
X 1071% abs. es units. This value is 0.55 percent higher than the oil-drop
result. His own result, with different values of the auxiliary constants,
is 4.793 £0.015.

Before discussing further the absolute value, a word is necessary as to
the errors. Throughout his paper, Bicklin calculates the mean error of a
single observation (i.e., the standard deviation) and seems to consider

10 0. K. DeFoe and A. H. Compton, Phys. Rev. 25, 618 (1925).

1L H. N. Beets, Phys. Rev. 25, 621 (1925).

12 See section J.

13 E. Bicklin “Absolute Wellenlingenbestimmungen der Rontgenstrahlen,” Uppsala Dis-
sertation, 1928.

1% A. P. R. Wadlund, Proc. Nat. Acad. Sci. 14, 588 (1928), and Phys. Rev. 32, 841 (1928).

% Both Wadlund and Bicklin omit these corrections and thus use their observed d;s
as the value of d’j.
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that this is the limit of error of the resulting average value. For the 15 to
25 observations he is normally handling, such a standard deviation is several
times the probable error of the average. It therefore does represent more
nearly a reasonable limit of error than a probable error. On the other hand,
in getting the final error in N, he takes the square root of the sum of the
squares of the individual limits of error. As stated in the Intrcduction
one should in this case take the straight sum, to get the limit of error of
the result. This sum is 0.17 percent for the error in \, instead of his 0.10 per-
cent, and so 0.51 percentine. This gives e=4.794 +0.024, where the limit
of error is indicated. The probable error is then not over +0.006, so that
the apparent accuracy is practically that of Millikan’s work. In fact Bick-
lin compares the average residual of his observations with that of Millikan,
and finds his definitely smaller, and also finds his residuals better distributed
on the Gaussian error curve. In terms of the resulting value of e, his average
residual is 0.12 percent, with 29 observations. The residuals for the oil-
drop method, used by Bicklin, are not based on a least squares solution of
the data, but the average residual which he gives, 0.25 percent, is essentially
the same as that given by the correct least squares solution of the 25 drops
used by Millikan in 1917. His final error is however slightly larger than that
for the oil-drop work, due to the fact that his other sources of error are
larger. He rightly concludes that as far as internal consistency is con-
cerned, the x-ray method is more accurate, and the problem thus becomes
that of eliminating the various sources of systematic error.

In the preliminary work on this paper, I calculated each general con-
stant quite independent of the relations between the various constants.
The values so obtained were found to be unexpectedly satisfactory, when
certain known or proposed relations were tested. In the subsequent exten-
sive revisions, these relations have been kept in mind, and a deliberate
attempt has been made to retain a system of constants which should be as
satisfactory as possible. The most important of the relations between
general constants is that given by the Rydberg constant, which according
to Bohr is a simple function of e, e/m, h, and c. This relation is discussed
in section O, in connection with the finally adopted values of these four
constants. In anticipation of this discussion it may be said that any value
of e as high as that of Bicklin could hardly be reconciled with the observed
values of & and e/m.

The investigation by Bicklin constitutes a pioneer piece of work, and
it is quite likely, as such, to contain various unsuspected sources of sys-
tematic error. If the three values of e (4.768 from Millikan’s oil-drop work,
4.776 by Wadlund, and 4.794 by Bicklin) are weighted according to the
apparent probable error of each, the weighted average will still be sus-
piciously high. The very thorough examination made by the writer of the
actual value of e and its probable error, as deduced from oil-drop work, was
carried out mainly because of the inconsistency between that value and the
result published by Bicklin. In view of all the above circumstances, the
writer has finally decided to reject the Biicklin value, and to use the weighted
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mean of the remaining two values, viz. 4.768 +0.005 and 4.77640.008.
This mean is 4.770, and as usual I adopt as its probable error the smaller
of the two individual errors, rather than that given by least squares, since
the latter is rather meaningless when only two observations are concerned.
The finally adopted value is then

e=(4.7704+0.005) X 10710 abs. es units.

In conclusion attention should be called to the fact that a more accurate
determination of ¢, from x-ray measurements, is now under way, and it is
to be hoped that this work will clear up the present somewhat uncertain
situation. This is discussed further in Section O.

Section L

THE SPECIFIC CHARGE OF THE -ELECTRON (¢/m)

A very complete and critical account of all work on the measurement
of e/m, up to 1919, has been given by Bestelmeyer.! His final conclusion is
that e/m=(1.76 £0.02) X107 em units. A more recent discussion of all
experimental results is that by Gerlach,? who concludes that e/m=1.766
X107 em units. The question is discussed very briefly by Henning and Jae-
ger,® who however adopt Gerlach’s value. The ICT* adopts 1.769 40.003.

There is an enormous amount of experimental material on this sub-
ject. The latest work, however, so greatly exceeds in accuracy all the
preceding that it seems legitimate to confine the discussion to these new
results. The value of e/m has been obtained with considerable accuracy by
three distinct methods, (¢) deflection of electrons in electric and magnetic
fields, (b) Zeeman effect, (¢) fine structure and relative wave-lengths of H
and He* spectral lines. It may be obtained also from Bohr's theoretical
expression for the Rydberg constant, R,, provided one assumes the value
of e and of k. This last method is, however, not as accurate as the preced-
ing. A fifth, and very interesting method for obtaining e/m involves the
Compton shift. This also is as yet a relatively inaccurate method. The last
two methods are discussed in sections O and M respectively.

The latest and most accurate work with method (a) is that by Wolf.5
In this work a new method, first suggested and employed by Busch,’ is
carried out with every possible experimental refinement. The essential
point in the method is the employment of a longitudinal instead of a trans-
verse magnetic field. The electron velocity is calculated from the potential
fall. Wolf makes an exhaustive study of the possible errors, and finally

! Marx, Handbuch d. Radiologie V, pp. 1-82 (1919).
2 HP. 22, 41-82 (1926).

3 HP. 2, 504-506.

¢ICT. 1,17.

5 F. Wolf, Ann. Physik 83, 849 (1927).

8 H. Busch, Physik. Zeits. 23, 438 (1922).
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concludes that e/m = (1.7679 +0.0018) X 107 em units. So far as the writer
can judge, the assumed probable error is entirely justified.

The actual magnitude, 1.7679, should however be corrected for the
difference between the int. and abs. electrical units (section E). The equa-
tion used by Wolf is

e 8wV

P
= cos? « 1)

where V is the potential drop and H the magnetic field. Wolf does not
state whether he corrected from int. to abs. units, but presumably, in con-
formity with current practise, he did not. If V' and H’ denote the measured
quantities in int. units, then

e 8w2(V'pq)

= cos? o (2)
m (H'¢)%

Hence his value of ¢/m should be multiplied by p/g and this, by section E,
is 1.00056. Therefore his true result is (1.7689+0.0018) X107 abs. em
units.

In the determination of e/m by means of the Zeeman effect, the basic
equation is

e 4mwcAN
LT 3)

m  nH'g\?
where e¢/m is in em units,
c¢=velocity of light in vacuum, in cm-sec™?,
n=index of refraction of the medium (air) in which AN and N\ are
measured,
H’ =intensity of the magnetic field in int. gauss,
H'q=intensity of the magnetic field in abs. gauss,

A\ =separation of either component of a normal triplet of wave-
length N from the undisturbed position of the line, AN and N being measured
in cm.

By section E, ¢=0.99995+0.00005, and can be taken as unity without
appreciable error.

The most recent and accurate work, using this method, is that by
Babcock.” In his investigation a large number of spectral lines (116 in all)
were employed. Nearly all of them showed a complex Zeeman effect pattern.
For determining e/m it was necessary to assume the Runge denominator of
each line. In cases where this is small, it was known with certainty. In
some cases it was large and rather uncertain. Babcock states,® “Itwill
be observed, however, that these large denominators play a minor part
in the present investigation.” In spite of this remark, his work has been

7 H. D. Babcock, Astrophys. J. 58, 149 (1923).
8 H. D. Babcock, reference 7, p. 155.
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criticised,? and Gerlach, in his final table!® of values of e¢/m, omits Babcock’s
result. It appears to the writer that the criticism is unjustified, and at his
suggestion, Babcock has recently recalculated his data, omitting all Zeeman
patterns which are in any way doubtful.

His previously published result, assuming ¢=2.9986X10', is e/m
=(1.761+0.001) X 107 em units, in which the error quoted is merely the
observational error, as determined by least squares. Babcock estimates
his probable uncertainty, when all sources of error are considered, as not
more than two or three parts in 1800. This it seems to the writer is a very
conservative estimate. The new result,!* based on 48 lines for which the
Zeeman pattern is definitely established, and using ¢=2.99796X10'°, is
1.7606 +0.0012, where again the error is purely observational. The differ-
ence between the two values is just that produced by the change in the value
of ¢. Hence the omission of the lines of doubtful Zeeman pattern makes no
change in the result. Babcock considers that his latest value is correct to
about one part in a thousand. I therefore write e¢/m=(1.761+0.002)
X107 abs. em units as the best result from Zeeman effect.

The latest and most accurate work on e/m, using method (c), is that
by Houston.? This method is based on the Bohr-Sommerfeld model of an
atom consisting of a positive nucleus and one encircling electron (moving in
elliptic or circular orbits). As examples of such an atom we have hydrogen
(H) and singly ionized helium (He"). In order to determine e/m, we must
evaluate the so-called Rydberg constant for hydrogen (Ry) and for ionized
helium (Rg.). As will appear presently, practically the entire error in e/m
is merely the error in the difference Ry, — Ru.

The pioneer work on e/m, by this method, is that performed by Pas-
chen.® He obtained Ry=109677.69+0.06 cm™, Rpy,=109722.14+0.04
cm~!, This gives e/m=1.768 +0.003, using his own values and assumed
errors for Ry and Ry, but the present accepted values and errors for H,
He, and F. The writer,' using better data and more recent theoretical deve-
lopments, later calculated Ry =109677.74+0.2. The argument in this last
quoted paper shows that Paschen’s estimate of error in the case of Ry is
much too small, and the entire question, in its relation to the value of e/m
was later discussed.’® In this last article it was concluded that the method
here considered gives e/m =1.758 +0.009. The recent investigation by Hous-
ton, which assumes the latest theoretical developments, is so much more
accurate than the work just mentioned that it alone will be considered in
detail.

? Back-Lande “Zeemaneffekt” p. 140 (1925).

10 HP, 22, 81.

1L H, D. Babcock, Phys Rev. 33, 268A (1929) and Astrophys. J. 69, 43 (1929).

2 W. V. Houston, Phys. Rev. 30, 608 (1927). For his earlier work see Astrophys. J.
64, 81 (1926), and Phys. Rev. 29, 749 (1927) (abstract 7).

13 K. Paschen, Ann. Physik (4) 50, 901 (1916).

4 R. T. Birge, Phys. Rev. 17, 589 (1921).
15 R. T. Birge, Nature 111, 287 (1923).
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From Bohr’s theory we have

R

Ry=—-""— 4 Ryo=——— 5
) @ T A m/m )

where R, =Rydberg constant corresponding to a nucleus of infinite mass,
m =mass of electron,
my=mass of nucleus of hydrogen atom
my.=mass of nucleus of helium atom.
For convenience, m, mpy, and my, are here measured in atomic weight
units. From Egs. (4) and (5) we obtain

m (Ry o~ Ry) (mg o+m) ’ ©)

mu Ry (mH e ’mH)

Houston!? writes and uses (#y,+m) incorrectly as (mu.—m). Inorder to
use directly the atomic weights, H and He, we write mg=H—m, my.
= He—2m, thus obtaining

_ (Ruyo.—Rp)(He—m)(H —m)
- Ry(He— H —m)

(N

The value of m, as used on the right side of the equation, need not be known

with great accuracy. The equation-then gives an accurate value of m, where

now m must be expressed numerically as the “atomic weight” of an electron.
From the definition of the Faraday we have!®

_F FRy(He—H —m) ®)
" m (Rue— Ry)(He—m)(H—m)

e
m

Houston’s new experimental results are
Ry,=109722.4034+0.004 cm™!, Rp=109677.759+0.008 cm™ -

The stated errors are purely least squares probable errors. Houston remarks
that he believes the relative values of Ry, and Ry are correct to 0.02, al-
though the absolute error in each may be about 0.05,!” and this seems to the
writer a reasonable estimate of error.

The actual value of Ry is obtained from the strong member of the long
wave-length component of Hea, assuming in accordance with the new
wave-mechanics that this component consists of one strong and two weak

16 In Eq. (8), e/m = F/m, the two m's are not numerically the same. e/m is merely a ratio,
but if e =electronic charge, m =electronic mass in grams. In F/m, m is necessarily the atomic
weight of an electron, as used in Eq. (7).

17 The absolute values of Rg and R, depend on the absolute wave-lengths of the various
spectral lines involved. These in turn depend on the wave-length of the red Cd line measured
in cm. The wave-length of this line at 15°C, 4., is 6438.4696 1.A., defining the International
Angstrom unit (I.A.). An L.A. unit is intended to be 10~8 cm, and the probable error is of the
order of one part in several million.
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members.’® Houston’s microphotometric curve of the long wave-length
component shows no asymmetry. The calculated .correction to be made to
the observed center of gravity in order to obtain the strong member is only
0.0056 cm™!. This amounts to 0.04 cm™'in Ry. In a similar way the correc-
tion in the case of Hf corresponds to 0.013 cm™ in Ry. For Ry, there is no
such correction, since the desired lines are measured directly. Houston's
values of Ry, resulting from Ha and H, differ by only 0.021 cm™!. This
tends to confirm the applied corrections, and it seems to the writer that
these corrections must be essentially right, and that the resulting (Ru,
— Rpy) can scarcely contain unknown errors of more than 0.01 or 0.02 cm™!
I therefore assume

Ry .~ Ry=44.644+0.020 9)

where the second doubtful figure is carried mainly in order to get a more
exact comparison of the various possible results.

Houston used m=5.4X10"* He=4.0001, H=1.0077, F=96470 abs.
coulombs, and obtained e/m = (1.7606+0.0010) X 107 em units. Using his
constants and the correct formula (Eq. 8) the result is 1.7603. The error
in his formula is therefore almost negligible. The values of the necessary
auxiliary constants adopted in this paper are

H=1,00777+0.00002 He=4.0022 +0.0004
F=96489 + 7 abs. coul. =9648.9 + 0.7 abs. em units.
m is given by Eq. (8) as

F 9648.9

m=—= =5.48X10-". 10
e/m 1.761X107 (10)

The entire probable error in e/m, due to errors in all factors of Eq. (8),
aside from (Ry.—Rpg), is less than 0.01 percent and so is entirely negligible
compared to the error in (Ry.— Ry).1®
Using Houston’s value of Ry, and of Ry.—Ryn (Eq. 9), together with
the values of H, He, etc., just quoted, we obtain from Eq. (8) ¢/m = (1.7608
+0.0008) X107 abs. em units. This value of ¢/m thus agrees with that
obtained by Babcock. Summarizing the results we find
e/m=1.769 +0.002 from deflection experiments,
=1.761+0.002 from Zeeman effect,
=1.761+0.001 from H and He spectra.

The discrepancy between the first result and the last two is four times
the probable error of the first, and according to the Gaussian error curve,
there is only one chance in 143 of this occurring. Hence the discrepancy
seems to be real.

18 See W. V. Houston, reference 12.
19 It may be noted that in Eq. (8), He enters in such a manner that the combined propor-
tional error in (He —H —m)/(He —m) is only one-third the proportional error in He itself.
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Now the last two results constitute measurements of e/m for electrons
inside of an atom, based upon the quantum theory of atomic structure.
The first result is the measurement of e/m for electrons in free space. The
figures thus point to the startling conclusion that the e/m of an electron is
less when it is ¢mside an atom than when it is outside. If this conclusion
seems unacceptable, then it would appear that there is some general error
in the equations of the quantum theory of atomic structure. The final
alternative is that there is some unknown general error in all the deflection
experiments. No matter what may be the cause of the discrepancy, the
very fact of its existence appears to the writer to be of profound significance.
Under the circumstances, it seems to be necessary to assume two different
values of e/m, one to be used in all cases involving atomic structure, and the
other involving free electrons. These may be called the spectroscopic and the
deflection values of ¢/m. Hence

e/m (spectroscopic) =(1.761+0.001) X 107 abs. em units per gram,

e/m (deflection) = (1.769 1 0.002) X 107 abs. em units per gram.
Using the adopted value of ¢,

(e/m)c (spectroscopic) = (5.279 +0.003) X 10'7 abs. es units per gram,

(e/m)c (deflection) =(5.303 £+ 0.006) X 10'7 abs. es units per gram.

Section M

THE PraNcKk CONSTANT #.

The Planck constant % has been evaluated in a number of different ways.
There is however some difference of opinion as to the relative accuracy of the
different results, and some of the results are more or less incompatible. Hence
a satisfactory evaluation of this fundamental constant is rather difficult.

The first attempt to obtain a most probable value of #, from the results of
all seven methods by which it may be evaluated, was made by the writer! in
1919, The value found was (6.5543 +0.0025) X 10~2?7 erg - sec, the stated error
being merely the least squares probable error, deduced by the usual formula
from the seven separate values, each weighted according to its probable error.
This error has been criticized by Ladenburg? as far too small. It is however
not the final error since, as clearly stated in my article, one must add to it an
error somewhat greater than the proportional error in e. This latter quantity
occurs with some positive power (unity to two) in every known method for
obtaining %. This makes the total probable error more nearly +0.01. The
writer's 1919 evaluation of % has been adopted by the ICT, but the probable
error is accidentally given as +0.001, instead of +0.01.

In 1920 Ladenburg? wrote a detailed article on the evaluation of %, inwhich
several of the writer’s conclusions were criticized. His own result in that art-
icle was 6.54+0.01. In 1925 Ladenburg wrote another article on this sub-
ject, for the HP.* He then concludes that &= 6.547,which value he rounds off

1 R, T. Birge, Phys. Rev. 14, 361 (1919).

2 R. Ladenburg, Jahr. Radioakt. und Elektronik 17, 93 (1920).
3 HP 23, 279-306.
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to 6.55+0.01. Henning and Jaeger* also briefly discuss the most probable
value of %, and adopt 6.55, although no reference is made to Ladenburg’s ar-
ticle in another volume. Both of Ladenburg’s articles give rather full details
of the theory and the experimental facts concerning the various methods
for determining 4.

Let us now consider briefly the present evidence on this subject. In ob-
taining the average value I shall exclude the Lewis and Adam’s theory of
ultimate rational units, and will discuss that separately in section O. This
leaves six methods for evaluating 4.

(a) Bohr's Formula for the Rydberg Constant. Bohr's theory of the hydro-
gen atom leads to the equation

272ed
R, =——— (1)
hicte/m

in which R, is the Rydberg constant for infinite mass, expressed as usual in
cm™! units, while e, the electronic charge, is as usual in abs. es units, and e/m
in abs. em units. R, is derived® from the observed Ry by the equation

R =R 1+m =Ryl 1 r (2)
- ”( ;,;)- ”( +<?/ZRH_—75>'

From section L. we have

9648.9
Rw=(109677.759)<1+ >
1.761 X 107(1.00722)
=109677.759-+59.665=109737.424 cm~!. (3)

The probable error® in R, is about 0.06 cm~!. In absolute units we have
R, -c=1(3.28988 +0.00004) X 10"sec~!. Substituting in Eq. (1) the spectro-
scopic value of e/m, since we are here dealing with spectroscopic data, and the
values found for e, ¢, and R, we obtain
[ 27%(4.770 X 10710)5 :|1/3
109737.42(2.99796 X 1019)2(1.761 X 107)

=0.54713 X107 erg - sec. (4)

With the adopted probable errors of R, e, ¢, and e¢/m, the resulting pro-
bable error in % is 0.011. It should be noticed that the errors in ¢, R, and e/m,
as affecting %, are negligible in comparison with the error in e. The result
of this method is then

h=(6.54740.011) X 10?7 erg - sec. (5)

1HP 2,510-511.

5 Using Eqgs. (4) and (8) of section L.

¢ From section L the probable error in the absolute value of Ry is 0.05 cm™ and that in the
second term of Eq. (3) is 0.03 cm™1L.
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It may be noted, in passing, that after adopting a weighted mean value of
h, Eq. (1) becomes a method for calculating, indirectly, the value of R..
On the other hand, using the directly determined value of R, Eq. (1) be-
comes a means for calculating ¢/m. Both these calculations are given in
Table b of section N.

(b) ITonization Potentials. In 1919 the author had available thirteen values
of ionization and resonance potentials, each of which could be used to cal-
culate k. Since then many more such potentials have been obtained. The
probable error in each is rather large, because of a lack of rigidly controlled
conditions. We now, however, have one really accurate determination of an
ionization potential, obtained with electrons of carefully controlled velocity.
This is Lawrence’ determination” of the ionization potential of Hg. His final
conclusion is that this value equals 10.40 +0.02 int. volts. The value 10.399 +
0.007 used by the writer® in a brief discussion of 7 and other constants, was
a preliminary result,?® in which the stated error was merely that deduced from
internal consistency of the data.

The equation for obtaining % is

hv=eV (6)

in which all quantities are in absolute units. The observed potential (V') is
is always in int. volts. The potential in abs. es units is then

V=pqg V' 108/c (7)

p and ¢ having been evaluated in section E. The spectral frequency » (in sec™)
is obtained always from the wave-length A, in cm. Hence »’(cm™) =1/\, and
v=c/N. Eq. (6) may then be written

h pgV’10%8  pqV/A108

’

(8)

e c c?

It seems to be quite customary to assume that V.= V’yy/300, and to
write Eq. (8) as!?

h/e=V'\/300c 9)

This is equivalent to assuming!! ¢ =3 X 10'° cm-sec™, and introduces an error
of 0.07 percent. An error of this size is by no means negligible, in the case of
the work discussed in this section, and the writer should like to emphasize,
this fact. Scarcely any one uses ¢ =3 X 10! when reducing \ to », and thus in
the same equation (8), it is quite customary to use two different values of c.

7 E. O. Lawrence, Phys. Rev. 28,947 (1926).
8 R. T. Birge, Science 64, 180 (1926).
9 E. O. Lawrence, Phys. Rev. 27, 809 (1926), abstract 49.
10 See for instance Ladenburg, HP. 23, 290. On the other hand, Henning and Jaeger
(HP. 2, 511) give the correct reduction from volts to abs. es units.
11 More accurately, it assumes ¢’ (the ratio of the es to em units) =3X10'. As noted in
section A, the best value of ¢/(=2.9979) agrees with the slightly more accurate value of ¢
(=2.99796), and one can therefore safely assume ¢’ =c in all calculations.
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The “term” of Hg corresponding to the ordinary ionization potential is'?
84178.5 cm~!. Hence in Eq. (8) we have
(1.00046)(10.40)108(4.770X 10-19)

(2.99796X101%)2 84178.5 =(6.560£0.019) X107 (10)

in which the probable error in V' is 0.2 percent, as already stated, and in e,
0.1 percent. The errors of the other factors are negligibly small.

(c) X-ray Continuous Spectrum. This method, like the preceding, uses
Eq. (8), X\ being measured by means of a calcite crystal, i.e.,

A=2d sin ¢ 11)

where d is the grating space of calcite, and 6 the angle at which the given
wave-length shows constructive interference. Substituting Eq. (11) in Eq.
(8), we obtain

h/e=pq 2d(V’ sin §)108/c* (12)

In 1919 the most accurate work by this method was that of Blake and
Duane.’® Since then Duane, Palmer and Yeh!* have carried out a still more
accurate investigation, and their result was used by the writer® in his 1926
article. The resulting value of %, as given by these investigators, is (6.556 +
0.009) X 10727, Another result for which equal accuracy is claimed, is that by
Wagner.'s The full details of this latter investigation have not been published,
but Ladenburg!® gives a complete list of Wagner’s experimental results.
Wagner’s own result, based on ¢=3X10'?, is 6.526+0.01. Ladenburg, using
Eq. (9), with ¢=2.9985X10'°, changes this to 6.529 +0.01.

Duane, Palmer and Yeh used a definitely known potential (in int. volts)
and measured the angle 9 of their ionization chamber at which the ionization
suddenly started (or stopped). This gives the critical ionization frequency
(or wave-length) corresponding to the given voltage. On the other hand,
Wagner used a known wave-length (or rather a series of known wave-lengths)
and varied the voltage for a given wave-length, until ionization suddenly
began (or ceased). As shown by Eq. (12), both methods involve a know-
ledge of the calcite grating space d. This important constant has been dis-
cussed in section K. In that section the absolute wave-lengths of rays were
used to evaluate d’, the true grating space, and d’ was then used with other
known constants to evaluate the electronic charge e. In the present section
we use the finally adopted value of ¢,(4.770 4 0.005) X 10719 abs. es units, with
these same constants, to evaluate d’. We therefore write Eq. (10) of section
K as

2 A. Fowler, Report on Line Series, p. 149.

13 F. C. Blake and W. Duane, Phys. Rev. 10, 624 (1917).

14 W, Duane, H. H. Palmer, and Chi-Sun Yeh, Proc. Nat. Acad. Sci. 7, 237 (1921).
18 E. Wagner, Physik. Zeits. 21, 621 (1920).

16 HP 23, 296.
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4.770 X 1010
* [:1.7176 X 1018
It should benoted that this value of d’y includes the result of the x-ray work,
since the value of e used in Eq. (13) is the weighted average obtained from
both oil-drop and x-ray work. Thus we might have used ¢=4.768 to get
avalue of d’ based on oil-drop work. A second value of ¢’ might then be ob-
tained from absolute x-ray measurements. The weighted average of these
two values of d’ would however be just the value given in Eq. (13), provided
we use the data.and probable errors indicated in section K.
Using Eq. (5) of section K, we obtain for the effective grating space of
calcite at 20°C, for the first order spectrum,

’

1/3
] =(3.02834+0.0010) X1078 cm. (13)

dao=(3.0279 +0.0010) X 10~5cm. (14)

This value is now to be substituted in Eq. (12), together with the direct ex-
perimental value of V’ sind. For the latter quantity Duane, Palmer and
Yeh!t found 2039.9 + 1 int. volts, the work being performed at a mean temper-
ature of about 20°C. Using the values of p, ¢, ¢, and ¢ already adopted, we
have

, (1.00046)2(3.0279 X 10-8)(2039.9) (4. 770 X 10-10)108
B ©(2.99796%1010)?
=6.5591X10"%" erg-sec.

(15)

with the assumed probable errors in the various factors, the final result is
h=1(6.55940.008) X 10~%" erg - sec. (16)

This error is due almost entirely to that in e. If the only method for deter-
mining d were by means of the density of calcite combined with the oil-drop
value of ¢, the error in ¢*3 should be used in connection with %, the error in &
due to ¢'/® being withdrawn. This has been pointed out by the writer.! The
error in % then becomes +0.009. With d determined in the twodifferent ways,
the error in % lies somewhere between 0.008 and 0.009.

The result found by Wagner' is now to be similarly revised. Using in Eq.
(12) 2.99796 for ¢, in place of 3.00, pg=1.00046 in place of unity,and e=
4.770 in place of 4.774, we obtain 6.532+0.010, in place of 6.526+0.010.
It is difficult to judge what revision is required in the values of A used by
Wagner, but any such change is probably rather small. We thus have, as the
two best values of &, from x-ray data, 6.559 +0.008 (or 0.009) and 6.532 +
0.010. The writer does not feel competent to discuss the probable causes for
this discrepancy, and these have not been discussed by others. The work of
Wagner has not yet been published in sufficient detail to allow an exam-
ination of possible sources of error. For this reason in adopting a weighted
average of the two results, I shall give only one-half as much weight to Wag-
ner. Since the two results differ by much more than the probable error of
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either, I use the regular least squares probable error of the resulting weighted
average. Hence, from x-ray data,s*

h=(6.550+0.009) X 102" erg - sec. (17)

(d) Photo-electric Effect. The most accurate evaluation of %, from photo-
electric work, is that by Lukirsky and Prilezaev.!” These investigators use a
somewhat different experimental technique from that employed earlier by
Millikan,'® and obtain a simple empirical relation for the ionization current
as a function of voltage. By means of this, the actual curve may be trans-
posed into a linear graph, making the extrapolation to zero current more cer-
tain. They also carry the readings very close to this zero point.

The equation for evaluating % is the same as that used in the previous
method, except that now the energy (P) to pull an electron out of the metal
is no longer negligible compared to Zv. Hence we write

Ve=hv—P. (18)

In order to eliminate P, it is customary to use light of varying frequencies,
measuring for each the critical voltage V at which ionization starts. V'is then
plotted against », and the resulting curves should be linear, with a slope

dV/dv="h/e. (19)
With V measured asV’ int. volts, and » as »' cm™!, we have

av  pal03dV’  h
. S (20)
dy c2dy’ e
Lukirsky and Prilezaev obtain a considerable number of such curves,
using the metals Al, Zn, Sn, Ni, Cd, Cu, and Pt. Six curves, three with
Zn, two with Al, and one with Ni, gave the most reliable results, and the
six resulting values of % are tabulated. Unfortunately these investigators
give no detailed data, and give no indication of the actual equation used for
evaluating . They show a small-sized plot of certain sample graphs. Their
final vqlue of his 6.543X 10727 erg-sec, the individual results being 6.539,
6.542, 6.540, 6.556,6.536, and 6.546. These give a probable error of only 0.035
percent, based on mutual consistency. Because of the lack of information as
to the source of these values, and especially because of the surprisingly
small value of the resulting error, it seems safer to assume about 0.1 percent
as the true probable error of the result, exclusive of the error in the auxiliary
factors.

162 H. Feder, Ann. d. Physik (5) 1, 494 (1929), working under E. Wagner, has just ob-
tained by this same method, % =6.547 +0.003, exclusive of the error in e. He explains Wagner's
low result as directly due to the large size of the slit width used. His own value, 6.547, is identi-
cal with the value of % finally adopted in this section, and is lowered only one part in 10¢ by
the use of my own values of all auxiliary constants.

7 P. Lukirsky and S. Prilezaev, Zeits. f. Physik 49, 236 (1928).

18 R, A. Millikan, Phys. Rev. 7, 355 (1916).



54 RAYMOND T. BIRGE

As just noted, there is no statement as to what values were used in Eq.
(20). It seems quite certain that they used e=4.774, in place of our 4.770.
Because of this, their final value of %4 should be lowered 0.0055X 10727, Itis
very probable that they used pg=1, instead of our 1.00046. Their % should
therefore be raised 0.0030X10-27. According to the value of ¢ used in each
factor of ¢? in Eq. (20), there are other possible increases in . My final con-
clusion is that the probable correction to their value of % lies between —0.0025
and +0.0020, and the possible correction between —0.0025 and --0.0064,
all in 10~?7 erg-sec units. Under the circumstances I adopt their original
value, but add a probable error of 0.003 X 10-27 (=0.05 percent) to cover this
uncertainty. The only other appreciable error is 0.1 percent due to e. The
final probable error (0.12+40.052+4-0.12)'/2 is then 0.15 percent. Hence

h=(6.54340.010) X 10~%" erg - sec. (21)

These investigators estimate their final error in % as 0.1 to 0.2 percent, in
agreement with my own assumption.

(e) Wien's Displacement Law and the Planck Equation. h may be deter-
mined from radiation constants in two different ways.'® The first is by means
of the constant c,, occuring in the Wien displacement law. This law is

Max I'=0c/B=4. (22)

where 3=4.9651 (root of the equation e=#+3/5—1=0). The radiation con-
stant ¢, occurs also in Planck’s black body radiation law in the form

ca=hc/k. (23)

where ¢ =velocity of light, 2(Boltzmann constant) = Ry/N,, R, (gas constant
per mole) =v,4,/Ty, and N, (Avogadro’s number) = Fc/e. Substituting the
values of v,, 4,, Ty, F and e previously adopted,

Ny=(6.0644 +0.0061) X 102 mole~. (24)
R,=(8.3136+0.0010) X 107 erg-deg—'-mole™. (25)
B =(1.3709 +0.0014) X 101 erg-deg~1. (26)

In 1919 the writer asked Coblentz, an expert in this field, what in his
opinion was then the best value of ¢;. Dr. Coblentz recommended 1.433
cm-deg. and this value was adopted. In a long critical review of the radia-
tion constants, published three years later, Coblentz? gives 1.432 as the
most probable value. No probable error is given but the four results, ob-
tained by four different investigators, for which 1.432 is the weighted
average, are 1.436, 1.430, 1.430, and 1.4318, the last being the final result of

19 A good description of methods for measuring the radiation constants is given by W. W.
Coblentz in Glazebrook’s “Dictionary of Applied Physics” IV, 541-565.

20 W, W. Coblentz, Bur. Standards, Bull. 17, 7 (1922). Much of the contents of this
article is given also by Coblentz in J. Optical Soc. Am. 5, 131 (1921). For a still later brief
report see Coblentz, ibid 8, 11 (1924).
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Coblentz’ own work in this field. Ladenburg,? in his HP article on %, gives
1.43240.006 as the most probable value. The separate results which he
used in obtaining this average are 1.425 to 1.441, 1.4295+0.007, 1.435,
1.4318, and 1.430. The chief error in all these results arises from the various
corrections which must be applied to the directly observed values. Thus
Coblentz’ original value?? of 1.4456 has become 1.4318 in his latest article,??
as a result of various additional corrections. Coblentz originally considered
his accuracy quite high, but in his later articles no definite estimate of the
probable error is given. The writer can however see no justification for
Ladenburg’s assumption of 0.006 as the probable error of the weighted mean
of all observations now available. Even if one grants that each separate
investigation may be in error by this amount, the average surely has a
smaller probable error, unless there are large, as yet unknown and unsus-
pected sources of constant error. I believe 0.003 is a much more reasonable
estimate of error. Both Coblentz and Ladenburg agree on the absolute
value. Hence I adopt

c2=1.4324+0.003 cm-deg. (27)
Substituting in Eq. (23), one obtains
h=(6.5484+0.015) X 10727 erg - sec. (28)

It may be noted, in passing, that the radiation constant ¢, occurs in the
general Boltzmann factor e~¢*7, (e=energy, 7 =absolute temperature) in
the form e~/ T =¢~/M wherev in cm™, or \ in cm, is the quantum equiva-
lent of € ergs.

(f) The Stefan-Boltzmann Law and the Planck Equation. The second

method for determining % by means of radiation constants is through the
Stefan-Boltzmann law

E=oT4=acT4/4 (29)
h is connected with ¢, using Planck’s law, by the relation
h=(275k*/15c%¢)1/3, (30)

k and ¢ having already been defined. Just as in the case of ¢,, there seems to
be a difference of opinion among experts in this field concerning the accuracy
with which ¢ may be measured. The best value, in 1919, according to the
published literature, was that obtained by Coblentz,? namely (5.722 4+ 0.012)
X107 erg-cm™2-deg™ - sec™!. In his more recent critical discussion of this
question, Coblentz?? gives a table of all available data, and concludes that
the most probable value lies between 5.72 and 5.73.

2 HP 23, 303.
2 W. W. Coblentz, Bur. Standards, Bull 10, 1-77 (1914).
% W. W. Coblentz, Proc. Nat. Acad. Sci. 3, 504 (1917). Full details were published later

in Bur. Standards, Bull. 15, 529 (1920). His earlier work is given in Bur. Standards, Bull. 12,
503 (1916).
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Since this 1922 article by:Coblentz, there have been two new determina-
tions of ¢, one by Hoffman,* using the method of Westphal,® giving o
=35.764+0.052, and the other by Kussman,* using the modified Angstrom
pyrheliometer. This latter method was used also by Coblentz® giving
5.722 as stated, by Gerlach?” giving 5.80, and by Kahanowicz?® giving 5.69
to 5.73 as corrected by Coblentz.2® Kussman obtained ¢=5.795 1+ one per-
cent. Ladenburg,? in his HP article on %, quotes merely the four results by
Gerlach,?” Hoffman,* Coblentz? and Kussman.? He adopts the unweighted
average of these four results, namely 5.77, and +0.06 as the probable error.
Here again Ladenburg assumes for the probable error of an average, a
value which he himself estimates to be the probable error of each separate
determination. He agrees with Gerlach?” in thinking that Coblentz’ true
error is more nearly 0.06 than 0.012. It isinteresting to note that the actual
experimental results of Kussman? and Coblentz? are in almost perfect
agreement, as shown by a plot made by Kussman. The discrepancy in their
final results is due entirely to the difference in the correction applied by
these two investigators for the lack of complete absorption of the receiver.
Michel and Kussman?® claim to prove that the correction Coblentz applied
is too small, thus accounting for his lower value of o.

In deciding upon the most probable value of ¢ there is a certain psycho-
logical factor involved. We know from the preceding discussion what is at
least approximately the most probable value of 2. Now the values of ¢
found by Kussman and by Hoffman, as well as Gerlach’s earlier value of
5.80, correspond to impossibly low values of % (6.528 to 6.514), while Cob-
lentz’ own result gives an % in essential agreement with that obtained by
more accurate methods.?! This fact tends, in itself, to indicate the correct-
ness of Coblentz’ correction for incomplete absorption of the receiver, as
opposed to the correction used by Kussman.

It appears to the writer that Coblentz’ estimated error for his own
work (5.72240.012) is too small, but that his final average of the work of
all investigators up to 1922 (5.72 to 5.73) should be more trustworthy than
any single determination. I shall therefore choose 5.725 as this average, and
0.02 for its probable error. This result is then to be averaged with the more
recent work by Hoffman and by Kussman, using the usual rule for weight-
ing. The final weighted average is

2t K. Hoffman, Zeits. f. Physik 14, 301 (1923).

% W. H. Westphal, Verhandl. deut. physik. Ges. 14, 987 (1912) and 15, 897 (1913).

2% A. Kussman, Zeits. f. Physik 25, 58 (1924).

2 W. Gerlach, Ann. Physik 50, 259 (1916) and Zeits. f. Physik 2, 76 (1920).

28 M. Kahanowicz, Nuovo Cimento (6) 13, 142 (1917).

29 HP 23, 304.

80 G. Michel and A. Kussman, Zeits. f. Physik 18, 263 (1923).

31 L. Strum, Zeits. f. Physik 51, 287 (1928), suggests that the difference between Laden-
burg’s assumed experimental ¢ =5.77, and the value (5.72) given by the Planck equation with
the value of % assumed as known, is real and is due to the fact that the Planck equation is not
strictly correct.
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0=(5.735+0.011) X107% erg-cm~2-deg~*-sec™'. (31)

Hence, in Eq. (29), a=4¢/c=(7.65240.015) X 10~ erg-cm— deg—*

Since this weighted average value of ¢ was calculated and adopted,
there has appeared a further determination of this quantity, by Hoare.3
He used a Callendar radio balance, and the advantage of the method is
that both the source and the receiver are essentially “black bodies,” so that
no corrections are necessary. This is very important for, as already noted,
the chief difference of opinion regarding the value of ¢ has hinged on the
correction to be applied for incomplete absorption. Hoare obtains ¢=15.735,
agreeing exactly with the value already adopted. He gives no estimate of
probable error, but lists 38 separate results, showing an average deviation
from the average of only 0.016. The inclusion of this new result obviously
leaves the average value unchanged, and I shall leave the probable error of
Eq. (31) unchanged. Objection might have been made to this adopted error
as too small, but such an objection can hardly hold in the face of Hoare’s
work, which seems to be the most accurate now available. This new work
also speaks against Strum’s assumption of an inadequacy of Planck’s for-

mula.
Using Eq. (31) in Eq (30) we obtain

h=(6.539+0.010) X 102" erg- sec. (32)

(g) Summary We have now obtained six determinations of %, as listed
in the table.

Table of values of h

Method h Power of ¢ involved
Rydberg constant 6.547+0.011 5/3
Ionization potentials 6.560+0.015 3/3
X-rays 6.550 +£0.009 4/3
Photo-electric 6.543+0.010 3/3
2 6.548 +£0.015 3/3
I 6.539+0.010 4/3

The weighted average of these six results is 7 =6.5466X10"%" erg-sec
The least squares probable error of the average, determined by the usual
formula, is +0.0017, an error definitely smaller than that deduced in 1919,
indicating an increased consistency of the data. It may seem surprising
that the probable error of each of the six results is so nearly the same.
This is due to the fact that in each case, the error listed is due chiefly to the
error in e. Each result involves ¢ to the power given in the last column of
the table. The weighted average power is 1.26. Hence the weighted average
value of % can be assumed to involve e to the power 1.26. The error in &
due to this is 1.26 X 107X 6.55=0.00825. Combining this with the above
least squares error in %, we have a total final error of 0.00842, essentially
no greater than the error due to e alone. Hence our final result is

% F, E. Hoare, Phil. Mag. 6, 828 (1928).



58 RAYMOND T. BIRGE

h=(6.547+0.008) X 10?7 erg - sec. (33)

It is of interest to note that this value of % is identical with Ladenburg’s
most recent estimate.? Thisidentity is however spurious, since Ladenburg
assumes e =4.774 X 10710, If this older value of ¢ had been used in the present
work, we should have obtained 2=6.5535, in practically exact agreement
with the writer’s 1919 value (6.5543).

Another potentially accurate method for evaluating % is given by the
Compton shift of x-ray lines. The theoretical equation for this is

AN = (h/mc)(1—cos ¢) (34)

where m is the mass of an electron, as deduced from the values of ¢ and ¢/m.
Since, however, k& varies in value with ¢, Eq. (34) can better be used to
evaluate e/m, as mentioned incidentally in section L. We can in fact write

AN=(h/e)(e/m) (1 —cos¢) (35)
in which e as usual is in es units, and e/m in em units. Then
e AN

m (h/e)(1—cos¢)

The most accurate work on this subject has been done by Sharp,®® who
obtains AX=(0.04825+0.00017) X108 cm, for (1 —cos ¢)=(1.984 +0.001).
With the adopted values of % and e, we have® & /e=(1.372540.0005) X 10~17
erg-sec-es”l. Substituting in Eq. (36) one finds e/m = (1.772 +0.006) X 107
abs. em units, the final error being due almost entirely to the error in AX.
It seems to the writer possibly significant that this value agrees better
with the deflection than with the spectroscopic value of ¢/m, for the theory
used in the derivation of Eq. (35) is essentially the collision theory of classi-
cal dynamics for free electrons. Greater accuracy is however needed before
any real conclusion can be drawn.%

Section N

TABLES

The various important constants and ratios which have been evaluated
in sections A to M are collected in Table a of this section. In the process
of evaluating these constants, it has been necessary to calculate certain
auxiliary constants, and also to use certain conventional quantities, such as
g5 and g,. All such quantities are listed in Table b, in the order in which
they appear in the preceding sections. The section in which each quantity

3 H, M. Sharp, Phys. Rev. 26, 691 (1925).

34 See footnote 2 of section N.

3 B, Davis and D. P. Mitchell, Phys. Rev. 32, 331 (1928), have recently found, for the
“undisplaced” line, a fine structure corresponding directly to the Raman effect observed with
ordinary light. The observed displacement of the lines is considerably less than the Compton
shift, and so the accuracy of Sharp’s work is presumably unaffected by this new phenomenon
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is discussed is indicated on the left side of the table. For convenience the
indirect calculation of R, R.-c, e/m, cs, ¢ and a are also included in this
table. All of these indirect calculations depend on the finally adopted value
of k, and so could not be obtained when the more directly observed value
was under consideration. It should be noted that in the case of Ry, Ry:¢
and e/m, the direct evaluation is the more accurate, while in the case of
¢s, 0 and a the indirect evaluation is the more accurate.

Table a. Principal Constants and Ratios

Section
Velocity of light................. ¢=(2.99796 +0.00004) X 101° cm-sec™®
B Gravitation constant. ........... G=(6.664+0.002) X1078 dyne:cm?-g~2
C Liter.......covvuiiiininan. =1000.027 +£0.001 cm?

D  Volume of perfect gas (0°C, 4,). .v, =(22.4141+0.0008) X 10? cm?*- mole™
R,=22.4135+0.0008 liter- mole™
Volume of perfect gas (0°C, A45).. R=22.4146 +0.0008 liter- mole™*
International ohm (=p abs-ohm)..p=1.00051 +0.00002
International ampere (=g abs-amp)g=0.99995 £0.00005
F  Atomic weights
O (oxygen)

oloRw]

16.0000 (definition) Ag (silver) =107.880+0.001

I

H (hydrogen) =1.00777 £0.00002 I (iodine) - 126.932 +£0.002

He (helium) =4.0022+0.0004 C (carbon) =12.003+0.001

N (nitrogen) =14.0083-+0.0008 Ca (calcium)=40.075+0.005
G Normal atmosphere............ A,=(1.013249 +£0.000003) X 10¢ dyne-cm™2
G 45° atmosphere................ A45=(1.013199 +0.000003) X 106 dyne:cm™2
H Ice point (absolute scale)........ To=273.18+0.03°K

I Mechanical equivalent of heat!.. Ji;; =4.1852 +0.0006 abs-joule-cal;s™*
Joo=4.1813 +£0.0006 abs-joule-caly™
I  Electrical equivalent of heat!... J’;; =4.1835+0.0007 int-joule-cal;s™!
J'3%=4.1796+0.0007 int-joule- calyp™
J  Faraday constant!............... F=96494 +5 int-coul- g-equiv™?!
=96489 + 7 abs-coul- g-equiv!
=9648.9+0.7 abs-em-unit- g-equiv*
Fc=(2.8927,40.0002) X10* abs-es-unit- g-equiv?
Electronic charge!............... e=(4.770+0.005) X 10710 abs-es-units
e/c=(1.59105+0.0016) X 10720 abs-em-units
L  Specific electronic charge (spectro-
SCOPIC) . oottt e/m=(1.76140.001) X107 abs-em-unit- g1
(e/m)c=(5.279410.003) X 10'7 abs-es-unit- g~
I.  Specific electronic charge (deflec-

tion)l. ... .. e/m=(1.769+0.002) X107 abs-em-unit- g1
(e/m)c=(5.3033+0.006) X 10'7 abs-es-unit-g™*
M Planck constant................. h=(6.547 £0.008) X 10727 erg- sec

In addition to certain constants listed in Table b, there are many others
which are functions of constants given in Tables a and b. A number of these
derived constants are collected in Table c. This table could be extended
almost indefinitely, but an attempt has been made to include the more
important or more frequently used constants. The process for obtaining
the correct probable error for many of the constants of Tables b and c is
sometimes involved. The general principle underlying it is stated and illus-
trated in footnote 2 of this section. The possible theoretical significance of
certain relations appearing in these tables is considered in section O.

1 In the expressions for all derived quantities in these tables, e is to be understood as in
abs-es-units, (e/m) as in abs-em-units, Ry, Ry, and R, as in cm™ units, and J as in joules per cal.
Fis in abs.-em-units except as noted in one constant of Table c.



60 RAYMOND T. BIRGE

Secti Table b. Additional Quantities Evaluated or Used in Connection with Table a.
ection
Ratio of es to em units (direct)...c’=(2.9971+0.0001) X 1010 cm!/2- sec™1/2- int Q~1/2
=(2.9979+0.0001) X101 cm-sec™?

A Ratio of es to em units (indirect) ¢’=¢=(2.99796 +0.00004) X 101 cm- sec™®
B Acceleration of gravity (45°)..... 245=980.616 cm-sec™
B Mean density of earth........... 6=5.5224+0.002 g-cm™
C  Maximum density of water...... 8, =0.999973 +0.000001 g-cm™
D Acceleration of gravity (normal)..g, =980.665 cm"sec™2
D  Density of oxygen gas (0°C, A4;) .. L=1.428965+0.000030 g-liter!
D Factor converting oxygen (0°C, A445)
to ideal gas.............. 1—a=1.000927 +0.000030
E International coulomb (=g¢ abs-
coul)... . ¢=0.99995 +0.00005
E International henry (=p abs-
henry)..................... »=1.00051+0.00002
E International volt (=pgabs-volt).pg=1.00046 +0.00005
E  International joule (=pg¢* abs-
joule)............./ foin, $¢>=1.00041+0.00010
E  International gauss (=¢ abs-gauss)
F  Density of nitrogen (0°C, A4)....L=1.25046+0.000045 g-liter™
F  Factor converting nitrogen (0°C, 4 45)
to ideal gas.............. 1—a=1.00043 +0.00002
G Specific gravity of Hg (0°C, 4,)
referred to air-free water at
maximum density........... pn=13.59546+0.00003
G Density of Hg (0°C, 4,)........ D, =13.59509 +0.00003 g-cm™
J  Electrochemical equivalent of X
silver. ................... EAg =(1.11800+0.00005) X 1073 g- int-coul™!
' =(1.11805+0.00007) X 1073 g- abs-coul™
K Arbitrary calcite grating space
18°C). .o dis’’ =3.02904 X 10 8cm
K Density of calcite (20°C)......... p=2.7102+0.0004 g-cm™
K Structural constant of calcite
(20°C) i ¢(8) =1.09630 +0.00007
L Rydberg constant for hydrogen'. . Ru=109677.759 £0.05 cm™
L  Rydberg constant for ionized
helium!............ PR Ryp,=109722.403 +£0.05 cm™!
L Wave-length of red Cd line
(15°C, 4n) e vvvvnn MCd) =6438.4696 1.A. (definition of I.A. unit)
M Rydberg constant for infinite
massl............oi . R,.=109737.424+0.06 cm™
R,c=(3.28988 +0.00004) X 10 sec™!
R (indirect)!2 = 2725 /h3c*(e/m)sp = 10974, + 170 cm™1
Roc (indirect)!2=(3.29031-0.005) XX 10% sec™*
M  e/m (spectroscopic, indirect)!?

e/m =2m%5/h3c2R = (1.7611,+0.0025) X107 abs-em-unit-g™!
True grating space of calcite
(20°C) . . oo d’9=(3.0283 +0.0010) X 1078 cm

2 The error is derived by the process used in section M, in getting the final probabl error
in & itself. This process is used in these tables for every constant which involves e in more than
one factor. It may be illustrated as follows. Let y(=1073) denote the proportional error in e,
and 2(=0.0017/6.547 =0.26 X 1073) the proportional error in % excluding the error in e. Since &
varies as e!-26, the final proportional error in 4 is [(1.26y)2 422 ]'/2=1,287 X 1073, corresponding to
the absolute error 0.00842 X 10727 erg - sec, already given in section M. Similarly, since k/e
varies as e%2, the proportional error in k/e is given by [(0.26y)2422]1/2=0.368 X1073. As a
third example consider ¢®/h3, as it occurs in the indirect evaluation of R, or ¢/m. This ratio
varies as e'-22, The proportional error in €8/h3 is then [(1.22y)2+(32)2]1/2=1.45X1073. A fourth
example is the indirect calculation of ¢2(=hc/k). Since k varies directly as e, k/k varies as €%,
Let # be the proportional error in &, exclusive of the error due to e, (#=1.27X107*). Then the
error in h/k is [(0.26y)2+224u2]1/2=3.89 X107, the error in ¢ being negligible. As a final ex-
ample consider the indirect calculation of ¢, in Table b, The error heré is [(0.22y)2+ (4u)2+
(32)2]1/2=9,6 X10™* In the case of some of the derived constants, notably the chemical constants
So and 4, of Table c, the calculation of the error is much more involved. This matter is men-
tioned again in Section O.
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M Effective grating space of calcite

(20°C) . e d=(3.027940.0010) X1078 cm
M Avogadro’s number?!, ..... No=Fc/e=(6.0643+0.006) X 102 mole™
M  Gas constant per mole. . Ry=v,4,/To=(8.3136,+0.0010) X 107 erg- deg™*- mole™*

Ry =Ry/(J15X107) =1.9864; +-0.0004 cal;;- deg™!- mole™?
Ry'"=Ry/(A.%X1000.027) = (8.20464+0.0009) X 102
liter- atmos- deg™!- mole™®
Ry =Ro/An=vn/To=82.048; +0.009 cm3-atmos- deg™* mole™*

M Boltzmann constant. ..... k=Ry/No=(1.3708,+0.0014) X107 erg- deg™
M  Second radiation constant (ex-

perimental)................. ¢;=1.432+0.003 cm- deg
M Second radiation constant (in-

direct)?............... co=hc/k=1.4317,40.0006 cm" deg
M Stefan-Boltzmann constant (ex-

perimental)................. 0=(5.735+0.011) X105 erg-cm™2-deg™-sec™*
M  Stefan-Boltzmann constant (in-

direct)?. .. .....0=27%*/15¢2h3 =(5.7135+0.006) X107 erg-cm™2-deg™:sec™*
M Radiation density constant (ex-

perimental)........... a=40/c=(7.6515+0.015) X 1071 erg-cm™ deg™
M Radiation density constant (in-

direct)?. ....... a=8m5k*/15¢3h3 = (7.623; £0.007) X107 erg-cm™-deg™

As in the case of the basic constants listed on page 17 of Vol. 1 of the
ICT, the constants of the present Table a are, for purposes of computation,
to be taken as exactly correct. That is, all additional digits in each constant
are to be ‘assumed as zero. The real probable error in each constant
is of course that indicated in the table, and each such constant has an ac-
cepted value carried only to the number of significant figures required
by the adopted probable error. On the other hand, the various derived
constants of Table ¢ (and the occasional derived constant appearing in
Tables a and b) are given with one and often two more digits than is required
by the probable error. Such additional digits are printed below the line,
and have been added in order that calculations of derived constants, when
made in different ways (often in terms of other derived constants) shall not
introduce any appreciable error. The ICT accomplishes the same result by
printing the logarithm, to seven digits, of each constant. This does not help
in calculations of derived constants, made with a calculating machine. If
such a machine is not available, the writer has found Crelle’s multiplication
tables more convenient than logarithms.

A brief explanation of certain points of nomenclature seems desirable.

(a) The nomenclature adopted in this paper is intended to conform with
current practise. On the other hand, an attempt has been made to avoid
duplication of the same symbol, especially in the same general field. Some
duplication seems unavoidable, examples of this being the use of H for
atomic weight of hydrogen and for the strength of a magnetic field, o for
the Stefan-Boltzmann radiation constant and also in the expression for the
rotational specific heat constant in Table c.

(b) In certain cases the writer has arbitrarily chosen a symbol for a
certain constant (such as vo=e-108/hc?, in Table c), when this constant is
important and is needed in other relations. Thus the ionization potential
of hydrogen equals Ry/v,, in Table c.

(c) e/m always indicates merely the ratio of charge to mass for an
electron, in em units, this being the simplest and most commonly used
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nomenclature. On the other hand e, standing alone, indicates electronic
charge in es units, and m, indicates electronic mass while m equals the
atomic weight of an electron. Hence a more logical but less convenient
nomenclature would have been (e/m;) es units, and possibly (e’/m,) em
units.

(d) In the fundamental quantum relation connecting spectral frequency
and energy, e=hv=e¢V, each side of the equation represents energy in ergs,
provided all quantities are in abs. c.g.s. units. v/V (=e/h) then measures
the frequency in sec™! associated with one abs. es unit of potential. It is
usually convenient to substitute the wave number (»’) or the wave-length
(\) in place of », and to substitute the number of abs. volts (V"') in place
of V. (V'=int. volts, throughout this paper). The values of the various
ratios, such as v’/ V" etc., are given in Table c.

(e) An electron which has fallen through one abs. volt of potential is
termed an abs. volt-electron, and its energy in ergs and speed in cm-sec™
are given in Table c. Corresponding to any zonization potential of an atom
or molecule in volts (V’’), there is an energy of ionization (¢V’’) which can
conveniently be measured in units equal to the energy of a volt-electron,
and is so designated. Thus an ionization potential of 10 volts corresponds
to an energy of ionization of 10 volt-electrons. Similarly it is convenient,
in the case of molecules, to speak of a dissociation potential of, let us say,
10 volts, and a corresponding energy of dissociation (heat of dissociation)
of 10 volt-electrons per molecule. The factor by which this last quantity
must be multiplied to give the heat of dissociation in calories per mole
is given in Table c. Unfortunately there has arisen the practise, to which the
writer also must plead guilty, of designating the keat of dissociation as 10
volts, instead of stating, more correctly, that the equivalent dissociation
potential is 10 volts, or that the heat of dissociation per molecule is 10 volt-
electrons.

(f) The name of the units given in the tables conforms as far as possible
with current practise. Certain difficulties arise in the case especially
of magnetic and electrical quantities. These difficulties are connected with
the unknown dimensions of magnetic permeability u, and specific inductive
capacity e. Itis customary in the ICT, and in most other tables and texts,
to indicate these unknown dimensions by the symbols u and e. A given
unit, such as the gauss, is applied only to quantities of a given set of dimen-
sions, including u and e. In the present paper we are concerned only with
numerical magnitudes and no particular attention has accordingly been
paid to this matter of dimensions. Thus in section E, the statement that
the absolute em unit of resistence is one cm-sec™ involves the assumption
not only of unit permeability, but also of dimensionless permeability. In
a number of the equations given in Table c, the two sides of the equation do
not check dimensionally unless one assumes u and € to be dimensionless.
It follows from this that the name of the unit stated in the table applies
strictly only to one side of such an equation. In such cases the unit applies
to the left side of the equation, since this is the quantity being evaluated.
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The right side gives merely the most direct derivation of the numerical
magnitude, in terms of quantities already evaluated. Since this ambiguity
does not affect the numerical magnitude, it is inconsequential in the present
discussion. As examples of this sitwation we cite the fine structure constant
«, which is dimensionless. To satisfy this condition one should write «
=27e?/ephc where €, is numerically unity, and represents merely the
dimensions of e. Similarly the ratio of the Bohr magneton u; to the Bohr
unit of angular momentum (%/27) is strictly uo}(e/m), where uo is numeric-
ally unity, and represents merely the dimensions of permeability.

(g) The mole is a (variable) unit of mass, equal to the molecular weight
in grams. The gram equivalent is a similar (variable) unit of mass, equal to
the atomic or molecular weight in grams, divided by the valence.

The various quantities appearing in Tables a and b have been discussed
in the preceding sections. No general explanation will be given of the mean-
ing or use of the quantities appearing in Table c, since any adequate explana-
tion would constitute almost a text-book of modern physics and physical
chemistry. In the case of the more specialized constants, no explanation is
needed by investigators actually working with each constant, and it is to
such persons that the data given here will be most useful.

I wish, in conclusion, to direct attention merely to two constants for
which the formula used here differs from that normally given. It is cus-
tomary to use for the speed of the electron in the normal orbit of hydrogen,
as given by Bohr's original theory, a value which refers to the nucleus
considered as the center of coordinates. This I call vo(=ac) in Table c.
It would seem more logical to give the speed referred to the center of mass,
the quantity denoted v,’ in Table c. There is a similar discrepancy in the
case of the radius of this orbit. The electron, according to Bohr, moves
about the center of mass in a circle of radius a’, as it is denoted in Table c.
This is not the same as the constant separation of the nucleus and electron,
which is here denoted a,. In the literature these two quantities, ao, and a,/,
are sometimes confused. The expressions for vy, v, a9, and ay’ given in Table
c include also the factor (1 —a?)!/2, arising from the variation of mass with
speed.

Section O

CONCLUSIONS

This final section is devoted to a brief discussion of the status of the gener-
al physical constants, as it appears to the writer at the present time (April
1929). As noted in the Introduction, the values of all constants adopted in
sections A to M have been based on material available on January 1, 1929.
In the present section one can scarcely refrain from mentioning more recent
material, especially if it has any direct bearing on the conclusions already
reached. Some of this new material has been given in footnotes in the pre-
ceding sections. Each section, from A to M, will be considered in order.

(A) Itseems unlikely that a more accurate value of the velocity of light,
¢, will be required for some years to come. In the important relations to be
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considered in this concluding section, the probable error in ¢ is far less
than that in any of the other constants. Hence, as far as such relations are
concerned, the present value of ¢ is entirely satisfactory, and can be con-
sidered as more or less permanently established.

(B) The constant of gravitation, G, although of great intrinsic im-
portance, has not been used in later sections of the present paper. The
value obtained by Heyl is so much more accurate than any previously
available that it also is likely to remain unchanged for some time in the
future.

(C) The relation of the liter to the cubic decimeter has not been investi-
gated for many years. The value adopted in section C seems to be universally
used, and can be considered as essentially permanent.

(D) The normal mole volume of an ideal gas, v, has been actively
investigated in recent years. The value adopted is based on 1928 calculations,
and it is quite possible that additional work will, at any time, change the
most probable value. Although the Baxter and Starkweather investigations,
on which the adopted value is founded, are generally considered more
trustworthy than any previous work, their results differ somewhat from the
previous values and hence a future change in », as great as, or even greater
than, the adopted probable error would not be surprising.

(E) As has been pointed out in section E, the exact evaluation of the
relation between the international and absolute electrical units is a matter
of great experimental difficulty, especially since there is no one official
standard. Each national laboratory has its own international standards
and these may change with time. Progress is being made toward the adop-
tion of the absolute electrical units as standards, but for the purpose of cor-
recting work done in terms of the present international units, it is necessary
to know the relation between the two systems. The int. ampere differs
from the abs. ampere by so small an amount, if at all, that it makes practic-
ally no difference whether the ratio ¢ is taken to be unity or not. The int.
ohm does, however, definitely differ from the abs. ohm by about one part
in 2000 (as shown by the value of p). Because experimental physicists have
usually ignored the distinction, many slight changes in published results
have been necessary in the later sections of this paper. Due to the variability
of the international standards, it is possible that the proper value of p to
be used in each specific correction may differ more or less from the adopted
value, but the entire possible variation is not more than 2 or 3 parts in 105,
and this is small compared to the 50 parts in 10° by which p differs from
unity. The corrections made in this paper are therefore believed to be
essentially correct and are not likely to be contradicted by future work.

(F) Of the atomic weights considered in section F, only that of calcium
is at all uncertain. This atomic weight has been used in connection with the
grating space of calcite and also in the evaluation of the electronic charge
e by x-ray measurements. The adopted probable error (0.005) represents
only 5 parts in 10% in the molecular weight of calcite and thus would have
remained negligibly small even if a value several times as large had been
adopted.
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In this same section evidence was presented to show the agreement
of Aston’s atomic weights with the chemical values, to at least one part in
10,000, thus indicating that the new oxygen isotope of mass 18 had an
abundance of less than one part in 1000 (more accurately, one in 1300)
compared to oxygen 16. I have now learned from H. D. Babcock that
experiments he has performed on absorption coefficients in the atmospheric
bands indicate that O;s has an abundance* of only one part in 1250, the prob-
able error being some 25 percent. Hence Aston’s atomic weights should
be greater than the chemical values by about one part in 10,000. Babcock’s
determination of relative abundance, however, involves the assumption that
the absorption coefficient is the same, per molecule, for each species of mole-
cule (O3 — 04 and Oy —O43), and this may not be true.

As indicated in footnote 21a of section F, a very recent accurate deter-
mination has been made of the atomic weight of silver, directly in terms
of oxygen, with a resulting value and error identical with that adopted.
The atomic weight of nitrogen therefore becomes unnecessary, for the pur-
poses of this paper.

(G) The normal atmosphere, 4,, is the most accurately known of all
the constants considered here. In one sense it is a conventional constant,
rather than a general physical constant, since its value involves the con-
ventional constant of normal gravity. In experimental work one must
measure the actual value of gravity at the position of the apparatus, and
this involves its own error. The value of 4, also involves the density of
mercury, and since mercury has several isotopes, there are possibilities of
uncertainty here, not apparent on the face of the results. Attention is
directed also to the “Note added in proof,” at the end of section G.

(H) The absolute temperature of the ice-point has an error which is not
at all negligible in certain expressions in which it occurs. In fact this accounts
for nearly the entire error in the gas constant Ry;. As noted in section H,
the work of Henning and Heuse indicates an apparent probable error less
than the 0.03°C adopted by them and also by the writer, but their result
differs from that of Roebuck by 0.04°C. It is quite possible that further
work may slightly modify the adopted value and its probable error. There
is, however, no question but that the present value of 273.18° is much more
trustworthy than the value of 273.09° used until very recently.

(I) The recent precision measurements of the mechanical and of the
electrical equivalent of heat are in beautiful agreement and this agreement
forms strong evidence that each is substantially correct. It should be re-
membered, however, that the writer has recalculated the published values
of both investigations, and the very fact that the final result depends so
much on the method of computation, lends a certain element of uncertainty
to the situation. Regardless of this, the present adopted values of J and J’
are certainly much more trustworthy than the values based on earlier work.

* This is a corrected figure in which allowance has been made for the fact that the O+ Oy
molecule has twice as many possible levels as the Oy - O, molecule.
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(J) As has been pointed out in section J, the value of the Faraday, F,
and its adopted error, depend somewhat on the definition of this constant,
and there has been some confusion on this point. There are many possi-
bilities of small systematic error in electrolytic work, and these directly
affect the value of the Faraday. The writer is aware, from personal cor-
respondence, that his adopted value of F in abs. coulombs (96489 +7) is
not approved by certain workers in this field. He believes, however, that no
valid arguments have been presented to show that it is not the most pro-
bable value according to present evidence, and he feels that the true value
is likely to differ from the adopted value by less than 7 coulombs rather
than by more.

(K) (L) (M). The constants e, e/m, and %, considered in these three
sections, together with the velocity of light, appear in many important
derived constants. Due to the fact that # depends for its value on e, this
latter quantity appears implicitly, if not explicitly, in every quantum
relation. The detailed results considered in section M have shown that
the value of # would be known with considerable certainty, were it not for
the probable error in e. The most outstanding discrepancy in section M
was that between the work of Wagner and of Duane and co-workers, on the
measurement of % from the x-ray continuous spectrum. As stated in
footnote 16a, of that section, the very recent work of Feder, using this same
method, gives a value of % in exact agreement with that adopted, and also
explains Wagner’s very low value. The writer now feels that the value of
k/elisted in Table ¢ can be assumed with some confidence. The real problem
concerns the values of ¢ and of ¢/m.

The need of adopting two different values of ¢/m, one resulting from
quantum theory experiments, and one from deflection experiments, is very
annoying, and is fundamentally unsatisfactory. The same situation seems
to be arising in regard to e. Millikan’s oil-drop value has been accepted
for many years, since it was the only one available. The new work on x-rays
has now opened up another possibility. The value of Bicklin, considered
in some detail in section K, is one-half percent higher than my adopted
value. Within the past few days I have been informed by Professor A. H.
Compton of the final result of the work of Dr. J. A. Bearden, to which anony-
mous reference was made in the last paragraph of section K. Dr. Bearden
obtains for the absolute wave-length of the (unresolved) Cu K« line, 1.5439
+0.0002A, and for the Cu K@ line, 1.3940+ 0.0002A. These results are
obtained from many different plates, each containing several orders of
spectrum, and with three different gratings. The first is 0.345 percent higher
than Siegbahn’s value, the second 0.336 percent higher. The relative wave-
lengths are thus in entire agreement with Siegbahn, but the absolute wave-
lengths lead to an average value for calcite of d'sp=3.0398A, and from Eq.
(10), section K, e=4.825X10""" abs. es units. This is 1.15 percent above
my adopted value of e. Before expressing any opinion as to this result, it is
desirable to consider the various relations that have been suggested as
holding between the constants now under consideration.
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The most famous of these relations is that connecting e, e/m, h, and c,
in Bohr’s formula for the Rydberg constant, as stated in Eq. (1) of section
M. This relation was used to evaluate %, and the value so obtained (6.54713)
is identical to the first four digits with that finally adopted. Hence, in
Table b, the indirectly calculated value of e/m is also practically identical
with that adopted. In other words, the adopted values of e, e/m, h and ¢
form a self-consistent system, as judged by the Bohr formula for R,. The
writer! attempted in 1926, to obtain a similarly consistent set of constants,
and at that time, in order to accomplish this, altered arbitrarily the value of
e by a small amount. This however, was no¢ a legitimate procedure, since
the necessarily resulting change in # was not made. Fortunately the difficulty
has now vanished, assuming the adopted values of the present paper to be
correct.

Lewis and Adams,? from their theory of ultimate rational units, have
obtained, with the aid of Planck’s black body radiation law, the following

relation between %, ¢ and e,

he 8w\ 1/3
—_— 81r<———> . (1)
2mwe? 15

The right side of this equation equals 137.348, while the left side, with the
constants here adopted equals 137.29,4+0.11. The left side, it should be
noted, equals the reciprocal of the fine structure constant ¢, and the value
just quoted is taken directly from Table ¢. The numerical agreement of the
two sides of Eq. (1) is very striking. This equation was used by the writer,?
in 1919, as one method for calculating #. The present agreement shows that
this method now yields a value of % almost identical (6.5496, to be precise)
with that adopted.

The fact that « is a dimensionless constant involving fundamental
general constants has often been noted, although it should be remembered,
as stated in section N, that to make « strictly dimensionless, we must in-
clude with the factor %c¢ the unknown dimensions of specific inductive
capacity. H. S. Allen* has considered quite fully the various proposed rela-
tions of @ to other quantities.

Recently Perles® has pointed out that the ratio of the mass of the proton
to that of the electron (M ,/m,) is another dimensionless constant which
should have some significance, and has found that

E(Jj)JQK@ . 2

e? a r—1

With the values adopted here, the left side of Eq (2) equals 862.64 +0.68,
while the right side equals 858.36 4-0.49 or 862.26 +0.99 depending on whe-

1 R. T. Birge, Science 64, 180 (1926). See footnote 8, section M.

2 G. N. Lewis and E. Q. Adams, Phys. Rev. (2) 3,92 (1914).

3 R. T Birge, Phys. Rev. 14, 361 (1919).

4 H. S. Allen “The Quantum and its Interpretation” (1928), pp. 171-183.
5 T. Perles, Naturwiss. 16, 1094 (1928).
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ther one uses the spectroscopic or the deflection value of ¢/m. The agree-
ment is evidently very good for the deflection value, but poor for the spectro-
scopic value. Whether it has any theoretical significance remains to be seen.

A far more important piece of work is Eddington’s recent calculation®
that 1/a =136 exactly, from considerations of the new quantum mechanics.
This is to be contrasted with our value of 137.294+0.11. The writer” has
already pointed out briefly this conflict between Eddington’s value of @ and
that deduced from the assumed values of %, ¢ and e. It is desirable now to
consider the question more specifically. The equation for 1/« can be written

06 R

As has been noted more than once, /e is known much more accurately thane.
Assuming 1/a=136, and assuming the adopted value of %/e, we obtain e=
4.815X 10'%s units. This is equivalent to assuming that % is to be varied
directly as e, and , with the exception of the Rydberg constant method, most
of the other methods do involve such a direct proportionality. On the other
hand, if one assumes my average variation of # and e (the 1.26 power), then
1/a=136 requires that ¢e=4.8308 X 10~ (and that 2 =6.6520X10"%"). The
value of e obtained by Bearden, from x-rays, lies, strangely enough, between
the two values just given, and so agrees as well as can be expected with Edding-
ton’s value of 1/a. Hence, so far as Eq. (3) is concerned, we must conclude
that if the oil-drop value of ¢ is correct within the assumed probable error,
or even within several times that amount, Eddington’s value of «, and
Bearden’s value of e, cannot possibly be correct. On the other hand, if Bear-
den’s value of ¢, is correct, then Eddington’s value of « is also correct, and
the oil-drop value of e is wrong.

Direct evidence on these two alternatives is furnished by the Rydberg
constant. Eq. (1) of section M can be written as

2
Rw=i<_6_>__}__ . (4)
2\ h/(e/m)

Using our adopted value of ¢/k and its adopted error, together with Edding-
ton’s value of «, one obtains e/m = (1.7948 £0.0007) X 107 abs. em units, as
contrasted with our adopted value of (1.761+0.001), obtained from similar
quantum relations. It has already been pointed out that the adopted value
of e/m, together with the adopted values of « and e/h, exactly satisfies Eq.
(4). The figures just quoted indicate the impossiblity of satisfying Eq. (4)with
Eddington’s values of a. As already suggested, the discrepancy of 0.5 per-
cent between the spectroscopic and deflection values of ¢/m may be due to
some general error in quantum theory formulas. The above discrepancy of
nearly two percent is evidently far more serious In his derivation of the
value of 1/«, Eddington assumes the truth of Eq. (4). Hence the discrepancy

8 A. S. Eddington, Proc. Roy. Soc. A122, 358 (1929).
7 R. T. Birge, Nature 123,318 (1929)
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cannot be attributed to a possible theoretical incorrectness of this formula
In fact, if Eddington’s value of 1/ (and by implication Bearden’s value of
e) is right, one can only conclude that all measurements of e/m, by any me-
thod, are too low by 1.5 to 2 percent, and in addition that our adopted value
of e is too low by more than one percent. It seems to the writer—an opinion
apparently shared by others—that it is more probable that the x-ray values
of e are incorrect due to a difference in the structure of a crystal (density,
etc.) near the surface from that in the interior.

It must be admitted that this is a very unsatisfactory way to leave the
situation in the case of the most important constants known to science. It is
to be hoped that before another year has passed, some if not all of these
difficulties will have been removed.



