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A bstract

We have examined the physical and formal aspects o f  the Onsager method {l]  o f  
solution o f  the many dipole problem. Our principal conclusion is : the Onsager pre-
scription o f  subtracting out the reaction f ie ld  from the mean molecular fie ld  (e .g .
Weiss f ie ld  in ferromagnets, Lorentz fie ld  in d ielectrics, van der Waals fie ld  in 
flu ids) is the necessary modification o f  molecular f ie ld  theory which guarantees 
the fluctuation theorem o f sta tistica l mechanics (equality o f the mean fluctuation  
o f  a coordinate to its  su scep tibility  in response to an external fie ld  to which it 
is coupled).

We develop the theory in detail for the I  sing model. In the paramagnetic phase, 
we show that the Onsager method reduces to the spherical model. This reduction is  
somewhat incidental, and does not occur in the magnetized phase. On the contrary, 
the Onsager method then leads to a system o f  simultaneous differential equations 
for the magnetization, which is in general intractable. We introduce a scheme o f  
successive approximations, and recover the Weiss theory and the generalized 
spherical model after the f ir s t  and second iterations, respectively.

Finally, we indicate how to apply these ideas in the liquid-vapor system.

1. In trod u ction

IN 1936, Onsager [l] introduced an important concept designed to improve the Lorentz local 
f ie ld  approximation in a system o f  dipoles. The principal innovation l ie s  in the remark that 
the "orienting" part o f  the loca l f ie ld  on a given dipole must not include the contribution 
which comes from that part o f  the polarization o f  dipoles in i t s  v icin ity  which arises from it s
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instantaneous orientation. Again in other terms: that part o f  the polarization o f  surrounding 
dipoles which is  due to their correlation to a given dipole does not contribute to the orient-
ing fie ld  on that dipole. The fie ld  which arises from this correlated portion o f  the polariz-
ation is  called the reaction fie ld . It is  proportional to the instantaneous direction p0 o f  the 
given dipole (we designate this la tter  by the index 0):
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( 1)

where A is  independent o f  \xq.

The orienting part o f  the fie ld  i s  called the cavity fie ld ; i t  is  the fie ld  at s ite  0 when 
the dipole Po is  removed. It is  obtained from the tota l mean molecular fie ld  by subtracting the 
mean reaction fie ld :

(2 )

In his original paper, Onsager calculated the reaction fie ld  and the cavity fie ld  by using 
continuum electrostatics applied to a cavity o f  molecular dimensions. In this case, < > is
the usual Lorentz fie ld .

In the context o f an e ffective  molecular f ie ld  theory, the mean dipole moment is  then calcu-
lated according to

(3 )

where JS? is  the Langevin function, and p is  the dipole moment. The linear approximation is  used 
to calculate the polarizability  and thence the d ie lectr ic  constant e. Since the cavity fie ld  de-
pends i t s e l f  on the d ie lectr ic  constant, this gives rise to a self-consistent equation for e.

It is  our purpose here to analyze further the physical and formal content o f  the Onsager 
procedure, and to extend i t  to other many particle  systems, in order to make contact with many 
body theory as i t  has developed in recent years. Our formal development i s  carried out on the 
Ising model for the sake o f  both sim plicity and definiteness. We also indicate the applicability 
o f the idea to liquid-vapor condensation.

Our principal finding is  this: The Onsager prescription o f  subtracting out the reaction fie ld  
is  the necessary modification o f molecular fie ld  theory in order to guarantee the fluctuation- 
response function relation o f  sta tistica l mechanics, i .e .  susceptibility = fluctuation. It is  
well known that the fluctuation theorem is  not sa tisfied  in usual molecular fie ld  theory. The 
Onsager prescription shows how one goes about repairing the situation.

In Section 2, we present a formal development o f  the Onsager idea applied to the Ising model, 
which uses the method o f  response to infinitesim al fie lds. The advantage o f  this method is  that 
o f  pedagogical simplicity. The formal argument emerges quite naturally from the physical state- ? 
ment. In the unmagnetized phase at zero magnetic .fie ld , the theory goes through simply and with-
out d ifficu lty . The fluctuation theorem is  sa tisfied  by construction. Furthermore, the theory i s f 
incidentally, the same as that o f the spherical model o f  Berlin and Kac [2]. For T < Tc, on the 
other hand, deep complications develop due to the variation o f distribution functions with ex-
ternal fie ld . Only upon neglect o f  this variation does one recover the spherical model in it s  
generalization proposed by one o f  us [3] .  This approximation turns out to be thermodynamically 
inconsistent. This fact probably accounts for the peculiar behavior found in the spherical model



at fin ite  external fie ld s  [43.

These reasons then lead us to reconsider the problem directly  in i t s  integral formulation. 
The formal solution to this problem is  presented in Section 3. The theory is  now thermodynami-
cally consistent, but analytically intractable. We introduce a scheme o f successive approxima-
tions, and recover the Weiss theory and the generalized spherical model after the firs t  and 
second iteration, respectively. We hope to present in future work a calculational scheme o f  
evaluation which w ill show how the d iffic u lt ie s  o f  the spherical model at fin ite  fie ld  are in 
fact met in the present formulation.

In the last section, we discuss various aspects o f  the development. We indicate how to make 
contact with the original Onsager paper. In fact, Toupin and Lax [5] have remarked upon the 
equivalence between the Onsager method and the spherical model, attributing this equivalence to 
an "accident" t This point is  now clarified . Finally, we show how these ideas may be applied to 
the case o f liquid-vapor condensation.

We repeat again. Our fundamental point is  that the Onsager idea allows one to formulate 
molecular fie ld  theory and preserve the fluctuation theorem o f s ta tistica l mechanics. The con-
tact with the spherical model which arises in special cases is  quite secondary.
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2 . D iffe r e n t ia l  Form ulation

We fir s t  develop the theory o f  the Ising model in the unmagnetized phase for infinitesimal 
external fie ld s  ffcxt. The mean molecular fie ld  on s ite  i is

( 4)

where _ t i s  the spin-spin interaction between sites i and j .  

In Weiss molecular fie ld  theory, we have to linear terms

(5)

((3 = 1/kT), or in terms o f  Fourier transforms,

( 6 )

where

(7)

We therefore obtain for the susceptib ility

(8)



The fluctuation theorem then yields
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(9 )

which is  the Omstein-Zernike theory fe].

Equation (9) implies < \a* >< m7 > f  0. However, i t  is  precisely the
assumption o f  vanishing correlation which is  the basic approximation o f  the Weiss theory. This 
is  the crux o f  the inconsistency o f usual molecular fie ld  theory. One way to get out o f  i t  was 
proposed by one o f  us by introducing the spherical model [3]. This was subsequently found to be 
a well defined graphical approximation o f the Ising model [7] . However, at fin ite  ffext, this 
method gives rise to a spurious phase transition [4], and has therefore to be rejected. Thus, 
the situation at the time o f  writing this a rtic le  is  confronted with an impasse which we hope 
w ill be relieved by the present work. We also emphasize that the recipe o f  reference [3] is  
purely formal. The necessary physics is  supplied by the following.

It w ill be most convenient for the sake o f  subsequent generalization to formulate (4) in 
terms o f  changes o f  local fie ld . The change in mean molecular fie ld  due to the imposition o f a 
change in external f ie ld  (which, for the moment, is  simply the change from zero to 6 //jcxt at 
s ite  i) is

(10)

where for the present case < [Xj > changes from zero to 5 < \xj > . Now, the change in < p* > due 
to 5ffiext engenders with i t  a change in the polarization cloud around it . In other words,
8 < 1ij > has two contributions: one is  from the change in / / - cxt as well as the surrounding
milieu, and the other from the change in < p; > it s e l f .  Qnsager’ s remark is  that this latter 
must not be included in the calculation o f  the change in the orienting fie ld . From the above 
discussion i t  is  entirely clear that such an inclusion overcounts the e ffective  fie ld  which 
orients p*.

We introduce the symbol J?£caTlty for the e ffective  orienting fie ld  on s ite  i. Then,

( 11)

8 < \ij i s  the change in < \ij > due to changes in < p̂  >. Thus,

( 12)

where

(13)

The variation o f (12) then gives
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(14)

which for the unmagnetized phase at zero external fie ld  reduces to

( 15^

Substituting into (11),

(16)

or in terms o f  Fourier transforms

(17)

Here, -A/2 is  the energy per particle:

(18)

Hie change in the mean reaction fie ld  i s  then expressed as

(19)

In the unmagnetized phase, the response to the orienting fie ld  is  given by

( 20)

pr in terms o f  Fourier transforms

( 21)

whence

(22)

To complete the calculation, we now impose the fluctuation theorem

( 23)

By multiplying this relation by v(q>, summing over and using (18) and (22), we obtain 
the sum rule
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(24)

1
which because o f  -  I  1 = 1 can also be written in the form 

N q

(25)

Equations (22) and (25) are the spherical model equations in the unmagnetized phase. The 
fluctuation theorem has been imposed on the theory and hence is  satisfied  by the theory. This 
explains why the spherical model is  the correct way to go about improving molecular fie ld  ]
theory. The sum rule (25) is  an irrelevant by-product.

In the presence o f  a uniform magnetization R, the problem is  considerably more d ifficu lt .
It  turns out to be necessary to take into account the fie ld  dependence o f  the correlation func-
tions. We return to this point in Section 3, and for the rest o f this section work in the ]
approximation that this variation is  neglected. i

The differential method may then be followed through in a straightforward manner. The reason-
ing up to equation (14) is  unchanged, but the passage from equation (14) to (15) must be modi-
fied. In the next section (equations (44)), we prove that in the presence o f  uniform magnetiz-
ation < |i£ > = < [Xj > = Rt

(26)

Hence, (17) is  to be replaced by

(27)

where

(28)

Another important modification is  that the response to the orienting fie ld  is  no longer given 
by (20) but by

(29)

where the derivative is  taken about the equilibrium value o f  the magnetization at fixed T and 
uniform i/ext. Assuming that < > = tanh p/Tcavlty, we have
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(30)

so that by substituting (27) and (30) into (29) and taking the Fburier transform, we obtain

(3D

Thus, the susceptib ility  becomes

(32)

Using the fluctuation theorem in the form valid for non-zero magnetization,

(33)

we have, because o f < Mq > = N1?2 R • 8q 0,

(34)

We therefore obtain the sum rule

(35)

Under our assumption o f  neglig ib le  variation o f  the correlation function, the variation o f 5 
with ffcxt is  neglected. Thai, equation (32) for q = 0 may be integrated to

(36)

Equations (32), (35) and (36) are the generalized spherical model proposed in reference [3]. As 
discussed in reference [4] , this theory yields close to Tc a spurious phase transition at fin ite  
ffext, and must therefore be discarded.

It is  clear that the neglect o f  the variation o f correlation functions with fie ld  is  un-
warranted. It is  probably this fact which is  responsible for the catastrophe in question. This 
important point was overlooked in the original formulation o f  reference [3].

To proceed further, we now present an alternative approach which yields a direct generaliz-
ation o f  (36) taking into account the fie ld  variation o f  the correlations.

3. In teg ra l Form ulation

In Onsager’ s original formulation, the total molecular fie ld  acting on a given dipole is



decomposed into two parts: The f ir s t  part, the reaction fie ld , is  always parallel to the instan-
taneous direction o f  the dipole: i t  is  the fie ld  due to interaction with the polarization cloud 
around the dipole. The second part, the cavity fie ld , is  independent o f  the direction o f  the 
dipole, and is  the sum o f  the external fie ld  and the fie ld  due to interaction with the un-
correlated fraction o f  a ll the other dipoles. As we have emphasized repeatedly, only the cavity 
fie ld  has an orienting e ffect on the given dipole.

Applying the concept in th is form to the Ising model, we observe that the total molecular 
fie ld  Him at s ite  i can be decomposed into the sum o f  the cavity fie ld  ffi cavity which is  inde-
pendent o f  [xit and the reaction fie ld  fli reactlon = which changes sign on spin reversal:
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(37)

"it i s  only the cavity fie ld  which gives rise to an orientation dependence o f the effective  
single particle  energy

C38)

and which, therefore, enters into the expression for < p* > :

(39)

It is  important to realize that so far no approximation has been made. Equation (39) would give 
the correct magnetization, i f  one would use the true molecular fie ld  defined by

(40)

where tr '  means the trace over a ll spins except P£. The calculation o f  this true molecular fie ld  
is , o f  course, an impossibly d i f f i cu l t  problem. It is  the essence o f  the Onsager method in the 
present context to construct an approximate expression for H^ by physical reasoning. Consider 
the situation in which the spin at s ite  i is  up, i . e .  p̂  = + 1. Hie mean interaction energy o f  
this spin with a ll other spins i s  then -  I  Vij  < py >it » where < p;- >i f  is  the conditional

average o t  the spin at s ite  j  introduced in the previous section. We take as effective  single
particle  energy o f  spin p̂  the sum o f  this interaction energy and the energy -  in the
external fie ld :

A corresponding expression i s  obtained for the p* = -  1 situation. Since by definition 
6i = -  piH{*, the molecular fie ld  at s ite  i is  thus given by

which can be written in the form (37):
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(41)

Ibis is  the required expression. The nature o f  the approximation made becomes transparent by 
observing that instead o f  calculating the e ffective  single particle  energy at s ite  i, ej(ni) = 
-  as a free energy according to (40), we have obtained i t  as a mean energy.

By comparison with (37),

(42)

The conditional averages < My >u , i can be expressed hy the correlation function < PiPy > and 
the unconditional averages < p* > and < py > : We have

(43)

where p * ( ± l )  = | (1 ± < Pi >) i s  the probability (13) o f  finding pj = ± 1. Thus,

(44)

Using the spatial equivalent o f  the fluctuation theorem (33),

(45)

we obtain the rigorous result

(46)

With (46), the mean molecular fie ld  becomes equal to the Weiss fie ld .

( 47 )



Thus, as in Onsager’ s dipole case, the Weiss fie ld  overestimates the orienting fie ld  by the 
average reaction fie ld . The orienting f ie ld  takes the form
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(48).

By substituting into (39), we obtain the self-consistency equations for the determination o f 
the < Hi > ,

(49)

Since

(50)

this is  a set o f  N simultaneous fir s t  order d ifferentia l equations for the functions < |i£ > = 
f ( if/1ext, . . .  H}yext).They can be somewhat sim plified i f  they are converted into equations for 
the orienting field  ffi cavlty -  ^  by substituting

(51)

One then obtains

(52)

where we have used the notation

(53)

This is  the end point o f  the general analysis. I f  we specialize to the paramagnetic phase and 
small external fie lds, we immediately recover the results o f  the previous section, equations 
(22) and (25). However, for non-zero magnetization, the system is, in general, intractable. For 
this reason it  is  o f  interest to introduce a scheme o f  successive approximations which may yield 
physically sensible results after a few iterations. We set

(54)

and expand around the uniformly magnetized state:

(55)

Equating terms o f  equal order in the hit we obtain a hierarchy o f equations for the derivatives ■



o f  the where the ri th derivative is  expressed in terms o f  a ll derivatives up to order n + 1. 
We can close this system by neglecting the derivatives o f  some order n0f and thus obtain a 
hierarchy o f  approximations.

Hie leading approximation, in which already the f ir s t  derivatives are neglected, is  the 
Weiss theory:
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In the next approximation, neglecting the second derivatives one recovers the modified
spherical model o f  the previous section, equations (32), (35) and (36). We note here that i t

Xi j
actually makes more sense to neglect the f i e ld  dependence o f   ̂ . . =, .—■■■. . ■ ■ ■...■■ than

1 , 1  (J(1 -  < Hi > 2 )
that o f  X{j alone.

As mentioned at the end o f  the previous section, this approximation is  inadequate. We suggest 
here that a fru itfu l line  o f  attack i s  to proceed with one more step o f  the iteration including 
the § i t jk as well- *e hope to return to this problem at a future date.

4. Concluding Renarks

The methods discussed in the previous sections can be generalized to other types o f  inter-
action without major d iffic u lt ie s . In order to make contact with the original Onsager theory, 
we consider sp ecifica lly  the case o f  a system o f  interacting dipoles. The interaction energy 
between sites i and j  i s  -  p^y^-py where Mi and p;- are three-dimensional unit vectors, and 
is  the dipolar interaction tensor

(56)

p i s  the dipole moment. The coe ffic ien t A o f  the reaction fie ld  (1), E{ -  A Pj, is
again related to the energy per particle:

(57)

Here, t>a(q) are the eigenvalues o f  the Fourier transform o f  v^-, and Pqa are the corresponding 
eigenvectors (a = 1, 2, S).

The orienting fie ld  is  the mean molecular fie ld  less  the reaction fie ld , and the polarization 
induced by the orienting fie ld  is  given by (3) instead o f  (20). One thus obtains for the eigen-
values o f  the susceptib ility  tensor (susceptib ility  per unit volume)

(58)

where n is  the number o f  dipoles per unit volume. Imposing the fluctuation theorem leads to
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the sum rule

(59)

Special attention is  required for the q = 0 component, since the Fourier sums o f  the va(0) are 
only conditionally convergent and depend, therefore, on the shape o f  the sample. For this reason 
Xa(0) is  defined as the response to the fie ld  in the sample, which d iffers  from the external 
f ie ld  by the depolarizing fie ld . One obtains

(60)

The wa ate the eigenvalues o f  the shape-independent tensor w = v (0 )  + 4t t mp2L, where L is  
the depolarization tensor.

Contact with the original Onsager theory proceeds most easily through the spherical model 
method o f  Toupin and Lax (TL) [6]. Our equations (59) and (60) are the equations (44) and (47) 
o f  TL, and the symbol t '  o f  TL is  related to our A by 3 + (3A = |3np2 • t ' .

For the isotrop ic continuum model o f  Onsager, the va(q) are simply

(61)

and w has the value

Substitution into (59) and (60) and elimination o f  A leads immediately to the Onsager formula 
for the d ie lectric  constant e = 1 + 4ir x*

Finally, we mention b rie fly  the application o f  the underlying concept o f  this paper to the 
liquid-vapor system. In response to an imposed force, the density increases at a point in space. 
The surroundings o f  this point also increase in density; that part o f  the density change o f  the 
surroundings due to the density change o f  the point in question must be subtracted out. This 
means that one must introduce both correlations to particles and holes in the ultimate formula-
tion .* This example also illu strates the irrelevance o f  the sum rule. In fact, there is  no sum

rule whatever on the density fluctuations pq = 2 exP(*I • r * ) .

* This problem is  now being investigated in collaboration with S. Vadek.
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