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Abstract

The droplet or cluster theory of condensation is reviewed critically and extended.

It is shown to imply that the condensation point is marked by a singularity of the 

thermodynamic potential as conjectured by Mayer. The singularity turns out to be an 

essential singularity at which all derivatives of the thermodynamic variables remain 
finite. The theory also yields an understanding of the uniqueness of the critical 

point (in contrast to an extended critical region or Derby-hat type of behaviour) 

and leads to relations between the various critical point singularities.

A one-dimensional model is described with a Hamiltonian containing short-range 

many-body potentials. The exact solution of the model is sketched and shown to ex-

hibit condensation and critical phenomena for suitable (fixed) potentials. The 

analysis confirms the conclusions of the cluster theory and thereby lends support 
to the validity of its underlying assumptions.

1. Introduction

IN THIS lecture* I will review some old ideas concerning the theory of condensation and will 

describe some new work and new conclusions that may also throw light on the nature of .the 

critical region. To introduce our topic let us pick out some of the highlights in the histori-

cal development.

* This article is the text of a lecture given at the Centennial Conference on Phase Trans-

formation held at the University of Kentucky, Lexington, Kentucky, 18th-20th March 1965. It 

is reproduced here essentially in the same form as presented and later circulated privately 

except for the addition of Appendix B. Attention should be drawn to the following more 

recent articles: (a) as regards the condensation point; J.S. LANGER, Ann. Phys.  (N .Y . ) ,  41, 108 

(1967); (b) concerning critical point singularities, B. WIDOM, J.  Chem. Phys.  43, 3892,3898 

(1965); C. DOMB and D.L. HUNTER, Proc. p h y s . Soc.  86, 1147 (1965); L.P. KADANOFF, Phys ic s  2,
263 (1966); A. Z. PATASHINSKII and V.L. POKROVSKII, S o v i e t  Phys.  JETP 23, 292 (1966); (c) in 
regard to related types of one-dimensional model: L.K. RUNNELS, J .  Chem. Phys.  42, 212 
(1965); D. POLAND and H. SCHERAGA, J .  Chem. Phys.  45, 1464 (1966); M.E. FISHER, J.  Chem.
Phys.  45, 1469 (1966).
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Onsager by his exact solution of the two-dimensional Ising model over twenty years ago [l] 

demonstrated clearly how a phase transition would come out of statistical mechanics alone if 
only one were clever enough to compute the partition function precisely: there is no need of 
any additional assumptions, special procedures or the like. This is the philosophy to which I 

will adhere throughout, namely, to describe the equilibrium properties of a physical system we 
need only calculate the partition function and use the formalism of statistical mehcanics.

In 1952 Yang and Lee [2], showed how the discontinuities and related mathematical singular-
ities which characterize the thermodynamic potentials of systems exhibiting phase transitions 
could "grow" from the completely smooth and analytic partition functions of finite systems.

This occurs, of course, only when one proceeds to the "thermodynamic limit" in which the volume 
of the system becomes infinite while the intensive variables remain finite. The analysis of Lee 

and Yang is very general and does not therefore reveal the detailed nature of the singularities 
to be expected in any particular type of phase transition.

More recently Kac, Uhlenbeck and Hemmer [3], have shown how the old ideas of van der Waals 

give some answers to the question of the nature of the condensation singularities, at least in 

the case of a system of particles interacting with very weak, long range attractive forces (in 

addition to the ever present strong short range repulsive forces). More precisely the van der 

Waals description of the condensation of a fluid becomes rigorously correct if the limit of in-

finitely long-range and infinitely weak attractive pair interaction forces is taken after the 
thermodynamic limit [3, 4], While it adds appreciably to our understanding of phase transitions, 
this conclusion is not entirely satisfying since the systems in which one sees condensation 

phenomena experimentally are characterized, in the main, by attractive forces of quite short 

range. One suspects (and indeed the soluble one-dimensional examples tell us) that the behaviour 

of such systems may be appreciably different.

This observation forms the point of departure of the present discussion. We will endeavour 

to discover the type of analytic behaviour which occurs in the neighbourhood of a condensation 

point and will conclude that is probably quite different, and much more subtle, than the classi-

cal van der Waals description would suggest. I will also have something to say about the nature 

and uniqueness of the critical point which marks the limit of the condensation points. Our theme 

will thus be one of "hunt the singularity"!
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2. Mayer’s Conjecture

Experimentally one observes that a system of molecules interacting through short range re-

pulsive forces (giving the molecules an essentially incompressible "core") and short range 

attractive forces, will undergo an abrupt transformation from a gaseous to a liquid state (or 
to a solid state at low enough temperatures) even at very low (gaseous) densities. It is this 
low density condensation phenomena occurring well below the critical temperature, which we shall 

consider. It is significant, furthermore, that the isothermal compressibility of the gas

( 1 )

is observed to remain finite as the condensation point p = pCT is approached (see Pig. 1). The 

symbols p, p and T denote, as usual, the pressure, density and temperature.

If the system is allowed to go into a non-equilibrium state one can also find experimentally 
a metastable "continuation" of the gaseous isotherm into a region describing a supercooled



vapour (see Pig. 1). Although, when suitable experimental precautions are taken, this isotherm
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FIGURE 1

An isotherm illustrating condensation in a real system.

can be quite prolonged and reproducible it must be stressed that the system is no longer in a 

state of complete thermodynamic equilibrium. Furthermore it may be shown rigorously that such 

nonequilibrium metastable states cannot be found in a correct statistical mechanical calculation 
based on the total partition function for the system [5]. (If they are found the calculation has 
been incorrect!)

As is well known the van der Waals, and equivalent theories of condensation yield an isotherm 

with a "loop" (as shown in Fig. 2) that continues analytically through the condensation region

FIGURE 2

Condensation in a van der Waals system.

and even includes an "unstable" portion with negative compressibility. The correct equilibrium 

isotherm must be found by a Maxwell, or better, Gibbs construction which yields the horizontal



"two-phase” portion of the isotherm so "cutting off" the "metastable" and "unstable" portions 

of the loop. (This construction comes automatically out of the rigorous Kac, Uhlenbeck and 

Hemmer theory [3, 4].)

In consequence the gaseous isotherm remains perfectly smooth and analytic as the condensa-

tion point is approached: there is no singularity (in the mathematical sense of a nonanalytic 
point) on the isotherm to "warn" of the onset of condensation. On the contrary the isotherm may 

be analytically continued to larger densities to yield the original looped isotherm. (The fact 

that the van der Waals type of theory describes a "metastable" continuation of the isotherm in 

this way is sometimes considered to be an advantage of the theory; in my opinion, however, the 
comments made above indicate that this is unjustified.)

The converse suggestion, namely, that the gaseous isotherm should exhibit some sort of mathe-

matical singularity at the condensation point, which could thus be located even if the two-phase 

and liquid parts of the isotherm were unknown, was made by Mayer [6]. He based his arguments on 
the fundamental expansions
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(2 )

(3)

and on the related virial expansion

(4)

obtained by eliminating the activity z. Mayer tried to analyse the form of the cluster coeffi-

cients 6i for large I since one knows from the theory of analytic functions that this deter-

mines the nature of the singularities of the function. The radius of convergence of a power 

series such as (2) is determined by the behaviour of the coefficients for large l through

(5)

On the circle of convergence |z| = r0, there must be at least one singularity zo of the func-
tion ir(z) and no other singularities in the complex plane can lie closer to the origin. Further-
more if the coefficients are of uniform sign for large l the dominant singularity z0 lies on 
the positive real axis.

In its strong form we may express Mayer’s conjecture by the assertion that a closest singu-
larity z = zq of ir(z) will lie on the positive real axis and will occur at the condensation 

point z = zQ. In this form the conjecture is quite possibly wrong in most realistic cases, since 
accumulating evidence suggests that the 6j will oscillate in sign for large l (essentially owing 
to the repulsive cores of the molecular interactions) so that the singularity zq determining 
the circle of convergence will lie on the negative real axis (i.e. in an unphysical region).



I want to consider, however, the more general form of the conjecture which asserts merely that 

the function ir(z), defined by the power series (2) and its analytic continuation, has, on the 

real axis, a nearest singularity z - which occurs at the condensation point z = za. We 

might then have z1 > |z0 |, 80 that z1 lies outside the circle of convergence of (2), but since 
the series may be analytically continued along the real axis up to z\ this does not matter.

Of course, the van der Waals theory constitutes a counterexample to this conjecture since the 

nearest singularity on the real z axis occurs beyond the condensation point i.e. zl > zCT. In 

fact the value of ẑ  corresponds to the first point of infinite compressibility on the analyti-
cally continued isotherm (which is sometimes termed the "limit of metastability of the gaseous 

phase"). In a review of this question Katsura [7] has argued that this should be the general 
case. As we have pointed out, however, the van der Waals and similar theories cannot be taken 

as guides on this point owing to the unrealistic nature of the interactions they imply.

Another argument sometimes used suggests that the question of a singularity at z = zCT in the 

activity series is an artificial one since, it is asserted, the virial series might have no 

singularity at the corresponding condensation point p = pCT so that the singularity at zCT could 
be of no physical significance. As an example of this the ideal Bose-Einstein gas is cited. In 

that case the activity series has a singularity at the Bose-Einstein condensation point (i.e. 

zi = za) but the virial series is quite analytic at the corresponding density (and the isotherm 
can be continued on to higher densities). When one looks more closely, however, one finds that 

this example is also artificial because of the special shape of the isotherm near condensation. 

At fixed T this is given by
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( 6)

which means that the isothermal compressibility becomes infinite as the condensation point is 
approached (see Fig. 3).

FIGURE 3

Condensation in an ideal Bose-Einstein fluid.

This feature is, of course, not found in real condensation processes. Conversely one may 

prove quite easily (see Appendix A) that if at fixed temperature the pressure p(p) is 

analytic in the density at p = pCT and if
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(7)

then the pressure p(z) is also analytic in the activity at z = za. This shows that if the 

compressibility remains finite as a condensation point is approached, then a singularity in the 

activity series necessarily implies one in the virial series. Thus one cannot "escape" a singu-

larity and hence it presumably has some physical significance.

3. Surface Tension and the Droplet Model

When we ask for the nature of the condensation singularities in a system with predominantly 
short range forces we are hampered because, apart from some examples I will describe later, 

there are no known model systems which are exactly soluble and exhibit condensation. It is true 

that we know rigorously that a two-dimensional Ising system with nearest neighbour forces under-

goes condensation but since Onsager* s solution is restricted, in "magnetic language", to zero 

field, that is in "fluid language" to z = za(T), one does not know what happens as the condensa-
tion point is approached. One may get a physical idea as to the "cause" of condensation, how-
ever, by considering a real gas or, for that matter, a lattice gas or Ising model, at low 

densities and temperatures. Evidently most configurations of the system will consist of dis-

tributions of isolated molecules well separated from one another. There will also be present, 

however, clusters of two, three or more molecules bound together more-or-less tightly by the 

attractive forces but isolated, for the most part, from other clusters. Clusters of different 

sizes will be in mutual statistical equilibrium, associating and disassociating, but even fairly 
large clusters resembling "droplets" of the liquid phase will have some, generally rather small, 

chance of occurring.

Consider the potential energy of such a not too small cluster of l molecules. This may be 

decomposed into a bulk term, determined by the binding energy per molecule in the liquid or 

condensed phase, sayrf£0, and a remainder W which is, evidently, associated with the loss of 

binding energy at the "surface" of the cluster. Thus

( 8 )

where H; is positive and may be taken as proportional to a "suitably defined" surface area s of 
the cluster, that is

(9)

For a lattice gas with nearest neighbour attractive forces the surface s may be defined un-

ambiguously in terms of the numbers of "unsaturated bonds" surrounding the cluster (that is 

bonds between occupied and unoccupied sites) and the surface energy density w is similarly well 
defined. More generally, however, it is difficult to define 5 precisely in a way that is not 
somewhat arbitrary. Nevertheless for a large enough cluster (which is not too "drawn out" like 

a piece of seaweed for example!) the surface area is faily well defined.

Now it is clear that the surface of a cluster gives it stability; because the surface energy 
is positive the cluster will, at low temperatures, tend to stay in compact configurations with 

relatively small surfaces. This tendency to shrink will, speaking loosely, be opposed by the 

entropy of the cluster which might similarly be expected to be of the form

(10)



where 50 is the entropy per molecule in the bulk fluid. The surface entropy density u is a 

measure of the number of different configurations of the cluster which have the same surface 

area. If now the temperature is lowered (or, what is essentially equivalent, if the activity 

is raised) the entropy will be less important and it becomes advantageous for clusters to com-
bine to form droplets and for droplets to grow further by amalgamation thereby reducing the 

total surface area and hence lqwering the total energy. Indeed if conditions are sufficiently 

favourable the droplets should continue to grow rapidly to macroscopic size. A macroscopic 

droplet represents, of course, the liquid phase and so its presence indicates that condensation 

has taken place!

This picture of the condensation of a gas was put forward apparently quite independently by 
Frenkel, Band and Bijl some twenty-seven years ago [8-10j. Bijl's work was the earliest, being 

contained in his thesis presented in April 1938, but it was not otherwise published. The papers 

of Frenkel and Band both appeared early in 1939 in The Journal of Chemical Physics. Although 

the ideas are quite straightforward and would have been understood many years previously, the 

stimulus in all three cases seems to have come from Mayer’s work on the activity and virial 
expansions where the coefficients are determined by the famous cluster integrals-. (In Mayer* s 

theory, however, the "clusters" cannot be identified directly with real physical clusters as in 

the droplet picture. This seems to be the cost of making a fully rigorous and complete ex-

pansion. )

The essential correctness of the droplet explanation of the origin of condensation in a 
system with short range forces may be seen from the discussion of the existence of spontaneous 

magnetization in the plane Ising model ferromagnet given already in 1936 by Peierls [ll]. The 

ideas of the surface tension and the entropy of clusters (in this case of ‘overturned spins’) 

play a crucial part in his argument although they are not expressed explicitly in this language. 

More recently R. B. Griffiths has adapted Peierls analysis to give a fully rigorous proof that 

condensation takes place in the Ising model [l2]. The nature of the singularity, however, is 

still unrevealed. Furthermore the proof uses in an apparently essential way the symmetry of the 

Ising model under a change of sign of the field. Unfortunately more general models do not have 

such an exact symmetry although experimentally the shape of coexistence curves indicates a 

fairly precise symmetry between simple liquids and their vapours.

To clothe the droplet or cluster theory in mathematical form and to explore its consequences 

- and its difficulties - let us construct the classical configurational partition function for 

a cluster of l molecules in a domain of volume V. We have
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(ID

where U\ — Ej is the potential energy of interaction and where the integrations are restricted 
to configurations in which the l molecules form a cluster. For definiteness we may suppose the 
pair interaction potential <p(r) has an attractive tail of range b so that 9(r) = 0  for r ̂  b 
and then define a "clustering distance" c so that if |r^ - r ; I < c th® i-th and j-th 
molecules belong to the same cluster. It is, of course, natural to take c = 6. We will simplify 

further by assuming the potential has an infinite hard core and an attractive square well, that 

is

( 12 )



In this case the energy of any configuration is an integral multiple of - q>0 - Furthermore if 
b/a is not too large the binding energy in the dense phase in three dimensions will be F0 =
%(12 <pq) = 6<po since hard spheres will pack with twelve nearest neighbours. The surface energy 

If may then be defined precisely through (8). Taking to = q>o so that If = <pos then defines the sur-

face "area* s and shows it is an integer as in the lattice case. Inserting these relations in 

(11) we may write
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(13)

where the combinatorial factor g(l, s) is the number (or more correctly the volume in d(l - 1) 
dimensional configuration space) of configurations of l indistinguishable molecules with a 
fixed centre of mass which form a cluster of surface area s. (For a lattice gas, of course, the 
configurations are discrete; conversely in a more general model one would have an integration 
over a continuous range of s.) The factor V comes from the integration of one coordinate over 
the volume with the neglect of boundary effects.

Following De Boer’s treatment [l3] consider now the coefficient of zN  in

(14)

Evidently this coefficient consists of the sums of products of cluster partition functions 

formed by decomposing N  identical molecules into clusters in all possible ways. If we now assume 

that:
(A) the effects of excluded volume between clusters may be neglected,

then this coefficient is simply the total configurational partition function Qy(|3, V). Thus

(15)

which is recognised as the grand partition function E(z, (3; V) for the system. For a large 

system the pressure is given in the standard way, by

( 16 )

provided the series converges (see below), and hence the density is
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(17)

One may readily check (for example by introducing separate activity coefficients z j for clusters 

of size l) that the partial number densities of {-clusters, which are proportional to the pro-
bability of finding an {-cluster, are just

(18)

By neglecting the interaction, that is essentially the excluded volume, between clusters the 

calculation of the equation of state has thus been reduced to the calculation of the single-

cluster ‘internal partition function’, qrj/V. One feels that at low densities the excluded volume 

effects should not be important (although nearer the critical point they might be). Nevertheless 
the assumption (A) is obviously an important and potentially far reaching one and we will return 

to it later. To proceed further, however, the cluster partition function must be analysed in 

greater detail.

4. Cluster Partition Function and Condensation

Even for a lattice gas a full analysis of the combinatorial factor g({, s) entering in (13) 
seems very difficult. This is an important theoretical task central, as we will see, to the 

study of condensation. To see where the essential difficulties lie let us put

(19)

( 20 )

and observe firstly that the bulk entropy per particle S0 in a large cluster may be defined by

( 21 )

The existence of the limit in (21) can be proved rigorously by a generalised subadditive argu-

ment based on decomposing a cluster of l particles into two clusters of l' and l - l' + 1 
particles with one particle in common. This justifies the assumption of a bulk contribution to 

the entropy.

Secondly notice that the surface of a cluster cannot exceed some constant multiple of the 

number of particles (as is achieved by a cluster in the form of a string of beads, for example) 

nor can it be less than some minimum surface attained by some approximately spherical cluster. 

In d dimensions we thus have

( 22 )

where and a2 are appropriate constants. Since the terms in (19) are all positive the stand- 

dard maximum term argument shows that



264 THE THEORY OP CONDENSATION AND THE CRITICAL POINT Vol.3, No.5

(23)

Suppose that the maximum is attained for s = s so that s - s(l; (3) is the most probable or, 
loosely, mean surface area. Then as l becomes large

(24)

For the present we now avoid the full weight of the combinatorial problem by arguing that at 

low temperatures the most important configurations will be those relatively compact, roughly 

globular arrangements which have surface areas not vastly greater than the minimum possible and 
hence, for large Z, increasing more slowly than Z. We thus assume

(B i) the mean surface area s( Z, (3) satisfies

(25)

which is almost tantemount to the meaning of any well defined "surface". By virtue of the lower 

limit in (22> we may also assume that

(B i) (26)

These two assumptions are all that is essential for the main conclusions of the theory but 

in view of the bounds (22) and what has been said it is natural to expect more specifically 
that

(27)

with a0 = a0(j3) and o = o((3) satisfying

(28)

In particular at low temperatures one might expect the exponent o to be equal to (or close to) 

the value 2/3 for d = 3 while for d = 2 it should be 1/2. These specific assumptions were in 

fact made by the early workers. It seems quite possible however, that an "effective mean sur-

face area " which took account of the interference between clusters at finite densities due to 

the excluded volume might lead to a smaller exponent. Conversely the vastly larger number of 

configurations which can occur with a larger area might tend to increase the value of o [l4]. 

Consequently even if we accept (27) and (28) as a convenient and concrete expression of the 

basic assumptions (25) and (26), it seems better to leave the value of the exponent a as an 
open question (but see further below).

From (21), (24) and (25) we see that k In g[Z, s(Z)] varies as IS0 for large Z so that 
the difference defines a residual or "surface entropy". In fact this entropy will be associated 
directly with the many possible configurations of a section of the surface of a cluster (large 
in itself but small compared with the total surface). It is thus natural to assume finally that

(B iii) the residual entropy satisfies

(29)

The entropy per unit of surface q is supposed finite but it could in principle be zero. (It



might evidently, also, depend on temperature).

We may summarize these considerations by writing
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(30)

in which we have also specifically recognized the existence of higher order terms proportional 

to In Z and of order unity. A logarithmic term was not included by the earlier workers and is 

not essential to our main considerations. However many studies of related combinatorial problems 

(in particular self-avoiding random walks) have shown that the asymptotic expansion should be 

expected to have this form with t a positive number of magnitude unity or greater but depending 

principally on the dimensionality [l5, 16].

Substituting with (30) and (20) into the expression (16) for the pressure, and adopting the 

form (27) purely for simplicity, yields finally

(31)

where

(32)

and

(33)

so that y is proportional to the activity and x essentially measures the temperature (approach-
ing zero as T -» 0). This completes the mathematical derivation of the theory on the basis of 
assumptions (A) and (B). Let us turn now to the consequences.

Consider the probability of finding a cluster of size Z. By (18) and (30) this is proportional 

to

(34)

At low temperatures x is small and at low activities (and hence low densities) y is also small. 
In these circumstances p j decays rapidly to zero as Z increases (see Pig. 4). As y approaches unity, how-

ever, the decay becomes slower. When y = 1, pj still decays to zero but only as exp[-const. ZCTi. 

(assuming, of course, that x < 1, that is, T < Tc = w/a>). On the other hand when y is slightly 
larger than unity the probability at first decreases because of the factor xl° but finally in-
creases when the exponent (In y) l dominates the exponent -|ln x \ZCT or, more generally, s(l)

(see Pig. 4). The large (divergent) probability of very large clusters indicates, as observed 

before, that condensation has taken place. Consequently we identify y = ya = 1 as the condensa-
tion point so- that

(35)

while the chemical potential at condensation is

(36)



If y is only slightly greater than yG, that is if m - *%(T) is very small, the minimum value 
of pi can be extremely small since
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(37)

will be very large. Consider a system in equilibrium at a chemical potential just less than 

lxa(T) in which \i is suddenly increased slightly (or, equivalently, in which pa(T) is decreased 

slightly by cooling). Evidently even if the condensation point is passed the cluster distribu-

tion pi for l < Iminshould scarcely have to change as the system "relaxes" to its new equi-
librium. Furthermore if the primary mechanism by which a cluster can grow is through a binary 

collision with a relatively small cluster or single molecule (as will surely be the case at low 

densities) we see that there is a "free energy barrier" at Z = Zmin; a cluster with a large 

value of l less than lmin will tend to "evaporate" or break up into smaller clusters rather 
than grow further. Only occasional chance fluctuations, which will be extremely infrequent when 

p - V(j(T) (the "degree of supercooling") is small, will carry the system over the barrier. Even 
a single cluster with l > Zmin will, however, tend to grow, increasingly rapidly as l increases, 
and thus consitutes a "nucleus" of the condensed phase. (Impurities, such as dust particles,

FIGURE 4

Density of clusters of size l at an activity (a) below the condensation point, 
y < 1 , (b) at the condensation point, y = 1 , and (c) just above 

condensation at y > 1 .

may fulfill a similar role.) We can thus understand why a rather long lived metastable state 

may be observed when a pure gas is slightly supercooled. The extreme "limit of metastability" 

might be defined, somewhat arbitrarily, by the condition lmin ~  1, which yields

(38)

Evidently metastability, and in fact condensation, cannot occur if the temperature exceeds

(39)

which may thus be identified as the critical temperature. (Recall that <*> might depend to some 
extent on temperature).



Apart from certain refinements and generalizations we have so far essentially reproduced the 

droplet theory of condensation (and metastability!) as set out, for example, by Frenkel in his 
book fe], Let us now enquire into the analytic properties of the theory with Mayer's conjecture 

in mind.
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5. Analytic Character and the Critical Point

For fixed xt that is fixed temperature, the radius of convergence of the series (31) is given 

by

(40)

for all x. The last equality follows from the assumption o < 1. More generally the same result 
follows for any 1( 1, (3) from the assumption (B i). Since the terms in (31) are positive the 

point y0 = 1 must be a singularity of the function. Furthermore we see that it coincides with 
the previously identified condensation point yQ = 1. For this model, therefore Mayer's con-

jecture is verified: the condensation activity zG is a singularity of the analytic function 
p(z) /kT.

What is the behaviour of the density, the compressibility etc. at the condensation point? To 

answer this question note that these variables can be expressed in terms of the derivatives

(41)

Thus the density and compressibility are given by

(42)

(The energy, specific heat, etc. may similarly be expressed in terms of derivatives with re-

spect to x. ) At the condensation point we find

(43)

Using the assumption a > 0 or more generally (B ii), it is not difficult to show that this 

series converges for all n provided only that

(44)

(For x > 1 the series (43) is evidently always divergent.) Thus, in particular, the com-

pressibility remains finite on the condensation curve up to a temperature T = Tc which may hence 
be identified as the critical point in agreement with our previous conclusion.

The fact that all the derivatives with respect to z (for real z) remain finite at z = za even 
though we have established that this is a singularity of ir(z) might seem surprising at first 

sight. It merely means, however, that the singularity at z = zG is an essential singularity.
(One may recall the function exp(-l/x2) for which all derivatives along the real axis vanish



at x = 0). Evidently such a singularity can hardly be detected by direct thermodynamic measure-
ments in the homogeneous phase since none of the thermodynamic functions will exhibit any in-
finities or similar "anomalies"! [l7]

Since ir(z) has an essential singularity at z = za it is impossible to analytically continue 
the function through za to find some real "metastable continuation" of the isotherm. This may 

be seen clearly if we estimate the derivatives at zG by approximating the sum in (43) by an 
integral, which is valid for x near unity. Thus for x < 1 and n > t - 1 we have
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(45)

and making the substitution t = 0la, where

(46)

yields

(47)

For large n the gamma function varies as (n\)l̂ a. Consequently if the derivatives are used to 

construct a Taylor series expansion about za in powers of (In z - In za) the coefficient of the 
n-th term will vary as (n!)(1"<J)/CT for large n. Since, by assumption, <j is less than unity and 

since (n!)e diverges faster than £n for any £ when e is positive it follows that the Taylor 

series will never converge; that is, it has a zero radius of convergence. (For z < za and low 

enough T it might, however, have an asymptotic character.)

Although one cannot find a real analytical continuation of tt(z) through z = zG one may hope 
to construct a continuation of tt(z) by passing around the singularity at za . This task is con-

sidered in Appendix B where it. is shown that tt(z) as defined by the expansion (31) extends into 
a function meromorphic in the entire complex z plane except for a cut along the real z axis from 
z = za  to oo. Across this cut the imaginary part of ir(z) has a discontinuity which varies as

(48)

when z = ̂ {z} -» za + , where C and D are constants and

(49)

Evidently the discontinuity and all its derivatives vanish as z -> zff along the cut, which 
accounts for the extreme weakness of the singularity.

Our analysis thus shows that the cluster model of condensation which, as we have argued, 

should be valid at low densities (and hence low temperatures) implies a singularity at the con-

densation point and hence the nonexistence of a well defined real isotherm beyond condensation. 

Although one can be less confident of the correctness of the assumptions at higher temperatures 

it is of interest to pursue the consequences of the model in the vicinity of its critical point. 

We may hope to throw some light on the general theory of critical phenomena and on Mayer's well 

known hypothesis of some sort of extended critical region often referred to as the "Derby hat" 
phenomena.



Firstly note that from (41) and (42) the critical point density will be
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(50)

and for this to be finite we must have t > 2. From (42), (46) and (47) we see that provided 

t < 3 the compressibility at condensation diverges to infinity (as expected) like (Tc - T)Y 
with

(51)

(The notation y' for this exponent follows the standard scheme [l8].) Evidently the nature of 

the critical point singularities in other variables will equally depend only on the two para-

meters o and t . Thus the shape of the gaseous side of the 'coexistence curve* is found to be

(52)

where

(53)

The specific heat at constant critical density, which derives from pa(T), diverges with an ex-

ponent

(54)

where a value a' = 0 must be interpreted as meaning a logarithmic law rather than a power law. 

The shape of the critical isotherm is given by

(55)

where, by putting x = 1 in (31), one easily finds

(56)

By a more complicated analysis one may also investigate the behaviour of the isotherms as the 

critical point is approached from above at constant density pc. One discovers that the specific 
heat and compressibility exponents a and y above Tc, satisfy the symmetry relations

(57)

The general appearance of the isotherms implied by the cluster model when 2 < t < 3 is 
sketched in Fig. 5. Apart from the absence of the "liquid" sections of the isotherms the overall 

behaviour is surprisingly like that of real fluids.

Since all the critical point exponents depend on only two parameters any three of them must 

be related. Thus we find, for example [19],

(58)

and

(59)

These and other similar relations are satisfied exactly by the two-dimensional lattice gas with



nearest neighbour interactions (Ising model) and, as far as the values are known accurately, by 

the three-dimensional model also [20]. They seem to be valid for real fluids although at present 

the experimental data are not sufficiently precise for a stringent test. Interestingly they hold 
also for a van der Waals-like gas which may be regarded as an infinite-dimensional system.
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FIGURE 5

Isotherms following from the cluster theory of condensation showing the gaseous 

side of the coexistence curve and the critical point.

Of course using known values for y, 5 and p etc. we may evaluate the parameters a and t and 
compare them with our expectations. For the plane Ising model we find from

(60)

the values

(61)

This value of a is surprisingly close to the value o = % expected at low temperatures on naive 
geometrical grounds and tends to increase one's confidence in the underlying cluster picture. 
Presumably the difference A a = 0.033 is due to the neglected effects of excluded volume and to 

the statistical geometry of noncompact clusters. For the three-dimensional lattice gas there is 

some uncertainty due to lack of precise knowledge of the critical exponents. Present information 
is consistent with the ranges

(62)

to

(63)

These values of o fall below the geometrical value o = 2/3 but only by A a ~ 0.027 to 0.051.
This is, however, a sure indication of the importance of the excluded volume effects since single 
cluster’ geometrical factors would be expected only to increase o. The "classical" or



van der Waals-like limit corresponds to
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(64)

This seems difficult to understand in a simple fashion in view of the expectation a —  1 for 

d-* oo, and may be an indication of a more thoroughgoing breakdown of the cluster picture in the 
critical region.

Finally note that in all these cases we have a unique critical point rather than a critical 

region. Reference back to equation (43) and the accompanying argument shows that this follows 

quite generally from the two assumptions (B iii) that the surface entropy is proportional to the 

surface energy (co = 0 would give Tc = o o ) ,  and (B ii) that the mean surface of a cluster of I 
atoms increases more rapidly than In I. Conversely it is easy to see that if the surface entropy 

increased faster than the surface energy, the effective surface tension would be negative at all 
temperatures; small clusters would have no stability and a sharp condensation could not occur. 
Secondly suppose the surface energy and entropy increased only as fast as In i. Then the con-

vergence of the series (43), that is of the n-th derivatives with respect to z at condensation, 
would depend on the order of the derivative considered. This in turn would mean that the 

temperatures at which a volume discontinuity appeared, at which the compressibility became in-

finite, etc. would all be different. In other words the critical phenomena would take place over 

a range of different temperatures rather as suggested by Mayer. That this does not happen in 

practice is thus a reflection of the fact that the geometrical surface of a cluster of I 

particles (in two or more dimensions) increases faster than In l (and probably as 1° with a < 1). 
A fuller description of this type of anomalous critical region will be given in the following 

sections in connection with an exactly soluble model displaying condensation to which we now 

turn.

6. An Exactly Soluble Model

As we have shown the cluster theory of condensation rests mainly on two assumptions: (A) that 

the interactions (in the form of excluded volume) between clusters can be neglected and (B) that 

the mean surface of a cluster has the expected properties and characterizes sufficiently well 

all clusters. In my opinion the second assumption is probably the more difficult one to justify! 

To judge the validity of the first assumption we will describe a one-dimensional model in which 

the excluded volume may be rigorously taken into account.

It is sometimes asserted that a one-dimensional model cannot display a phase transition (ex-

cluding, that is, the procedure of taking some special limit after the thermodynamic limit as 

in the Kac-Uhlenbeck-Hemmer model [3]). This has only been justified, however, for systems with 

pair interactions of strictly finite range b and with similar three-body and many-body inter-
actions up to some finite order; that is, all the forces vanish identically for separations 

greater than b [2l]. Indeed it seems likely that a one-dimensional fluid of particles interact-

ing with a pair potential decaying only as 1/r6 will exhibit condensation if 1 < e < 2. This is 

suggested by the cluster argument, as we will outline, and also, as has been remarked by Kac 

[22], because the corresponding "sphericalized" lattice gas model still has a transition where-
as the normal tendency of "sphericalization" seems to be to destroy transitions. At present, 

however, no such pair interaction model has been rigorously solved. We will consider instead a 
model in which the forces are of strictly finite range but many-body interactions of indefi-

nitely great order are present. By strictly finite range we mean, as above, that if any group



of Ni + N2 particles with total potential energy Ujj + is separated into a group of

particles and a group of JV2 particles with a minimum separation R between particles in differ-
ent groups exceeding b, then there is no mutual interaction, between the groups, that is
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(65)

Explicitly we take a pair interaction potential

(66)

so that the particles have a hard core of diameter a. We suppose for simplicity that the range 
satisfies

(67)

so that the pair interactions arise only between nearest neighbours. In the interval a < r<  b 
the potential may be arbitrary provided it is bounded below. To define the many-body inter-

actions we introduce, as in Section 3, a clustering distance c which might be taken equal to b 
although this is not necessary. Labelling the particles in sequence we say that particles j to 
j + k belong to the same cluster if I rj + 1 - r | 4  c, | rj+2 - r;+i I <  c, ...

! rj+k ~ ry+fc_il ^  c . The s-body potential is then taken as (s ̂  3)

(68)

Thus there is a constant s-body interaction energy coming into play between any succession Of 

s-particles which belong to the same cluster but no interaction between particles in different 

clusters. For simplicity we will assume the q>s are all negative or zero (i.e. the many-body 
forces are attractive).

Consider the total energy of an (isolated) cluster of l particles. This will be

(69)



Evidently the energy per particle in an infinite cluster satisfies
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(70)

For thermodynamic stability we must require [5] > - oo or

(71)

so that |q>J must decrease faster than 1/s. It should perhaps be stressed that the condition 

(71) together with the strictly finite range property (65), is sufficient to guarantee rigor-

ously the existence of a limiting free energy with the usual thermodynamic .properties even when 

q>s does not vanish for any s [5].

Now we may rewrite (69) in the form

(72)

(73)

where the first term is recognised as a bulk energy while the surface energy is (neglecting a 
constant contribution)

(74)

It is easy to show that

(75)

as expected [compare with (25)].

Notice at this point that if, in place of the many-body potentials, we had considered long- 

range pair interactions, we would have found precisely the same results (69) to (75) for the 

energy of an isolated cluster of I particles of uniform spacing d but with q>s replaced by 
92[(« - l)cfl. Thus our many-body forces accurately imitate the effects of long-range pair inter-
actions within a single cluster. They do not, however, reproduce the long-range attractive 

forces between different clusters that arise in the pair case; neglect of these would, of course, 

be expected' to weaken any tendency towards condensation. On the other hand the repulsions, or 

excluded volume effects, between different clusters are given precisely by our potentials.

If we accepted the arguments of the droplet theory of condensation we would conclude from



(72) and (75) that the model would display condensation provided that
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(76)

There should then be no critical point since there is evidently no surface contribution to the 

entropy of one-dimensional clusters (except perhaps for a constant contribution from the ends 

of the cluster). Consequently the entropy per unit surface, <■> would vanish and by (44) we would 

have Tc = <x>. If Wj varied as In I for large Z we would expect the Derby-hat type of phenomena 
while if, on the other hand,

(77)

there would be no phase transition. As we will show these conclusions are confirmed in detail 

by the exact solution of the model!

Before describing the solution note that from (73) we obtain

(78)

so that the conditions (75) and (76) become

(79)

and

(80)

respectively. For potentials decaying faster than 1/s2 no transition is thus expected.

7. Analysis of the Model

We will sketch, without entering into full details, the solution of the model with the 

potentials (66) to (68). As with most one-dimensional models it is advantageous to start with 

the grand partition function E(|3, z; L) for a length L and to compute its Laplace transform

(81)

which can be regarded as a generating function for all possible sets of clusters of all possible 
sizes and spacings. If we write

(82)

and

(83)

and define the generating function
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(84)

which enumerates all possible single clusters with their "internal* Boltzmann factors, we can 

construct T(|3, z, s) from the series

(85)

Here the first term accounts for all lengths of line with no clusters, the second term for all 

possible single clusters at all positions along the line, the third term for all pairs of 

clusters and so on. The solution of the problem is thus given formally hy

(86)

The thermodynamic behaviour is obtained by noting, from the definition (81), that the 

abscissa of convergence, s0 = so((3, z), of the transform *f(s) determines the grand canonical 

potential since

(87)

The possibility of a phase transition may be seen immediately since, from (84) and (86), the 

breakdown of the convergence of T(s) for small ${s) is determined either by the

Interior condition

( 88)

or by the

Exterior condition

(89)

If, as s decreases from oo, one of these conditions is always encountered before the other there 

is no phase transition; a change over from one condition to the other will correspond to some 

sort of phase change.

The second condition can be conveniently rewritten in terms of the "master function"

(90)

defined for |u| <1, which bears an obvious resemblance to the final form (31) of the grand 

potential in the droplet theory. In particular notice that Y(|3, u) is always singular at u = 1. 

The exterior condition then becomes

( 91 )



where the function Q($, s) is easily shown to increase monotonically (and strictly) in s from 
the value Q(|3, 0) = 0.

Since s0 is only determined implicitly by the equations it is simpler to choose s = (3p as an 
independent variable and to ask for the activity (or chemical potential or Gibbs free energy) 

as a function of 0 and s, that isf T  and p. One readily finds from (88)
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(92)

and the equation of state is then

(93)

Now for small s = $p the function u(|3, s) is determined through (91), the series (90) con-
verging absolutely. As $ increases u increases analytically towards unity. If the series (90) 
diverges at u = 1, that is if

(94)

one easily sees that u((3, s) remains less than unity for all s (i.e. all p) and there is no 
transition. If, one the other hand, Y(P» 1 -) is finite then a transition occurs at a pressure 
PPa = so determined by

(95)

For s >  sa the function u has the constant value unity so that, by (92) the thermodynamic be-

haviour is governed entirely by the "internal function" J((3, s).

We have thus found the conditions for a phase transition in our model. By studying the con-
vergence of the series (94) it is hot difficult to show there is

(a) no transition at any temperature

(96)

(b) a transition at all temperatures

(97)

(c) a transition below a critical temperature

(98)

These results agree with the guesses based on the droplet theory. They may be summarized con-
veniently by the formula for the critical temperature, namely,

(99)

since cases (a) and (b) correspond merely to Tc = go or Tc = 0, respectively.

The nature of the transition when it occurs depends, of course, on further details of ffj.



From (93) the volume discontinuity at the transition is seen to be
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( 100)

where Q'(s) = BQ/Bs > 0 and the derivatives of the master function are defined by

( 101 )

In case (b), which corresponds to the behaviour of surface energy expected in two or more 

dimensions, there is always a volume discontinuity at the transition although it diminishes as 
the pressure increases. On the other hand the compressibility and all higher derivatives along 

the isotherm remain finite as the pressure increases towards pQ (since all the series (101) con-
verge at u = 1). Nevertheless it is clear that the condensation point is a singular point of the 
isotherm, as Mayer conjectured although, as we would have anticipated, it is an essential singu-

larity. This leading conclusion of the cluster theory is thus not invalidated by the full in-

clusion of the excluded volume effects - at least not in this simple but rigorous model!

The absence of a critical temperature in the case (b) stems as we mentioned it would, direct! 

from the absence in the expression for the master function of any entropy factors with the same 

behaviour as W'j. We could at the cost of no longer having a model with a definite Hamiltonian, 

arbitrarily "assign" extra phase space to each cluster of I particles in such a way as to lead 

to an additional factor exp [(o/kw) W{\ in the Z-th term of Y((3, u). We would then find a unique 

critical point at a temperature Tc = w/co, just as in the cluster theory except that the model 
now also describes the liquid phase. Apart from the liquid side of the coexistence curve (which 

is concave rather than convex due, essentially, to the neglect of "bubbles" in the liquid) the 

overall pattern of isotherms resembles that found in practice. In particular it is possible to 

pass continuously and smoothly from gas to liquid over the "top" of the critical point. This 

transition, however, is not fully analytic since one finds that the critical isotherm for v < v{ 
is a line of essential singularity. Nothing of this is "visible", however, since all temperature 

or pressure derivatives are continuous through this isotherm! This means that in the model (no 

longer, we stress, a true Hamiltonian model) there is an absolute distinction between a gas and 
a liquid. Such a distinction does not, of course, occur with a van der Waals-like equation of 

state. The existence of some absolute difference between liquid and gas has often been con-

jectured for real systems but has never been established convincingly. If the nature of*the 

transition between the states were of such an "infinite order" this is perhaps hardly surpriz-

ing. I do not feel, however, that our result adds much plausibility to the speculation for real-

istic models although it serves as a warning of what could happen!

Finally let us investigate briefly the borderline case (c) where the model with a proper 

Hamiltonian does have a critical temperature. The main features follow from the observation that 

the number of derivatives (101) of the master function which remain finite at the transition 
point u = 1 depends on temperature. As soon as T drops below Tc, as defined in (99), all suffi-
ciently high derivatives diverge which means that high derivatives along the isotherm are dis-

continuous across a singular curve. in the (p, v) plane. However there is no volume discontinu-
ity until the pressure drops to Tc* = & T C! On the other hand the compressibility remains con-
tinuous across the singular curve only down to a temperature of (2/3)Tc = (4/3)Tc' below which 

point it becomes infinite as the transition is approached from the low density side. It remains 
infinite at the transition down to a temperature of (1/3)TC = (2/3)7^ but becomes finite again 

as in a normal condensation process, at lower temperatures! One might indeed say that the 

"order" of the transition varies continuously with temperature.



The general shape of the isotherms when

278 THE THEORY OP CONDENSATION AND THE CRITICAL POINT Vol.3, No.5

( 102 )

is illustrated in Pig. 6. In this case the critical pressure is infinite while the gas side of 
the coexistence curve varies as (Tc' - T)^ when T approaches Tc' from below. It is quite 
possible, however, to have a "flat-topped" coexistence curve as suggested originally by Rice 
[23].

FIGURE 6

Sketch of the isotherms of the exactly soluble one-dimensional model in the 

borderline case (c) when the surface energy is given by equation (102).

This bewildering variety of peculiar possibilities is a further reflection of the arti-

ficially weak nature of the surfdce energy in case (c). Such a logarithmically increasing sur-
face energy can arise, I believe, only in one dimension. Geometry alone will lead to surface 

energies satisfying (97) that is condition (B ii) of Section 4, in two or more dimensions.

The one-dimensional model can be generalized in various directions (in particular, the liquic 

and gaseous states may be treated more symmetrically) but the description of these developments 
must await another occasion.

8. Conclusions

My primary purpose in this lecture has been to show that the physical ideas of the droplet 

theory of condensation still deserve further exploration. The theory itself contains interesting 
and, I believe basically correct, implications regarding the nature of the condensation point 

and the critical point which do not seem to have been noticed previously. The predictions of an 

essential singularity at the condensation point, of the uniqueness of the critical point and of 

the inter-relations between the critical point singularities throw light on a number of long 
standing problems and conjectures.

I hope by reformulating and extending the cluster theory I have exposed the most important



problems concerning its foundations. The exactly soluble model which I described, although it 

is evidently artificial in a number of respects, lends support to the validity of the conclusion; 

and underlying assumptions of the droplet theory. There seems to be a real possibility of 

establishing these foundations on a more rigorous basis. The subtle and complex possibilities 

already revealed by our analysis suggests that this may not be an easy task; it is, however, a 
worthwhile and important one.
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APPENDIX A

Proof of Theorem on Condensation Singularities

Suppose we are given, at fixed temperature, the pressure as a function of the specific volume 
v, that is,

(A. 1)

and we wish to determine the grand potential

(A.2)

and the density

(A.3)

as functions of the activity z. We may revert (A.3) in the form

(A.4)

and then solve formally for ir by integrating to obtain

(A.5)

Conversely from (A.3)

so that solving for the last derivative and integrating yields

which determines the function L(v) upto an additive constant.

(A.6)

(A.7)



This result may be checked directly by thermodynamics since, in standard notation,
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(A.8)

while the chemical potential is

(A.9)

since

(A.10)

Recalling that In z = |3p + constant shows the equivalence of (A.9) to (A.7). 

Now suppose that P(v) is analytic at v = va #  0 so that the power series

(A.11)

is convergent for small enough (v - va). Substitution in (A.7) with za = za etc. yields the con-
vergent series

(A.12)

where oq = 0. Thus L(v) is analytic near v = va.

Provided the coefficient of (v -  va) in (A. 12), namely (Sa^, does not vanish, the function 

L(v) may be reverted to yield v as a function of L = In z, which is analytic in the neighbour-
hood of La = In zCT. The condition #  0 is equivalent to the finiteness of 'dv/'dp and hence

of the compressibility, at va. Since vCT #  0 the reciprocal is also analytic and consequently 
the integration in (A. 5) yields ir(z) as an analytic function of z near z0.

If 0̂  = a2 = ... = a*,! = 0 and a* #  0 so that the compressibility is infinite at the con-
densation point one sees similarly that L_1(ln z) is analytic in the variable (In z - In za) 
so that ir(z) has a simple branch point at z = za.

APPENDIX B

Analytical Continuation of Droplet Model Grand Potential

Prom (31) to (33) and (46) the grand potential, it = p/kT, for the droplet model is given by

(B. 1)



Following van Kajnpen [24] we attempt to find a function fit) such that
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(B. 2)

Expanding formally in powers of y under the integral sign one finds that fit) should satisfy

(B. 3)

Inverting this Laplace transform yields

(B. 4)

for any c > 0. For 8 > 0 and 0 < a < 1 the integrand in (B. 4) at p - c + is has the bound

Consequently fit) is defined by (B.4) for all real t and in turn has a bound of the form

(B. 5)

Since c may be chosen less than unity the integral in (B. 2) exists for all y except for y = 
# { y } >  1, and, in fact, defines a function of y meromorphic in the cut plane.

One may now re-expand (B. 2) in powers of y and check that the remainder after n terms, namely

(B. 6)

vanishes as n-* co provided |y| < 1 .  Thus the integral (B. 2) does represent ir(z) as defined by 
the series expansion (B. 1). Furthermore it evidently continues ir(z) to the whole z (or y) plane 

except for a cut along the real axis from z = zCT to + oo. On the cut the real part of ir(z.) is 

obtained by taking the principal value integral in (B. 2). On the other hand the discontinuity 

of the imaginary part of ir(z) across the cut at z = £ > zCT is given by

(B. 7)

To evaluate this discontinuity as (, •* za+ or y -» 1 *■. we use the method of steepest descents 

to perform the Laplace inversion (B.4) for small t. Making the substitution p = u/t brings the 
integrand to the form

(B. 8)

where X = 6/tCT is now the "large parameter". To sufficient approximation the saddle point is at

(B. 9)

Finally changing variables again by putting u = u0(l + iv) leaves, after removal of a constant



factor, an integrand pf the form
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( B . 10)

which peaks sharply when t -* 0 so that u0 -» oo. in all, we find as t ■* 0,

( B . 11)

where

( B . 12)

and

( B . 13)
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