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Abstract

I t  is our notion that the Anderson phase-number relationships (which he developed 
for the Josephson effec t) should be applied to a superconductor in equilibrium. This 
adds to the BCS postulates a further one: there exists an in trinsic phase spread 
across a suitable domain in a sample and a corresponding uncertainty in the number 
of electrons in that domain. The new Hamiltonian contains a Coulomb repulsion term, 
and the new wave function contains unpaired occupied states even in the ground state. 
Minimization o f the energy shows that the size o f the domain within which the phase 
spread exists is the size o f the sample. Detailed numerical solution finds that only

o
for beads o f 100-500 A w ill the results d iffer  significantly from the BCS or bulk 
case. Excited states and thermal properties are solved for in detail and other pro
perties are discussed. Predictions are a smaller gap and a lower critica l tempera
ture than in bulk, a f i r s t  order transition to the normal state, and an effective  
density o f states for single particle transitions at very low temperatures which 
exceeds that in the normal state. I t  is well known that the samples in Knight sh ift 
experiments are o f the size necessary to test these predictions; however, the 
e ffec ts predicted here are not found. We argue that those samples are not in 
electrical isolation, in violation of a condition critica l for the detection o f the 
electrostatic e ffe c t .

1. Introduction

JOSEPHSON [l] showed that condensed pairs can tunnel from one superconductor to another with 

zero voltage drop. Anderson [2] put the Josephson effect on an intuitively satisfying basis 
through his analysis of phase and particle number relationships.

It is our notion that these relationships, so successfully applied to a nonequilibrium
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problem, should be invoked for equilibrium situations. Anderson, in his original paper, in I 

effect suggested such an extension when he wrote down a wave function which fixed the number of \ 
particles at the expense of an indeterminate phase. In this paper the superconducting ground 

state and then the equilibrium state at T > 0 will be examined from this point of view. We shall^ 
not change any of the fundamental BCS [3] postulates, such as the introduction of the truncated \ 
Hamiltonian, the pairing scheme, and the Hartree assumption of independent probabilities for ! 
individual state occupation. The main thing we do is to include an additional postulate, namely 

that there exists an intrinsic spread in phase across a domain in a superconducting sample and, 

linked to this via the uncertainty principle, a pair number density uncertainty.

The origin of this effect may be explained in a manner which draws on Anderson's discussion. 
Think of two neighboring regions in a superconductor.To have the maximum correlation energy, 

they would prefer to have the same phase. However, this would produce an infinite uncertainty 
in the relative electron number, which implies huge charge densities for a substantial fraction 

of the configurations specifying the state. The superconductor would prefer to have a uniform 

charge density. Since it cannot have both that and a constant phase, it optimizes the two. The 

same argument holds for any such imaginary division of the sample. We emphasize that this be-

havior of the phase is different from, and also independent of, the standard phase uncertainty 
which refers to our ignorance of a phase which is supposed to be unvarying over the sample.

These effects share the features of all zero-point fluctuations. Anderson [4] has shown that 

the occurrence of this kind of behavior is widespread in systems governed by a Hamiltonian which 

possesses a symmetry not possessed by the wave function. This symmetry-breaking wave function 

arises when the system undergoes a phase transformation to an ordered state. In the case of 
the superconductor, the order parameter is a complex number, Aei(P, and states with different 
values of phase 9 are degenerate. There results the zero-point fluctuations in phase. Other 

systems exhibiting this kind of phenomenon are better known and include lattice structures and 
magnetically ordered systems.
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2. The Model

The BCS Hamiltonian will be amended by adding a term representing the electrostatic repulsion 

of an excess (or deficiency) of electrons, He . The revised Hamiltonian, appropriate to unit 
volume, is

( 1 )

where

(2)



As in BCS, is the number operator, b£ the pair creation operator, e* the kinetic energy 

measured from the Fermi level. In He the angular brackets denote an expectation value. We are 
allowing the sample an extra degree of freedom: namely, that it may divide into domains of 
volume r3 within each of which the same phase spread and electron excess exist. The constant c 

is of order one and depends on the shape of the charge distribution.

A suitable wave function to be used as a variational approximation to the exact ground state 

will be formed from a product function of pair states and singly occupied states with occupancy 

probability functions h^ and respectively [5]. The reason for believing that singles exist 

in the ground state is that electrostatic energies are enormous and intolerable to the system. 
Consider, for example, an excess of one pair inside a region with r = 5 x 10~5 cm, a typical 

coherence distance. The repulsive energy is 10-2 V or ten times a typical gap energy. It is 

energetically favorable to have two single particles (or holes) above the gap neutralize the 

excess charge.

The approximate ground state wave function for each domain r3 is
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(3)

Each domain has its phase centered about the same value 9. (One could at the end set the com-

plete wave function T0, for an isolated system, equal to (2tt)-1 f * 1* Yo (<p) d<po). Since 9^

is arbitrary, the singles are not restricted by the uncertainty principle. In the absence of a 

theory of phase fluctuations, a worthwhile thing to do is to examine the consequences of assum-

ing a reasonable form for F(q> - 9'). The form we choose is

(4)

The reason for this choice is that a Gaussian yields the minimum uncertainty product. The 

quantity a is the root mean square deviation in 9. In writing To(9) as a product function, 
separable in a and the h we have extended the Hartree assumption to include cj. Because of the 

presence of singly-occupied states (i.e. an apparent "normal" component) in the superconducting 

ground state, and because the names "intermediate state" and "mixed state" have been preempted, 

we have termed our Imodel "the motley state".

If T0 is used to evaluate the expectation value of H, we find for the ground state energy [6]

(5)
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Hie kinetic and pairing energy terms are in a form analogous to equation (3.16) of BCS, which 

is their finite temperature form. The last term is obtained by taking the uncertainty principle 

literally: that is, = 1, where nx is the excess number of pairs.

3. The Ground State

To find the ground state, we minimize Hq with respect to h^, 1*, a, and r. We find, with 
respect to h

( 6)

Following BCS, we assume = V with a cutoff at at, the Debye frequency. Setting (6) equal to
zero, we conclude that either i* = 1 or else the BCS-like set of relations must be obeyed:

(7)

( 8)

(9)

and, using the relations (7) and (8) plus the definition

(N is the normal density of states of one spin at the Fermi surface),
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( 10)

In a moment we will see the physical meaning of E2. For now, assuming that £2 have a 

specific value, we see that

This means that Ik is as large (small) as possible for Ek < E2 ( >  E2). But l k cannot be 
larger than definite single occupation nor smaller than zero. Hence lk = 1 for Ek < E2 and 
lk = 0 for Ek > E2; also l ( - e )  = l(s). These values for I* produce 2k lk = 2iVe2, and thus 

e2 = £i and E2 = Elt where

( I D

Setting / 1)1 k = 0 yields

( 12 )

It is intuitively gratifying that the singles occupy the lowest available states above 

the gap. The term "gap" in this context means the energy region containing no allowed states. 

The minimum energy for scattering a single is zero. The minimum energy for breaking a pair is 

2 Ex.

We minimize Hq with respect to a and use equation (12) in the resulting equation to obtain

(13)

A second expression relating a. A, and e1 comes from equation (8), which may be solved in 
the form

(14)

where Q2 = m2 + A2. The corresponding BCS formula is

(15)

where the subscript 6 refers to the values of the parameters in the BCS limit, which we shall 
show applies to bulk material. We now appeal to the weak-coupling approximation, which says 

that A «  u and so Q « Qk. Combining (14) and (15) then gives

(16)



For values of r smaller than a coherence distance, we have seen in the paragraph above equa-

tion (3) that A «  4ce2/r. Therefore, a final needed expression comes from (12) in the simpli-

fied form
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(17)

We shall later show that this equation is valid for any value of r.

When we attempt to minimize W0 with respect to r, we find that cW0 / is always negative, 
implying that Hq is a minimum for r oo. In this limit, cr-♦ 0, gx ■+ 0, A -* A*,. This is the BCS 

or bulk limit. Thus in this limit the electrostatic effect per unit volume goes to zero.

It is apparent that the superconductor will choose r to be the size of the sample, and so we 

ask how small must r be for the sample not to be "bulk", and what is the behavior of the motley 
state as we decrease r toward the limit of the smallest possible sample that is still super-

conducting?

4. Numerical Solution

We need to solve, simultaneously, for a, A, and glf in the system of equations, (11), (13), 
(16 and (17). For this purpose we assume values for the bulk parameters which will be repre-

sentative of real metals such as Sn, In, Hg, Pb, and others: namely, NV = 1/3, 2V = 10“22 V cm3, 
Ab = 10“3 V. Our plan is simple to state but tedious to carry out. We tabulate the functions 
A(a) and B(o) appearing in equations (13) and (16) for values of cr between 0.1 and 0.8. For any 

particular choice of r, we at first neglect elt so that (16) becomes A = B(o) and (13) becomes 
A*1 = (r3/2V) A(o). We search our table of A(<j ) and B(a) for the values that give the same A.
We then use ei to improve upon these values, iteratively.

In Fig. 1 we have plotted the results for a, for A/A^, and for gj/A vs. r in a range of r
o

around 100 - 300 A. Two special values of r, called r0 and rs, are defined later in this section 

For r > 300 A, (13) becomes or = (2V/Ab)1/3 = 4.6 x 10"7 cm and (16) becomes A = Ab(l - 1.5 a2),
O

both to an accuracy of a few per cent. On this basis, a bead with r > 300 A is practically
/X/ O

"bulk" material. For r < r s where r s is estimated to be >  90 A, there is no solution to our 
equations and the motley state does not exist. Using the large r form for a in (12), we findw 
that a”1 »  £ 1/(4ce2/r) for all r and, therefore, a*1 = r 3/Ve1 for all r, as we asserted 

earlier.

Even for r > r s, the result that a motley state exists is not a guarantee that it is stable 

relative to the normal state. Indeed, we expect that when ei ~  A, the energy of the singles 
above the gap outweighs the pairing energy. We determine W0 by casting equation (5) into the 
form

(18)

This expression is analogous to equation (2.41) of BCS. We have used equations (8) and (12). In 

the weak-coupling limit we find
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*0 = A2 -26 lE 1 2 E x 1/  2

H'b ~ Ab2 ' (4ce 2/r) r 3
(19)

in terms of the bulk or BCS energy Hj,;

( 20 )

The denominator of the last term in (19) is far greater than one, implying that that term is 

negligible. In particular, for large r, while the electrostatic energy of the sample is large, 
that energy per unit volume is very small and inaccessable to experiment.

FIGURE 1

The motley parameters, <j , A/A^ and ej/A, vs. r at T = 0. or is the intrinsic 
phase spread, A is the energy gap, Aj, is the bulk energy gap, si is the 

highest Bloch energy occupied by a single, and r is the dimension of the 

sample. The dashed portions denote the region of metastability. r$ is the 
smallest value of r such that a solution exists, while tq is the smallest 

value of r such that the solution is stable with respect to the normal state.

In Fig. 2 we have plotted the results for vs. r. Apparently we have to go out to 500
O o

or 600 A in order to have B0 = to a few per cent. On this basis, r > 600 A is essentially
o

"bulk" material. At a value r0 « 110 A, H0 = 0 relative to the normal state. The region below 

r0 is dashed on Figs. 1 and 2. Note that ei(ro) = 0.55 A(tq). The meaning of negative Wq is, of 

course, that the motley state is metastable.

It is plausible that the motley state should exhibit its most marked behaviorv for values of 
r ~  10“6 cm. The two characteristic lengths in the problem are §, which is the correlation dis-
tance, usually ~  10**4, and d ~  (Nep) ~ ly/ 3. the interparticle spacing, which is ~  10~8 and is 
determined by a balance of electrostatic and kinetic energies. Since the motley state is itself 

a compromise between electrostatic and correlation energies, we expect a dominant role to be



5. Equilibrium State at Finite Temperature

In this section we generalize the preceding theory to describe the motley state at T > 0. A 
novel feature of the excited state distribution function is that "two kinds" of excited particle 
compete for occupation. One behaves like a member of a thermally broken pair in that it makes 
no contribution to the neutralization of the pair deficiency nx. The other behaves like an ex-

cited single and does contribute to neutralizing ni. Since these "kinds" of excitation are 

otherwise indistinguishable, they combine in a nonseparable entropy function.

A svstem in the statistical ensemble is specified by stating, for each set of individual 
states (k , s) +(-fe, -s), whether exactly one is occupied by a single, by a member of a broken 

pair, or by neither of these, in which case it is available for pair occupancy. The distribu-

tion functions for these three cases are l^, g and h^, respectively.

To determine the distribution functions, we require the free energy

played by distances given by some relation like r ~  (£d) ~  10~6 cm.

We remind the reader that an approximation [6] leading to equation (5) worsens as o increase] 
Thus it is likely that our values for r 8 and r<> are somewhat incorrect. The qualitative feature! 
should not be affected
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FIGURE 2

The ratio of motley to BCS condensation energies, Wq/H^ at T = 0 plotted 
against r. The dashed portion denotes the metastable region lying

between rs and tq.

(21)

The quantum mechanical and thermal average of the Hamiltonian (2) is
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(22)

, The entropy is given by

(23)

Minimizing F with respect to h* as we did for the ground state, we obtain either I* + 2g* = 1 
or else the BCS-like set of equations:

(24)

(25)

Again we have assumed a constant V with a cutoff at co, the Debye frequency. 

We further find

(26)

(27)

Again we have used

(28)



The solutions to (26) and (27) are
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(29)

where / is the Fermi function, f i x )  = [l + e x p O * ) ] “l ; P”1 = k t. It is easy to see that 

l + 2g <  1, and also that l and g reduce to the appropriate values at T = 0.

Minimizing F with respect to o and using (28) in the resulting equation yields

(30)

A second expression relating a, A. and E2 will come from equation (25), which we put into the 

form

(31)

As before, the smallness of the ratio E2/(4 tce2/ r )  allows us to change (28) to

(32)|

Extending the upper limit to infinity is permissible due to the rapid convergence for E > kT.
We shall later show that (32) is valid, at least near the transition temperature, for all r. As 

before, E2 = Ex at T = 0. For T not too close to zero, E2 < A and therefore e2 is not defined; 
this is not a defect.

We see by inspection of (30) - (32) that A can never reduce to zero at any temperature except 

in the BCS limit. We define Tc as the maximum temperature for which a solution exists, and T  ̂
as the bulk maximum temperature.

We wish to solve (30) - (32) for the temperature dependence of the motley state parameters 

from 0 to Tc. To make headway we must drastically simplify the equations. Primarily we draw an 

analogy to a helpful solution of the BCS equation

(33)

which is the bulk limit of equation (31). A close approximation to the general solution to (33), 

good regardless of coupling strength, is given by Swihart [7] based on a theory of Thouless [8]:

(34)

We are able to draw a rather complete analogy to this solution through the following argu-

ment. If we ignore the restriction imposed by equation (30), then we may define Tz as the 
maximum temperature for which (31) has a solution for a = cr2; A(T2) -► 0. Let us then define the 

general solution to (31) to be a Thouless-Swihart equation of the form
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(35)

In attempting to make sense out of (35), we are hindered by the fact that o changes with T. We 
overcome this difficulty by defining the subscript z to mean that all quantities are given the 
values which they would have if a(0) and cr(Tz) were set equal to the value a(T), where T is the
temperature at which the quantities A, elf cr are being calculated. With this definition of z, 

we see that rj(T) = E2(T) + e2 (T) fits (35) at low enough T. We also see fhat r\(T) = A(T) 

fits (35) at all T i f  elz << A z(0). We assume that

(36)

fits (35) at all T for all samples.

We now recall equation (16), which says

(37)

In weak-coupling Tz and Az(0) are fairly well related by

(38)

Using equations (37) and (38), we convert (35) to

(391

The system of equations (30), (32), (36), and (39) contains the unknowns A(7), E2(T), o(T), plus 

the definition of r\.

6. Approximate Numerical Solution

To obtain numerical solutions to the motley equations, we attempt to follow a plan similar 

to the one laid out for the T = 0 case. We notice that equation (32) has two simple limiting 
solutions. (1) For kT «  A ( T ) , E2 ~ E 1% in fact, E2 at first slightly increases with T due 
to the asymmetry in N(E) around E = Ex. For T a bit larger, the asymmetry is reversed because 
of the energy gap, and E2 begins to decrease below A. This occurs when E \ ( T ) - kT « A ( T ) .
(2) For kT »  A(T), ( r 3N o)~l « E2. a picture of the Fermi functions gives this result by 

inspection. In between (1) and (2) a rough interpolation can be made.

Once the simplification (1) or (2) has been made, we solve for o(T) and A(7) as we solved 
before for or(0) and A(0). There are two reasdns for isolating T on the left side of (39). One 
is that it is then simpler to find Tc. Another arises when it turns out that c and, especially,

A vary rapidly near Tc and furthermore are double-valued over a wide range of T. An example of
o

this behavior for the sample value r = 160 A is displayed in Fig. 3. The double-valuedness means 
that the free energy has two minima. The absolute minimum lies in the solid lines. The secondary 

minimum does not persist down to T = 0.
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FIGURE 3

o
The motley parameters, o(T) and ACD/A^CO), vs. T/T^ for r = 160 A. The absolute 

minimum of the free energy lies in the solid curves. The dashed curves denote
unphysical solutions.

FIGURE 4

The motley parameters, TclT^, ac, and Ac/Afc(0), vs., r. Subscripts c and 6 refer 

to the critical temperature and to the bulk material, respectively. The dashed 
portions lie in the region of instability and begin at rs. The dotted portions 
are the values at the "transition point" defined at the end of the next section

and begin at tq.



The critical temperature Tc occurs at the value of T where the solid and dashed curves inter-
sect, i.e. at the point where the free energy has a single minimum. To the right of that point, 
i.e. at higher values of T, there exists no solution to the equations. However, for purposes of 

illustration, we have extended the curves beyond Tc to show the accuracy in the procedure of 
locating the critical parameters. We see from Fig. 3 that approximations used in setting up and 

solving the equations will produce a relatively large error in the value of Ac due to the steep-

ness of the curves for Ac near Tc. A smaller error will result in the value of ac due to the

gentler slope. Most important, the error in locating Tc will be very slight because it is not 
as sensitive to the approximations.

In Fig. 4 we have plotted vs. r the values of these critical parameters. In Fig. 5 we have

shown rough curves of A(D vs. T for a number of samples. The initial slope at T = 0 of A(T) is
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FIGURE 5

Rough curves of A(r)/A&(0) vs. T/T^ for several values of r. The dashed 
portions lie in the region of instability. The dotted curve represents 

the locus of values at the "transition point" defined at the end of the
next section.

zero. This is also true of o(T’) and E2(T). From Tc or Ac or the curve A(T), we decide that 
again r * 600 A is close to being "bulk" material.

Limiting expressions for large r are obtained by maximizing T in equation (39) subject to 
the constraint (30) and the approximation of case (2). These expressions are crcr = 4.3 x 10~7,

Tc= (1 - 2.2 oc2)Tb, Ac = 1.5 ctcA5(0), E2c = 1.2 <jcAc. The numerical coefficients depend on

the values of N and V. With our representative values, oc « oq and, therefore, A c « 1.5 cjcA0. 

That is, a is unchanged and A decreases between 0 and Tc. We can show that near Tc, just as at

T = 0, cj“ 1 >> E2/ (4ce2/ r) for all r and hence equation (32) is valid for all r. We be-
lieve this is true at all T.



7. Free Energy and Specific Heat

We saw earlier that in the tiniest samples the motley state is unstable relative to the 
normal state at T = 0. We inquire about this situation at T > 0, and we also ask for the spe-
cific heat and for the latent heat of the first order transition at Tc. These quantities are 
obtained by substituting the expressions derived for the distribution functions into equations 

(21) - (23).

Since we follow the well known procedure of BCS step by step, we shall write down mainly the 

results. In the weak-coupling regime, we find for the free energy difference between motley and 

normal states,
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(40) ]

where the normal state free energy is

(41)

and 6̂ “ ” 1/2 N A^(0)2 As before, the last term in (40) is negligible for all r.

We are unable to make a satisfactory plot of (40) for a small value of r. Even if we could, 

it would not represent a direct experimental quantity. In the BCS case, the connection with 

experiment comes from Yi\/Sir = F n - F Sl where is the bulk critical field. The critical 

field in the case of a small sample depends on the sample size as well as on Fn -  Fm. Further-
more, we have neglected Pauli paramagnetism, which becomes important for high critical fields.

The electronic specific heat in the motley state is given by

(42)

Again following BCS, we find, in analogy with their equation (3.46),

(43)



For region (1), defined at the opening of the preceding section,
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(44)

Compare this to the normal state:

(45)

The asymmetry in N(E) is a secondary effect. The primary effect is the relative magnitudes of 

N(Ei) and N. That is, the specific heat ratio is

(46)

for very low T. As T rises, Cem/Cen falls quickly below one until, in region (2), Cem/Cen rises 
to a value greater than one. It is suitable to mention here that the same approximation applied 

to equation (40) would show an initial increase in the free energy advantage of the motley

state, in direct contrast to the BCS case.

In Fig. 6 we have plotted Cem/Cen vs. r for two different low temperatures. (This and the 

remaining two figures are only very roughly accurate.) The graph shows that a value T = 0.1 Tj,

FIGURE 6

The (motley-to-normal) specific heat ratio, Cem/Cen, vs. r for two different 

low temperatures, T = 0.01 Tj, and 0.1 Tj,.

is not low enough to give CeH/Cen > 1. Only for 7,~  0.01 Tj, will a sample consisting of beads
O

from 100 to 300 A give a ratio rising substantially above one. This is a very low temperature, 

generally 0.01 - 0.05°K.

In Fig. 7 we depict the temperature variation of Cen, the BCS Ces, and the present Ce*(r)



o o
for two small values of r, namely 150 A and 250 A. All the curves are normalized to yT^, the 
value of Cen(Tf,). The spikes at Tc in the motley case represent the latent heat. The difference 
in area between a motley curve and the normal line from 0 to Tc, plus the value of the spike, 
together equal the condensation energy, -W’0, at T = 0. H'q was plotted in Fig. 2; ^ = 0.23 yTj,2 
Anticipating the material in the next paragraph, we may state that the latent heat is a small

o o :
fraction of the total enthalpy at Tc, 0.015 for r = 150 A, 0.007 for r = 250 A.
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FIGURE 7

O O
Specific heats, (normal) Cen, (BCS) Ces, and (motley) Cen(r) for r = 150 A and 250 A, 

plotted vs. T/Tb. The spikes represent latent heats.

In Pig. 8 the latent heat, ffc, is plotted as a function of Tc, whose r-variation is indi-
o 1

cated. In this rough graph, only for r > rc « 140 A is there a positive latent heat. For r < rc\ 
the motley state is unstable at Tc. Therefore, while Tc remains the highest value of T for whicj 
a mathematical solution exists, the physical "transition temperature" at which the normal- 1 
motley transition occurs falls below Tc. This temperature, symbolized as Tt , corresponds to the! 

point where the normal and motley free energies are equal; i.e. Fn(Tt) = Fm(Tt ). A particular 1 

value Tt belongs to a particular sample size r, which we may call rt . Calculation finds that j
o

r t = r0 « 110 A at Tt = 0; then rt decreases slightly as Tt increases from zero; after that rt
o

turns around and increases to rc « 140 A at that transition temperature such that Tt = Tc, j 
where Tc is once again the solution to the motley equations. We find that this occurs at Tt = \ 
Tc = 0.57 Tb, above which the usual solution applies and the latent heat is positive.

The region of instability of the motley state ("negative latent heat") is indicated by \ 
dashed lines in Pig. 8 and also in Pigs. 4 and 5. Moreover, the dotted curves in Pigs. 4 and 5 
show roughly the behavior of Tt and At as they vary with r.
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FIGURE 8

Latent heat, Wc vs. Tc and also vs. r. H^(0) is bulk condensation energy and 
Tfr is the bulk critical temperature. rc labels the value of bead size below 

which the normal state is stable below Tc and above the "transition temperature"
Tt discussed in the text.

It is amusing to realize that at Tt the transition mimics second order transitions by having 
zero latent heat. However, it possesses a basic property of first order transitions, which is 

a discontinuity in order parameter, At f  0.

8. Other Properties, Particularly the Knight Shift

We have considered the motley state in the absence of a magnetic field. We have seen that a 

slight rise in temperature above zero favors the motley state due to the enhanced density of 

states of the singles. For the same reason a small field H favors the motley state at T » 0, 
due to spin paramagnetism. If the field is small enough (H «  Hc) that the alteration in pair-
ing and related complications are small, then the paramagnetic effect dominates. The criterion 

for H analogous to region (1) for T (see the paragraph following equation (39)) is E1- \ aH~ A; 
p is the Bohr magneton. By analogy with Fig. 6, we may state that for \xH « 0.01 k T the para-

o o
magnetic susceptibility for a sample of beads from 100 A to 300 A is higher in the motley than 

in the nomal state, x* > Xn« ^° r = 10~3 V, H « 1 kg. This prediction is in complete con-

trast to the BCS theory, which predicts Xs / Xn "* 0 as T -► 0.

Knight shift experiments [9, 10] which measure x* have for years been performed on samples
o

well suited to us: beads of dimension 100 - 400 A. Extrapolation from T above 0.2 Tb indicates 
that Xs / Xn * 2/3 at T = 0. Thus there is experimental disagreement with both this paper 
and with BCS. Several theoretical papers [ll] have reconciled BCS with experiment, primarily by 

invoking spin-orbit coupling to disrupt the perfect singlet pairing.



Apparently much more serious is the fact that other measured properties of these samples, 
in addition to the Knight shift, systematically contradict the predictions of this paper. For 
example, Tc was determined to be practically equal to Tb* whereas we predict a fairly strong 

depression of Tc due to the electrostatic free energy. We plan to show, however, that the ex-
perimental conditions under which these measurements were taken were in violation of a single 

condition critical for the detection of the electrostatic effect. The argument is part of the 

following general discussion [12].

It was shown in an earlier section that the size of the domain across which a charge fluctu-
ation exists is the size of the sample. This agrees with the well-known fact that in a metal 

the long-range part of the Coulomb interaction is screened out even in the normal state. Thus 

the actual charge of a quasi-particle always appears on the surface of the sample. Each electron 

is essentially coupled to a capacitor of magnitude r, where r is the sample size [l3].

We can go a crucial step further than this. Pursuing the idea of screening of the Coulomb 

interaction, we see that the considerations of this paper would not be true for beads in actual 
electrical contact; the impedance has to be no less than the capacitive coupling. This means 
that the distance between neighboring beads must be (much) greater than the size of a single 

bead. For the powdered samples in the Knight shift experiments [9], this is exactly the critica 
condition which was violated. In fact the average distance between neighboring beads was some-

what smaller than the size of a typical bead. For this reason we make the claim that the presenl 

theory has not yet been put to experimental test.

If appropriate samples can be made, then the predictions of this article can be tested. Thos< 

most apt to be measured are the depressed critical temperature and enhanced density of states 

at very low temperature (0.01 - 0.05°K).

In summary, the properties which reflect the density of states are Knight shift at fields 

such that E x -  \xH « A, specific heat, spin-lattice relaxation rate (t**1 o c ^ 2), and micro- 

wave absorption at a frequency co such that E \ - "fico > A. In the last two properties the 

coherence factors of case II of BCS play a role; in fact they act favorably since they slightly 

increase Nm/Nn.

The Cryogenics Group at the University of Connecticut is looking into the matter of prepar-
ing appropriate samples. Standard methods for making powdered samples are not applicable here 

because they do not separate the beads to distances larger than the size of the beads.
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9. Concluding Renarks, Including Self-Criticism

We now turn to questions of the accuracy of the motley equations and of their solution. First 
of all, we have ignored the dynamics of the charge and phase. A proper account would bring in 

other energy terms, e.g. kinetic energy of the currents. Secondly, we have not accounted for 

several effects of the smallness of the beads: the parameters N, V, and co will not have their 
bulk values; the Bloch levels are quantized; perhaps there should be a surface term in the

Hamiltonian. Thirdly, the variational wave function is an approximate solution to the reduced 

Hamiltonian, shown by BCS in their appendix A to be an exact solution in the limit r oo. Our 
limit, r small, is undoubtedly the region of greatest inaccuracy. Fourthly, S. Engelsberg 
(private communication) has cautioned us that the interaction He would tend to renormalize the 

vs. k, thus changing N(e) and N(E), if it were treated in a dynamical way. Finally, Anderson 

(private communication) has pointed out an additional effect which smallness of the sample ,
*



brings about: the smearing out of the transition singularity of whatever kind for the reason 

that Z -  T r [ e ~ H / kT] can have no mathematical singularities except in the limit as n -+ oo, 
in principle [14]. (n is the total number of particles.)

In line with certain of these considerations, we point out that a previous estimate of the 

minimum size of a superconductor, based upon the separation of quantized Bloch energies being

roughly equal to the bulk energy gap, was made by Anderson [15]. It would be r « 50 A for our
o

values of N and Afe, which is smaller than the estimate of 110 A according to the present theory. 

This would seem to indicate that quantization of the Bloch levels is not critical to the motley 

state. We might guess that, due to the form of Z, the smearing of the transition singularity is 
of the same relative importance as the quantization of levels. All in all, however, we have no 
real criteria with which to rule out any of the criticisms in this section.

It is important to realize that, whether or not the electrostatic effect actually operates 

in a tiny superconductor, ultimately some size effect quenches superconductivity. Most (or all) 
of us would say instinctively that a bead consisting of ten atoms could not be a superconductor 

(is it even a metal?) simply because there are not enough electrons around to do the job. This 

is essentially Anderson's criterion [l5], Thus there must be a minimum size to a sample. Experi-

mentalists will sooner or later measure this size. One will have to be extremely cautious when 

attributing the quenching effect to one particular mechanism. Regarding the electrostatic effect, 

the strong dependence on the distance between beads may allow unambiguous interpretation. It is 

hard to conceive of another mechanism so sensitive to the isolation of the beads.

Two speculative ideas are forwarded contingent upon the detection of the motley state. First, 

the organic superconductors discussed by Little [l6] are of a size to be affected by the con-

siderations of this paper. The existence of those essentially one-dimensional superconductors 

has been questioned by Ferrell [l7], who pointed out an instability with respect to the form-

ation of compressional modes, which themselves destroy superconductivity in one dimension.

Second, other types of condensed system might be shown to obey theories similar to this one; 

for example, superfluid, ferromagnetic, or the tiniest condensed system of all, the atomic 

nucleus. Naturally the form of interaction is different in each.

According to recent theoretical work [18], the size dependence of thermal fluctuations of the 

superconducting order parameter would be sufficient to smear the phase transition by an amount
o

5T ~  Tc for sample dimension ~  100 A. Such an effect would dominate the electrostatic effect 

discussed in the present paper. However, experimentally it is found that the transition width is 
not much larger than in bulk specimens, of the order of millidegrees [9, 10]. Note that electri-

o
cal isolation of the 100 A beads is not a requirement for thermal fluctuations. Therefore, 

apparently we need not consider thermal fluctuations.
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