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Abstract

As previously demonstrated, the S-matrix formulation of the problem of exchange 
scattering of electrons in metals can lead to the appearance of inadmissible com-

I plex poles in the spin-flip scattering amplitude as the temperature falls below a
certain value Tc. This amplitude then fails to satisfy the original scattering equa- 

| tions. In this paper, i t  is shown that such di fficulties can be removed by making 
jj the proper analytic continuation in the temperature (or analytic continuation in the

I coupling strength for a fixed temperature) . The scattering amplitudes, and with them 
such transport coefficients as conductivity, thermoelectric power, and Lorentz number 
are, in fact, smooth functions of temperature across Tc. Curves of these transport 

| quantities versus temperature are plotted for a wide variety of values of the ordi- 
| nary and exchange potentials.
I
i

I
l 1. Introduction
I

|IN three previous publications [l-3] one of the authors developed an 5-matrix formalism adapted 

*to a certain scattering problem first brought to light by Kondo [4]. This problem concerns the 

-scattering of a conduction electron in a metal by a paramagnetic impurity, to which it is 

coupled according to an interaction energy of the form

i /  {^(r) p(r) + J(r) S • s(r)J dr

Here 5 is the spin of the localized impurity, p(r) is the density, and s(r) the spin-density of 
the  conduction electrons. J(r) is the exchange energy, and V(r) is the ordinary potential due 

|to the charge contrast between impurity and host metal.

S
In the most recent of the three publications [3], henceforth referred to as I, a solution of

the equations for the s-wave projections of the spin flip and non-spin flip scattering ampli-

tudes t (z) and t(z) as a function of complex energy 2 was presented which was essentially exact
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to within the neglect of certain boundary conditions. For the ferromagnetic sign of J (negative, 
in the present notation), this solution was well behaved at all temperatures. However, for the 

antiferromagnetic sign of J(positive), the solution presented in I was well behaved only belpw 

a certain critical value of J for fixed temperature T, or above a certain critical value of T I 
for fixed J. In particular, Tc is given by
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where ey is the Fermi energy and p0 the density of states near the Fermi level. For T < Tc the 
result presented in I develops an unacceptable shortcoming: the 5-wave part of the spin flip 
amplitude acquires poles on the physical sheet of the complex energy plane. It then fails to be 

a solution of the original scattering equations. This conclusion was quite stable against vari-

ous modifications in the conditions of the problem; in particular, it is insensitive to asymp-

totic behavior of the scattering amplitudes at energies remote from the Fermi level. However, itl 
was noted that at the point where the poles passed from the unphysical sheet to the physical 
sheet the residue in the spin flip amplitude was actually zero.

In this paper, we show that for temperatures slightly above Tct the residues of the complex ; 

poles in the unphysical sheet are also zero. By analytic continuation, the residues remain zero 

even after the poles migrate to the physical sheet. Explicit construction of the spin-flip and 

non-spin flip amplitudes are performed in the next section, and the passage through Tc is shown i 
to be perfectly smooth. The existence of such a smooth, totally trouble-free solution calls into 
question the assertion often heard nowadays: that at Tc a kind of localized "phase transition" 
takes place in which the localized spin captures one or more electrons producing an antiparallel 

configuration and leading to the disappearance of the local moment at sufficiently low tempera-
tures. However, to finally settle the question of a low-temperature compensation of 5, it will 

still be necessary to include in the problem the electron-electron coupling, part of which has 

exchange character. A self consistent theory then arises, in which the exchange coupling J 
acquires corrections themselves dependent on the spin-flip scattering amplitude. These matters 
(including the question of a "bootstrap" solution when J = 0) will be discussed in a later 
publication.

The possession of a complete solution of the scattering problem allows us to calculate a set 

of curves for comparison with experimental data on the transport coefficients: conductivity and 

thermoelectric power, which should be relevant in any temperature range for low impurity con-
centrations. 2

2. Calculations of Scattering Amplitudes

The equations and solutions of I can be summarized thus:

(1)

(2)



E
here t is the non-spin-flip amplitude, and t the spin flip amplitude for scattering of 
lectrons of energy z above the Fermi surface. V and J  are the respective coupling strengths 
Or ordinary and spin-flip scattering, (x0 - ey)"1 is the range of the force, necessary as a
putoff parameter, p(*) = V *  + £/, the density of states, and (5 = 1/kT. A number of sub-

sidiary functions was introduced:
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(3)

(4)

(5)

m  the real axis with a(x)  = 16tt2 p 2(x) S(S + 1) and

(6)

Hn these relations, 5v(z) is the phaseshift for the elastic scattering problem with potential 

p. F is defined by (4). At fixed J, as the temperature is decreased to Tc, a (double) pole in

If appears on the real axis at z = z0 = 0 for the simplest models, and e”2^ is zero at that

[point. Therefore (1 - 2iript) is also zero there. Thus, when the pole in F(z) first appears, it

pay be ascribed to a zero in (1 - 2irip(z)t(z)), and, as observed in I, t(z) remains finite. 
jHowever, for T < Tc, the double pole splits into a complex conjugate pair, the solution given

in I does not satisfy (1 - 2irip(z0) t (z0)) = (1 - 2Trip( zj) t ( z J)) = 0, and so, accord-

ing to equation (3) t will then have complex poles with finite residues. In I, some ambiguity 

^remained in F (the h-function following equations (11) and (23) of I, can be modified in a large 

pumber of ways, quite aside from the "CDD" ambiguity), because no attention was paid to the re-

quirements that F approach a definite value as z -► -x 0 and that (1 - 2iript) will have a zero in 
the vicinity of - x q , so that F must have a pole there. None of these conditions have much quali-
tative or quantitative effect on the question of the complex poles, because this matter is de-
cided mainly by conditions near the Fermi level, z = 0. We now demonstrate that as one continues 
the solution* from T > Tc into a new one, valid for T < Tct (1 - 2iript) always vanishes at the 
poles of F. In so doing we shall first construct F for T > Tc in such a way that it satisfies 
Pll the asymptotic conditions, so as to leave no obvious loopholes, and also in order to obtain 

nore accurate numerical predictions.

As in I, the function F_1(z) has particularly simple analytic structure. According to (1),

(2) and (4) (with r\ denoting the step function),

(7)

( 8 )

* By using the freedom supplied by the CDD ambiguity.
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(9)

Prom (7), (8) and (9), one can immediately construct the function

( 10 )

where c is a real parameter whose numerical value is to be determined later.

Let us now turn to the non-spin slip amplitude t ( z ) and make the ansatz of Froissart [5]:

( 11)

where

(12)

S"(x) is related to.F(x) by equation (5):

(13)

and Sp(z) is the phaseshift due to an ordinary potential scattering problem

(14)

(15)

The potential V is not quite equal to V (a finer point which was also neglected in I). Rather, 
from the fact that

it follows that

(16)



to that near z = -x0
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V_ _  1

V R ( - x o)
(17)

Equation (15) is identical in form to equation (22) of I and can be solved by the standard 

■ethod. It gives

(18)

Bow from (4), (11) and (14)

(19)

)y explicitly evaluating the integral in (18), one finds that (1 - 2tript) has a zero at

(20)

On the other hand t (z) does not necessarily have a zero at -x0. In particular, in the weak 

coupling limit, the perturbative solutions of (1) and (2) does not produce such a zero in t (z). 

In order to have a solution joining analytically to the perturbative results for weak coupling, 

we must adjust the parameter c in (10) so that F(z) has a pole at -x0. The function F(z) can 

now be rewritten as

(1 0 ')

where

(2 1)

For practical calculations, it is more convenient to take V and J rather than V and J as in-
put parameters of the problem. Starting with (18), one calculates t(z) and 8-(z). Then one 

devaluates x0 by (20) and calculates F(z) by (10'). Using (13), (12) and (11) one obtains suc-

cessively 8"(x), fl(z> and t(*z). Finally t (z) is determined by (19).

Now we come to the central question of complex poles. At given J, for all temperatures above 

a certain critical one, Tc, the expression (10') contains a series of complex poles on the



unphysical sheet. At Tc, two of these poles meet, at z = 0, and then proceed to the physical 
sheet for T < Tc. For the discussion of these poles, it is more convenient to consider the com-
plex variable p(p = (z + e^)^) rather than z. The physical sheet becomes the upper half-plane 

of p and the unphysical sheet, the lower half-plane.

Considered as a function of |3 (for fixed J) the positions of the complex poles in the p-plan< 
for p in the neighborhood of p c = l/kTc are given by
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( 2 2 )

where

and P r ( pc) = ( 6 / )* . 

Define*

(23) i

(24)

For |3 < $C(T > Tc), a straightforward evaluation of the integral in (24) gives

(25)

where

As the temperature decreases through Tc, R0(z) as_given by the integral representation (24) no 
longer agrees with the analytic continuation of R(z) given by (25). In fact, as explained in 
the Appendix, they differ by a unimodular factor

* In this paper we actually work in dimensionless units with = l. Hence <j|g |2 in (24) is 

dimensionless. If one does not work in dimensionless units, the numerator of G must be 
supplied with a factor of dimension -Jenergy. This does not affect the result (see H. SUHL, 
Varenna L e c t u r e s , June 1966, to be published).
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(26)

i Now, in the place of the integral representation (12), we define R(z) to be

(27)

It is clear that A(z) contains no complex poles or zeros in the neighborhood of z = 0 and the 
Integral representations for A(z) gives the proper analytic continuation from T > Tc to T < Tc. 
furthermore, fi(z) as given explicitly by (25) is trivially the analytic continuation as P j goes 

|rom negative to positive values. Hence R(z) as defined by (27) is equal to the Froissart func- 
|ion (12) for T > Tc and gives the analytic continuation in T for T < Tc. It contains a pair of 

complex zeros which exactly cancels the poles of F(z) .

The calculational procedure for T < Tc is essentially the same as described above except that 
low we must evaluate Pr and Pj before calculating R(z) . A simple method for finding P r and Pj 
s as follows:

>efine

(28)

(29)

Bince H and H' are separately real analytic functions, the quotient (H/H') is also a real 

Analytic function. However, by construction, (H/H') is real along the entire real axis. Hence, 

it has no branch point and can only be a polynomial in z (H' also has no zeros). This poly-

nomial must contain the zeros of H:

(30)

faie constant factor in the denominator restores the normalization (H(-x0) /H' (~x0)) = 1 as re-
quired by (28) and (29). Now, by evaluating (28) and (29) for H and H' at any two points in the 
iz-plane, we obtain two algebraic equations for the two unknown P r and P^ using (30). These equa-

tions can be solved easily; thus the calculational procedure .is complete.



As noted above, RQ and R differ by a factor, unimodular along x > -e f , for (3 > (3C. One might 

question whether it would be possible to supply additional factors of this kind as long as they 
only produce poles on the lower half p-plane (unphysical sheet in z). As far as the original 

equations (1) and (2) are concerned, this is indeed possible and the arbitrariness associated 

with it is the well-known CDD ambiguity. On the other hand, if one accepts the perturbative 

solution as the desired solution for the range of (3 where the series converges, then our solu- j 
tion for (3 > (3C is the analytic continuation from the region of small (3, and is the only accept^ 
able one within the present model.
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3. Computation of Transport Coefficients

It is customary to write the total resistivity in the form

(31)

Such a decomposition is questionable when one or both of the corresponding collision cross- 

sections are markedly energy-dependent near the Fermi level. A correct theory would require 

solution of a complicated integral equation. We have therefore calculated the transport coeffi-

cients for impurity scattering alone, and thus accept equation (31) in the hope that it is 

approximately correct. At temperatures sufficiently far below the Kondo resistance minimum, 

equation (31) is, of course, correct since the lattice scattering is very small there. We 

assume, furthermore, that in the limit of very low concentration, Boltzmann transport theory 
applies in the present problem.

The rate of change of the electron distribution function /(e^) due to collisions is then 
given by

where p k k ' is essentially the imaginary part of the non-spinflip scattering amplitude:

and Q is the sample volume.

The Boltzmann equation is solved in the usual way: / is taken in the form

where E is the electric field, T the temperature, ey: the fermi energy, and /0 the Fermi dis-
tribution function. The reciprocal relaxation time & is given by



I
I
pere 0^' is the angle between k and fe\ Defining the usual moments
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ie have, for the ratio of the conductivity at finite J to the ordinary residual resistance at 
|ero J

q is of course practically independent of temperature. The thermoelectric voltage per °K is

nd the ratio of Lorentz numbers at J finite and J  = 0 is L(J, V)/L(Jt 0) where

n the computation, the Permi-level is taken as the energy zero, and all energies are measured 

n units of ey. Then

to that the thermoelectric voltage may be written

fhere

ind p = Z f / k T .

In the evaluation of the relaxation time & , the s-wave parts of t and t were taken into 
account exactly, the higher partial waves only in Born approximation. This was done by con-

structing that potential Vkk* whose s-wave part has a single pole on the real axis below -ey.

We write,
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where

and similarly for Jkk' - In configuration space, such a potential has exponential form. The 
amplitude t (x) is still only approximate, in the sense that even for an exponential potential, 

t ( z ) (as distinct from the s-wave part of V) has a whole series of discrete poles (not just a 
single one) on the left hand real axis.

4. Discussion

Figures 1 a-d) show o j / o 0 for a variety of values of V and J, for S = % and for a force 

range x0= 2 (i.e. l / k f  in the usual units). Wherever "Tcn occurs within the range of the graph, 
we have marked it by an open circle, and we note that the curves are quite smooth there. The 

qualitative character of the curves is summarized in Fig. 2. For a given V, the conductivity is 
more or less constant at high temperatures. As the temperature is decreased it eventually be-
gins to decline, linearly on a log-scale over several decades, and gradually flattens off again 

in the vicinity of Tc. From then on, it stays virtually constant down to absolute zero. The 
smaller J, the lower the temperature at which the decline begins, but the low temperature

FIGURE 1

The ratio <Jj/a0 for various V and J.

Fig. la.
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Pig. lb .

Pig. ic.
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Pig. Id.

plateau value is independent of J. Finally, for J = 0, the decline does not set in until T = 0 
(see Fig. 2); for any finite T, no matter how small, we simply get the usual temperature inde-

pendent impurity resistance due to ordinary potential scattering alone. At T = 0 and J = 0, 
equations (1) and (2) have a bootstrap solution (see Fig. 2), i.e. there is a solution with a 
finite t although J = 0; however, no such solution exists at any arbitrarily small temperature.
A negative value of J (ferromagnetic coupling) has also been considered; it appears that the con-

ductivity will then actually increase slightly at low temperatures. That all the curves must 

reach a high temperature plateau is easily seen by noting that as (3 0, equations (1) and (2) j

FIGURE 2

Qualitative summary of the conductivity curves as a function of J.



reduce to ordinary potential scattering problems for two new amplitudes
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in potentials of the form

In that limit P k k ' = t»+l 2 + I u-I 2. and the energy dependence of u± near z = 0 is so weak 
that the resistivity is then virtually temperature independent. Figure 3 shows a comparison with 

a 3rd order perturbation calculation, and with a solution in which the correct analytic continu-

ation is not made, and complex poles remain. The 3rd order conductivity does not initially de-

crease as sharply with temperature as does the exact result, but since it contains the Kondo

FIGURE 3

Comparison with perturbation theory and with the improperly 

continued solution.

singularity it must eventually go to zero at infinite (3. The thermoelectric voltage shows some 

fairly spectacular behavior (Figs. 4 a-cf). For V > 0 (repulsive potential) and J > 0 (antiferro-
magnetic coupling), it shows a change in sign and a low temperature maximum comparing favorably 
with its magnitude in the range p ~  a few hundred, which (for ordinary e/s) is the room tempe-

rature range. At small s, the thermoelectric voltage varies as (3"1, just as for potential 
scattering. For V < 0, no change in sign seem$ to occur, but the low temperature maximum in 
thermoelectric power remains. In all cases, the maximum shifts rapidly towards lower tempera-

ture with decreasing J. For a rather unrealistically large J of order 0.2, the peak occurs in



the room temperature range. For V > 0 and J  < 0, no change in sign or peak seems to occur.
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FIGURE 4

The thermoelectric power. 0 is in K/°K.

Fig. 4a.

Pig. 46.
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Pig. 4c.

Pig. 4d.



Such "giant" thermoelectric power effects have previously been discussed by Rondo using per-

turbation theory feL

Finally, we note that no spectacular variations seem to occur in the Lorentz number L as a 

function of temperature (Pigs. 5 a-c)). This number has a broad, low temperature peak extending
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FIGURE 5

Ratio of Lorentz numbers at finite to zero J.

Fig. 5a.

Fig. 56.
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Pig. 5c.

over two to three decades and reaching about 40 per cent above the (apparently equal) high and 

'low temperature plateau values. Hence the thermal conductivity k = oTL should diminish at low 

temperatures somewhat in the same way as the electrical conductivity.

FIGURE 6

Resonance in the non-spin flip scattering amplitude.

Pig. 6a.
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Pig. 66.

It is of some interest to note that Im t(e), the quantity that determines single particle 

state density in a simple multiple scattering approximation [2], for negative J  does exhibit a 
maximum slightly above the Fermi level. The maximum is the narrower and larger the lower the 
temperature (see Figs. 6a and 6).
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APPENDIX

Evaluation of the integral in equation (24)

The integral (including the factor 1/ir) may be written
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Where p(x) = J x + ey + £0 , and the square root is defined as in I . The imaginary part of 

l ( z )  just above the real axis is

■for x > -ey and zero for x < -ey. Now consider the following function:

We have

for x > - ey. For x < - ey, p = £ V |*| + ey, and the lograrithm is real, therefore

Im J(x + £0) = 0 for x < -ey. Furthermore, like L(z), J(z) tends to zero as z -> °°. Hence L would 
be equal to J, were it not that J(z) has singularities on the physical sheet, whereas L(z) has 
none.

These singularities are at p(z) = oc+, cx_, and, for T > Tc, at p = ± Pr + iP{. They can be 

removed by multiplying the argument of the logarithm in J(z) by the following so-called 
"Blaschke product":

Now B(x + iO) is unimodular for x > -ey, and so does not change Im J(x + £0). Also, for 

x < —6y B(x) is real, and again does not change J(x + iO). Thus the value of the integral is

from which (25) follows. When T < TCf a similar procedure applies, but then the singularities 

of J  are at oc+, ol. and ± Pr + i P The signs of the P* in the Blasche product must then be re-
versed, and so

According to (24), will thus have a discontinuity in slope:
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for T > Tc, it is and

for T < Tc, it is The correct result, for all T, is R(z)

as defined by (25). But the expression (24), below Tc, differs from the analytic continuation 

of (25) to T < Tc by only a unimodular factor, and so the equation Im t = irp111 2 + 4S(S+1)|t |2 
continues to hold, with R given by (27).




