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Abstract

The ’ saturation o f  the commutation relations o f  the chiral U(3) ® U(3) algebra 
with supermultiplets o f  <Sf/6 or SU6 ®  O3 is considered. The general helicity  depend-
ence o f the matrix elements o f  axial charges at p = 00 is calculated. A continuity 
postulate is introduced to select the physically significant solutions from the 
multiplicity o f solutions o f the non-linear set o f saturated commutator equations.
A linearized approach is developed to derive criteria  o f "connection" between two 
supermultiplets with respect to the chiral algebra and to calculate the renormal-
izations (at second order) o f the couplings. The possible relevance o f the con-
nection criteria  and of the compatibility with data o f the coupling renormalizations 
to discriminate among various p ossib ilities  o f  classification o f  higher resonances 
is pointed out. Special cases discussed are classifications of negative parity reso-
nances according to the representations and 56 o f SU6 and (20, L = 1) o f SU6® 0 3.
Only the last one gives consistent predictions.

1. Introduction

HE recent work [l] by Adler and Weissberger has led to a calculation of the ratio GA/Gy from 
sum rule over pion-nucleon cross-sections derived from an equal time commutation relation be- 

ween non-strange axial generators of the chiral f/(3) ® U(3) algebra. Extension of their work 

0 the strange generators has similarly led to sum-rules over K-nucleon cross-sections, allow- 

ng for a calculation of the D/F ratio [2]. These calculations are based on the knowledge of 

xtrapolated empirical values of the pion-nucleon and K-nucleon cross-sections, inserted into 

he dispersive integrals appearing in the sum rules. A different approach is that used by Lee 

3] and by Dashen and Gell-Mann [4], by saturating the commutation relations among stable 

articles and low-lying resonances and searching for a consistent solution of the obtained 

lgebraic system of equations.

In a preceding paper [5] we have followed the latter approach. We have saturated the commuta- 

ion relations of the chiral 17(3) <g) U(3) algebra among the octet and decuplet baryon states
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plus a set of resonant states selected on the basis of a previous classification of higher 

baryonic resonances [6]. The adopted classification of higher baryonic resonances of negative 

parity is based on the representation 20 of SU6 with orbital angular momentum L = 1 [6 ] . The 
states of 20 with L = 1 (briefly (20, L = 1)) are three unitary singlets with J = 1/2, 3/2, an< 
5/2 and two unitary octets with J = 1/2 and 3/2.

In the saturation of the commutation relations the following set of states are thus include< 
among the initial, final and intermediate states:
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the states of 56: one octet with Jp = l/2+ 

one decuplet with JP = 3/2+

the states 20 with L = 1 : one singlet and one octet with Jp = 1/2” 

one singlet and one octet with Jp = 3/2” 

one singlet with Jp = 5/2”.

In this note we present a more detailed discussion of the problem and consider its possible 

extensions. The extension of our results are made particularly simple by the use of the "lineal

ized approach" that we discuss in Section 4. The "linearized approach" consists in solving the

commutator algebra equations perturbatively in the mixings between different supermultiplets. 
Only solutions that can be obtained with continuity from the symmetric solution corresponding 
to absence of mixing are obtained by this procedure. We postulate that only these solutions 

have physical meaning (continuity postulate). Comparison with the particular case discussed of 

the mixing among 56 and (20, L = 1) shows that this is indeed the case. In Sections 2 and 3 we 

present a general procedure to write down the saturated commutator equations including states 

of any spin. We also consider in detail the solutions of the algebraic system in the case of 
56 and (20, L = 1 ) and show that only two solutions may be a priori considered as physically 
possible. Only one is however admissible on the basis of the "continuity postulate" mentioned 
above. 2

2. Saturation of the Commutation Rules

Let us consider the commutation relation

between states with momentum px and p2 in the limit Pi = p2 = ® [7]. In equation (1) F* is an 
axial generator (X denotes the set of SU3 quantum numbers I, I3) Y) of the chiral U(3)<3> U(3)

and the symbol ^ denotes the relevant SU3 Clebsch-Gordan coefficient. The saturatioi

of (1) requires the explicit evaluation of the limits for px = p2 - ® of the matrix elements



i „  ,(here < J j1, hi\ represents a baryon state with spin and parity Pi, with helicity hi,

iken at momentum pi, and similarly for the state | j f 2, hi >. In (2) we have for the moment 
pitted SU3 indices. The axial generator Fs is defined as
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Where J^ix) is the axial current. We note that the operator F5 has the selection rule Ah = 0, 
mere h is the helicity, and that the matrix elements between states of helicity h and states 

af opposite helicity are related by the equation

(3)

bo obtain equation (3) one applies a parity operation followed by a 180° rotation around an 
jkxis orthogonal to the momentum. Prom translation and rotation invariance we can also write the 

ijjatrix element (2) in the form

(4)

%
•here h is the common value of hi and h2. We are thus led to the calculation of the matrix ele-

ment of the fourth component of an axial vector between two states of same momentum p and spin-

parity J^1 and J22. Such a matrix element will be a linear combination of all fourth components 

&f axial vectors that can be constructed starting from the available covariants.

We shall use the Rarita-Schwinger formalism for particles of spin J. We describe a particle 

&f spin J by a spinor with J - 1/2 Lorentz indices [x, v, ..., A

(5)

$
lubject to the conditions:

i
| (1) symmetry in the indices p, v, ..., A and zero trace

I
I (2) transversality

(6)

(3) orthogonality to

(7)

(4) Dirac equation

(8)

?rom the transformation properties of 4̂  ^(p) under Lorentz transformations we can write in

teneral

( 9)



where: AMv(p) is the special Lorentz transformation which brings the four-vector p = (o, m) 
into the four-vector p = (p, E) i.e.
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( 1 0 )

while S(A) is the representation of the Lorentz transformation A in spinor space. Explicitly

( 11)

In equation (9) {¥k...h(o) (with h, . . . ,  k = 1, 2, 3) is a four-component spinor of the form

( 1 2 );

where Xk...h *s a PauH  spinor and has the properties of being: symmetric and traceless in its 
indices k . . .  h and orthogonal to the matrices a, i.e. satisfying

(13)

It is easy to verify that the representation (9) provides us with a wave function satisfying 
the required properties (1), (2), (3) and (4). In general any possible coupling takes the form

(14)

where ..x(Pi) describes the particle of spin-parity J^1 and momentum p x s (p, E^, while

Vp...o(p2) describes the particle of spin-parity J^2 and momentum p2 = (p, E2). The matrix
rp... o
M A 05 1S constructed from the Dirac matrices and from the available momenta in such a way

that the covariant (14) behaves exactly as the fourth component of an axial vector. Explicit 

calculation of the covariants (14) involves the calculation of matrices of the kind

(15)

where yR, with R = 1.....16 belongs to the set of independent Dirac matrices. Because of the
form (12) of y*.../,(o), only the diagonal portion of (15) corresponding to the first two spinor 
indices is of relevance here. For the cases of interest to us we can limit ourselves to the 

evaluation of (15) for the following yr • 1. Y4. -i Y4Ys ^ d  i y5. The form taken by the dia-
gonal 2 x 2 portion of 5 (Aj)y4yfiS( A 2) mentioned before is:

(16)



for yR H 1, where m = l/2(mi + m2) is the average of the mass of the particle 1 and of the mass 
|f particle 2;
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(17)

for yr = Y4. where E = |pj| = jp2I in the limit when these momenta tend to infinity;

(18)

for yR = -i y 4y 5; and

(19)

for ,YR = iy$. with Am = mi - m 2. Also of relevance are the contributions from expressions

If the kind

( 2 0 )

there q^ = (p1 - p 2)M and - (p 1 + p 2)|J. Equation (20) holds by virtue of equation 

6). Explicitly, choosing the space axis 3 in the direction of p,

( 21 )

Knd, in the limit p - ®, one has

(2 2)

!e also note that, in the limit p -

(23)

Ihis result is useful whenever an index of one spinor is saturated with an index of the other 

spinor. We give now some examples of calculations of the couplings (14) (the spinors Xwr# . . n 

and £ refer to particles 1 and 2 respectively)jr r  • • • n

l *  «_> I * .
: 2
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giving the same contribution

the other possible couplings giving the same contribution
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tot all the possible covariants have been reported above. However the ones reported give all 

;hose covariants which are linearly independent in the limit p ^ °°. To make the calculations 
feasible we shall make two approximations:

(i) Inside each supermultiplet, in our case 56 and 20 with L = 1, Am/m is neglected;

(ii) In the couplings between components of the different supermultiplets, i.e. in our case, 

n the couplings between 56 and (20, L = 1), only the lowest order couplings in Lm/m are con-
sidered. Under such assumptions we have the following dependences from the helicity of the 

iatrix elements of Fs
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Including now the St/3 indices we write the states as \Rp, Jp h >, where the additional labels 

R and p denote respectively the dimensionality of the SU3 representation and the set of quantum 
numbers I, I3 and Y. The matrix elements of J%^(o, t) can be written as

(24)

p i p 2
where: C(J l J2 , h) are the values assumed by the couplings of our preceding discussion

P P P P
for the various cases of J ̂  and J22; | J11J22) are the unknown coupling coeffi-

cients and the sum is extended over all the representations Rf connected through the Clebsch-
P p 1+ ^

Gordan coefficient in equation (24). For J^ = J ^  = — our normalization coincides with

that of Lee [4]. We note that from the property expressed by eauation (3) the couplings
P P

CiJy1, J2 2, h) will satisfy

(25)

Also one has the symmetry relation

( 26)
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fcr the vector generators Fv one can similarly write

(27)

t
ere for the octet representation /(8) = -JIT and for the decuplet /(10) = '̂ 6. Substituting into

, P, | P 2

uation (1), taken between states Ifij, J 1 > and \R2, J 2 > . we obtain the equation

(28)

In equation (28) the notations are the same as those used by de Swart [8]: in particular

| j (Rx8R28) \ Qa(3) is a crossing matrix, the symbols £ 1 ('/?!#lQp). § 2(^2*?^ ifj). 

etc. are phase factors, Qocf) stands for 1, 8ao, 8as, 8sa, 8SS, 10, 10*, 27. The values of

P P
(RlJ l1), (R2,J22), (T, jir) vary over the set of baryon states selected to saturate the

commutation relations. 3

3. Solution of the Saturated Current Algebra Equations

The compact form, equation (28), is general and applies to any problem of the kind we are 
discussing. Specialized to our case, with the particular choice of saturating states we have 

lade, it leads to a set of 49 non-linear equations to be satisfied by the unknown strengths 

P P
G^(RlR2 I J 11J 22). In spite of their apparent complication it is possible to solve the system

Of equations. We find essentially (i.e. apart from some choices of signs) two significant solu-

tions (on the requirements that D/F > o and G(8, 10 | l/2+, 3/2+) f  o). The two solutions are re-
ported in Table 1. We recall that the strengths G are all in principle susceptible of physical 
interpretations in terms of extrapolations of matrix elements of high energy neutrino processes, 

and in terms of their connection to strong couplings implied by Goldberger-Treiman arguments.
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TABLE 1

Solutions of the current-algebra equations, equation (28). Solution I implies the

Ga 1 D  + F
relation----= ----- -—  , well satisfied experimentally.

Gv 3 D - F
v GA 1 D + F

Solution II implies instead the relation ---- = -------  .
Gy 3 2 F-D

The strength for the transition between the states j\l of the SU3 representation

Rl and the states jf2 of the representation R2 (for Ri = R2 = 8  the index § dis-
tinguishes between symmetric (s) and antisymmetric (a) coupling is called

The solutions depend on two parameters, a and d, subject to the 

inequalities 0 ^  a < 1 and 4/5nT3 ^  | d| <  4n1T. The symbols ei£263» TliTl2rl3 denote 
arbitrary factors ± 1. For a = 1 the solutions reproduce well-known SU6 results 

for the 1/2* octet and the 3/2+ decuplet.
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Of the two significant solutions, solution I agrees with experiment, while solution II dis-

agrees. We note that in both solutions the important strengths Ga(88 | l/2+ l/2+) and 

Gs(88 | l/2+ l/2+), which determine all octet-octet axial transitions depend on the single para-] 

meter a (the other parameter d only occurs in higher transitions). Eliminating this parameter 
and expressing the strengths in terms of the usual parameters GjjGy and D/F leads to the rela-
tions:

for solution I:
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(29)

for solution II:

(30)

Furthermore the inequalities 0 <  a <  1 that must be satisfied by the parameter a give 

for solution I:

(31)

for solution II:

(32)

We note that both solutions (29) and (30) contain the SU6 limit

However only solution I allows for D/F >3/2, as suggested by the experiment. With -GjG-y = 1.2 
one obtains D/F = 1.76, in agreement with experiment [9].

From Table 1 we can also obtain a relation between the N* N axial weak coupling at zero 
momentum transfer and G^. Defining the N* N weak axial current as

where ^  denotes the N* and the nucleon, and we have neglected terms vanishing in the static



limit, we find, for both solutions I and II
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ihich gives for -G^/Gy = 1.2

Ff(o)2 = 1. 16

in good agreement with experiment.

| 4. The Linearized Problem
i

f Both solutions I and II reproduce for a = 1 the SU6 results for the strengths G limited to

I
he multiplets of 56, i.e. for (8, 1/2) and for (10, 3/2). However only solution I is capable, 

or limiting values of the parameters a and d, to reproduce the complete SU6 solution both for 
6 and for 20 with L = 1, and, of course, with zero mixing between the two supermultiplets. The 

election in favor of solution I can thus be decided, on purely theoretical basis, from the 

equisite (continuity postulate), that it must continuously develop from the SU6 symmetric solu- 
ion by turning on the mixing parameters. Once we assume that the physical significant solution 

feist satisfy such a requisite we can think of an iterative scheme based on linearized equations, 
tfiich allows us to avoid the mathematical complexity due to the non-linearity of the problem.

In general we shall proceed as follows. Suppose we saturate the current-algebra equations by a 

let of supermultiplets of SU6 or SU6 ®  0 3. We denote by Si, S2, ... the different super- 

§ultiplets. The left-hand side of a commutation relation like (1) can be written in block-form 
i

(33)

fhere

denotes the submatrix obtained by taking the matrix element of the commutator ^  between the 

lultiplets of and those of Sj. We now look for a solution infinitesimally close to the SU6 
Solution. The non-diagonal elements Ŝ j with i f j of (33) are linear in the supposedly in-
finitesimal transition strengths between and Sj, as long as we neglect quadratic terms (in-

cluding those leading from to Ŝ  with k f i, j). Prom the commutator equation we thus obtain, 

for the i<— >j amplitudes a finite homogeneous linear set of equations, in the unknown strengths 
— ►jf. Such a system may have non-trivial solution only if its rank is less than the number of 

Unknowns. If this is the case we say that Si and Sj are "connected", otherwise we say that they 
ere "unconnected".



from the SU6 solution (which we suppose to be well determined). The commutation equation im-
poses to these terms to be vanishing (this is a form of the non-renormalization theorem). J

A deviation from SU6 arises only if we include quadratic terms which arise in the saturation 
of the commutation relation with intermediate states of Si itself and of those Sj "connected" 

to Sim Inserting the solution for £<— >j transitions, again we obtain a linear system of equa-
tions, which, when solved, yields the renormalized i<— ►£ strengths.

If one applies this procedure restricting, as we have done above, to 56 and to (20, L = 1) 
we find that the linearized non diagonal subsystem for the transitions (56) <— ► (20, L = 1) con-

sists of 13 linear homogeneous equations in six unknowns. The rank of the system is five, leav-

ing a single infinity of solutions depending on one parameter. Inserting these solutions in the. 
diagonal subsystems 56<—>56 and (20, L = 1) one obtains the second order solution which is how 
ever sufficient to give the relation (29) between GpjGy and D/F.

It is also important to note that the assumption (11) can be dropped in the linearized calcu 

lation. The results are in fact unmodified when we allow for all couplings at any order in bm/m 
Application of the same procedure with restriction to 56 and to a negative parity 56 gives no 
non-trivial solution except SU6. In fact these representations are easily seen to be "un-

connected". Thus the mixing problems between 56 and another 56 multiplets of negative parity 
resonances has no solution, evolving with continuity from SU6, except SU6 itself. The simpli- i 
city of the linearized approach makes it easy to consider all similar cases. <

1
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Conclusions and Outlooks

A close analysis of the non-linear set of equations obtained from saturation of the chiral 
1/(3) ®  U(3) commutation relations with the states of 56 and (20, L = 1), shows the existence 

of two solutions (reported on Table 1) passible of physical interpretation. The solutions de-
pend on two undetermined parameters. Solution I leads to the relation

and to the inequality D/F ^ 3/2, both satisfied by experiment. Solution II does not agree with 
data. The choice of solution I determines (apart from some ambiguities in sign) all the axial 

transition strengths among the stable baryon states of 56 and the resonant states of 20 with 
L = 1, in terms of D/F (or Ĝ /Gy and another parameter).

The solutions depend on two undetermined parameters, related to the transition strengths 

between the two supermultiplets, in such a way that when these strengths are made vanishingly 

small one recovers the SU$ solution for the 56 with no transition between the two supermulti-

plets. However only the empirically favored solution I reproduces, for vanishing mixings, the 
complete SU6 solution both for 56 and (20, L = 1). The choice in favor of solution I could thus 
be decided, purely theoretically, from the requisite that only solutions which develop continu-

ously from the SU6 solution, when the mixing parameters are increased from zero value, are ’ 
acceptable solutions. We call this requirement "continuity postulate". The assumption of such ■!

a postulate suggests a linearized approach to the problem consisting in solving by iteration 

the commutator equations for small mixing parameters. The linearized approach can be formulated 

in general terms leading to the notions of connected and unconnected supermultiplets (with



respect to the chiral algebra). For two supermultiplets Sif Sj the criterium of connectedness 
Is given in terms of the rank of the determinant arising in the linearized set of equations ob-

tained by restricting the saturated algebra to transitions from 5^ to Sj. The two supermulti-

plets are connected if the rank is less than the number of St/3 independent amplitudes Si<— >Sj:

otherwise they are unconnected. The transition strengths inside the same supermultiplets are

only renormalized at the second iteration. The renormalization is obtained by saturation of the 

commutation algebra between initial and final S £, by only inclusion of connected intermediate

Sj (and of Si itself) up to second order in the mixing strengths.

The linearized approach, applied to the mixing problem of 56 and (20, L = 1) immediately re-
produces solution I, at second order, giving in particular the relation (29) between GA/GV and 
£)/F. By the same procedure 56 is seen to be unconnected to a negative parity supermultiplet 
<56, L = 0). Classification of the negative parity baryonic resonances according to such a 

nultiplet is therefore less appealing than our assumed classification based on (20. L = 1) [6]. 

This type of "indirect" application of current algebra may reveal itself very useful, and we 

are considering further extensions. The transition strengths between meson states can also be 

jstudied along the same lines. A discussion of higher meson resonances has led us to propose a 

Classification according to the representation 35 with L = 1 [lo]. By saturating the 1/(3)® f/(3) 
fchiral algebra among the mesons of 35 and the mesons of 35 with L = 1 one obtains verifiable 
predictions about the widths and branching ratios of the different modes of decay.

j An interesting application concerns also the commutation relations of moments of local vector 

ind axial currents satisfying the commutation relations of the chiral algebra.

The circumstance noted above, of the appearance of new parameters from the addition of a new 

set of saturating states, related to the transition strengths to such states, shows that no 

essential contradictions should arise when the set of saturating states is increased to include 

Inore and more states, unless the extension is made following wrong classification schemes. In

principle one may then speculate of saturating the commutation relations in terms of representa-

tions of a non-compact group, except for the apparent mathematical complexities of such a 

problem.
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