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Abstract

Dispersion theory is combined with the Green's function technique to discuss 
the scattering of electrons by paramagnetic impurities in normal metals at finite  
temperatures. The thermodynamic Green's function is derived from an approximate 
solution of an equation for a modified (non-unitary) scattering matrix. As a check 
on the consistency of our theory, we generalize it to arbitrary impurity spin S, 
and show that in the limit S -  o o ,  it reduces to ordinary potential scattering of 
electrons with spin parallel or antiparallel to a localized fixed Zeemann field.
Some observations are made on the problem of the residual resistance . The effect 
of additional non-magnetic scattering is briefly considered.  Finally, a justifica-
tion is given for the neglect of multiparticle intermediate states in the dis-
persion equations.

1. Introduction

IN a previous paper [l], the Chew-Low method was applied to the question first raised by Kondo 

[2], concerning some anomalous properties of metals with paramagnetic impurities in exchange 

interaction with the conduction electrons. Kondo found that (a) at zero temperature, the 

scattering cross section, calculated to third order in the exchange coupling, goes to infinity 

logarithmically as the electron energy approaches the Fermi energy, and (b) at finite tempera-

ture, the residual resistance, calculated in similar order, diverges as log T as the temperature 
T goes to zero. These conclusions come about as the result of the sharpness of the Fermi level. 
The exclusion principle, which can be disregarded for ordinary potential scattering comes into 

play in the sums over intermediate states as soon as the scatterer has internal degrees of free-

dom (such as are possessed by a paramagnetic impurity).

In reference 1, we used the Chew-Low method to show that Rondo's divergent result (a) changes 

into a scattering resonance for anti-ferromagnetic exchange coupling (and into non-resonant 
scattering for the ferromagnetic sign). The Chew-Low method amounts to the summation of an in-

finite class of perturbation terms, which are hard to sum by standard methods on account of the 

complexity of the spin dynamics.** In the present paper we discuss the finite temperature case.

* Work supported by U. S. Air Force Grant No.: AF-AFOSR-610-64, Theory of Solids.

** A method of overcoming these difficulties has been proposed by A.A. Abrikosov (paper given 
at Many-Body Conference in Novosibirsk in March, 1965).
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The Chew-Low method as such can no longer be used, but general dispersion theory can be, with 
minor modifications. We find that the resistivity in fact goes to zero as (log T)~2 as T - 0. 
The question whether, nevertheless, a resistance minimum remains when the residual scattering 
is combined with lattice scattering, remains to be decided by numerical computation. Meanwhile 

it is shown that the quasiparticle decay rate (a concept which is only approximately meaningful 

for non-potential scattering) has a resonance only at temperatures below a critical one, given 

by an equation like that for the transition temperature of a super-conductor. The specter of 

"complex poles" in the scattering amplitudes arose in reference 1 and is present here also, 

though only at even lower temperatures. Whether these poles are only a technicality, or whether 

they signal collilapse of the normal state, as suggested by Nagacka [3] we do not examine here.
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2. Thermodynamic Green’s Function

We define the one-particle thermodynamic Green’s function in the usual way [4] by

+
Here T(r), T (r) are the annihilation and creation operators of electrons at r, in Schroedinger 

representation, is the complete Hamiltonian, and £ = 1/kT where T is the temperature, and k 
Boltzmann’s constant. <§ may be written as a Fourier series

where con = (2n + 1)tt/(3.

Our first step will be to express ^(con) in terms of a thermal average of a pseudo-scatter-

ing matrix which satisfies relations equivalent to those of reference 1.

Let

where Jf* is the kinetic energy of the conduction electrons, and

with J the exchange integral, Q0 an atomic volume, 5 the impurity spin (taken to be one half 
in this section), and 3 the Pauli matrix vector. Then it is readily verified that

(1)



where
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is the thermally averaged position representative of a modified scattering matrix (analogous 
to T of reference 1). In these expressions r\ is the usual step function, 2 are the Laplacians 

with respect to r lf r2.

The "interaction current" <f(r, t ) is defined by

and the "Born" term is the averaged anticommutator

For ease of writing, the spin coordinates have been incorporated in rxr2*, i.e. ^  is a matrix 

<g(r1ol , r2<j2, t ) in spin-space; and so are M  and By changing to Fourier transforms defined 

by

equation (1) may be rewritten

(2)

where

(3)

(3a)

* except where rjr2 occur as integration variables for Fourier transform purposes.



and where the spin indices have been re-incorporated in the k9 s. The interaction currents are 
related to the previous ones by

42 PARAMAGNETIC IMPURITIES IN METALS Vol.2, No.1

In arriving at (3), We have inserted a complete set of intermediate states between the s, 

and have availed ourselves of the fact that *^(r1r2T) is like a Green's function with / 9s re-
placing TVs, and shares the property

with the Green's function.

Introducing the free particle Green's function <go , with

we may solve (2) for <g:

(4)

3. Modified Scattering Matrix

The major task in the determination of ^  is therefore the determination of M . We do this 
first for a single impurity, commenting on the result for finite concentration later on.

The formula 3 for M  is in the form of a trace over a complete set of eigenstates of the 

full Hamiltonian Jf. We now assume that the formalism of scattering theory in terms of field 

operators, as outlined for example in the book by Goldberger and Watson [5] is applicable to 

the present problem. In this formalism (of admittedly undetermined rigor), two complete sets of 
in- and out-states of N-particles

are taken to be unitarily equivalent exact eigenstates of the full Hamiltonian, in spite of 
their apparent independent-particle character. The unitary transformation connecting them is 
the Sf -matrix:

The definitions of the â  and a0 are given by

(5)

in which the 0 are solutions of Heisenberg operators evolving according to the non-inter- 
acting Hamiltonian



Vol.2, No.1 PARAMAGNETIC IMPURITIES IN METALS 43

and where Xk *s a wave-packet solution of

(7)

centered around a wave with momentum k. Eventually Xk is allowed to approach the limit of that 
central plane wave:

It is easily seen that ai 0 (k) defined by equation (5) is time-independent, due to (6) and (7). 

We also define a tinterdependent operator

(8)

where Y is the Heisenberg field operator satisfying

(9)

For ordinary potential scattering in reasonable potentials the limits

have been proven to exist, and to equal <a |a0(fe) | (3> and <a \ ai(k) \ p>, respectively. Here 
| a> and | (3> are arbitrary states. This so-called "asymptotic condition" we assume to hold in 

the present non-potential scattering problem also. It is readily verified, in view of (7) and 

(9), that

Evidently, as Xk* is aH ° wed to approach a plane wave, we have J^(k, t) -  j^(k, t) e k , where 
j(k, t) =  f^ (k ,  it) .  Note that, in particular, 0) =  j^(k,  0) =  / ( k, 0) =  j(h),  say.

Given an N-particle system, we may define an Sf matrix for scattering of one additional 
particle by

where |p in> is some exact in-state with a certain linear momentum distribution, and impurity 

spin orientation, and |p' out> some out-state similarly specified, but restricted by energy 

conservation



It is evidently possible to establish equations for the j 9 s by the method used in dispersion 
theory. However, the matrix is not what is required here. In most problems solved by dis-
persion methods p and p' are vacuum states, or at least e f fec tiv e vacuum states (as was the 
case in reference 1). The distinction between |p in> and |p out> then disappears. In the pre-

sent problem the |p > states are arbitrarily excited states of the N-electron gas. The M oper-

ator of equation (3) bears a certain resemblance (before thermal averaging) to the T-operator 

of reference 1, but its matrix elements are taken, not between in- and out-states of the system 

(as is appropriate to the T matrix), but between identical states. These identical states may 
be any complete set of eigenstates of provided they are equivalent to within a unitary 

transformation that commutes with Jf. Therefore, these states may be taken to be in-states. In 

view of this, it becomes convenient to define a modified matrix

44 PARAMAGNETIC IMPURITIES IN METALS Vol.2, No.1

and, to evaluate <§ , we eventually are interested only in the case p' = p.

It is easy to show (see appendix 1), that the ££ matrix is no longer unitary. This is con-
nected with the fact that while the states a^*(fe)|p in> form an orthogonal set for different k, 
the states a0*(k)\p in> do not. However, we shall assume that the states a0*(k) \p in>, even 
though they: form a skew basis, span exactly the same space as do the states a£*(fe)lp in>. If 

satisfied, this assumption ensures the existence of the <£ matrix, and its non-unitarity will 
not trouble us. Prom now on we abbreviate |p in> by |p >.

To obtain equations for the matrix elements of j (and thus of / ) ,  we proceed in close 
analogy with the usual derivation of non-relativistic dispersion relations* (see reference 5, 
for example).

We may write

With the help of the asymptotic condition, this may be written

♦ The Chew-Low method described in reference l does not work in the present case, since it is 
no longer possible to solve the equation preceding (12) in reference l unambiguously when the 
I co> state is an arbitrary excited state of the Fermi gas.



where
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and where R is the retarded anti-commutator defined by

The last result may be written

(10)

where

is the matrix for scattering of a hole with wavenumber and spin k from the in-state p ' to Wave-
r s  /^/  /**/

number and spin k ' and in-state p. (The corresponding <£ operator is l - J i ) .  The leading 

term in equation (9) is the Born suggested that the plot shown in term, with

Inserting a complete set of in-states between the two J* s in the last integral of (10),



expressing the time-dependent operators in terms of their values at time zero, carrying out the 
time integrations, and allowing the packets to approach plane waves, we get the following equa-
tion, valid on the energy shell Ep + = Ep ' + '
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an

where

(the bar denoting a hole); and where the last result following from

The occupation numbers n^(p) giving the number of conducting electrons occupying wave-packet 
state k in the in-state |p > of the system are good quantum numbers of value zero or one. We 
may therefore write

in place of Jl + Jl . Let us define a function of the complex variable z by

In terms of & we have

( 12)and
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provided Ep = £p '» where fe$p, (kep) mean: the electron of wavenumber k not contained (contained) 
in |p >. At absolute zero, equation (12) reduces to the crossing relations of reference 1. For, 
at absolute zero p, p ' are ground states and

since ek f must be negative, and 6^=6^' by energy conservation. Aside from a trivial change 
in notation this is the crossing relation (21) of reference (1), which continues Jl from the 
physical into the unphysical range of energies.

Even though we are not now considering the ground state, we still only need the case Ep =Ep r 
in the construction of . To find J l, we make the same approximation as in reference l; we 

admit only those in-states |p > states that differ from |p > only in that they carry an addi-

tional particle or hole. Then we have, with Ep " = Ep = Ep '

since in the first sum Eq = Ep " + e ^ "  = Ep + ek "t and in the second, Eq =  Ep ' -  ek n - Ep -  e/j". 

In view of equations (12), the last result is an equation for SF :

(13)

Before proceeding with its discussion, we note that for ordinary potential scattering from a 

very short range potential, ^  is a constant, and there exists, then, a solution

of equation (12) which does not depend on the state |p> (now non-degenerate) and depends on 

k only through ejt,. The n-factOrs in the two sums cancel out, corresponding to the well-known



fact that for potential scattering the state of the gas is essentially irrelevant; the Green's 

function depends on ^(ia)n), where S' (z) may as well be calculated for the absolute zero of 
temperature. In our present problem the two sums obviously do not combine in this simple 

fashion. A more detailed analysis is therefore needed. Let us write p = p, t , where p describes 

the "orbital" quantum number of | p>t and t the degeneracy index corresponding to the localized 

spin states. We note that Ep = Ep. Now the sums on the right hand side of equation (12) extend 
over all p " such that Ep " = Ep = Ep'. They are therefore functions of k\ k " and Ep only. We 
have no evidence that the same is true of & . However, the operator of which St (p 'k ' , pk) is 
the matrix element is essentially S -s (see ref. 1) where s acts on the spin-part a of | k>* 

Hence we may write
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For the uncoupled system, (p 't '|s |£ t> = 5p'p < t '|s |t>, so that there is no p-dependence. The 

interesting resonant effects certainly have nothing to do with St . Therefore, we neglect the 

p dependence of St in the weak coupling limit also. It then follows that F  is a function of 

t , t ', a, o', and Ep = Ep' only. But in that case, the summation over p " on the right hand 
side of (12) simply has the effect of replacing n£"(p") by its microcanonical average

n^m\"(Ep) over the energy surface Ep" = Ep. Next, we may imagine solving (12) by iteration, 
starting with a zero-order S' equal to St . Having written down the iterative series for S' we 
carry out the operation

In the iterative series, since we take St to be independent of p, this has the effect of re-

placing each by the Fermi function /((3ê ), since the occupation numbers in different in -
states are uncorrelated. (This is not quite correct since we have not yet introduced a chemical 
potential, so that there remains a constraint on particle number. That constraint is easily 

removed by taking the grand ensemble average of .) The averaged iterative series is there-
fore what we would obtain if we iterated the equation

(13a)

where

(14)



As in ref. 1, we now introduce the scattering amplitudes t 0 and t Y through
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where P0 = 1/4 - s *5; P x= 3/4 + s are singlet and triplet projection operators. The rest 
of the argument now proceeds precisely as in ref. 1. We obtain the coupled integral equations

(15)

a result which is not surprising.* The reason for the Q/8ir3-factor in the definition of is 

the 5-function normalization of the states, which means that the unit operators inserted in the 

products of the two f ’s in equation (14) must be taken in the form f\p fe"><fc"p"|cfk", etc., 
and d k = 8,nzp(x)dx/Q9 where p is the density of energy states. In equation (15) N denotes 
Q/Q0, the number of atoms in the crystal. It is clear now that, in equation (4)

At the absolute zero it is easy to apply multiple scattering theory to show that the self- 

energy operator is simply the total forward scattering amplitude for one impurity, multiplied 

by the (low) concentration.** We have not succeeded in proving the corresponding result at 

finite temperatures, due to the extra Permi-factor; however, if it is assumed that the im-

purities are sufficiently dilute so that the neighborhood of each may be treated as a separate 

statistical ensemble, the argument for T = 0 should apply to finite temperatures also, with 
the result that

Prom this, the retarded time-dependent Green* s function can be obtained in the usual way by

* The Permi level, we recall, has been taken at x = 0.

** See Appendix 2.



analytic continuation, i.e., by setting ia>n =  z.

Residual Resistance

A complete solution of the problem of response to an electromagnetic field requires solution 

of the integral equation for the photon vertex, which will be the subject of a forthcoming 

publication. For a rough calculation of the low-frequency resistance, we disregard the differ-

ence between the reciprocal transport relaxation time and the imaginary part of the self energy 
operator. Then the conductivity, as limited by the impurities is
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(16)

where n0 is the electron concentration, and

(17)

It is impossible to make the customary expansion of equation (16) in powers of T, utilizing the 

sharpness of the Fermi surface, because the derivatives of t become infinite as T - 0 and e - 0. 
Nevertheless, it is clear from (16) that l/o - 0 at T - 0, since at absolute zero, the ampli-

tudes t Qf t l go to zero at the Fermi level. We conjecture, however (on the grounds of the in-

expansibility of equation (16) that the [l/o(T)] curve has a vertical tangent at T = 0. Whether 
the Kondo resistance minimum actually occurs, is hard to determine without numerical calcula-

tion. For reasonably low temperatures, an approximate solution of equations (15) is

+00

where repeated use has been made of the assumption P f pdx/x - 6 = 0 .  It is easily seen that
-0 0

there are two resonances, symmetrically disposed about e = 0, provided p is greater than a 
certain pc given by



T - 0. Prom equations (15) and (17), we have
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(optical theorem). At temperatures so low that B//c)e still does not encompass the resonance, 

we have

This expansion converges poorly as T - 0; nevertheless, the leading term indicates that a goes 

to infinity like (log k T /ej)2 as T - 0, since

4* Some Minor Generalizations

a) Classical Limit

It is of some interest to examine the scattering equations for S > 1/2. In particular, as 5 

becomes very large, we would expect the scattering equations to approach those for ordinary 

potential scattering from a highly localized Zeeman field. That is to say, up and down spin 

electrons will have different scattering amplitudes (one of these showing a tendency to reso-

nance), and the "crossing terms" should be absent from the equations. To see that this does, in 
fact, take place, as 5 - oo, we revert to the simpler zero temperature case of reference 1. The 

projection operators PQ and now refer to the S - 1/2 and S + 1/2 manifolds. They are

The scattering matrix is T = t qP0 + t 1Plt and the matrix product in the crossed channel, T T, 
may be evaluated by noting that



It is then seen that
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Also, the Born term, proportional to s • S, decomposes according to %(S Px - (5 + 1 )P0). The 
resulting equations are then

showing that as 5 - the problem reduces to ordinary potential scattering for electrons with 
spin orientation parallel and antiparallel to the large impurity spin.

i
b) Additional Spin-Independent Scattering

Added potential scattering Vp modifies the Born term, which assumes the form

This case is quite difficult to discuss. However, if S = 1/2, and J is small compared with Vpt 
as should sometimes be the case for transition element impurities, we may examine the equa-
tions for t Q and t x by a perturbation method. Taking the case T = 0. we write

where

is the reciprocal scattering amplitude for potential scattering alone (disregarding the term 
P Jp dx'/x - *'). If J is small t may be expected to be small. Substituting i/t0 and l/ t1 into 
the integral equations and expanding the crossing term to second order in t , we find that t 
satisfies
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whose solution is

This means that

as z - e + id, and e > 0. For J > 0, t  has a pole and the expansion of the crossing term is 
not valid near the pole. Presumably the higher power terms would eliminate this pole* Disregard-

ing this difficulty, we find, for e > 0

If Rlt  is approximated by Vp we then get resonances at

These results suggest that, even when J is negative (ferromagnetic in our notation) a resonance 
of the singlet amplitude may occur near the Fermi level, if \j\ > Vp/3.  This large \j\ may, 

however, be out of the range of validity of this calculation.

5* Justification of the Neglect of Higher Order Processes

We now present evidence that the processes neglected in the discussion of the T matrix at 
the absolute zero of temperature do not, in fact, contribute logarithmic singularities, in con-

trast with those retained. The terms neglected in the equation for the one-particle to one * 

particle scattering matrix element Tk'Q' ;k(j!>(z) had the form (see ref. 1)
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plus a corresponding "crossing" term. Here the | m>~ are exact intermediate scattering states 
with excitation energy em, composed of one electron above the Fermi surface, accompanied by at 

least one hole-electron pair. It is safe to assume that |j'J co> is bounded (in fact, away 
from a resonance it must be of at least second order in the coupling strength). We show by 

means of a phase-space argument that the sum in equation (l) does not diverge near z = 0, in 

contrast to the same sum, but with | m > “ denoting intermediate scattering states with only an 

electron and no pairs.

For an examination of the vicinity of z = 0, we may take the numerator outside the summation 
sign. Then it remains to consider

where esp is the energy of a state with a single electron above the Fermi sea, plus a hole 

electron pair, and psp is the density of such states. This density is a convolution of three 
single electrons densities ps. Consider first the electron-hole pair density pp. We have

where e^, es are single particle energies, and the integration is carried out over the tri-

angular region 6s1 “ es2 < 6p eal < Ss 2 < 0. Taking PSl = Ps2 = Ps = constant, we get

The density of states of the triple configuration is then seen to be

the integration extending over ep, es > 0 and ep + es < esp. The result is % p3 esp2. Therefore

does not diverge logarithmically near z -  0. A similar conclusion applies to the crossing term. 
Processes with more hole electron pairs than one have even smaller intermediate state densities.

As for the non-logarithmic part of the sum



it is seen rather easily that multiparticle intermediate states are unimportant in the weak 
coupling limit. The reason is that for ordinary potential scattering terms like
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are rigorously zero. For exchange scattering they are non-zero only to the extent that an un-

perturbed one-particle in-state acquires an admixture of a particle + pair state when the per-

turbation is turned on. This admixture is of order J /s j .  Hence the matrix elements to multi-

particle intermediate states are down by a factor J/tf from those to one-particle intermediate 
states. An exception could occur only if the T-matrix element

has a resonance.
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APPENDIX 1:

Non-Uni tar ity of the ££ Matrix

For simplicity we use a discrete representation. It is sufficient to prove the non-unitarity 

for two particles a, |3 one of which ((3) together with the impurity spin constitutes the target, 

the other the nN + l"th particle. The J? matrix is defined by
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where |vac> is the bare state of the impurity spin. Consider the true S matrix defined fay

In therms of S, we have for the overlap integral

Hence the states a out| |3> are orthonormal only if either or both of ea, ea ' are not equal to 

ep. In the general case of an additional particle impinging on the iV-particle system, the 

orthogonality requirement would be that the extra incident or outgoing particle should have its 

energy unequal to the energies of those already present. This was the case in reference l. A 

unitary transformation then exists between in and out states of the (N + l)-th particle, and 
the matrix is then unitary.

APPENDIX 2s

Multiple Scattering

When the concentration of impurities is finite, the Ruderman-Kittel interaction partially
N-

resolves the 2 1 fold degeneracy (where is the number of impurities of spin one half) of the 

states of the system. This resolution is quadratic in the concentration for small §, and we 

neglect it in an approximation linear in §. At the absolute zero of temperature, the procedure 

for establishing the Green's function (real times) is then simple. We define the ground-state 
Green's function by

N '
where the summations extend over the 2 1 different degenerate ground states. It is sufficient 
to consider g for t > 0. We have
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where the contour z encircles the real axis in the clockwise direction. Writing J^° + ,

R(z) = l/z - and d(z) = l/z -Jf°, we see that

The T matrix is defined by

From these two equations it follows that

Suppose that ta is the scattering operator for a single impurity located at ra. Then we have 

the exact multiple scattering expansion

The matrix element for the scattering of a single electron from wavenumber and spin k to wave- 
number and spin k', while the target goes from | a>> to | a>'> is

For an impurity at ra, the t-matrix is

(where the k9 s in the exponent of course do not include their spin parts). In this expression

* This equation was first used by Luttinger and Kohn in their discussion of transport 
theory [el.



the t without superscript refers to scattering off an impurity at the origin. Consider not the

average of T over impurity configurations. The average I  is clearly 'jfe6u 'u.

Next
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so long as we restrict ourselves to one particle intermediate states. In this expression we 

have written ak | a> = | a k > etc. and used the fact that ak(l/d) = (l/z -  e^a*. The state |u>- 
mvy be written |UjMj ... >, where each <■>„ is plus or minus, corresponding to the orienta-

tions of the various impurity spins. To lowest order in the concentration we may assign one of 

the &>n to each impurity site. Then so far as the o fs are concerned t° has matrix elements of 
the form

The unit operator I |u"Xu"|,' inserted between the V s in <<o | t a tP| «>, for a f  p thus gives: 
only one non-zero term, i.e., <co |ta | a>Xa |tP| u >. Thus we have

Next consider

For a f  p f  y this gives

while for a = y and a, y f  p it gives

This term, after summation is of order f2J 3/e/2. whereas the term 2 ta I  (1/d) tP is of order

§2J 2/efc, where a typical e* is itself much smaller than ey. Continuing the argument in this way, 

we see that in each order of the concentration, the terms with all sites different dominate the 

others. Redefining t as the previously introduced t, but without the 1/^-factor, and replacing 

Ni(Ni - 1) by Ni2, etc., we obtain a geometric series for the averaged Tuk ak\ which is 
summed to
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and so, after decomposition into singlet and triplet amplitudes one finds for the resolvent

A corresponding result follows for t < 0 if hole instead of particle scattering is considered.

We have not succeeded in proving an exact multiple scattering expansion and resummation in 

the finite temperature 6ase. However, if the scatterers are sufficiently dilute so that the 

environment of each may be considered to be in local equilibrium, there is little doubt that 

the same procedure must be valid. We had

for the modified scattering matrix from a single impurity at finite temperatures. If we form-

ally repeat the above argument, and recall that the states are normalized to 8-functions we 

find


