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Abstract

The possibility that surface superconductivity of the Ginzburg type might occur 
at high temperatures is investigated. The most likely effect is seen to be surface 
ordering brought about by resonance coupling through the impurity surface states.
A mechanism is described by which the localized coherence which this requires can 
occur, giving transition temperatures orders of magnitudes higher than any now known.

Introduction

THE possibility that the interaction between electrons at the surface of a superconductor might 
be strong enough to give rise to a new type of superconductivity was originally proposed by 
Ginzburg and Kirzhnits [l], who dealt primarily with the possibility that superconductivity 
might occur in the surface band alone. A distinction was made between this type of two-dimen-
sional effect and the phenomenon of "surface ordering" proposed simultaneously by Bulayevskiy 
and Ginzburg [2], in which surface coupling between Bloch waves occurs. Subsequently, Ginzburg 
[3,4] suggested that the presence of impurity atoms on the surface might be a contributing 
mechanism for both effects. The present author [5] has since then shown that two distinct types 
of surface ordering can occur in thin films, one of which depends on thickness and one of which 
does not. In addition, a number of different mechanisms have been studied, and there is reason 
to believe that surface superconductivity might appear at remarkably high temperatures [3,6].

A year preceding the initial work of Ginzburg et al., Saint-James and de Gennes [7] described 
the possibility that a superconductor in a high magnetic field might be superconducting only in 
a thin surface layer. This effect, which has also been referred to as "surface superconductivity", 
is quite unrelated to those mentioned above and might better be referred to as "type III" super-
conductivity. It occurs because the translational symmetry of the system is broken by the sur-
face, so that the superconducting wave function can respond to an imposed field with an addi-
tional degree of freedom; however, the transition temperature is unchanged in the field-free 
case. We shall not consider type III superconductivity in this paper, but rather concentrate on 
an exciting feature of the Ginzburg effect, the prospect of superconductivity at room tempera-
ture and above.
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Theory of Surface Coherence

The original suggestion of Ginzburg and Kirzhnits [l], that superconductivity of just the 
surface band might be possible, is particularly challenging, since it involves the topological 
Question of two-dimensional superconductivity. The idea that superconductivity might occur in 
other than three-dimensional systems was first proposed by Little [s], who examined the possi-
bility that organic polymers might become superconducting at room temperature. It was then 
shown by Ferrell [9] that the zero-point energy associated with compressional modes in a one-
dimensional system is sufficient to disrupt long-range coherence. While Ferrell's calculation 
does not rule out the possibility of two-dimensional superconductivity, it might do so if 
collective excitations with non-linear dispersion were included [9aJ. On the other hand, 
ascribing less than three dimensions to any object in the real world is a risky approximation, 
and superconductivity in these special systems may occur as coherence in the transverse degrees 
of freedom.

Although the Question of two-dimensional superconductivity involves this interesting funda-
mental issue, from an experimental viewpoint it is not promising. The fraction of electrons on 
the surface which are in surface states is believed to be small, and Auger emission studies of 
clean surfaces suggest that it may be on the order of 10"3 L io]. Because of the short lifetimes 
of these states, it is difficult to envision their forming a stable coherent system. Two-dimen-
sional superconductivity, if it exists, might better be looked for in systems where virtually 
all the electrons are in long-lived states with only two accessible translational degrees of 
freedom. Such a system might be a monolayer, where the level spacing for motion perpendicular 
to the plane of the film approaches the Fermi energy [ll].

The concept of "surface ordering" [2], on the other hand, admits of the possibility that all 
the electroris on the surface contribute to a coherent state. Since most of these electrons are 
in Bloch states of real momentum, this does not mean a correlation between electrons in local-
ized surface states, but rather a localized correlation between orbits which pass through the 
entire volume. This can occur in different ways, depending on how strongly the interaction 
modifies the unperturbed electron states. If the interaction is weak or is spread over a fairly 
thick surface layer, the Bloch waves are essentially unmodified, and the superconductive proper-
ties are affected only to the extent that the average of the interaction over the entire volume 
is changed. This effect involves only a slight generalization of the principles which apply to 
bulk superconductors, and we shall refer to it as "surface enhancement". If, on the other hand, 
the electron-electron interaction is sharply peaked in the surface region, the Bloch waves will 
then be significantly altered and localized correlation effects can occur.

In order to see how "surface ordering" can occur in a superconductor, we must investigate 
the microscopic structure of the superconducting state when the Hamiltonian is a rapidly chang-
ing function of position. To do so we consider the likelyhood that two electrons will combine 
to form a "Cooper pair" [12], which can be expressed in terms of the "anomalous Green's func-
tion" F(t , r ' )  = < ^t (r)vpi (r ' )  > [13]. This matrix element gives the amplitude for transition 
from a state containing two electrons of opposite spin above an iV-particle condensed phase into 
a state in which the condensed phase contains N + 2 electrons. The "condensate" to which we 
refer is similar to the macroscopically-occupied ground state of a Bose-Einstein system, and may 
be viewed as a many-body wave function for which the only "good" Quantum numbers are collective 
ones, and of those, the important ones have the same value as they do for the real vacuum, i.e. 
zero. The pairing interaction can be treated by field theoretic methods similar to those com-
monly used in perturbation theory [14], and the anomalous Green's function can be expressed in 
the form F(v, r ')  = f G0(r , r ' )  I ( r "  r"')G0(r'", r ’)dr"dv'"\ here G0 is the Green's function,
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G(r, r ')  = -  < yt (r)y*(r ') > evaluated for the normal state, and I  is a self-energy term. Since 
I can itself be expressed in terms of P  s, this expression constitutes an integral equation for 
the anomalous Green's function. In particular, we shall be interested in the "pair correlation 
amplitude", x(r) = F(r, r ) , which is the excess probability amplitude for finding two electrons 
of opposite spin at the point r. Near the transition temperature the self-energy reduces to 
I(r , r ')  = S(r -  r ')A (r), where A(r) = K(r)x(r) is the "energy gap function", so called because 
it reduces to the BCS [15] energy gap for the case of translational invariance. Finally, we ob-
tain for x(r) the integral equation
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(1)

where K(r, r') = < G0(r, r')G0(r',  r) >imp is the square of the normal Green's function aver-
aged over impurities. This equation, which relates the amplitude for pair condensation at a 
point, x(r) = < vT(r)̂ p̂ (r) >, to the one-electron Green's function of the normal state, is the 
limiting form (T ~  Tc) of the BCS energy gap equation, or "consistency condition" as it is often 
called. Since superconductivity is possible only when this equation has a non-zero solution, we 
look for the highest temperature at which solutions of equation (1) exist, which is the transi-
tion temperature [l6].

We now wish to investigate the properties of the kernel occurring in the above expression 
for the correlation amplitude. A very useful sum rule is due to de Gennes [17], who has shown 
that

where N(r) is the local density of states at the Fermi surface and co(r) is a local character-
istic cutoff frequency, assumed to be much larger than kT/fl [19]. If p(r) - N(v)V(r) is a slowly 
varying function of position, as is the case in a bulk superconductor, the transition tempera-
ture is given by the BCS expression [15]:

(2)

We are, however, going to be concerned with systems in which N, V, and co are rapidly varying 
functions of position.

The impurity-averaged kernel, K(r, r'), can be obtained by the method of Abrikosov and 
Gor'kov [20]. Werthamer [is] has derived the result for the case of short-range isotropic 
scattering, and a generalization of the Werthamer calculation gives the following result for a 
bulk superconductor, valid for all values of the mean free path:

where

v is the Fermi velocity, l the mean free path, and = [2(2n + l)TckT/fiv] + Z-1 [2l].

This result can be simplified by expanding the factor q/arctan l>nq in the denominator, which
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gives

where §n = [l>r̂ iv/6(2n + 1)ttkf] 1/2 is a generalized coherence length. By dropping powers of q 
greater than the second, we obtain a kernel of the diffusion type; letting R = |r -  r'l this 
gives Kn (R) ~ K d i £ £ (R) oo R~l exp {—

The diffusion approximation, as introduced originally by de Gennes and Guyon [22] and sub-
sequently used by the Gennes [17] and Werthamer [is], involves two assumptions: (i) that K can 
be set equal to K d i £ {  for all values of R of interest, and (ii) that £n can be replaced by l in 
the above expression for Assumption (i) is not valid when we consider the surface region, 
since it holds only when R »  Z, a condition seldom met by the characteristic distances associ-
ated with surfaces. Assumption (ii) is not necessary; the diffusion law in this case is a result 
of mathematical convenience, not of physical behavior, and the characteristic Z1/2 dependence 
of the correlation lengths need not appear. In fact, we need only retain the exact form of the

given above to obtain a "diffusion approximation" applicable to systems in which the mean 
free path is not at all short [23].

In order to avail ourselves of the conveniently simple form of the diffusion equation with-
out using either of the above assumptions, we define the correction term K C0TT = K -  tfdif f, with 
K dlff derived as above, and investigate its properties. Since both K and K di ££  obey the de 
Gennes sum rule, which is equivalent to the obvious fact that K*0TT(q =0) =0, and since 
K * 0 TT(q)  is an even function of g, we see that K C0TT is an oscillating real function of R, with 
a wavelength A small compared to the mean free path. It is singular at the origin, as evidenced 
by the 1/g dependence for large g; recalling the definition of K as the square of the Green's 
function, it is evident that K(R) ~ i?‘2 as R - 0.

From the fact that KC0Tr is rapidly oscillating, we see that it will affect the correlation 
amplitude x(r) only when the interaction changes equally rapidly; however, because of the R-2 
singularity, it is possible for a localized interaction to make a major contribution to the cor-
relation amplitude. If, for example, we investigate the contribution of a small spherical well 
of depth V and radius a in a superconductor to the transition temperature, we see that the 
relevant parameter of the well in the diffusion approximation is Va2, as seen from the integral 
Vf R-1 dr ~ Vf R~l • R2dR ~ Fa2, while for R-2 dependence the factor is ~A Va, where the wave-
length A is the characteristic range of KC0TT and does not depend on the geometry of the well. 
This means that the contribution of a very narrow deep well will be much greater when the cor-
rection term in the kernel is taken into account than when only the diffusion term is considered. 
A similar situation holds for the one-dimensional kernel appropriate to surface problems, where 
the diffusion kernel is bounded (Kdl££(z) ~ exp{- |z|/§n}), but KC0TT has a logarithmic singu-
larity which can greatly amplify the effect of a thin surface layer on the superconducting pro-
perties.

Let us now consider the simple model of the surface of a superconductor shown in Fig. 1. The 
interaction parameter V' is constant in a thin surface layer of thickness d', then falls 
abruptly to the bulk value V (we assume for simplicity that the density of states is constant).



Vol.2, No.4 SURFACE SUPERCONDUCTIVITY 157

FIGURE 1.

Layer model of the superconducting surface. After 
Strongin et al. (ref. [25]).

The two cases of interest are d' > A, d' < A where A is the characteristic range of KCOTT and 
is closely related to the mean free path in dirty specimens. In the first case, where d' > A, 
the contribution from the correction term vanishes, and x(*) is governed by the diffusion equa-
tion. If the film thickness d is small enough to satisfy the Cooper limit [24], the result is 
kTc = exp{- l/iWrav}, where Kav = (V'd' + Vd)/(d' + d) [25]. Since d' is typically much less
than d, the effect of the surface layer is considerably diluted. In addition, the contribution 
of high-frequency components of the surface interaction, which may be looked for when 0 '  »  0, 

will tend to be cancelled by the repulsive high-frequency components of the electron-phonon 
interaction. We do not, therefore, expect drastic changes in the transition temperature to occur 
in this case.

There is some evidence that this situation has been observed, and that changes in the transi-
tion temperature on the order of a degree or so can occur [25-29]. Because these experiments 
have generally fallen within the region of validity of the Cooper limit and are described by 
the above result, it is reasonable to conjecture that d' > A for these systems; this is con-
sistent with the likelihood that the mean free paths involved are short. Since this effect does 
not actually involve surface coherence (in fact, in the Cooper limit x(r) is essentially con-
stant throughout the system), but arises only from the modified volume average of the inter-
action, we refer to this effect as "surface enhancement".

If d' is less than A, the oscillations in KCOTT will not average out the contribution of 
this term to the correlation amplitude. On the contrary, if we let d' go to zero while changing 
V so that the product Vd' remains constant, the amplitude of the correlation function at the 
surface increases as |log d '|, and the transition temperature becomes in the limit inversely 
proportional to d'. The surface enhancement effect meanwhile remains unchanged. This phenomenon, 
which we shall henceforth designate "surface superconductivity", may provide the greatest 
likelihood of realizing high-temperature superconductivity, and we shall discuss it at greater 
length. The actual situation which prevails at the surface of a superconductor is of course far 
more complex then the simple layer model which we have used indicates, so we shall first



investigate the actual mechanisms which may give rise to a greatly increased surface inter-
action, and then we shall see that transition temperatures are actually within the range of 
possibility.
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Surface Interaction Mechanisms

We turn now to a discussion of the mechanisms for the greatly modified surface interaction 
which, as we have suggested in the previous section, might be responsible for surface super-
conductivity. The interaction processes occur through intermediate boson excitations of various 
types, and the relevant features are the spectra of these excitations and the strength with 
which they couple to the electrons. One main characteristic of the spectrum is the effective 
cutoff, or band width, since this provides an upper limit to the exchange energy of the 
electrons and to the critical temperature; this can be seen directly from the BCS formula, which 
tells us that Tc <H(x>/k. While the structure of the spectrum, including its dispersion in both i 
time and space, must be considered in any detailed theory of superconductivity (e.g., tunnelling)! 
a suitably defined one-parameter model suffices for the crude calculations to follow. The 1
coupling strength is the other important feature of the interaction, and plays the greatest role 1 
in the weak-coupling limit. We shall indicate briefly how strong-coupling can occur at the sur- 1
face of a superconductor, and then, emphasizing the cases where e~l /NV may be close to unity, I
we shall look at band-widths. The reason that the cutoff is of prime importance in the strong- 1 
coupling case is that the transition temperature depends mainly on the relationship between kT j
and the binding energy of a Cooper pair, not on the rate at which pairs are formed; while the 3
reason that the dependence on V is dominant in the weak-coupling case is that the competing real |
phonon processes are of lower order in the electron-phonon coupling constant. The situation is ]
similar to that described by the law of mass action; if the stoichiometric coefficients balance, 1 
then the equilibrium point depends only on temperature and is independent of kinetic factors. I

|
An immediate question is whether or not the interaction is attractive. This is difficult to ] 

answer for a complex interaction mechanism, but in most cases the formal nature of the coupling ] 
is^similar to that of the electron-phonon system, and the following considerations are valid: \
the general interaction is of the form -V(r, t\ r' ,  t') ~ |g2| D(r -  r' ,  t -  t'), where g is a
coupling constant, D is the Green's function of a boson excitation, and the minus sign arises <
from our convention that a positive interaction is attractive. The Fourier transform of the ]
boson Green's function, D(q, <d) is generally negative in some finite region about (q = 0, co = 0), 
and in this region the interaction will be attractive. Beyond this region V may be repulsive, j 
but the electrons can apparently adjust to this and avoid the energetically unfavorable portion 
of the spectrum. For a retarded interaction, the characteristic cutoff is defined (within a 
numerical factor of 1.14) as the frequency at which the Green's function of the excitation 
changes sign.

The electron-phonon interaction, which provides a satisfactory explanation of the bulk super-
conductivity of most substances, is modified in two ways at the surface [30]. Because of the 
lessened constraint to which the surface atoms are subject, the normal frequencies are shifted 
downwards and the effective cutoff is lowered. There is also the possibility of coupling to large-
amplitude evanescent modes, and this, as well as the enhancement of the usual coupling through the 
resonance mechanism to be discussed below, can increase the magnitude of the inter-action to well 
within the strong-coupling regime. This suggests that transition temperatures i close to 
the Debye temperature are possible through the electron-phonon interaction alone. Theree, 
however, other interactions associated with impurity surface states which feature both high 
Cutoffs and larere intera/vMnn narnrnpfpr.Q



An impurity atom in a crystal adds its energy levels to those already present, and the 
presence of a large number of impurities can give rise to an impurity band lying close to the 
regular conduction band. This effect is particularly significant in the surface region, partly 
because of the high impurity concentrations (e.g., oxide, substrate, adsorbed gasses) usually 
present, partly because the presence of these impurities creates a localized impurity band with-
out affecting the bulk electronic properties of the crystal. Because of the large amplitudes of 
these localized states, the exchange integral between them and the Bloch states is magnified. 
Assuming a falloff of roughly 5 atomic spacings for the surface state [3l], this means that a 
large surface interaction can exist within a layer whose thickness is a good bit less than the 
mean free path, which is what surface superconductivity requires.

The surface levels couple to a number of excitation modes. There is of course the vibrational 
mode discussed previously, with a cutoff determined by the Debye frequency. Ginzburg has pointed 
out that transitions between electronic states of the impurity atoms involve energies on the 
order of electron volts, and with values of ftco of this magnitude it should be possible to arrive 
at transition temperatures between 102 and 104 °K [3]. However, the internal coupling may be 
weak and the effective density of states can be sharply reduced if the width of the transition 
is small. A more serious restriction is that Cooper pairs have the same net quantum numbers as 
the vacuum, which imposes strict selection rules on the excitation process. Atomic transitions 
are as likely to destroy superconductivity as to help it, the AL f  0 and AL = 0 excitations 
interfering in the same way that spin waves and phonons compete in magnetic materials.

If the surface is in contact with a dielectric material, such as a substrate or oxide layer, 
there is the additional possibility that the impurity surface states can couple to exciton modes. 
The magnitude of this effect is difficult to determine, but if it were significant one might 
also expect to find structure in tunneling data related to the exciton spectrum. Interaction 
with the surface dipole layer arising from the contact potential has been suggested as an inter-
action mechanism in some cases [32].

For all high energy excitation processes, an upper bound on the cutoff is imposed by the 
width of the surface band. This will generally depend on a number of factors, but it seems 
reasonable to use the values of a few tenths of an eV suggested by Auger emission data [lo]. For 
strongly coupled modes this would admit the possibility of room temperature superconductivity.
We shall now investigate the structure of the surface layer in detail to see how realistic this 
possibility is.
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Structure of the Surface Layer

The surface layer is not a uniform homogeneous sheath, nor can it be represented by a con-
tinuum of impurity atoms. The actual interaction seen by an atom on the surface will be due
not solely to the impurity scattering mechanisms described above, but rather to the net excita-
tion spectrum of the entire surface, for which the impurity density is likely to be small (it 
is conceivable that localized superconductivity due to KCOTT could occur at an isolated impurity 
site, which need not be on the surface, but the cost in kinetic energy would be severe). There-
fore, if we are to make a realistic estimate of the probable transition temperature of such a 
system, we must generalize the BCS formula in such a way that the parameters N, V, and co are
appropriately averaged over the surface. This can most easily be done by calculating the free
energy density in the Cooper limit, meaning that the energy = gap function is taken to be constant, 
and finding the highest temperature at which the total free energy is negative [33]. This is 
determined by the vanishing of the integral jr[y(r) - K(r)y2(r)]c?r over the surface region,where



y(r) = N(r)L(fiQ(T)/kT) and L is the difference of two digamma functions, L(z) = (̂ [̂irze-y + 
l]) - and where y is Euler's constant and the factor y2 ire-V = (1.14) -1 arises from our
definition of the cutoff frequency. For a homogeneous system this reduces to NVL(ha>/kTc) = 1; 
since L(z) ~ In z for large z, this agrees with the BCS weak-coupling limit, equation (2), 
kTc =ficoe-1/^ . Since, however, we are looking for transition temperatures on the order of the 
Debye temperature, this approximation must be used with caution. If the concentration of im-
purity atoms on the surface, xt is small, the logarithmic approximation can be used to find the 
exponential dependence Tc = T0eax, where a = ln(huimp/kT0) [Piap ln(ft<oimp/kT0) -  l] and T0 is 
the bulk transition temperature. It can readily be confirmed that in the case coimp = co0 this 
reduces to the Cooper limit, kTc =ta> exp{-l/[p0 + x(pimp - p0)]>. For coimp > u0 the repulsive 
tail of the electron-phonon interaction will tend to inhibit the high-frequency modes, as occurs 
in surface enhancement, but the components with frequencies close to coimp will only be sup-
pressed for small values of x. At higher concentrations the effect of impurity trapping will
saturate, and the limiting value of Tr will correspond to kT\im = expl-l/o. }c c imp 'rmp''*

Since the high-frequency modes are most heavily suppressed in the case of surface enhance-
ment, this effect can be used to estimate the strength of the surface coupling. The data of 
Strongin et al. [25,26] indicate that pimp > pA1, and the other data on A1 agree if we assume 
that the surface enhancement mechanism applies [27-29]. There is some evidence that the transi-
tion temperatures of strong-coupled superconductors are depressed by surface effects [34], and 
if we take this to be a case of negative surface enhancement we arrive at the estimate pimp ~
0.3-0.35 suggested by Strongin, Kammerer. and Paskin [25]. This value is smaller than might be 
expected from the preceding arguments, but, in view of the sensitivity of piinp to the relation-
ship between the impurity surface band and the bulk conduction band, the consistency of these 
results for different metals suggests that mean free path or strain effects may be the deter-
mining factors [29].

It should be noted that surface superconductivity can occur even if pim < p0, if the im-
purity cutoff is large enough so that a = ln(haimp/kT0) [pilip ln(ftaimp/kT0) P-  Po ln(fto0/Mo)] is 
positive. If we take p = 0.3 a.nd-haiap/kT0 = 100, for example, we get Tc ~ T0e2x, which will 
give a small surface superconductivity effect whether or not the surface enhancement is negative. 
Which effect we observe depends of course on the thickness of the surface layer.
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Conclusion

In our discussion of the possibilities for high-temperature surface superconductivity we 
have shown how a highly localized form of surface ordering can arise which is extremely sensi-
tive to the nature of the electron-electron interaction in a thin surface layer. Impurity sur-
face states provide a mechanism whereby the electrons can couple strongly to excitation modes 
having much higher cutoffs than the Debye frequency. Even for low impurity concentrations it 
should be possible to observe substantial increases in the transition temperature.

Certainly the introduction of virtually any new interaction mechanism will increase the cut-
off parameter co. The Debye spectrum cuts off at a frequency which is generally an order of 
magnitude less than other characteristic frequencies of the system [35]. Usually these non-
acoustic excitation modes cut off at energies on the order of a few tenths of an eV, which 
corresponds to ~ 103 °K, and the main factor is the degree of coupling. If the coupling is 
strong, as we have suggested it may be when resonance scattering by impurity atoms is effective, 
room-temperature surface superconductivity should be possible.

To summarize, the existence of a surface layer with interaction different from that of the



bulk material has been indicated for a number of superconductors by observation of the surface 
enhancement effect. Whether this surface layer can cause superconductivity to occur at high 
temperatures is as yet uncertain, but under ideal conditions, i.e. with an impurity surface band 
close in energy to the conduction band, transition temperatures as high as 103 °K are conceiv-
able. How closely this conception approaches reality is difficult to say, as we cannot be sure 
even that we are justified in applying the BCS theory at temperatures of this magnitude; for, 
although we discuss the possibility of surface superconductivity at room temperature, we must 
remember that we can not as yet explain the rather surprising fact that superconductivity has 
never been observed above ~ 18°K.
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Author’s Note

The author regrets having failed to mention the work of W. Rtthl (Z. Phys. 186, 190, 1965, 
and previous work cited therein) on the effect of oxide layers on thin films. Ruhl has observed 
both increases in the transition temperature (Al, Tl, In) and decreases (Sn, Pb, Ga) comparable 
in magnitude to those observed by Strongin et al. [25,26], although his results are somewhat 
different. McConnell and coworkers (Proc. Natl. Acad. Sci. U. S. 54, 371, 1965) have reported 
changes in the transition temperatures of V films on which layers of various organic compounds 
were evaporated.
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