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Abstract

With the use of the Weyl correspondence between quantum mechanical operators and 
classical  dynamical functions, an exact quantization rule is derived for a system 
with one degree of freedom and arbitrary Hamiltonian. In the semiclassical limit of 
small Planck's constant, this reduces to the Bohr-Sommerfeld quantization rule as 
derived by the WKB approximation. Higher order terms are also derived. I t  is 
further proven that for a simple harmonic osci l lator the Bohr-Sommerfeld rule must 
give the exact energy eigenvalues for al l  states.

1. Introduction

AN APPROXIMATE RULE for the quantization of the energy of a periodic system with one degree of 
freedom is given by the well-known Bohr-Sommerfeld (B.-S.) quantization rule, which states that 
the action integral of the system must equal a half-integer times Planck's constant. In this 

form, which is slightly modified from the original one postulated by Bohr, this rule has been 

derived [l] on the basis of the WKB (semi-classical, or asymptotic) approximation to the 

Schrodinger equation for the wave function of the system. This is an asymptotic approximation 

valid only for small values of Planck's constant. Only the simplest system with a Hamiltonian 
of the form Hip, q) = (p 2/2m) + V(q) has been considered. The derivation depends crucially on

on the so-called "connection formulas" for the wave function on either side of the classical

turning points. The establishment of the connection formulas is a rather delicate mathematical 

problem and it has been considered in detail by many authors [2-6]. The B.-S. quantization 

rule has thus been proven for the simple system to hold true only for large quantum numbers.

No correction terms to the quantization rule have been derived on the basis of the WKB approxi-
mation, as far as we are aware. In this connection the simple harmonic oscillator has presented 
a curious case, in that its energy eigenvalues are given exactly by the B.-S. quantization rule 

for all quantum numbers. This has been considered as an accident [l,7].

In the following we present a quantization rule which is exact and its meaning and origin 

obvious. This is expressed in terms of the quantum mechanical operators of the system and it
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is shown that it can be written in terms of an integral over the classical phase space of the 

system. It is proven that this quantization rule is valid for a system of one degree of free-

dom but with an arbitrary Hamiltonian, provided its energy spectrum is non-degenerate. In this 

proof use is made of the Weyl correspondence [8] between quantum mechanical operators and 

classical dynamical functions. This generalization allows the application of this quantization 

rule to effective one-dimensional problems usually arising from separable three-dimensional 
ones.

It is further shown that to the lowest order in fi ( = Planck's constant divided by 2ir) this 
exact relation gives the B.-S. quantization rule, which is thus derived without the use of any 

wave functions or connection formulas. In addition, a procedure is developed which yields cor-
rections to the B.-S. rule in power series in *ft2, and the first correction is given explicitly. 

This may provide a quantitative measure of the inaccuracy of energy eigenvalues as given by the 
B.-S. rule.

The case of a harmonic oscillator is considered in detail. It is shown that the corrections 

to the B. -S. action integral vanish for this system to all orders in which explains the 

exactness of the energy eigenvalues as obtained from the B. -S. rule for this system.

2. Exact quantization rule

Let us consider a system of one degree of freedom with the classical Hamiltonian H(pf q) = 
(p2/2m) + V(q), where q is the Cartesian coordinate ranging from - ® to ® and p the conjugate 
momentum. We take V(q) to be such that the classical motion is periodic, at least for a certain 

range of values of its total energy. Quantum mechanically the energies of the stationary states 

of this system are given by the eigenvalues en of the Hamiltonian operator = H(P, Q) =
(P2/2m) + v(O), where P and Q are the momentum and position operators, respectively, satisfy-
ing the commutation relation [Q, P] = iH.

For the discrete spectrum we know that the energy eigenvalues are non-degenerate. We can 
then enumerate the bound states with energies en by use of the integers n = 0, 1, 2, 3, ... . 
With the help of the unit step function s(e),
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( 2 . 1 )

we have that tr s ( e  -  ) - 1 s ( e  -  en f) is equal to an integer that gives the number of bound
n

states with eigenenergies less than e, if e f  en '. If e is equal to one of the eigenvalues, say 
en, we have from (2.1)

( 2 . 2 )

where n -  0, 1, 2, 3, ... . Clearly, an independent evaluation of the trace in equation (2.2) 
will yield an equation for the energy eigenvalues en of the system.

It is possible now to express the trace in a form of an integral over the classical phase 
space of the system. Furthermore, this form lends itself easily to an evaluation in powers of 

7 l 2 . This transformation is essentially the same used by Wigner [9] in the study of quantum



corrections for thermodynamic equilibrium properties by the introduction of the Wigner dis-

tribution function. Generalizing slightly Wigner*s procedure, we define a classical function 
S(pq; e) corresponding to the operator s(e -jf) by the relation
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(2.3)

where Q|g > = q \ q  > - Now, as Wigner noted, the integrand of equation (2.3) can be written 

as < g -  1/2 x \ U “ 1sU\ q + 1 / 2  x >, where U =  exp ( i Qp/ %) .  Furthermore, we have 

U~1s ( e  -  3 f ) ( J  = s ( e  -  IJ-1# U )  with

(2.4)

The last equality is a result of [P , U] = pU, which is a direct consequence of the funda-

mental commutation relation [Q, P] = ift. Thus, we can express (2.3) in the form

(2.5)

From the definition (2.3) of S(pq; e) it follows that

( 2 . 6 )

as it can easily be seen by carrying out the integration over p first. Equation (2.2) becomes 

then the exact quantization rule

(2.7)

where S(pq; e) is given by (2.5) and n = 0, 1, 2, 3, ... .

It is easy to see that this quantization rule, equations (2.7) and (2.5), is valid for an 

arbitrary Hamiltonian = H(P, Q) provided its energy spectrum is non-degenerate, since, under 

this condition, none of the steps (2.2) to (2.7) depends on the particular form of the 

Hamiltonian.

For later reference we must note that in this case the quantum mechanical Hamiltonian func-
tion Ii(P, Q) is not, in general, the same as the corresponding classical Hamiltonian function, 

which we denote now by Hc(p, g), but it is related to it by the Weyl correspondence [8]. This 
correspondence between any classical dynamical quantity Ac(p, q) and the corresponding quantum 
mechanical operator A(P, Q), to be designated by A(P, Q) <— ► Ac(p, q), is defined as follows: if

(2. 8a)

then

(2.8b)



and vice versa. a(cr, t) can thus be expressed either in terms of Ac (p, q), or in terms of 
A(P, Q), namely
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(2.9)

since the operators (‘fi/2ir)^ exp { i ( c P  + tQ) } form an orthonormal set [lO, ll].

With the help of equations (2.8) and (2.9) it is easily shown r 10-12] that the relation-

ship between an operator and a classical function as prescribed by equation (2.3) is identical 

to the Weyl correspondence; for the convenience of the reader, a direct and simple proof of 

this is presented in the Appendix. Thus we have

( 2 . 10 )

We note in particular that the important relation (2.6) is now obvious, as it is obtained from 
equation (2.9) by putting a = t = 0.

3. The Bohr-Sommerfeld quantization rule and corrections

We now prove that to the lowest order in ft the integral of the left-hand side of equation 

(2.7) for a fixed en is just the action integral, and thus equation (2.7) reduces to the B.-S. 
quantization rule. We note that, since in the Schrodinger representation Q\ q > = q\ q > 
and P\ q > = iftO/Bg) | q >, in the lowest order in ft equation (2.5) for S( p q; e) with a 
fixed parameter e becomes equal to

(3. 1)

Thus, from the definition of s(e), equation (2.1), and the exact quantization rule (2.7) we get 
for small ft the quantization condition

(3.2)

In the usual case of Hc (p, q) = p 2/2m + V(q) with a potential such that there are two turning 
points, a(e) and 6(e), for the classical motion of total energy e, equation (3.2) becomes

(3.^3)



where p(eg) is the solution of Hc(p, q) = e. This is the B.-S. quantization rule, as it is de-

rived on the basis of the WKB approximation for the Schrodinger equation [l].

One can find correction terms to S(pq; e) for small ft and fixed e from the exact relation

(2.5). For example, an expansion of s(e - H(p + P, Q)) in powers of P would yield a series 
expansion of S(pq) in ft. For such an expansion it is useful to note that s(e), as defined by 
(2.1), has the Fourier transform representation
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(3.4)

However, a direct expansion of exp { i z [ H (p  + P, Q) - e]} in powers of P is tedious, 
especially for an arbitrary Hamiltonian. It is more convenient to proceed as follows. Accord-

ing to (3.4) and (2.10) we can write

(3.5)

where

(3.6)

<— ► indicating as before the Weyl correspondence (2.8). We can now conveniently expand E(pq;z) 
in powers of ft by constructing an equation for it, which is obtained from the obvious equation 

for S(P Q; z)

(3.7)

where we have put -  e = H(P, Q) - e. The Weyl correspondence (3.6) allows us tojvrite
immediately the corresponding equation for E(z) in terms of Hc(p, q) = Hc(p, q) - e <—*■ , if
we make use of the expression, derived by Groenewold [10], for the classical quantity corre-

sponding to |( <? + jf S ) . We have

(3.8)

with E(z =0) =1. Here 8/6p,  8/8q operate only on the function to their left, whereas 

3/dp, B/3q operate only on the function to their right. We can now find a solution of (3.8) 

in power series in ft2,

(3.9)

since from the expansion of the cosine in (3.8) it is obvious that the coefficients of the odd 

powers of ft vanish. From (3.8) we thus find G 0(z) = 1 and
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(3.10)

By substituting equations (3.10) and (3.9) in equation (3.5), we obtain

(3.11)

where SQ(pg; e) = s (e -  H c ( pq ) ^ , in accordance with (3.1), and

(3.12)

In arriving at (3.12) we have made Use of s'(e) = ds /d e = 5(e), the Dirac delta function. Thus, 

the B.-S. quantization rule (3.2) gives good results for those values of en for which

(3.13)

For the simple case Hc = (p2/2m) + V(q) of common interest, we get from (3.12)

(3.14)

The phase space integral of as given by (3.14) can be carried out by a change to the vari- 

ables y = Hc(p, q) and q, the Jacobian of the transformation being m/\  p ( y q )  | -

m/ 2m [y -  V( q) ] . If we denote the turning points of the classical motion of energy e by 
a(e) and 6(e), then we find for this case by integration by parts

(3.15)

provided K'(a), V"(6) are finite and non^vanishing and V”( a ) t V"(b) are finite.

4. Hie simple harmonic oscillator

The case of a simple harmonic oscillator is of interest here, because the approximate B. -S. 
quantization rule (3.3) gives all the energy eigenvalues exactly. In the context of the WKB 
approximation this has to be considered an accident [l,7]. It is interesting, therefore, to 

inquire whether the present treatment allows us to justify this circumstance. We show below 
that indeed the exact quantization rule, equation (2.7), reduces for this case to the B.-S rule 
(3.3); i.e. we prove that for the harmonic oscillator
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(4. 1)

to all orders in fl.

We first note that on account of the special form of the Hamiltonian for this case H(p,q)= 
p 2 + q2 (dropping irrelevant constants), equation (3.8) for E(pq; z) becomes simply

(4.2)

with E(pq; 0) = 1. We can prove further that E(pq, z) for this case depends on p and q only 
through the combination H(p, q) i.e. E = E(H, z). To see this, we note from the definition of 

£(z), equation (3.6), that [S’( z ) ,  J = 0 ,  where [ , ] denotes the commutator. Now, as 

Groenewold [lO] has shown.

(4.3)

For the harmonic oscillator we thus have simply

(4.4)

the general solution of which is that E(pq) depends on p and q only through H(p, q) =p2 + q2. 
This is consistent with (4.2), since it can easily be checked that for such functions 

E(H(pq), z) equation (4.2) takes the form

(4.5)

Writing E{H, z) = exp [ i z (H  - e)]G(tf, z) we find from (4.5) that

(4.6)

with G(H, 0) =1, or equivalently

(4.7)

with

(4.8)

00

Iterating equation (4.7) we obtain the solution G(H, z) in power series of ft2: G = I f i2 r Gr
r = 0
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with G0 = 1 and

(4.9)

The corresponding expansion of E = exp(izH) G(H, z) gives through equation (3.5) a power series
00

expansion of S(pq\  e) = I %2rS r (Ht e). Clearly the term G0 = 1 gives S 0 = s(e - H),
r —o

the integral of which over the phase space is exactly the right-hand side of equation (4.1).

We shall now prove that all the remaining terms Sr (r ^  1) have vanishing phase-space integrals, 
i. e.

(4.10)

This will then complete the proof of the desired equation (4.1). In order to establish (4.10), 

we note that for r = 1 equation (4.9) gives G t = - i f t2 [ ( i z 2/ 2) - (z3/3)//], as it can 
be seen from equation (3.10) for this case. Now it is easily checked that, on account of the 

special form of K(H, y), successive application of equation (4.9) gives for Gr (H,z)
(r ^ 1) a sum of terms of the form //aza+1+f\ where, a and (3 are integers and p >  1. Thus, 

sinces(a+1)(e) = 8(a)(e), where the superscript (a) denotes the a-th derivative, equation (3.5) 

gives for each Sr (H, e) with r ^  1 a sum of terms of the form Ha 8(orH^(// - e). Thus, since 

p ^  1, the integral over H of all Sr with r ^  1 vanishes, which proves equation (4.10) and com-
pletes the proof of the desired equation (4.1).

Acknowledgement

I t  is a pleasure to acknowledge an interesting conversation on this topic with Prof . L.M. 
Both.

References

1. See any book on Quantum Mechanics, e.g. A. MESSIAH, Quantum Mechanics, Vol. 1, North- 
Holland Publishing Co., Amsterdam (1961).

2. E.C. KEMBLE, Phys . Rev. 48, 549 (1935)

3. R.E. LANGER, Phys. Rev. 51, 669 (1937).

4. E.C. KEMBLE, Fundament at Principles of Quantum Mechanics, pp. 90-112, McGraw-Hill,
New York (1937).

5. W.H. FURRY, Phys. Rev. 71, 360 (1946).

6. E.C. TITCHMARCH, J. Math. Oxford 5, 228 (1954).

7. See, however, reference 4 for a discussion of this case.

8. H. WEYL. z. Phys. 46, 1 (1927).

9. E. WIGNER, Phys. Rev. 40, 749 (1932).



10. H.J. GROENEWOLD. Physica 12, 405 (1946).

11. J.E. MOYAL, Proc. Camr . Phil . Soc. 45, 99 (1949).

12. K. SCHRAM and B.R.A. NIJBOER. Physica 25, 733 (19591.

Vol.2, No. 3 BOHR-SOMMERFELD QUANTIZATION RULE 139

Appendix

We prove here the identity of the Weyl correspondence between classical and quantum mechani-

cal dynamical quantities, equations (2.8), to that given by equation (2.3), i.e. if A(P, Q) 
and Ac (p, q) are related by (2.8), then

(A. 1)

We first recall that for any two operators B and C such that their commutator [B, C] com-
mutes with both of them we have the identity

(A. 2)

It is easily seen that this can be also written in the form

(A.3)

This identity is applicable to the position and momentum operators, since [Q, P] = ifl. Thus, 

we find from (2.9) and (A.3)

(A.4)

Within the trace we may place the last operator exp(-icxP/2) to the left of A and evaluate the 
trace in the Schrodinger representation | q>. Recalling that (?| q > = q\ q > we have

(A.5)

Now, since exp( - i c P / 2 )  | q > = \ q + (fio/2) > and < q | exp ( - i crP/2) = < q - Cftcr/2) | , 

we have

(A.6)

Thus, from equations (2.8a) and (A.6) we have, making use of the fact that the integration over 

t gives 2ir8(y - q),

(A.7)

The change of variable tier = x gives the desired equation (A. 1).




