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Abstract

Of the published theories o f solid He3, that of Saunders has been shown to give 
an a priori prediction of the exchange interaction in fa ir ly  good agreement with 
the experimental results. In this paper, we improve that theory in three ways:
(1) by using the correct He3-He3 pair wave function, which is quite different from 
that used by Saunders; (2) by computing exp lic itly  the single-particle projection 
of the many-body wave function, rather than replacing i t  with a Gaussian of equal 
curvature at the la ttice s i te ; and (3) by calculating the exchange integral J by 
numerical integration from the detailed wave function of (2), rather than by the 
use of a Gaussian. These changes do not make the agreement with observation 
significantly better, but, since the underlying theory has no very firm basis, 
these calculations should be regarded as an example of what is s t i l l  required to 
calculate J i f  one has a good theory o f the solid. As for properties other than 
the exchange interaction, in the case o f the bcc phase we have calculated the 
Debye temperature as 0 = 26.0(V/20)~2• 265, to be compared with the experimental
ecxp = 28.5(V/20)~2- 50.

1. Introduction

SINCE both solid He3 and He4 have served as the subject of thorough intensive experimental work, 
it is of interest to compare the results with theoretical predictions; the more so because 

several of the experiments yield results peculiar to a quantum solid. A good theory of the solid 

would predict, among others, the following quantities:

(a) the lattice structure of the solid;

(b) the cohesive energy < E >  of the solid, at least at 0°K, as a function of the 
molar volume V;
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(c) for He3, the exchange interaction between nuclear spins, as a function of V;

(d) the zero-point energy, i.e. the Debye temperature 0 as a function of V.

Unfortunately, there exists no theory capable of predicting the cohesive energy to within a 
factor 2, and hence all the other desirable predictions are presumably similarly unavailable. 
This situation is in marked contrast with that for the other rare gas solids. For those, as 

well as for helium, we start with the same many-body Hamiltonian [l]:
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( 1 )

where 7\ is the kinetic energy of the atom i, rij is the distance between atoms i and j, and 
V(r) is the pair potential, which is usually taken of Lennard-Jones form:

(2)

The minimum -e of the potential thus occurs at r = a(2)1/6. The potential depends only on the 

electronic configuration of the atoms and is therefore the same for both isotopes of helium: 
a = 2.556 A and (e/k) = 10.22°K.

The attractive term of this potential is the Van der Waals force; one could calculate the 

coefficient of this r~6 term, knowing the energy and the wave functions of the ground state and 

excited electronic levels of the individual atom. The mathematical form of the repulsive term 

has no theoretical justification and is somewhat arbitrary. The above-mentioned numerical values 

of e and cr are calculated from measurements of the second virial coefficient. For helium, 
various investigators have sought theoretical expressions of the pair potential [2] which 

usually fit equation (2) fairly well at large distances but deviate from it at small distances 
and around the minimum.

If one neglects the kinetic energy of the ground state compared with the potential energy, 
which would be possible were the atomic mass m very large, the classical approximation to the 

ground state energy of a crystal of atoms interacting pairwise with the potential of equation
(2) is:

(3)

where the sum is taken over the lattice of assumed symmetry and lattice parameter. If the 

atomic mass is not infinite, then the next approximation involves the minimization of the total 
energy: the potential from equation (3), and the kinetic from the zero-point vibration of the 
atoms in the resulting (locally harmonic) potential wells.

In any case, having found the cohesive energy <E> per atom as a function of V, the actual 

crystal symmetry and lattice spacing at 0°K for a given applied pressure P are those which cor-
respond to the minimum value of the enthalpy H :

the pressure P being given by:

A being the Avogadro number.



Hartree calculations |_3j have been published for the noble gas crystals. These calculations 

compute the local potential near a lattice point, due to all other atoms, by integration over 

the atomic wave functions concentrated near the other lattice points. Given this (spherically- 

averaged) potential, the atomic wave function near the reference lattice point was calculated 

by numerical integration. This technique is equivalent to a true variational calculation over 

the set of spherical wave functions which contain no correlations between atoms and thus pro-
vides the lowest energy possible using such wave functions. The results are shown in Table 1. 

The energy calculated in this approximation for crystalline helium is very high compared with 

the measured value (see Appendix A); it is thus clear that the non-spherical nature of the 

atomic wave functions and the correlation of the atomic vibrations must be considered in any 

valid calculation of the ground state of solid helium.

Vol.2, No. 3 THE GROUND STATE OF SOLID He3 109

TABLE 1

For different noble gas crystals, the second column gives the measured 

cohesive energy. The data for Xe, Kr, Ar and Ne are taken from reference 

4. For He3 and He4 the experimental value of cohesive energy was found 

as explained in Appendix A, the values from reference 3 being in error. 

The third and fourth columns give the results of Hartree calculations 

made by L.H. Nosanow and G.L. Shaw [3], for cohesive and kinetic 

energies. One may note that solid He4 has been found in face-centered- 

cubic form ((3 phase) only at very high pressure and temperature [5].

Experimental 
cohesive energy 

(cal/mole)

Hartree Calculations

Calculated 
cohesive energy 

(cal/mole)

Calculated 
kinetic energy 

(cal/mole)

Xe -3830 ± 50 -3830 +65

Kr -2590 ± 50 -2630 +73

Ar -1850 ± 12 -1859 +97

Ne -450 ± 10 -431 +85

He4 (fee, a ~  3.7 A) +13.9

He4 (hep, a ~  3.67 A) -12.2

He^ (bee, a ~  3.8 A) -1.2 +34.5 +71.8

A different approach was taken by Saunders [l] (henceforth referred to as EMS). His calcu-

lation gives for the energy of the ground state of solid He3 of minimum density £0 ~  11 cal/ 

mole, which is not so close to the experimental value that one would have any confidence, 
a priori, in the exchange energy calculated from the wave functions which give such a poor 
value for the total energy. In fact even the sign of that energy seems wrong although the ex-

perimental cohesive energy of solid He3 given in Table 1 may well be inaccurate, as explained 

in Appendix A. It was surprising, therefore, to find that recent measurements [6,7,8] of the 

exchange interaction in both body-centered-cubic (a) and hexagonal-close-packed (p) He3 agreed 

fairly well with the results of EMS’s theory. Figure 1 gives, versus the molar volume V in 
solid He3, predictions of EMS concerning the exchange interaction Jf2tt, in units of frequency, 

together with the exchange interaction deduced from nuclear-magnetic-resonance measurements of



references 6 and 7. The exchange interaction between nearest neighbors is defined as ft J I* I\
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FIGURE 1

The exchange interaction J/2tt, in kilocycles per second, versus the molar volume V 
in solid He3, in a and (3 phases. The solid lines are predictions from Saunders’ 

theory (see reference 7 for details of numerical calculations). The circles give 

values of the exchange interaction deduced from measurements of nuclear resonance 

linewidth (open circles: measurements of reference 7; solid circles: measurements

of reference 6).

It is apparent that EMS has predicted the trend of the exchange interaction with density 
and even its absolute magnitude, with no adjustable parameters in his theory; and he has done 

this to an accuracy of a factor 2 to 10, i.e. he has calculated ln(fij/|< E >\) = -11 to an accu- 

racy 10%. This is all the more remarkable because none of the results were available to EMS be-

fore his theory was published. Since EMS’s theory was so good in calculating J, we studied it 

carefully with a view to improving it where possible. The rest of this paper is a critique of 
this theory and a presentation of some calculations we made in attempting to further EMS’s 

stated program. Even when the theory is supplanted by a better one, our calculations of J may 
still be of some use in indicating a transparent method of calculation of certain consequences 
of the theory.

2. Review of Saunders’ Theory

A reference to this theory is essential to an understanding of the present paper. EMS starts 
from the,Hamiltonian given by equation (1), assumes that the exchange interaction is weak and 
takes into account correlations by looking for an approximate wave function of the following form:



Vol.2, No.3 THE GROUND STATE OF SOLID He3 111

(4)

A is the permutation operator for Fermi statistics, in the case of He3.

Strictly speaking, the wave function T should include functions of spin coordinates, though one 

may drop those for the moment, as long as one assumes the exchange interaction is weak. Using 

the Pluvinage method, EMS shows one can treat the as independent variables, on the same 

footing as the Tjt dividing the Hamiltonian J4? into three parts:

(5)

(6)

(7)

where B  = 4mcr2e/ft2 (for He3 B = 16.60; for He4 B = 22.2). Provided 2/t' (which is an operator 
containing both the and the r;) can be considered as a small perturbation, which is one of 

EMS's assumptions eventually to be justified afterwards, it is easy to find the functions 

0^(r^> and Xij(r ij)• The first, given by the Hamiltonian Jfo1, are obviously standing waves. 

The second are given by the Hamiltonian J^02:

(8)

The function Xij(r ij)» which can just as well be written x(r i;)» represents the correlations 
between particles i and j ; an obvious limit condition for the solution of equation (8) is then:

(9)

Were it not for this unusual limit condition, equation (8) would be the Schrodinger equation 
for the relative motion of two particles of mass m interacting with the potential (2). Evidently 

condition (9) can be fulfilled only if

Assuming the He3 are well enough localized for a lattice site to be ascribed to every atom, 

EMS then shows that the single-particle probability density for atom i can be written as:

(10)

being the distance from the lattice site k to atom i. Around the lattice site i, the 

single-particle density can be expanded as:
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(1 0 ')

G being a dimensionless diagonal three-by-three matrix, the elements of which are proportional 
to the second derivatives of y(i) at the origin. In the neighborhood of lattice site i, y(i) 
behaves as

and EMS assumes that y(i), when properly normalized, is given in the whole space by:

( I D

where || G || is the determinant of the matrix G, in our case the product of its diagonal ele-

ments. Equation (11) defines 9, which is assumed to be real. Making use of the probability 
density (11), EMS computes the total energy per atom for the ground state (cohesive energy):

( 1 2 )

where tr G is the sum of the diagonal (only) elements of G.

The matrix elements of G are in fact very easy to calculate. For a given direction r ,̂ 
equation (10 ') can be written as:

(13)

the vector being taken with respect to the lattice site i. The single-particle density para-
meter 52 is given by:

(14)

where is the distance between lattice sites i and k, 0^  is the angle between the vectors 
r i and , and the function g(r) is related to the correlation function

(14')

In the case of a cubic lattice, for all the shells of atoms surrounding a given atom i, the 
average value of cos20ife is 1/3 and equation (14) becomes:

(15)

the matrix G being then just the constant 262<j2. For the hep lattice, equation (15) is not



valid and the single-particle parameter 62 could be anisotropic. It turns out that y(i) departs 

from isotropy only by about 3% in the very neighborhood of the origin lattice site i and that 
equation (15) is then a very good approximation, even for the hep lattice. Equation (12) then 

gives for both lattices:
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(16)

The exchange interaction J  is given by a procedure very like the Heitler-London model, which 
ascribes to a pair of He3 atoms (1 and 2) located around two nearest-neighbor lattice sites 

(i and j) a wave function

(17)

the individual orbitals q>;(r) being taken as:

(18)

the constant in equation (18) being adjusted so that:

(19)

and the parameter r| being +1 or -1 when the pair is in singlet or in triplet spin state. EMS 

then finds for J  the following expression:

(20)

where

( 2 1 )

(2 2)

provided the overlap of orbitals q>̂  and q i s  weak, i.e. the quantity A is small enough.

EMS makes again the same Gaussian assumption and replaces in these equations q>;(r) by 

y(i)1/2, using equation (11).

Finally, all the properties of the ground state of solid He3 are contained in the knowledge 

of the correlation functions y(r) and the remaining problem is to solve the following differ-

ential equation:

(23)

Thus far we have but sketched EMS’ theory and his procedure. For a full discussion, see ref.1.



3. Modifications to Saunders1 Theory

/ .  The pair wave function

(a) Using the reduced variable s - (r/cr) = qr1, equation (22) can be written:
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(23')

Following EMS, let us call F 0 and (Fj/s) two independent solutions for that differential equa-
tion, with the following asymptotic expansions [9] when s -

(23a)

(23b)

The most general solution of equation (23) satisfying condition (9) is then:

(24)

On the grounds that the term (C }/s)Fl gives an outgoing flux at large distances, an unsatisfactory 
characteristic which cannot be permitted in T", EMS chooses = 0, which argument we believe 

to be in error. (In any case, a sufficient condition for zero outgoing flux is that C x be real.) 

A detailed analysis of equation (23') [9] shows that F 0 - - ® for s = (r/a) - 0, which is in-

deed inadmissable. EMS arbitrarily cuts his correlation function to zero when r <  a. With such a 
correlation function we can compute [10] the density parameter 52, as explained in Section 2, 
for various lattice structures: a, jB, and y (face-centered cubic), then the cohesive energy, 
by means of equations (15) and (16). Figure 2 shows the results of these calculations. In 

Section 2, we explained how to compute the exchange interactions by means of EMS's theory, the 

results of which computation are summarized by the solid lines of Fig. 1.

(b) As was just suggested, we disagree with EMS's correlation function. Since the Lennard-Jones 

potential becomes infinite for small distances, we shall choose the coefficient C* of equation 

(24) by the condition that x(0) = Numerical integration detailed in Appendix B provides us
directly with this correlation function, for which Cj turns out to be 2.369 [9], That function, 

henceforth simply referred to as x» is shown in Fig. 3, together with the function F 0(s). It is 

seen that in using F 0 instead of x» one greatly reduces the range of correlation and that x has 

a maximum x = 2.104 for s = (r/a) = 1.64. The meaning of this maximum is discussed in Appendix 
B; it is evidence of a trend to have a bound pair of atoms when the parameter B in equation 
(23) is increased. If the mass of He4 were 1% greater, there would be a bound system for two 
atoms of He4, assuming the accuracy of the potential of equation (2). The increased trend to 

make bound states between two He4 atoms may account for the phase separation observed at low 
temperature in solid He3-He4 mixtures [l2].
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FIGURE 2

The single-particle density parameter 52 (left scale) versus molar volume Vt 
for various lattice structures, obtained with Saunders' correlation function

F0. The maximum molar volume of solid He3 [ll] is V ~  24.8 cm3/mole. These 

curves are the results of numerical calculations detailed in reference 1 and 

in note 15 of reference 7. The cohesive energy can be read from the curves 

by the use of the right-hand scale.

2 . The single-particle density

We have shown in Section 2 how EMS replaces the true single-particle density y(r£> given by 

equation (10) by the Gaussian having the same curvature at the origin. This might possibly give 

a reasonable approximation to the total energy, but the exchange interaction is very probably 

considerably altered by the arbitrary specification of the form of y.

In order to eliminate unnecessary approximation, we have calculated y directly from equation 

(10), by actual multiplication of the pair wave-functions x(uife)- In pig- 4» Y is shown along 
a line a joining nearest neighbors in the basal plane of the hep lattice and also along a line 

b perpendicular to a. In this figure, y(r^) nas been normalized so that y(0) = 1. The method 
of numerical calculation is presented in Appendix C, since the values of y are used also in 
the calculation of exchange interaction J, as a function of molar volume and crystal structure.

Figure 4 shows that not only the Gaussian approximation is very poor far from the origin but 

that the single-particle density is not isotropic and is not even a monotonic function.

We then computed the cohesive energy by means of equation (12). To do this we used an IBM 
7094 computer to find the second derivatives, thus the G matrix for the single-particle density
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FIGURE 3

The correlation function x is plotted against interatomic separation r.

X goes to zero for zero interatomic separation. F0 is one special 
solution for equation (23), used as a correlation function by Saunders 

and referred to as x in Figure 1 of reference 1.

y given by equation (10) and shown on Pig. 4. The results of these calculations are exhibited 
in Table 2, for both bcc and hep lattices.

We then tried a mean-square fitting of these results to the following analytical expression:

(25)

which was possible with a root-mean-square deviation of the order of 10”4 <E>. Equation (25) 
was chosen because it makes it very easy to calculate the compressibility K :

(26)

and thus to predict the variation of the Debye temperature 0 with molar volume, i.e. the 
Gruneisen coefficient:

(27)

In the case of the bcc lattice, assumed elastically isotropic and assumed to obey the Cauchy
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TABLE 2

For bcc and hep lattice structures, the molar cohesive energy A < E >  is 
given for various molar volumes; it has been calculated using the pair 

wave function x shown by Fig. 3. A is the Avogadro number. These results 
for cohesive energy have been fitted to an analytical form:

where p is related to the Gruneisen coefficient:

The coefficients f, T, V0t are given for both lattice structures.

bcc Lattice hep Lattice

Molar volume Cohesive energy Molar volume Cohesive energy

K(cm3/mole) A < E  > (cal/mole) K(cm3/mole) A < E > (cal/mole)

20.12 14.37 17.80 17.99

21. 10 13. 19 18.55 16.52

21.70 12.55 19.30 15.29

22.05 12.20 20.70 13.47

22.48 11.79

Gruneisen

coefficient 2.265 2.518

r

T 100.7 76.39

V0(cm3) 0.4036 0.6985

V1(om3) 61.60 57. 11

relations, it is even possible to calculate the Debye temperature itself:

(28)

where

(28 ')



The result of equation (28) is to be compared with the experimental results [13] which can be 

written as:
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The good agreement of the Debye temperature given by equation (28) must be considered as some-
what fortuitous, considering the implausibility of the Debye theory of thermal vibrations in 

solid He3.

FIGURE 4

The logarithm of the single-particle probability density of solid He3 in (3 phase 
(V = 19.30 cm3/mole) versus the reduced square distance from the origin lattice 
site s2 = (r/ c r )2. The single-particle density is normalized so that y(0) = 1. The 

curve a is along a line a joining nearest neighbors in the basal plane. The 

curve b is along a line b perpendicular to a and in the direction shown in the 
upper left of the figure. The solid straight line is a Gaussian In y - - 62r2, 

where the parameter 52 has been calculated using equation (16) and Table 2:

52 = (4m <E>/fi2) = 1.91 A -2. The dashed straight line is a Gaussian with S2 

taken from Saunders' theory (Pig. 2): 52 = 2.448 A”2.

As for the hep lattice, the only possible comparison still to be made is that of the experi-

mental [13] Gruneisen coefficient equal to 2.50 with that given by Table 2, since the Cauchy 

relations do not hold when the lattice sites are not centers of symmetry for the crystal.

3 . Calculation of the exchange Interaction

As usual we shall only consider the exchange interaction between nearest neighbors. In j3



phase, if the wave functions of the atoms in the crystal are not spherically symmetric, there 
are two different values for that interaction according to whether the two nearest neighbor 
atoms are in the same basal plane or not. In the first case the vector joining them is a trans-
lation vector for the hep lattice, while in the second case it is not; all nearest neighbors of 

a given atom are then not equivalent. Although one really measures some kind of average exchange, 

from the theoretical point of view this is indeed a complication which does not arise in the 

case of a bcc lattice (a phase).

Let us assume two atoms numbered i and j, the probability densities of which are centered 
around two nearest neighbor lattice sites A and 6. What we need is to compute the two quanti-

ties E and A which enter equation (20) giving the exchange interaction. For both quantities we 

propose to use the following method (method of "steepest descents"), very similar to the one 

EMS used, except for the fact that he only applied it to the total energy <E> of the system 
and not for A or E. These quantities are given by the integration over the whole space of some 

integrand which presents a small number of very sharp maxima (equivalent under the lattice sym-
metry). We shall assume that the main contribution to such an integration comes from the neigh-

borhood of these maxima and we shall fit the integrand to a Gaussian which has the same curva-

ture at the maximum.

Suppose we want to calculate:
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(29)

and we know I(r) has one maximum at r = r0 around which it can be expanded as:

(30)

We replace in equation (29) the integrand by:

(31)

which yields:

(32)

The first quantity to calculate by this procedure is really the constant on the right-hand 

side of equation (18) in order to satisfy the normalization condition of equation (19), which 

constant we shall write as (/f3)-1/2 • K$ is defined as:

(33)

and calculated by the standard method just explained. It is shown in Appendix C how we computed 

numerically the maximum of the integrand on the right-hand side of equation (33). As for its G 

matrix, it is really a constant and was already computed for the calculation of tne cohesive 

energy described in the second part of this Section.

The quantity Et given by equation (21), can easily be seen to be the major contribution to 

J; we can separate the integrations on the variables of the two atoms and write:
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(34)

Ki and K 2 being defined as follows:

(35)

(36)

In order to calculate these integrals by "steepest descents" the maxima of the integrands are 

calculated by an automatic maximization routine on the IBM 7094, the "Variable-Metric Method" 

[14]. To find the maximum of some integran I(r) (like those of equations (35) and (36)), using 

the procedure of Appendix C to calculate the single-particle density y(rx) at an arbitrary 

point of a crystal of given molar volume, the program calculates the value In I(r) for a given 
r, computes also the gradient of In I(r) and then extrapolates in a sophisticated manner to

FIGURE 5

The exchange interaction J/2tt, in kilocycles per second, versus the molar volume V 
in solid He3, in a and (3 phases. The solid lines are the results of the 

calculations presented in this paper. The circles are experimental points for the 

exchange interaction, the same ones as on Fig. 1.

locate the maximum Inax. A byproduct of the procedure is the G matrix (Hessian matrix). Indeed, 
that maximum is not unique, either for the integrand of Ki or for that of K 2. The number of the 
maxima, which are found equivalent, can be accounted for by considerations of symmetry and



happens to be 6 for bcc lattice and 2 for hep lattice, for Ki or K 2- We then multiply the con-
tribution to the integral from one maximum by this multiplicity factor.

These calculations were made for both hep and bcc lattice structures and various molar 

volumes. They are summarized by the solid curves of Pig. 5 which give the resulting exchange 

interaction J/2tt between nearest neighbors, versus molar volume for both lattice structures.

For the hep phase, the calculation was made for both kinds of nearest neighbor of a given atom. 
It was found that the exchange interaction with the second kind of neighbor (out of the basal 

plane) is 5 to 9% larger than the interaction with the first kind of neighbor (in the basal 

plane). This difference being rather small, the average of the two exchange interactions was 

plotted for hep phase on Pig. 5.

Comparison of our results with those of EMS, given by Pig. 1, shows that ours are not closer 

to the experimental results than his, although ours seem to be systematically smaller and his 

systematically larger. Still we must point out that we tried to use our correlation function x 

(Pig. 3) with EMS procedure of using the Gaussian probability density (11) in the whole space 

and found exchange interactions larger than those we found and showed on Pig. 5 by 2, 3, or 4 

orders of magnitude.
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4. Conclusion

The Pluvinage method extensively used in this paper, just as in reference 1, should be com-

pleted by an estimation of the mean value of the "perturbation term", i.e. of the part jtf' of 
the total Hamiltonian (see equation (5)). EMS, using the function F 0 (Pig. 3) as a correlation 

function, found the mean value <#?*> to be of the same order as the cohesive energy <E>. Using 
our correlation function x» we too found < Jf7' > to be comparable with < E >, and possibly some-

what larger. This is obviously an indication of a major weakness of our calculations, which, 

however, do present two advantages.

First, we concentrate on calculating the exchange interactions and for that purpose we 

studied the wings of the wave functions, the only regions which contribute significantly to the 

exchange interaction. Our procedure may be valuable even when abandoning the Pluvinage and 

Saunders method.

Then we must point out that the theoretical problems generally concerning the mixtures of 

little He3 and He4 have still received no attention [33]: phase separation [12], anomalour ex-

change heat capacity [7,8,15,16], diffusion of an atom of one isotope through a crystal either 

of the same one or of the other one. We feel that EMS* s method, as we have modified it, which 
involves comparatively simple calculations, could perhaps be extended to treat these problems 

more easily than other theories of solid helium.

A recent theory of L.H. Nosanow [17,18] attempts to find a many-body wave function analogous 

to that of equation (4), except for the fact that the one-particle wave functions d)(r̂ ) are 

localized functions rather than standing waves. His correlation function presents a maximum and 

has the qualitative behavior of ours, though with a shorter range. To progress in his vari-

ational calculation with the many-body function as a trial function, Nosanow assumes one is 
allowed to make a cluster expansion. A quantitative estimation [19] of the error made in such 

an expansion appears to be very delicate.

As for solid He4, Saunders1 theory is completely inadequate, because of the enormous ampli-

tude of the correlation function of Pig. 6, due to the vicinity of a bound state for a He4-He4



pair. An attempt to use it yields a cohesive energy of several thousand calories per mole (and 
positive, of course), a ridiculous figure.
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FIGURE 6

The correlation function Xi solution for equation (23), for different values of 

the parameter B = 4 »a2e/ft2: B = 16.60 (He3-He3 pair); B = 18.93 (He3-He4 pair);
B = 22.20 (He4-He4 pair).
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APPENDIX A

The Experimental Value for the Cohesive Energy of Helium

The cohesive energy is the energy to be supplied to atoms at infinite mutual distance (i.e. 
at zero pressure) in order to have solid at 0°K of given density. Let us call E0 the cohesive 
energy of solid helium of minimum density at 0°K, i.e. of the solid in presence of liquid.

(Al)



The positive quantity AHV(T) is the heat of vaporization of the liquid at temperature T.
WC(T) is the work to be supplied to liquid taken at vaporization pressure PV(T) to compress it 
isothermally to melting pressure Pm(T): The melting work Wm(T) is given by:
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(A2)

AVm(T) being the volume change on melting at constant temperature T. Extrapolating to 0°K the 

quantities AHV(T), WC(T), and Wm(T) one gets the quantities entering equation (Al).

(a) Cohesive energy o f He3. The heat of vaporization extrapolated to 0°K is [20]:

The density of liquid He3 has been measured as a function of pressure and temperature down to 

0.1°K [21,22]. Data of references 21, 23, and 24 enable us to calculate:

which we assume to be little different from Wc(0). The melting pressure and the volume change 
on melting have been measured down to 0.03°K [ll]; these measurements enable us to calculate

Wm(T) which is a monotonic function increasing when T decreases down to 0.03°K and exptrapolat- 
ing to ^ (0) = 0.521°K/atom. For solid He3 at minimum density at 0°K (V ~  24.8 cm3/mole [ll], 
the nearest neighbor distance being a ~  3.77 A if the structure is still body-cent red cubic), 

the cohesive energy is then:

(b) Cohesive energy o f He*. The heat of vaporization extrapolated to 0°K is found in reference 
25:

The density of liquid He4 has been measured down to 1.5°K [26] below which temperature it 

does not seem to vary further with temperature. The compression work then extrapolates to 
to 1.28°K and extrapolates to Wm(0) = 0.62°K. For solid He4 at minimum density at 0°K (V ~
21 cm3/mole [28], the nearest-neighbor distance in that hexagonal-close packed crystal being a 

^ 3.67 A), the cohesive energy is then:

very close to the experimental value quoted in reference 29.

It is hard to make an estimate of the error in this procedure. In the case of He3, E 0 appears 
as the difference between quantities considerably larger than £0, which weakens the result, the 
more so since the melting curve of He3 is still expected to have a maximum [30] below 0.03°K.
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APPENDIX B

Numerical Calculation of the Correlation Function

Writing x(r) - [T(r)/r], equation (23') becomes:

(Bl)

For s «  1, T(s) - 0. The solution to equation (Bl) is thus indistinguishable except by a con-

stant factor from that for

(B2)

with w(s) - s“12 - s”6

and with T(s0) = 0 and ^'(so) = * T°r some Particular s0 «  1, i.e. the same problem with the 
Lennard-Jones potential supplemented by a (non-physical) hard core, within some distance s0a.

We have taken s0 = 0.500, (K(0. 5 a) = 16128 e), and calculated by a Runge-Kutta integration, 

obtaining and storing on punched cards for several values of B : s, x» In X and the dimension-
less quantity a2g(r), where g(r) is given by equation (14') and is utilized in equations (14) 

and (15). This was done for several values of B as is shown by Pig. 6 giving versus s the cor-

relation function x Tor B = 16.60 (He3-He3 pair), B = 18.93 (He3-He4 pair) and B = 22.20 
(He4-He4 pair). For large s it is evident from equation (Bl) that ¥ = k(s + C x), where + C x is 

the "zero-energy scattering length". A bound state at zero energy occurs [3l] for C x - which 

arises for B = 22.3. This value for B means that a pair of helium atoms of mass exceeding 4.049
a.m.u. will be bound in a molecule. Thus the Lennard-Jones potential (equation (2)) implies a

very large resonant scattering cross-section for He4-He4 collisions at low energy.

For rare gases heavier than helium, the parameter B is much larger and one might look for 
evidence of diatomic molecules of these gases. The binding energy of such molecule would be at

most of the order of e, thus weaker by many orders of magnitude than the usual binding energies

of covalent molecules. Nuclear-magnetic-resonance studies of Xe129 in xenon gas [32] have in-

deed shown that the observed values of spin-lattice relaxation times are well accounted for, for 

various densities, by the assumption that during collisions two atoms get sufficiently close to 

interact and form a diatomic xenon system in which the chemical shift of Xe129 is different from 
what it is in an isolated atom. For xenon, the depth of the Lennard-Jones well is e/k = 226°K; 
it is then not surprising that the diatomic system is highly labile and transient in the above- 
mentioned experiments, made between 201°K and 273°K.

APPENDIX C

Calculation of the Single-Particle Density

We want to compute

(Cl)



as an approximation to the single-particle density of atom (1) near the origin. x2(rife) is the 
square of the (spherical) pair function computed as outlined in Section 2 and shown in Pig. 3. 

The independent variable r ^  is the distance from atom 1 to the lattice site k (i.e. =
05

R l - ri). The product IT runs, in principle, over all other lattice sites of the crystal.
k=2

The numerical calculations were performed on an IBM 7094. Our method of numerical calcula-

tion is to write
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<C2)

thus replacing the detailed consideration of atoms beyond a large sphere R 0 (centered on the 
lattice site Ri) by an integral over the (grossly) spatially uniform density. In a preliminary 

calculation, the crystal lattices of the bcc and hep phases are generated and stored on punched 

cards as normalized vectors pk for nearest-neighbor distance unity. Since one quite often 
wishes to perform the type of separation indicated in equation (C2), i.e., a detailed sum oyer 

the nearest N  atoms and a correction integral to infinity, the positions were computed for N  
atoms with 2 ^  R 02. Using then the values of In x(s) obtained and stored as indicated in 
Appendix B for B = 16.60 for equal intervals of s (0.5 <10), the 7094 calculated (for a

given phase and a specified molar volume V) first the nearest-neighbor distance a0, then the 

actual atomic positions R k = a0p̂ , the inner cutoff for the integral R 0 = crSQ from the relation

(C3)

and, finally, for each required position r± (in units of o; sometimes in a mesh, sometimes as
N

part of the maximization program) the sum I In x(Sk) with S ^ 2 = (R^ - r^Vcr2. Then In (S k)
k=2

is obtained from the neighboring tabulated values of In x(s) by fourth-order interpolation.

N
Having run through the (N - 1) contributions to I , the program calculates the correction 

. . , fe=2
integral:

( C 4 )

Since x(r) is given for r »  a by equations (23a), (23b), and (24), I diverges. In actuality, 

y as defined in equation (Cl) is not yet normalized, and we may provisionally calculate



with
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(C5)

For fi0 »  a0, the density of atoms is almost uniform, and I'(ri) may be expanded as a Taylor 
series in jrj. I' is isotropic, and we keep only the first term in the expansion - than in 
|rj|2- Thus we want

(C6)

with

(C7)

from equation (23a) and equation (23b).

(C8)

(C9)

(CIO)



to terms in r\.
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The angular integral over (ri • R*) gives zero, and that over (rx > R fe)2 gives r2ii?2fe/3. 

Thus equation (C6) becomes

(Cll)

Substituting equation (23a) and equation (23b) and keeping terms through R~s in the inte-
grand, we find

(C12)

Thus

(C13)

This approximation is sufficiently accurate that tne results of calculations of y(ri) with 
N = 51 or N = 991 atoms explicitly considered in equation (C2) differed fractionally by only 
10"4 to 0-3; we thus made all "production calculations" with N = 51 atoms (hep phase or bec 
phase).
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