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Abstract

This paper gives a theoretical treatment of the wave functions of electrons in 
disordered binary alloys in the tight binding approximation (TBA). For simplicity 
only s-type atomic wave functions are assumed though the results can be qualita­
tively applied to the a-bands of transition metals. The most important result is 
that the constituents in the alloy have in general a different number of TBA 
electrons than in the pure metals. This charging effect depends on the composition 
of the alloy and the parameter 6 0 = e 2 1 VA, where £2 i ' is the magnitude of 
the difference of the atomic energies of the two constituents in the alloy and A 
is the half-width of the band. The charging effect, in turn, changes the atomic 
energies of the constituents in the alloy from their values in the pure metals re­
quiring a self-consistent solution. We solve in the TBA the simplest possible case 
which shows a charging effect, that of an ordered alloy with equal composition of 
the two constituents. The charging effect and 50 are numerically found self- 
consistently for the two cases of equal valency and non-equal valency constituents 
in the ordered alloy. In this alloy a band gap always appears for any finite value 
of 50. This is not true for a disordered alloy; for this we use a wave function 
for which scattering can be neglected in the two extreme cases when 80 is small or 
large compared to unity. In the former case there is no band gap while in the 
latter the band splits into two, each sub-band depending on the properties of only 
one type of atom. In the former case, with jVj type one atoms and N 2 type two atoms, 
the amplitude of the wave function is about equal on the two types of atoms 
throughout the band, differing only of order 50, and the rigid band model applies.
In the latter case the amplitude is always mainly on either one or the other type 
of atom. These conclusions follow if the values of the band widths of the pure 
metals are approximately equal. When they differ, the character of the band near 
the top is determined only by the properties of the atom for which the band is 
wide in the pure state. This has application to alloys of Pd with Ag and Pt with 
Au where it is shown that for small concentrations of Ag and Au the specific heat
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of the alloy is a correct measure of the density of states of the d-band of the 
pure transition metal. For large concentrations, scattering becomes important, 
changing the shape of the d-band in the alloy, and explaining the tail found in the 
experimental results. Orthogonalization of the alloy wave functions insures that for 
a completely filled band all atoms have the same average electronic charge. However, 
when the band is not completely full there is the above mentioned net electronic 
charge difference between the two types of atoms which for small 50 is proportional 
to 50. This charge difference is measured by Ap^ the difference between the aver­
age charge and the charge on the i-th type atom (cf. equation (A10)), and is the 
only way to produce a difference in electronic charge on the two constituents as 
may be required by different numbers of d-band electrons per atom. The constant of 
proportionality between Apj and 50 is largest when the Fermi level of the alloy is 
near the middle of the band tending to zero as the band empties or fills. Thus 
alloys whose Fermi level is near the middle of the band are more likely to have 
small 50 and satisfy the rigid band model than those whose Fermi levels are near 
the top or bottom of the band. It is this Ap  ̂ which must be solved self-consistently 
with 60 and in a general solution one expects deviations from charge neutrality on 
a given atom type (o in equation 13') which changes the atomic energy of the TBA 
electrons. The variation of the atomic energy with a must include, in any real 
transition metal, effects of screening by the s-electrons, which, as recent investi­
gations show, has a major effect on the energies concerned. The theory neglects all 
spin dependent interactions. Although only the TBA is treated here, general physical 
reasoning indicates that the charging effect is present in all types of alloys, and 
must be included in a self-consistent manner when determining the lattice potential 
seen by an electron.
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1. Introduction

Our present knowledge of the electronic structure of normal metals has progressed spectacularly 
in the last few years and, by means of various powerful techniques, the shape of the Fermi sur­
face for many normal metals has been very accurately determined. The electronic structure of 
the transition and rare earth metals is more complicated and the detailed information on the 
shape of the Fermi surface has yet to be obtained [l]. Another important parameter is the shape 
of the density of states per unit energy interval. One technique that has been used to deter­
mine the density of states, especially in the transition metals, is to measure a property (mag­
netic susceptibility, specific heat) of an alloy made by combining another metal with the one 
under study [2]. The alloying metal is chosen to have a different valency than the metal under 
study so as to change the ratio of electrons to atoms (e/a). The experimental results are then, 
when possible, interpreted in the framework of the rigid band model which assumes that alloying 
does not change the shape of the density of states and only changes the e/a. At present, it is 
not clear theoretically when the rigid band model of transition metals is a valid approximation 
and when it fails. To settle this question requires an investigation into the band structure of 
alloys.

The purpose of this paper is thus to understand the structure of the c/-band in the transi­
tion metal alloys. There is, of course, always some hybridization of the atomic d-states with 
the atomic s-states in the transition metals, but, as various authors have stressed, it is still 
a useful approximation for many purposes to neglect this [l], and we give no discussion of 
hybridization in the paper. For our purpose it is sufficient to treat the d-band in the tight 
binding approximation (TBA), and to solve the simpler problem of an alloy in the TBA with an s- 
band instead of a d-band.



The next section (Section 2) presents some general physical considerations as an introduc­
tion to the theory of alloys in the tight-binding approximation. Section 3 follows by solving 
the problem of a 50%-50% ordered binary alloy exactly in the TEA. This problem illustrates many 
of the physical concepts necessary in understanding transition metal alloys. In Section 4 the 
properties of disordered binary alloys are calculated in the Bloch limit (small o0) as defined 
in that section. The following section (Section 5) calculates the properties of a binary dis­
ordered alloy in the other extreme limit, the atomic limit (large 50). In Section 6 the appli­
cation of these physical ideas to real transition metal alloys is discussed. Section 7 is a 
summary of the paper and a comparison with the related work of other authors.
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2. General Considerations

In the usual TBA the wave functions in the vicinity of an ion in a solid are assumed to be 
closely approximated by the atomic wave function normalized to unity. When we consider an alloy 
system this picture has to be modified. Consider a two component alloy of approximately equal 
composition. Imagine the alloy is built up by first placing the bare ions in their final places 
in the lattice without the electrons which are to be treated by the TBA. Then the TBA electrons 

are added to the solid. At first the electrons, to minimize their energy, will concentrate on 
the ion with the lowest atomic energy level. We call this ion type 1. However, as more and more 
electrons are added, the relatively greater charge on the type 1 ions will increase till the 
self-consistent field due to the TBA electrons and the ion core raises the atomic energy level 
on atoms 1 near to that of the other ions, called type 2. Then further addition of electrons 
will add almost equal charge to the two types of atoms. At the end of this process the solid 
would consist of type 1 atoms with a net negative charge and type 2 atoms with a net positive 
charge. Finally, when the valence electrons are added they will screen the charges, but since 
the screening cannot be complete the TBA electrons will still see some of the effects of charg­
ing. The appropriate potential then seen by the TBA electrons is not the atomic potential but 
a modified one due to the build up of charge which tends to equalize the energies of the states 
of type 1 and type 2 atoms. It should be emphasized that the alloy problem in the TBA, in con­
trast to the pure metal case, must explicitly include this many-body effect of charging. This 
charging process is inhibited if the available energy levels of type 1 atoms become filled be­
fore all electrons are inserted and then all additional electrons are forced by the Pauli ex­
clusion principle to populate type 2 atoms. The d-electrons in a gold-silver alloy are an 

example of this.

Although the discussion here specifically mentions the TBA, the same reasoning should hold 

and a charging effect is expected for any alloy.

The method used throughout most of this paper is to make an educated guess as to the appro­
priate type of wave function for the alloy, and then to use the minimization of the energy to 
determine all unknown parameters. The method will work best when the wave functions used have 
only a small number of unknowns. Afterwards various checks are made to see how good the wave 

function actually is.

As discussed, the many body effect of charging of the ion cores in alloys must be treated 
explicitly. We do so in this paper only in the simplest approximation, the Hartree-Fock approxi­
mation. This approximation is consistent with the other approximation made in this paper, the 
one-electron approximation. The usefulness of the one-electron approximation for the d-bands of 

the transition metals has been justified by Mott [l].

In the one-electron approximation, the wave function of the solid is a Slater determinant of



one electron wave functions y(r). The functions y(r) are solutions of a one-electron 
Schrodinger equation
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(i)

where P = (K/i)V and K(r) is the effective potential seen by the electron including effects 
of exchange and charging. To simplify the problem we will in this paper neglect all spin de­

pendent contributions to/K(r). Thus the function y(r) is a product of a spin dependent and a 
spatial dependent part. In what follows, the spin dependent part of y(r) will not be explicitly 
stated except when necessary.

3* Ordered Binary Alloy

The simplest case of a 50%-50% binary ordered alloy consisting of a type 1 and a type 2 atom 
is considered. Both the cases where the two types of atoms have the same and different numbers 
of TBA electrons per atom will be considered. The ordered alloy is a periodic array of atoms I
with a unit cell consisting of one each of a type 1 and type 2 atom. The TBA wave function y(r) | 
is a Bloch wave function of the form j

( 2 )

Here R* is the position of the type one atoms and q is the relative position of the type 2 atom 
referred to the type 1 atom in the unit cell. <$i and q>2 are the atomic wave functions for the 
type 1 and 2 atoms, respectively. Because of the charging effects the atomic wave-functions in 
the solid will be different from those in the isolated atom. The q>x and q>2 are the atomic wave 
functions in the solid which are solution of the Hamiltonians

(3)

The U x and U2 are not the isolated atomic potentials but the ones in the solid including the 
charging effects. The constant b is to be determined by minimizing the energy.

We generalize the usual equations of the TBA to our case and assume that

(4)

the position of the type two atoms is abbreviated by and Rt. The energy corresponding to yk
IS
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(5)

The convention is used that subscripts of letters near the beginning of the alphabet denote 
type 1 atoms and subscripts of letters near the end of the alphabet denote type 2 atoms.
The sums in (5) are over the appropriate neighbors of the two atoms in a unit cell. In addition

( 6)

We note that (7)

This follows from (4) and the relations that Ui (r - Ra)9x (r - Ra) = ( e } - p 2/2m)yl(r - Ra) 
and U 2(r - Rs)92(r - Rs ) = (e2 ~ p 2/2m)92(r - Rs).

In what follows we shall make the usual TBA simplifying assumption that a = 0 unless the 
wave functions are nearest neighbors and the V is that belonging to one of the atomic wave 
functions. In addition, to simplify the mathematics even further, we will make the assumption 
that both 9j and 92 are s-like which makes the cf s constant, independent of relative orienta­
tions between nearest neighbors. With these approximations equation (5) becomes

(5 ')



where
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The prime on the summation sign for the &  s denotes that the sum is over the appropriate 
nearest neighbors only. B 12 = jB21 by symmetry in an ordered 50-50 alloy, but not for other 
cases.

Minimizing with respect to variations in 6 or 6* gives the two solutions

(8)

where 5' = (e2 { + ot2B 2 - a 1B 1)/2pB12.

We see that in general 6' f 0 and thus |b| f 1. This means that the charges deposited on the 
two types of atoms differ from each other. Thus the charging effects that were discussed in the 
previous section have to be considered. The e'21 and the o’ s themselves depend on the charging 
effects. Since they enter into the determination of b and thus into how much charging is pre­
sent, the effects of charging have to be estimated in a self-consistent manner. We defer the 
consideration of this problem till later on in this section.

The energy corresponding to the 6 of (8) is

191

At the zero of B 12, 6 varies from zero to ®. This variation introduces a band gap of width Ae 
in the spectrum

(10)

where k0 is defined by the equation

Consider for example an ordered alloy with the cesium chloride structure where the atoms are 
ordered on a body-centered cubic lattice as shown in Pig. 1. In this case

( I D

where k - (kx, ky , k z) and a is the length of a side of the cube in the CeCH structure.
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FIGURE 1

The cesium chloride crystal structure.

Figure 2 shows in a schematic manner the variation of the curves and the density of states 
p(e) as a function of the parameter

where A is the width of band below the gap. When 50 is small, the density of states closely 

approximates that of the pure metal (50 = 0) except near the center of the band. A band gap is 
introduced and the density of states is enhanced on either side of the gap in such a way that 
the enhancement just compensates for the gap. Away from the gap the change in the and p(e) 
curves is of order 602 and is thus small for small 50. When 50 is large the band is effectively 
split into two parts, one band corresponding to the wave function concentrating on type one 
atoms to the exclusion of type two atoms, the other band corresponding to the reverse. Because 
there are assumed to be no spin dependent terms in the Hamiltonian, when spin is included the 
number of wave functions is doubled. Thus, for each value of k there are four wave functions 
since there are two possible values of 6. Since there are N  independent values of k where N  is 
the number of unit cells in the alloy, there are a total of 4N wave functions or 2 per atom as 
there should be.

We now try to estimate e'2i for our model. To do this we need an expression for the amount 
of charging as a function of e'21. The excess charge on type 2 atoms over the average we will 

denote by Ap2. This is given by the expression

( 12 )

Since, as can be seen from equations (3), (9), and (!!), 6 is only a function of ek, we can 

integrate (12) over a constant energy surface and obtain
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FIGURE 2a

The energy versus k relation for the ordered binary alloy as a function of 60 = e'2i/A. 
The result for the pure metal corresponds to 50 = 0. When 60 is small the result 

closely approximate the pure metal except for the gap in the middle.

FIGURE 2b

A sketch of the density of states curve for the ordered binary alloy as a function of 50. 
The result for the pure metal corresponds to 50 = 0. When S0 is small the results closely 
approximate the pure metal except near the gap where there is an increase just equal to

the deficit in the gap.
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where e is the negative electronic charge, Ep is the Fermi energy, £min is the lowest energy 

in the band, and p(efe) is the density of states per unit energy given by

the integration being over a constant energy surface ê . In this discussion and throughout the 
paper it will be assumed that the alloy is at absolute zero temperature. Using equation (8) and 
(9), we can write the expression for Ap2/e as

(1 2 ')

We see from (12') that for a given e'21 the maximum Ap2 occurs when the band is half filled. 
The contribution to Ap2 from above the gap is of opposite sign but equal in magnitude from 
below. When both the bands below and above the gap are completely filled, Ap2 = 0 as it must 
by the Pauli exclusion principle.

First consider the case where both types of atoms contribute one TBA electron each. Then

6 i 9 + e 2 9 ,
Ej? = — --------  and using a mean value of the denominator the integral in (12 ) can be

2

written as

(12")

where

From the form of the p(E) curves for body-centered cubic, simple cubic and face-centered cubic 

lattices, which are all peaked at s = el,t f is a number much less than one, and does not de­
pend very greatly on 50, though it does vary somewhat among different crystal structures. A 

reasonable value for / is about 1/10.

It remains to estimate how ej' and e2 ' vary as a function of Ap. This is quite a complicated 
problem when considered in detail. The excess charge on an atom changes the potential seen by 
an electron from that in the pure metal. Just how this charge changes the potential depends on 
various effects such as correlation between the electron and other electrons in the vicinity. 
This problem is considered in more detail in Section 6. For our purposes, in this section, we 
will use a phenomenological argument. Regardless of the details of how the excess charge affects 

the potential, we expect, at least for small Ap, that the changes in and e2 should be pro­

portional to Ap. Call the constant of proportionality W;. Thus we can write

(13)



where ej0 and e2° are the values of ex' and e2 respectively, when Ap = 0. From conservation 
of charge we have
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(14)

and inserting (13) and (14) into (12') we find for Ap and S0 the expression

(15)

It is instructive to estimate numerically the charging effect and 60. The parameters that must 
be assigned numerical values are; (a) and W2< which indicate how the atomic energy of an 
atom charges with deviations from charge neutrality; (b) e21°, the difference in the atomic 
energies of the two atom types under charge neutrality conditions; (c) A, the bandwidth of the 
alloy from the gap in the middle to the bottom of the band; and (d) /, the fraction of A that 
enters in calculating the deviations from charge neutrality (equation 12"). We have previously 
estimated a numerical value for / of 1/10. This together with some typical values of the other 
parameters as discussed in more detail in Section 6 are

(16)

With these numbers we find from equations (13) and (15) that

The charging effects are quite evident. They have decreased the gap in the middle of the band 
by a factor of eleven, deposited an excess charge of 0.15e on type 1 atoms, and depleted an 
equal charge from the type 2 atoms. The band structure is close to that of a single constituent, 
except for the gap in the middle.

As a second example we let type one atoms contribute two TBA electrons each and type two 
atoms contribute one. This corresponds to alloying atoms of different valency. In this case the 
lower band is completely filled and the upper is half filled. Using similar reasoning, the ex­
pression for Ap2/e, the excess above the average value of 1.5, can be written approximately

( 1 2 ' " )

where gA is a bit greater than the width of the filled part of the top band. A reasonable value 
for g is 1/3. In this case of unequal valence constituents it is necessary to distinguish be­
tween two different charge deviations. The Ap2 defined in (12"') is the charge deviation 
from an equal charge distribution on the two types of atoms. However, the factor that multi­
plies f and produces changes in e' is the deviation from charge neutrality of the atom which is 
not now Ap2. Calling this deviation from charge neutrality cr we can write the expression fore'
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where

and

Using the same values of the parameters as in (16) we find that

(15')

In this case the effect of charging is opposite from that of the preceding case. The type 2 

atoms have negative Ap2/e as before but the net charge cr2e on atom is + .3 e which in­
creases e21' above e21°. The gap in the middle of the band is now increased by charging and the 
band structure of the alloy is quite different from that of the single constituent case. This 
is typical result for an alloy with quite different valency constituents.

4. Bloch Limit Alloy

In this section we consider a binary disordered alloy. The spacing between the atomic energy 

levels in the solid is assumed to be very small; i.e., 80 «  1. From results of the last 
section we expect in this case that the energy levels and the wave functions will closely ap­
proximate those for a single constituent metal. We therefore, as a first approximation, assume 
a Bloch type wave function of the form

(17)

There are number of atoms of type 1 with an atomic wave function cpj and correspondingly for 
type 2 atoms. As in the previous section the letters of the first part of the alphabet indicate 

points on the lattice where type 1 atoms are situated and conversely for type 2. The middle 
portion is used when summing over both types 1 and 2. Our model will be idealized, in what 
follows, by assuming that the positions of type 1 and 2 atoms are on a perfectly periodic array 
but randomly distributed on the array. We thus neglect distortion of the lattice and short and 
long range correlations between the different types of atoms. We assume the usual relations of 
the TBA given in (4) and use the same notation and approximations used in the previous section.

The Hamiltonian for this problem is

(18)

The average of H  over is given by

where

(19)
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As in the previous section, I' means the sum over the appropriate nearest neighbors to the site
n

in this case all nearest neighbors since the middle of the alphabet is used to denote the 
site. To analyze these results further we note that the atomic wave function <DX and <D2 can be 
chosen to be real. We also expect that cxx » a2 « P since e 12' <<: 1- Much of the algebra 
simplifies without any qualitative change in results if cn1 = a 2 = (3 = a. We will therefore 
assume these equalities for the rest of this section. Under this assumption becomes

(19')

B(k) for face centered cubic, body centered cubic and simple cubic lattices are given by, 
respectively,

( 20)

The off diagonal matrix elements of the Hamiltonian are

(21)

where G( 1, k) = e i(l-k)-Rs

s

Since 8 0 << 1 the H ki are small and we find the wave function to first order in e'21 to 
be

( 2 2 )

These Xk are scattered by H^i into other states of equal energy and the true eigenstates are 
linear combinations of the Xk 6Qual energy. However, the scattering produces a width to the 
energy levels of the Xk which is of the order of 602A. Since we will calculate all quantities 
only to first order in 50 we can neglect the effects of scattering.

The energy ot Xk Is easily calculated and to first order in 50 it is the same as given in



(19'). Thus, neither the shapes of the energy spectrum nor the density of states of the alloys 
are changed to first in 50 from their values in the pure state (S0 = 0). However, there is a 
first order change in the average charge deposited on a given atom by Xk as we can find by 
calculating
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(23)

Using (22), (21), and the orthogonality of the <DX we find

(24)

This is the result for a given arrangement of the two types of atoms. Because of the large 
number of atoms involved, the average over the possible distribution of constituents describes 
the properties of the alloy. When averaged over all distributions of constituents, assuming a 
random distribution

(25)

and (24) becomes

(24')

Here the sum in (24) is replaced by an integral by introducing the density of states

(26)

The integral in (26) is over the constant energy surface in k-space at ê , and V is the volume 
of the solid. The principal value of the integral in (24') is to be taken as indicated by the 
P just before the integral. In a similar manner we find that

(24")

Just as in the previous section for the ordered alloy, the disordered alloy also shows a 
charging effect given by (24') and (24"). When is below the middle of the band Ap!(k)/e 
has the same sign as e'2i and vice versa for above the middle of the band. This sign for 
Api(k)/e is the same as found for the ordered alloy and is also the same as expected from 
the general considerations given in Section 2. The constituent with the lowest atomic energy, 
which we have by convehtion called 1, has more electronic charge deposited on it,by the lowest 
energy states in order to minimize the energy.

In a completely filled band no charging can exist as can be seen by summing Ap(k) over all 
states. From (24') or (24") the integral of Ap(k) over all states is zero because of the 

occurrence of the following term



268 THEORY OP DISORDERED ALLOYS Vol.l, N o . 5

(27)

which is zero since the integrand is odd in the interchange of s and e'. This disappearance of 
a charging effect in a full band is a general result not limited to first order perturbation 
theory. It is a consequence of the completeness of the wave functions and can be seen as 
follows. Let the exact wave functions of the alloy be denoted by Qm, a complete orthonormal set 
The 4>i(r - R„) also are a complete orthonormal set for the alloy as indicated by equation (4) 
The d>i can be expanded in terras of the Qm and are given by

(28)

Calculating the absolute square of both sides of (28) we obtain

(29)

But the right-hand side of (29) is the total number of electrons in state fl>£ on the atom at the 
lattice site Rn for a full band. Thus, all sites have one electron per state when the band is 
full and no charging occurs.

It is of interest to compare the ordered and disordered alloys in the limit 50 «  1. The 
states of the ordered alloy over most of the band deposit a charge of order of 50; but within 

the region of energy e'2i from ej' and e2 \ a large amount of charging occurs. This large charg­
ing produces the gap between the energies and e2 *. No such region of large charging occurs 
for the disordered alloy. The charging is of order 50 throughout the whole band. This differ­
ence in behavior occurs because of the properties of the Hki of (21). In the disordered alloy 
G(l, k) is a random function and has a root mean square deviation from zero, its average 
value, of the order of >W as shown by (25). Thus, HkX in the disordered alloy is of the order 
of N~% for all values. In contrast, in the ordered alloy, H^i is zero, except when (k — 1) 
is close to a reciprocal lattice vector of the ordered alloy when H^i is of order one. This 
large value of H ki in the ordered case produces the gap. No such dominance of a particular 
value of Hki occurs in the disordered alloy and no gap is produced. In fact, the density of 
states of the disordered alloy closely approximates that of the pure metal (50 = 0) differing 
only in order 502. This is illustrated in Pig. 3 where the density of states of the Block limit 
alloy 60 «  l is compared with that of the pure metal, 50 = 0. As can be seen, the only 
appreciable difference between the alloy and the pure metal is that the sharp structure at the 
middle of the band is somewhat smeared out in the alloy. Such an alloy satisfies the criterion 
for the validity of the rigid band approximation.

5. Atomic Limit Alloy
 ̂ *

In this section we discuss the limit 50 = ~—  >> 1 for a completely disordered binary

alloy. This corresponds to the case when the atomic levels are separated by an amount much 
greater than the width of the bands. To guess what form the wave function will take in this 
case we note that the last two sections suggest that the electrons will be mainly on either one 
or the other type of atom. Also 60 »  1 can be interpreted as near the limit a - 0. When 

a - 0 the wave function is rigorously the sum of atomic wave functions and the energy levels
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FIGURE 3

A sketch of the density of states curve for a pure metal (solid line) and a completely 

disordered alloy (dashed line) in the limit that 60 «  1. Both metals have a 
body-centered-cubic structure and the TBA electrons have s-like symmetry.

The structures are quite similar except that the infinity in the pure metal is finite
and somewhat wider in the alloy.

are just ex and e2. For the energy ex the wave functions are simply

(30)

where a^a are constants. In order to orthogonalize these wave functions we can set

(31)

where

and ri£a are integers, a given combination of which corresponds to the atom at point R a. Also,

(32)

the V s are integers and L XL 2L 3 = ^i*

The wave functions will be orthogonalized regardless of the xa that is associated with the 
atom at point R a. However, in order to minimize the off-diagonal elements of the Hamiltonian 
when a f 0, a special combination is chosen as follows. A fictitious lattice of points is 

superimposed on the real lattice. This fictititous lattice is chosen to have the same structure 
and fill the same volume as the real lattice but only has Ni points instead of iV. The type 1 
atoms are associated with the closest point in the fictitious lattice consistent with keeping 
the same nearest type 1 neighbors and the same configuration as in the real lattice. This cannot be 
done exactly because of statistical fluctuations. A fraction of the atoms have to be "removed"



from their closest point in the fictitious lattice and placed elsewhere in order to maximize 
the correspondence between the nearest neighbors in the two lattices. This number of "removed" 
atoms may be small and will be neglected. We will assume that all the nearest type 1 neighbors in the 
real lattice are also nearest type 1 neighbors in the fictititous lattice, though the reverse is not true, 
This is taken into account by multiplying the number of nearest neighbors in the fictitious lattice by 
N^/N, the probability that any nearest neighbor in the fictitious lattice is also one in the real lattice,

When the overlap a f 0 but 50 >> 1 we expect for energies near ex the wave functions 
will have the form
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(33)

where A ks are small. For energies near e2 the wave functions will have the form

(34)

where the Xg form a lattice of the same type as the real lattice and filling the same volume 
but containing /V2 points. The Aia are expected to be much less than one. The states in (33) and
(34) are not orthogonal to one another, the overlap being of order A and thus small. We will 

limit ourselves to zero order in A so that we can neglect the non-orthogonality of the wave 
functions.

The energy is E(k) = H kk,

(35)

where B(k )  1 e 3 and the sum is over nearest neighbors in the fictitious lattice.
B(k ) is the same as the B(k) defined in the previous section and its value for various types 
of structures is given in (20). Again, as in the previous section, the atomic wave functions 
(Dx and <D 2 are both assumed to be spherically symmetric and real.

Differentiating £(k) with respect to A^ and setting it equal to zero gives

(36)

where the sura is over the lattice points with type 1 atoms which are nearest neighbors to point 
Rs in the real lattice. This value for /4fcs* will be corrected by terms of order A when ortlio- 
gonalization is imposed. However, we do see from (36) that A k s and thus A is of order l/50,,



and is small, confirming our initial guess.

To zero order in A, equation (35) becomes
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(37)

We see that alloying decreases the width of the band in direct proportion to the dilution-of 

the type 1 atoms. However, the shape remains the same. The density of states of the alloy is 

calculated as follows. The density of states p0(£) of the pure solid of type 1 atoms (/V2= 0) 

is given by

(38)

where V0 is the volume of the pure solid. The density of states of the alloy p(E) is given by

(39)

where V is the volume of the alloy. Assuming that the alloying keeps the lattice constant the 

same, as is being assumed throughout, then adding iV2 type 2 atoms changes the volume from V0 to

(40)

Thus we see that

(41)

and alloying does not change the density of states. Alloying has two effects which cancel one 
another. The width of the band is decreased because the overlap is smaller, but the number of 
type 1 atoms per unit volume also decreases, the combination of the two effects keeping the 

density of states fixed.

In the above discussion we have neglected the effect of scattering. To estimate this to zero 
order we calculate the transition rate by first evaluating

(42)

where the sum over a is over nearest neighbors in the real lattice and

(43)

The quantities (5(a) and a(a, a') are random variables because the number of type 1 and type 2 
neighbors will vary at each point Ra. In the Bloch limit discussed in the previous section the 
variation in (5(a) was neglected because it was assumed that since e1 r « e2 ', U x and U2 are 
closely the same at points in the overlap region. We cannot expect this to be true in the 
atomic limit discussed here. The energy width AE produced by scattering is given by
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and we estimate that LE/2L, the energy width divided by the band width, is of order N 2/ N i . 
Thus if the dilution is not too great the scattering will not affect the shape of the band. 

However, when N 2 « iVj, scattering will become important and we can expect that the shape will 
be appreciably changed by it.

The results for the band of the type 2 atoms can be obtained from the previous results by 
interchanging the subscripts 1 and 2. Thus the ratio of the energy width of a single state pro­
duced by scattering divided by the band width is of order N \ / N 2. In the case where scattering 
does not appreciably affect the properties of the band of type 1 atoms (N2/ N i «  1), the 
properties of the band of type 2 atoms is greatly affected by scattering and cannot be deter­
mined from the analysis here. This problem is that of the density of impurity states in dilute 
alloys where the impurity states are bound, and it has to be solved by different techniques 
than the ones employed in this paper. However, quantities such as the specific heat, magnetic 
susceptibility, etc., will depend only on the properties of the host band as long as it is not 
completely filled.

Pseudoatomic Limit

Finally we consider another case which formally gives the same results as the atomic limit. 
The TBA electron wave functions of the type 2 atoms have a smaller radius than the type 1 atoms. 

To be more precise we assume that ctj2 = a2 l ^  a i ai*d a2 ^  a i* Under these conditions we 
find, using the same procedure as employed in the atomic limit, that

(44)

The wave function is assumed to have the same form as given in (33) and A is assumed to be 
much less than unity. We see from (44) that Aks is much less than unity if the difference be­
tween the energy of the k-state in the type 1 band in the atomic limit (obtained by removing 

the type 2 atoms without disturbing the type 1 atoms) and e2' is in absolute magnitude much 
greater than cc12. When this occurs the properties of the alloy are exactly the same as of the 
type 1 band in the atomic limit.

6. Application to Real Metals

We discuss in this section how the models presented in the previous sections can be applied 
to real metals. The previous sections considered a model of the band structure of binary alloys 
in the TBA with s-type electrons. It is possible to extend the analysis to cover the case of ri­
bands. At first we neglect hybridization among the d sub-bands. For each spin there are then 5 
degenerate atomic ri-states each having approximately equal values of e'. We can proceed with 
the analysis for each atomic ri-state separately and obtain the same type of result as for s- 
states. Adding spin doubles the number of states as before. We also assume that for transition 
metal alloys the number of s-electrons per atom in the alloy is the mean of those in the two 
constituents, so there is no transfer of electrons from s- to ri-bands.



6*1* Estimate of Parameters

As shown in Sections 3 and 4, when the parameter 60 «  l the rigid band approximation is 
valid. For a disordered alloy this statement is true in the sense that the energy spectrum (see 
equation (19')) and the wave functions (see equation (22)) have a deviation of order 602 and §Q:, 

respectively, from those of a single constituent metal. The property of this single constituent 

metal is some average of the properties of the two elements in the alloy. This average depends, 
among other things on the charging effects which modify the shape of the atomic wave functions 
and thus the overlap integrals. As discussed in Section 3, 50 has to be determined self- 
consistently. The magnitude of 50 depends on charging effects and the charging effects them­
selves depend on 50. This self-consistent calculation requires the knowledge of three para­
meters. These are: (1) the e°; (2) the W introduced in equation (13); and (3) the relation be­

tween 60 and Ap. We discuss how to estimate these parameters in what follows.

(1) The energy e° has two parts to it. It is composed of an effective Hartree-Fock energy
of the isolated atom plus an additional terra produced by the potentials of the surrounding atoms 
adding to the isolated atomic potential. It is difficult to determine the effective Hartree- 
Fock energy of the isolated atom. This is defined as the energy required to remove an electron 
in the state of interest keeping all the other electron states unchanged. This energy cannot 
simply be obtained empirically from data on the excited states of atoms because in the real 
case when an electron is removed, the remaining electrons see a changed potential which changes 
their wave functions. Another way to determine e° is to note that in the TBA e° is just the 
average energy of the cf-band [3]. The expected shape of the d-band can be estimated from the 
theoretical calculations of Wood [4] for iron. By using the measured values of the work func­
tion of transition metals which give the absolute position of the Fermi level, and assuming 
that Wood's calculation is a reasonable approximation to the shape of the c/-band in all transi­
tion metals, the absolute position of the average energy of the d-band can be obtained. In this 
way it can be estimated for the transition metals that e° decreases about Hi eV for each in­

crease of one unit in the nuclear charge.

(2) The parameter W is the constant of proportionality between a, the deviation from neutral­
ity of the average charge around an atom, and the atomic energy. From the virial theorem the 

corresponding change in the potential energy is twice as great. The parameter if the s 
electrons had no screening effect, would have a value of the order e 2/rj)f where r$ is the 
radius of the atomic orbital of a (^-electron. This is about 10 eV. However, most recent workers 
on the origin of ferromagnetism have agreed that this quantity must be greatly cut down by 
screening by the s electrons, though they differ about the amount of this reduction. A review 
of the different theories has been given by Mott [l]. In addition, correlation between the of- 
electrons themselves will decrease W. We shall adopt the point of view taken in Mott's review 

article, that V! is unlikely to be greater than half the band width. In fact we have been im­
plicitly assuming this all along by using the one-electron approximation. If W is greater than 
half the band width then, as Hubbard [5] shows, correlation effects are important and the one- 

electron approximation is incorrect.

(3) The relationship between Ap and 60 for small 50 is obtained with the aid of the fact 
that in a full band there is no charging present. When the Fermi energy Ep is above or below 
the middle of the band the charging effect can be obtained, respectively, by either the nega­
tive of the integral Ap(k) of equations (24') and (24") from Ep to the top of tl\e band, or by 
the integral from the bottom of the band to Ep. When 60 is large, the charging effect is 
obvious since the electronic states congregate on either one or the other type of atom as dis­
cussed in Section 5.
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6.2. Alloys with Non-transition Metals

Alloys of Ag and Au with Pd and Pt, respectively, have been used to obtain information on 
the density of states curve [6]. Although this is an alloy between a transition metal and a non­
transition metal we can still apply our analysis to this case. The experimental and theoretical 
evidence is that the d-bands in Ag and Au are appreciably narrower than in the transition 

metals. The states near the Fermi level in the alloys under discussion satisfy the pseudoatomic 
limit discussed at the end of Section 5. The cf-bands in Ag and Au remain filled and the density 
of states for small amounts of alloyed Ag and Au is the same as for pure Pd and Pt. However, 
when the number of Ag and Au atoms becomes comparable to that of Pd and Pt, scattering effects 
should become important and change the shape of the density of states curve. Thus, the tail at 
the high energy end of the cf-band of Pd and Pt found by this means is almost certainly not pre­
sent in the pure metal. This discussion only applies to the cf-bands in these alloys. To deter­
mine the distribution of the electrons between the s- and cf-bands requires an analysis of the 
s-bands in these same alloys. Such an analysis is not appropriate for this paper and will not 
be attempted here.

In the case of alloys of transition metals with other non-transition ones we can again de­
scribe what happens to the cf-band though we cannot predict the distribution of the electrons 
between the cf- and s-bands because this depends also on details of the s-band of the alloy.

When a transition metal is alloyed with a non-transition metal the situation is approximated 
by either the atomic limit or pseudoatomic limit discussed in Section 5. In the case of the 
noble metals just described the pseudoatomic limit was appropriate. In the case of Al, say, the 
atomic limit is more appropriate since the energy of any state that could be treated by the TEA 
is greatly removed from the energy of the cf-bands in the transition metals. In any case, the 
result on the cf-band of the alloy is the same. For small concentrations of the non-transition 
metal the cf-band of the alloy has the same density of states as the pure transition metal, and 

when the concentration of the non-transition metal is comparable to that of the transition 
metal, scattering effects change the shape of the density of states curves.
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7. Summary and Discussion

In this paper a theory of the electronic structure of alloys in the TBA has been presented. 
The problem of an ordered 50%-50% alloy is solved exactly in the TBA. Then are considered the 
cases of disordered alloys of arbitrary composition and in the limits where '60 «  l, the 
Bloch limit, 5„ »  i, the atomic limit, and the pseudoatomic limit where the band width of the 
pure metal of one constituent is much less than that of the other. Here 6„ is the ratio between 
the difference of the atomic energies of the atoms and half the width A of the band. In the 

Bloch limit the alloy system has a single band structure which closely approximates that of a 
pure metal so that the rigid band approximation is valid. The pure metal that is approximated 
is some average of the two constituents and the averaging process depends on the relative con­
centration of the two constituents. The main mechanism that determines the averaging is the 
charging effect which changes the potential seen by a TBA electron and thus its wave function, 
especially in the important overlap region between neighbors which determines the shape of the 
band. In the atomic limit the alloy has two separate band structures. These bands are the same 
as obtained by removing one constituent from the alloy without disturbing the other. Neglecting 
scattering effects, the density of states of the alloy in the atomic limit is the same as the 
pure metal consisting of one or the other constituent, depending on which band the Fermi level 
s in. Alloying decreases the overlap between like atoms and narrows the band tending to increase 

the density of states. This is just cancelled by the increased total number of atoms for a 
given number of like atoms so that the specific heat per unit volume or mole remains fixed.-



Scattering effects in a band become important as the number of other atoms becomes of the order 
of the number of atoms that comprise the band. In the transition region between the Bloch limit 
and the atomic limit the shape of the density of states of the alloy is greatly modified from 
the pure metal case and measurements on the alloy cannot directly give information on the pure 

metal.

The important characteristic of the theory is that there are differing amounts of charge on 
the two types of atom. In the Bloch limit the difference in charge is of order 80, while in the 
atomic and pseudoatomic limits practically all of the charge concentrates on one type of atom 
or the other. Except when the band or bands are completely full, there will be a difference in 

charge between the two constituents. This charging effect will change the relative atomic 
energies of the two constituents and their overlap integrals.

The magnitude of the charging effects and the value of 80 have to be determined in a self- 
consistent manner. The values of e21' and A and thus 50 depend on the charging effects while 
the difference of charge deposited on each atom depends on 50 and the position of the Fermi 
level. When the Fermi level is near the top of the band of a Bloch limit alloy, a larger 60 is 
required for a given net charge difference than when the Fermi level is near the middle of the 

band or bands. The middle of the band or bands is defined to be at the energy (Nlel' +iV2e2 ')/iV.

When many body effects are neglected, the theory justifies the use of the rigid band model 
to calculate from specific heat measurements on PdAg and AuPt alloys the density of states curve 
for the d-band of the pure Pd and Pt. This is justified as long as the concentration of Ag and 

Au is not too great. At large concentrations of Ag and Au scattering effects will be important 

and are probably the cause of the tail found in the density of states curves at the top of the 
d-band in these alloys. Also, the distribution of the electrons between the d- and s-bands is 
not given by the theory since this also depends on details of the s-band.

An important parameter that enters the theory is W which is a measure of how much charging 

changes the value of e\ This parameter is closely related to the Coulomb effects envisaged by 

Wolff [7], Hubbard [5], Anderson [8], Van Vleck [9], and Kanamori [lo] for problems different 
from the one considered here. The calculation of Vi is a difficult many body problem which must 
include screening effects by the other d-electrons and the surrounding s-electrons in a strong 

atomic potential.

An important simplification made in this paper is the assumption that the total width of the 
d-band in all of the transition metals is approximately the same. If this is far from the truth 
then an important error has been introduced. As an example consider the case of two metals, 1 
and 2. Metal 1 in the pure state has a d-band with ten times the width of that for metal 2.
Also let e1 ' = e2 ' in a 50%-50% alloy of the two metals. We know from our analysis of the 
pseudoatomic limit in Section 5 that, neglecting scattering effects, the total width of the 
band in the alloy will be half that of pure metal 1, and states near the top of the band will 
be depositing essentially all of their charge on the 1 atoms. When the band is completely full 
all atoms have the same charge, 10 d-electrons. If the Fermi level is near the top of the band 
then the 2 atoms still practically have a charge of lOe but 1 atoms will have less charge, since 
the states that are empty deposit charge essentially only on the 1 atoms. Following this argu­
ment further it is easy to see that there must be other states which preferentially deposit 
charge on the type 2 atoms. Thus we obtain important charging effects even whence/ = e2' if 
is quite different from a2. Figure 4 shows in a schematic manner the variation of the charging 

effect of a state as a function of energy and the density of states for this case.

It was assumed throughout that alloying produces no distortion of the lattice. Of course, 
distortion of the lattice does occur in practice. Offhand it does not appear that the amount
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FIGURE 4a

A sketch of the charging effect of a electronic state as a function of energy 
for a disordered binary alloy where the two constituents have quite different 
band widths in the pure state. It is assumed that = e2/ and type 2 atoms 
have the narrower bandwidth. The relative number of electrons deposited on 
type 1 atoms is shown by the curve marked Ap^ and correspondingly for the

curve marked A p2.

FIGURE 46

The density of states curve for the same alloy as shown in Fig. 4a. The dashed curves 
are the density of states curves of the pure metals contracted by a factor of 2

in the energy scale.

of distortion found in actual alloys will qualitatively change anything. However, quantita­
tively the overlap integrals and the potentials seen by an electron will be affected by dis­
tortion, which should also quantitatively effect the expressions for Ap(fe) and E(k).



Finally, for the transition metal alloys it was assumed that the number of s-electrons per 
atom in the alloy is just the average of those in the two pure metals. The number of s-electrons 
in the vicinity of an atom was allowed to vary in the alloy in order to give screening 

but no net transfer of electrons between the s- and d-bands was allowed to occur. Probably not 
much transfer between the two bands does occur in alloys of transition metals but this is un­
certain. It is unclear if any important qualitative changes in the properties of alloys occur 
if there is transfer of charge between the two bands.

Recently Beeby [ll] has developed a theory of alloys in the TBA using total scattering 
matrices and elements of Green's function techniques. It is interesting to compare his theory 

with the one developed here by quite different techniques. He predicts a minimum in the middle 

of the band in the Block limit which we show does not really exist. Beeby does not include the 
very important charging effects because it is difficult by his method to determine the dis­
tribution of the electrons in the alloy. He does, however, find qualitatively much of the be­
havior of the density of states with alloying found in this paper.
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	where P = (K/i)V and K(r) is the effective potential seen by the electron including effects of exchange and charging. To simplify the problem we will in this paper neglect all spin de­pendent contributions to/K(r). Thus the function y(r) is a product of a spin dependent and a spatial dependent part. In what follows, the spin dependent part of y(r) will not be explicitly stated except when necessary.
	where P = (K/i)V and K(r) is the effective potential seen by the electron including effects of exchange and charging. To simplify the problem we will in this paper neglect all spin de­pendent contributions to/K(r). Thus the function y(r) is a product of a spin dependent and a spatial dependent part. In what follows, the spin dependent part of y(r) will not be explicitly stated except when necessary.


	3* Ordered Binary Alloy
	3* Ordered Binary Alloy
	3* Ordered Binary Alloy

	The simplest case of a 50%-50% binary ordered alloy consisting of a type 1 and a type 2 atom is considered. Both the cases where the two types of atoms have the same and different numbers of TBA electrons per atom will be considered. The ordered alloy is a periodic array of atoms I
	The simplest case of a 50%-50% binary ordered alloy consisting of a type 1 and a type 2 atom is considered. Both the cases where the two types of atoms have the same and different numbers of TBA electrons per atom will be considered. The ordered alloy is a periodic array of atoms I

	with a unit cell consisting of one each of a type 1 and type 2 atom. The TBA wave function y(r) | is a Bloch wave function of the form j
	with a unit cell consisting of one each of a type 1 and type 2 atom. The TBA wave function y(r) | is a Bloch wave function of the form j
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	Here R* is the position of the type one atoms and q is the relative position of the type 2 atom referred to the type 1 atom in the unit cell. <$i and q>2 are the atomic wave functions for the type 1 and 2 atoms, respectively. Because of the charging effects the atomic wave-functions in the solid will be different from those in the isolated atom. The q>x and q>2 are the atomic wave functions in the solid which are solution of the Hamiltonians
	Here R* is the position of the type one atoms and q is the relative position of the type 2 atom referred to the type 1 atom in the unit cell. <$i and q>2 are the atomic wave functions for the type 1 and 2 atoms, respectively. Because of the charging effects the atomic wave-functions in the solid will be different from those in the isolated atom. The q>x and q>2 are the atomic wave functions in the solid which are solution of the Hamiltonians
	Here R* is the position of the type one atoms and q is the relative position of the type 2 atom referred to the type 1 atom in the unit cell. <$i and q>2 are the atomic wave functions for the type 1 and 2 atoms, respectively. Because of the charging effects the atomic wave-functions in the solid will be different from those in the isolated atom. The q>x and q>2 are the atomic wave functions in the solid which are solution of the Hamiltonians
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	The Ux and U2 are not the isolated atomic potentials but the ones in the solid including the charging effects. The constant b is to be determined by minimizing the energy.
	The Ux and U2 are not the isolated atomic potentials but the ones in the solid including the charging effects. The constant b is to be determined by minimizing the energy.
	The Ux and U2 are not the isolated atomic potentials but the ones in the solid including the charging effects. The constant b is to be determined by minimizing the energy.


	We generalize the usual equations of the TBA to our case and assume that
	We generalize the usual equations of the TBA to our case and assume that
	We generalize the usual equations of the TBA to our case and assume that
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	the position of the type two atoms is abbreviated by and Rt. The energy corresponding to yk
	the position of the type two atoms is abbreviated by and Rt. The energy corresponding to yk
	the position of the type two atoms is abbreviated by and Rt. The energy corresponding to yk

	IS
	IS
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	The convention is used that subscripts of letters near the beginning of the alphabet denote type 1 atoms and subscripts of letters near the end of the alphabet denote type 2 atoms.
	The convention is used that subscripts of letters near the beginning of the alphabet denote type 1 atoms and subscripts of letters near the end of the alphabet denote type 2 atoms.
	The convention is used that subscripts of letters near the beginning of the alphabet denote type 1 atoms and subscripts of letters near the end of the alphabet denote type 2 atoms.

	The sums in (5) are over the appropriate neighbors of the two atoms in a unit cell. In addition
	The sums in (5) are over the appropriate neighbors of the two atoms in a unit cell. In addition
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	We note that
	We note that
	We note that
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	This follows from (4) and the relations that Ui (r - Ra)9x (r - Ra) = ( e } - p2/2m)yl(r - Ra) and U2(r - Rs)92(r - Rs) = (e2 ~ p2/2m)92(r - Rs).
	This follows from (4) and the relations that Ui (r - Ra)9x (r - Ra) = ( e } - p2/2m)yl(r - Ra) and U2(r - Rs)92(r - Rs) = (e2 ~ p2/2m)92(r - Rs).
	This follows from (4) and the relations that Ui (r - Ra)9x (r - Ra) = ( e } - p2/2m)yl(r - Ra) and U2(r - Rs)92(r - Rs) = (e2 ~ p2/2m)92(r - Rs).


	In what follows we shall make the usual TBA simplifying assumption that a = 0 unless the wave functions are nearest neighbors and the V is that belonging to one of the atomic wave functions. In addition, to simplify the mathematics even further, we will make the assumption that both 9j and 92 are s-like which makes the cf s constant, independent of relative orienta­tions between nearest neighbors. With these approximations equation (5) becomes
	In what follows we shall make the usual TBA simplifying assumption that a = 0 unless the wave functions are nearest neighbors and the V is that belonging to one of the atomic wave functions. In addition, to simplify the mathematics even further, we will make the assumption that both 9j and 92 are s-like which makes the cf s constant, independent of relative orienta­tions between nearest neighbors. With these approximations equation (5) becomes
	In what follows we shall make the usual TBA simplifying assumption that a = 0 unless the wave functions are nearest neighbors and the V is that belonging to one of the atomic wave functions. In addition, to simplify the mathematics even further, we will make the assumption that both 9j and 92 are s-like which makes the cf s constant, independent of relative orienta­tions between nearest neighbors. With these approximations equation (5) becomes
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	where
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	The prime on the summation sign for the & s denotes that the sum is over the appropriate nearest neighbors only. B12 = jB21 by symmetry in an ordered 50-50 alloy, but not for other cases.
	The prime on the summation sign for the & s denotes that the sum is over the appropriate nearest neighbors only. B12 = jB21 by symmetry in an ordered 50-50 alloy, but not for other cases.
	The prime on the summation sign for the & s denotes that the sum is over the appropriate nearest neighbors only. B12 = jB21 by symmetry in an ordered 50-50 alloy, but not for other cases.

	Minimizing with respect to variations in 6 or 6* gives the two solutions
	Minimizing with respect to variations in 6 or 6* gives the two solutions
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	where 5' = (e2{ + ot2B2 - a1B1)/2pB12.
	where 5' = (e2{ + ot2B2 - a1B1)/2pB12.
	where 5' = (e2{ + ot2B2 - a1B1)/2pB12.

	We see that in general 6' f 0 and thus |b| f 1. This means that the charges deposited on the two types of atoms differ from each other. Thus the charging effects that were discussed in the previous section have to be considered. The e'21 and the o’ s themselves depend on the charging effects. Since they enter into the determination of b and thus into how much charging is pre­sent, the effects of charging have to be estimated in a self-consistent manner. We defer the consideration of this problem till later 
	We see that in general 6' f 0 and thus |b| f 1. This means that the charges deposited on the two types of atoms differ from each other. Thus the charging effects that were discussed in the previous section have to be considered. The e'21 and the o’ s themselves depend on the charging effects. Since they enter into the determination of b and thus into how much charging is pre­sent, the effects of charging have to be estimated in a self-consistent manner. We defer the consideration of this problem till later 

	The energy corresponding to the 6 of (8) is
	The energy corresponding to the 6 of (8) is
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	At the zero of B12, 6 varies from zero to ®. This variation introduces a band gap of width Ae in the spectrum
	At the zero of B12, 6 varies from zero to ®. This variation introduces a band gap of width Ae in the spectrum
	At the zero of B12, 6 varies from zero to ®. This variation introduces a band gap of width Ae in the spectrum
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	where k0 is defined by the equation
	where k0 is defined by the equation
	where k0 is defined by the equation
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	Consider for example an ordered alloy with the cesium chloride structure where the atoms are ordered on a body-centered cubic lattice as shown in Pig. 1. In this case
	Consider for example an ordered alloy with the cesium chloride structure where the atoms are ordered on a body-centered cubic lattice as shown in Pig. 1. In this case
	Consider for example an ordered alloy with the cesium chloride structure where the atoms are ordered on a body-centered cubic lattice as shown in Pig. 1. In this case
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	where k - (kx, ky, kz) and a is the length of a side of the cube in the CeCH structure.
	where k - (kx, ky, kz) and a is the length of a side of the cube in the CeCH structure.
	where k - (kx, ky, kz) and a is the length of a side of the cube in the CeCH structure.
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	FIGURE 1
	FIGURE 1
	FIGURE 1

	The cesium chloride crystal structure.
	The cesium chloride crystal structure.


	Figure 2 shows in a schematic manner the variation of the curves and the density of states p(e) as a function of the parameter
	Figure 2 shows in a schematic manner the variation of the curves and the density of states p(e) as a function of the parameter
	Figure 2 shows in a schematic manner the variation of the curves and the density of states p(e) as a function of the parameter
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	where A is the width of band below the gap. When 50 is small, the density of states closely approximates that of the pure metal (50 = 0) except near the center of the band. A band gap is introduced and the density of states is enhanced on either side of the gap in such a way that the enhancement just compensates for the gap. Away from the gap the change in the and p(e) curves is of order 602 and is thus small for small 50. When 50 is large the band is effectively split into two parts, one band corresponding
	where A is the width of band below the gap. When 50 is small, the density of states closely approximates that of the pure metal (50 = 0) except near the center of the band. A band gap is introduced and the density of states is enhanced on either side of the gap in such a way that the enhancement just compensates for the gap. Away from the gap the change in the and p(e) curves is of order 602 and is thus small for small 50. When 50 is large the band is effectively split into two parts, one band corresponding
	where A is the width of band below the gap. When 50 is small, the density of states closely approximates that of the pure metal (50 = 0) except near the center of the band. A band gap is introduced and the density of states is enhanced on either side of the gap in such a way that the enhancement just compensates for the gap. Away from the gap the change in the and p(e) curves is of order 602 and is thus small for small 50. When 50 is large the band is effectively split into two parts, one band corresponding

	We now try to estimate e'2i for our model. To do this we need an expression for the amount of charging as a function of e'21. The excess charge on type 2 atoms over the average we will denote by Ap2. This is given by the expression
	We now try to estimate e'2i for our model. To do this we need an expression for the amount of charging as a function of e'21. The excess charge on type 2 atoms over the average we will denote by Ap2. This is given by the expression
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	Since, as can be seen from equations (3), (9), and (!!), 6 is only a function of ek, we can integrate (12) over a constant energy surface and obtain
	Since, as can be seen from equations (3), (9), and (!!), 6 is only a function of ek, we can integrate (12) over a constant energy surface and obtain
	Since, as can be seen from equations (3), (9), and (!!), 6 is only a function of ek, we can integrate (12) over a constant energy surface and obtain
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	FIGURE 2a
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	The energy versus k relation for the ordered binary alloy as a function of 60 = e'2i/A. The result for the pure metal corresponds to 50 = 0. When 60 is small the result closely approximate the pure metal except for the gap in the middle.
	The energy versus k relation for the ordered binary alloy as a function of 60 = e'2i/A. The result for the pure metal corresponds to 50 = 0. When 60 is small the result closely approximate the pure metal except for the gap in the middle.
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	FIGURE 2b
	FIGURE 2b
	FIGURE 2b

	A sketch of the density of states curve for the ordered binary alloy as a function of 50. The result for the pure metal corresponds to 50 = 0. When S0 is small the results closely approximate the pure metal except near the gap where there is an increase just equal to
	A sketch of the density of states curve for the ordered binary alloy as a function of 50. The result for the pure metal corresponds to 50 = 0. When S0 is small the results closely approximate the pure metal except near the gap where there is an increase just equal to

	the deficit in the gap.
	the deficit in the gap.
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	where e is the negative electronic charge, Ep is the Fermi energy, £min is the lowest energy in the band, and p(efe) is the density of states per unit energy given by
	where e is the negative electronic charge, Ep is the Fermi energy, £min is the lowest energy in the band, and p(efe) is the density of states per unit energy given by
	where e is the negative electronic charge, Ep is the Fermi energy, £min is the lowest energy in the band, and p(efe) is the density of states per unit energy given by
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	the integration being over a constant energy surface e^. In this discussion and throughout the paper it will be assumed that the alloy is at absolute zero temperature. Using equation (8) and (9), we can write the expression for Ap2/e as
	the integration being over a constant energy surface e^. In this discussion and throughout the paper it will be assumed that the alloy is at absolute zero temperature. Using equation (8) and (9), we can write the expression for Ap2/e as
	the integration being over a constant energy surface e^. In this discussion and throughout the paper it will be assumed that the alloy is at absolute zero temperature. Using equation (8) and (9), we can write the expression for Ap2/e as


	Div
	Artifact

	(12')
	(12')
	(12')


	We see from (12') that for a given e'21 the maximum Ap2 occurs when the band is half filled. The contribution to Ap2 from above the gap is of opposite sign but equal in magnitude from below. When both the bands below and above the gap are completely filled, Ap2 = 0 as it must by the Pauli exclusion principle.
	We see from (12') that for a given e'21 the maximum Ap2 occurs when the band is half filled. The contribution to Ap2 from above the gap is of opposite sign but equal in magnitude from below. When both the bands below and above the gap are completely filled, Ap2 = 0 as it must by the Pauli exclusion principle.
	We see from (12') that for a given e'21 the maximum Ap2 occurs when the band is half filled. The contribution to Ap2 from above the gap is of opposite sign but equal in magnitude from below. When both the bands below and above the gap are completely filled, Ap2 = 0 as it must by the Pauli exclusion principle.


	First consider the case where both types of atoms contribute one TBA electron each. Then
	First consider the case where both types of atoms contribute one TBA electron each. Then
	First consider the case where both types of atoms contribute one TBA electron each. Then

	6i 9 + e2 9 ,
	6i 9 + e2 9 ,

	Ej? = —-------- and using a mean value of the denominator the integral in (12 ) can be
	Ej? = —-------- and using a mean value of the denominator the integral in (12 ) can be

	2
	2


	written as
	written as
	written as
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	where
	where
	where
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	From the form of the p(E) curves for body-centered cubic, simple cubic and face-centered cubic lattices, which are all peaked at s = el,t f is a number much less than one, and does not de­pend very greatly on 50, though it does vary somewhat among different crystal structures. A reasonable value for / is about 1/10.
	From the form of the p(E) curves for body-centered cubic, simple cubic and face-centered cubic lattices, which are all peaked at s = el,t f is a number much less than one, and does not de­pend very greatly on 50, though it does vary somewhat among different crystal structures. A reasonable value for / is about 1/10.
	From the form of the p(E) curves for body-centered cubic, simple cubic and face-centered cubic lattices, which are all peaked at s = el,t f is a number much less than one, and does not de­pend very greatly on 50, though it does vary somewhat among different crystal structures. A reasonable value for / is about 1/10.

	It remains to estimate how ej' and e2 ' vary as a function of Ap. This is quite a complicated problem when considered in detail. The excess charge on an atom changes the potential seen by an electron from that in the pure metal. Just how this charge changes the potential depends on various effects such as correlation between the electron and other electrons in the vicinity. This problem is considered in more detail in Section 6. For our purposes, in this section, we will use a phenomenological argument. Reg
	It remains to estimate how ej' and e2 ' vary as a function of Ap. This is quite a complicated problem when considered in detail. The excess charge on an atom changes the potential seen by an electron from that in the pure metal. Just how this charge changes the potential depends on various effects such as correlation between the electron and other electrons in the vicinity. This problem is considered in more detail in Section 6. For our purposes, in this section, we will use a phenomenological argument. Reg
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	where ej0 and e2° are the values of ex' and e2respectively, when Ap = 0. From conservation of charge we have
	where ej0 and e2° are the values of ex' and e2respectively, when Ap = 0. From conservation of charge we have
	where ej0 and e2° are the values of ex' and e2respectively, when Ap = 0. From conservation of charge we have
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	and inserting (13) and (14) into (12') we find for Ap and S0 the expression
	and inserting (13) and (14) into (12') we find for Ap and S0 the expression
	and inserting (13) and (14) into (12') we find for Ap and S0 the expression
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	It is instructive to estimate numerically the charging effect and 60. The parameters that must be assigned numerical values are; (a) and W2< which indicate how the atomic energy of an atom charges with deviations from charge neutrality; (b) e21°, the difference in the atomic energies of the two atom types under charge neutrality conditions; (c) A, the bandwidth of the alloy from the gap in the middle to the bottom of the band; and (d) /, the fraction of A that enters in calculating the deviations from charg
	It is instructive to estimate numerically the charging effect and 60. The parameters that must be assigned numerical values are; (a) and W2< which indicate how the atomic energy of an atom charges with deviations from charge neutrality; (b) e21°, the difference in the atomic energies of the two atom types under charge neutrality conditions; (c) A, the bandwidth of the alloy from the gap in the middle to the bottom of the band; and (d) /, the fraction of A that enters in calculating the deviations from charg
	It is instructive to estimate numerically the charging effect and 60. The parameters that must be assigned numerical values are; (a) and W2< which indicate how the atomic energy of an atom charges with deviations from charge neutrality; (b) e21°, the difference in the atomic energies of the two atom types under charge neutrality conditions; (c) A, the bandwidth of the alloy from the gap in the middle to the bottom of the band; and (d) /, the fraction of A that enters in calculating the deviations from charg
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	With these numbers we find from equations (13) and (15) that
	With these numbers we find from equations (13) and (15) that
	With these numbers we find from equations (13) and (15) that
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	The charging effects are quite evident. They have decreased the gap in the middle of the band by a factor of eleven, deposited an excess charge of 0.15e on type 1 atoms, and depleted an equal charge from the type 2 atoms. The band structure is close to that of a single constituent, except for the gap in the middle.
	The charging effects are quite evident. They have decreased the gap in the middle of the band by a factor of eleven, deposited an excess charge of 0.15e on type 1 atoms, and depleted an equal charge from the type 2 atoms. The band structure is close to that of a single constituent, except for the gap in the middle.
	The charging effects are quite evident. They have decreased the gap in the middle of the band by a factor of eleven, deposited an excess charge of 0.15e on type 1 atoms, and depleted an equal charge from the type 2 atoms. The band structure is close to that of a single constituent, except for the gap in the middle.

	As a second example we let type one atoms contribute two TBA electrons each and type two atoms contribute one. This corresponds to alloying atoms of different valency. In this case the lower band is completely filled and the upper is half filled. Using similar reasoning, the ex­pression for Ap2/e, the excess above the average value of 1.5, can be written approximately
	As a second example we let type one atoms contribute two TBA electrons each and type two atoms contribute one. This corresponds to alloying atoms of different valency. In this case the lower band is completely filled and the upper is half filled. Using similar reasoning, the ex­pression for Ap2/e, the excess above the average value of 1.5, can be written approximately
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	where gA is a bit greater than the width of the filled part of the top band. A reasonable value for g is 1/3. In this case of unequal valence constituents it is necessary to distinguish be­tween two different charge deviations. The Ap2 defined in (12"') is the charge deviation from an equal charge distribution on the two types of atoms. However, the factor that multi­plies f and produces changes in e' is the deviation from charge neutrality of the atom which is not now Ap2. Calling this deviation from charg
	where gA is a bit greater than the width of the filled part of the top band. A reasonable value for g is 1/3. In this case of unequal valence constituents it is necessary to distinguish be­tween two different charge deviations. The Ap2 defined in (12"') is the charge deviation from an equal charge distribution on the two types of atoms. However, the factor that multi­plies f and produces changes in e' is the deviation from charge neutrality of the atom which is not now Ap2. Calling this deviation from charg
	where gA is a bit greater than the width of the filled part of the top band. A reasonable value for g is 1/3. In this case of unequal valence constituents it is necessary to distinguish be­tween two different charge deviations. The Ap2 defined in (12"') is the charge deviation from an equal charge distribution on the two types of atoms. However, the factor that multi­plies f and produces changes in e' is the deviation from charge neutrality of the atom which is not now Ap2. Calling this deviation from charg
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	where
	where
	where
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	Using the same values of the parameters as in (16) we find that
	Using the same values of the parameters as in (16) we find that
	Using the same values of the parameters as in (16) we find that
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	In this case the effect of charging is opposite from that of the preceding case. The type 2 atoms have negative Ap2/e as before but the net charge cr2e on atom is + .3 e which in­creases e21' above e21°. The gap in the middle of the band is now increased by charging and the band structure of the alloy is quite different from that of the single constituent case. This is typical result for an alloy with quite different valency constituents.
	In this case the effect of charging is opposite from that of the preceding case. The type 2 atoms have negative Ap2/e as before but the net charge cr2e on atom is + .3 e which in­creases e21' above e21°. The gap in the middle of the band is now increased by charging and the band structure of the alloy is quite different from that of the single constituent case. This is typical result for an alloy with quite different valency constituents.
	In this case the effect of charging is opposite from that of the preceding case. The type 2 atoms have negative Ap2/e as before but the net charge cr2e on atom is + .3 e which in­creases e21' above e21°. The gap in the middle of the band is now increased by charging and the band structure of the alloy is quite different from that of the single constituent case. This is typical result for an alloy with quite different valency constituents.


	4. Bloch Limit Alloy
	4. Bloch Limit Alloy
	4. Bloch Limit Alloy

	In this section we consider a binary disordered alloy. The spacing between the atomic energy levels in the solid is assumed to be very small; i.e., 80 « 1. From results of the last section we expect in this case that the energy levels and the wave functions will closely ap­proximate those for a single constituent metal. We therefore, as a first approximation, assume a Bloch type wave function of the form
	In this section we consider a binary disordered alloy. The spacing between the atomic energy levels in the solid is assumed to be very small; i.e., 80 « 1. From results of the last section we expect in this case that the energy levels and the wave functions will closely ap­proximate those for a single constituent metal. We therefore, as a first approximation, assume a Bloch type wave function of the form
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	There are number of atoms of type 1 with an atomic wave function cpj and correspondingly for type 2 atoms. As in the previous section the letters of the first part of the alphabet indicate points on the lattice where type 1 atoms are situated and conversely for type 2. The middle portion is used when summing over both types 1 and 2. Our model will be idealized, in what follows, by assuming that the positions of type 1 and 2 atoms are on a perfectly periodic array but randomly distributed on the array. We th
	There are number of atoms of type 1 with an atomic wave function cpj and correspondingly for type 2 atoms. As in the previous section the letters of the first part of the alphabet indicate points on the lattice where type 1 atoms are situated and conversely for type 2. The middle portion is used when summing over both types 1 and 2. Our model will be idealized, in what follows, by assuming that the positions of type 1 and 2 atoms are on a perfectly periodic array but randomly distributed on the array. We th
	There are number of atoms of type 1 with an atomic wave function cpj and correspondingly for type 2 atoms. As in the previous section the letters of the first part of the alphabet indicate points on the lattice where type 1 atoms are situated and conversely for type 2. The middle portion is used when summing over both types 1 and 2. Our model will be idealized, in what follows, by assuming that the positions of type 1 and 2 atoms are on a perfectly periodic array but randomly distributed on the array. We th

	The Hamiltonian for this problem is
	The Hamiltonian for this problem is
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	The average of H over is given by
	The average of H over is given by
	The average of H over is given by


	Div
	Artifact

	where
	where
	where
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	As in the previous section, I' means the sum over the appropriate nearest neighbors to the site
	As in the previous section, I' means the sum over the appropriate nearest neighbors to the site
	As in the previous section, I' means the sum over the appropriate nearest neighbors to the site

	n
	n

	in this case all nearest neighbors since the middle of the alphabet is used to denote the site. To analyze these results further we note that the atomic wave function <DX and <D2 can be chosen to be real. We also expect that cxx » a2 « P since e12' <<: 1- Much of the algebra simplifies without any qualitative change in results if cn1 = a2 = (3 = a. We will therefore assume these equalities for the rest of this section. Under this assumption becomes
	in this case all nearest neighbors since the middle of the alphabet is used to denote the site. To analyze these results further we note that the atomic wave function <DX and <D2 can be chosen to be real. We also expect that cxx » a2 « P since e12' <<: 1- Much of the algebra simplifies without any qualitative change in results if cn1 = a2 = (3 = a. We will therefore assume these equalities for the rest of this section. Under this assumption becomes
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	B(k) for face centered cubic, body centered cubic and simple cubic lattices are given by, respectively,
	B(k) for face centered cubic, body centered cubic and simple cubic lattices are given by, respectively,
	B(k) for face centered cubic, body centered cubic and simple cubic lattices are given by, respectively,
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	The off diagonal matrix elements of the Hamiltonian are
	The off diagonal matrix elements of the Hamiltonian are
	The off diagonal matrix elements of the Hamiltonian are
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	where G( 1, k) = ei(l-k)-Rs
	where G( 1, k) = ei(l-k)-Rs
	where G( 1, k) = ei(l-k)-Rs
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	s

	Since 80 << 1 the Hki are small and we find the wave function to first order in e'21 to be
	Since 80 << 1 the Hki are small and we find the wave function to first order in e'21 to be
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	These Xk are scattered by H^i into other states of equal energy and the true eigenstates are linear combinations of the Xk 6Qual energy. However, the scattering produces a width to the energy levels of the Xk which is of the order of 602A. Since we will calculate all quantities only to first order in 50 we can neglect the effects of scattering.
	These Xk are scattered by H^i into other states of equal energy and the true eigenstates are linear combinations of the Xk 6Qual energy. However, the scattering produces a width to the energy levels of the Xk which is of the order of 602A. Since we will calculate all quantities only to first order in 50 we can neglect the effects of scattering.
	These Xk are scattered by H^i into other states of equal energy and the true eigenstates are linear combinations of the Xk 6Qual energy. However, the scattering produces a width to the energy levels of the Xk which is of the order of 602A. Since we will calculate all quantities only to first order in 50 we can neglect the effects of scattering.

	The energy ot Xk Is easily calculated and to first order in 50 it is the same as given in
	The energy ot Xk Is easily calculated and to first order in 50 it is the same as given in


	(19'). Thus, neither the shapes of the energy spectrum nor the density of states of the alloys are changed to first in 50 from their values in the pure state (S0 = 0). However, there is a first order change in the average charge deposited on a given atom by Xk as we can find by calculating
	(19'). Thus, neither the shapes of the energy spectrum nor the density of states of the alloys are changed to first in 50 from their values in the pure state (S0 = 0). However, there is a first order change in the average charge deposited on a given atom by Xk as we can find by calculating
	(19'). Thus, neither the shapes of the energy spectrum nor the density of states of the alloys are changed to first in 50 from their values in the pure state (S0 = 0). However, there is a first order change in the average charge deposited on a given atom by Xk as we can find by calculating
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	Using (22), (21), and the orthogonality of the <DX we find
	Using (22), (21), and the orthogonality of the <DX we find
	Using (22), (21), and the orthogonality of the <DX we find
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	This is the result for a given arrangement of the two types of atoms. Because of the large number of atoms involved, the average over the possible distribution of constituents describes the properties of the alloy. When averaged over all distributions of constituents, assuming a random distribution
	This is the result for a given arrangement of the two types of atoms. Because of the large number of atoms involved, the average over the possible distribution of constituents describes the properties of the alloy. When averaged over all distributions of constituents, assuming a random distribution
	This is the result for a given arrangement of the two types of atoms. Because of the large number of atoms involved, the average over the possible distribution of constituents describes the properties of the alloy. When averaged over all distributions of constituents, assuming a random distribution
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	and (24) becomes
	and (24) becomes
	and (24) becomes
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	Here the sum in (24) is replaced by an integral by introducing the density of states
	Here the sum in (24) is replaced by an integral by introducing the density of states
	Here the sum in (24) is replaced by an integral by introducing the density of states
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	The integral in (26) is over the constant energy surface in k-space at e^, and V is the volume of the solid. The principal value of the integral in (24') is to be taken as indicated by the P just before the integral. In a similar manner we find that
	The integral in (26) is over the constant energy surface in k-space at e^, and V is the volume of the solid. The principal value of the integral in (24') is to be taken as indicated by the P just before the integral. In a similar manner we find that
	The integral in (26) is over the constant energy surface in k-space at e^, and V is the volume of the solid. The principal value of the integral in (24') is to be taken as indicated by the P just before the integral. In a similar manner we find that
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	Just as in the previous section for the ordered alloy, the disordered alloy also shows a charging effect given by (24') and (24"). When is below the middle of the band Ap!(k)/e has the same sign as e'2i and vice versa for above the middle of the band. This sign for Api(k)/e is the same as found for the ordered alloy and is also the same as expected from the general considerations given in Section 2. The constituent with the lowest atomic energy, which we have by convehtion called 1, has more electronic char
	Just as in the previous section for the ordered alloy, the disordered alloy also shows a charging effect given by (24') and (24"). When is below the middle of the band Ap!(k)/e has the same sign as e'2i and vice versa for above the middle of the band. This sign for Api(k)/e is the same as found for the ordered alloy and is also the same as expected from the general considerations given in Section 2. The constituent with the lowest atomic energy, which we have by convehtion called 1, has more electronic char
	Just as in the previous section for the ordered alloy, the disordered alloy also shows a charging effect given by (24') and (24"). When is below the middle of the band Ap!(k)/e has the same sign as e'2i and vice versa for above the middle of the band. This sign for Api(k)/e is the same as found for the ordered alloy and is also the same as expected from the general considerations given in Section 2. The constituent with the lowest atomic energy, which we have by convehtion called 1, has more electronic char

	In a completely filled band no charging can exist as can be seen by summing Ap(k) over all states. From (24') or (24") the integral of Ap(k) over all states is zero because of the occurrence of the following term
	In a completely filled band no charging can exist as can be seen by summing Ap(k) over all states. From (24') or (24") the integral of Ap(k) over all states is zero because of the occurrence of the following term
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	which is zero since the integrand is odd in the interchange of s and e'. This disappearance of a charging effect in a full band is a general result not limited to first order perturbation theory. It is a consequence of the completeness of the wave functions and can be seen as follows. Let the exact wave functions of the alloy be denoted by Qm, a complete orthonormal set The 4>i(r - R„) also are a complete orthonormal set for the alloy as indicated by equation (4) The d>i can be expanded in terras of the Qm 
	which is zero since the integrand is odd in the interchange of s and e'. This disappearance of a charging effect in a full band is a general result not limited to first order perturbation theory. It is a consequence of the completeness of the wave functions and can be seen as follows. Let the exact wave functions of the alloy be denoted by Qm, a complete orthonormal set The 4>i(r - R„) also are a complete orthonormal set for the alloy as indicated by equation (4) The d>i can be expanded in terras of the Qm 
	which is zero since the integrand is odd in the interchange of s and e'. This disappearance of a charging effect in a full band is a general result not limited to first order perturbation theory. It is a consequence of the completeness of the wave functions and can be seen as follows. Let the exact wave functions of the alloy be denoted by Qm, a complete orthonormal set The 4>i(r - R„) also are a complete orthonormal set for the alloy as indicated by equation (4) The d>i can be expanded in terras of the Qm 


	Div
	Artifact

	(28)
	(28)
	(28)


	Calculating the absolute square of both sides of (28) we obtain
	Calculating the absolute square of both sides of (28) we obtain
	Calculating the absolute square of both sides of (28) we obtain
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	But the right-hand side of (29) is the total number of electrons in state fl>£ on the atom at the lattice site Rn for a full band. Thus, all sites have one electron per state when the band is full and no charging occurs.
	But the right-hand side of (29) is the total number of electrons in state fl>£ on the atom at the lattice site Rn for a full band. Thus, all sites have one electron per state when the band is full and no charging occurs.
	But the right-hand side of (29) is the total number of electrons in state fl>£ on the atom at the lattice site Rn for a full band. Thus, all sites have one electron per state when the band is full and no charging occurs.

	It is of interest to compare the ordered and disordered alloys in the limit 50 « 1. The states of the ordered alloy over most of the band deposit a charge of order of 50; but within the region of energy e'2i from ej' and e2 \ a large amount of charging occurs. This large charg­ing produces the gap between the energies and e2*. No such region of large charging occurs for the disordered alloy. The charging is of order 50 throughout the whole band. This differ­ence in behavior occurs because of the properties 
	It is of interest to compare the ordered and disordered alloys in the limit 50 « 1. The states of the ordered alloy over most of the band deposit a charge of order of 50; but within the region of energy e'2i from ej' and e2 \ a large amount of charging occurs. This large charg­ing produces the gap between the energies and e2*. No such region of large charging occurs for the disordered alloy. The charging is of order 50 throughout the whole band. This differ­ence in behavior occurs because of the properties 


	5. Atomic Limit Alloy
	5. Atomic Limit Alloy
	5. Atomic Limit Alloy

	^ *
	^ *

	In this section we discuss the limit 50 = ~— >> 1 for a completely disordered binary
	In this section we discuss the limit 50 = ~— >> 1 for a completely disordered binary

	alloy. This corresponds to the case when the atomic levels are separated by an amount much greater than the width of the bands. To guess what form the wave function will take in this case we note that the last two sections suggest that the electrons will be mainly on either one or the other type of atom. Also 60 » 1 can be interpreted as near the limit a - 0. When a - 0 the wave function is rigorously the sum of atomic wave functions and the energy levels
	alloy. This corresponds to the case when the atomic levels are separated by an amount much greater than the width of the bands. To guess what form the wave function will take in this case we note that the last two sections suggest that the electrons will be mainly on either one or the other type of atom. Also 60 » 1 can be interpreted as near the limit a - 0. When a - 0 the wave function is rigorously the sum of atomic wave functions and the energy levels
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	FIGURE 3
	FIGURE 3
	FIGURE 3

	A sketch of the density of states curve for a pure metal (solid line) and a completely disordered alloy (dashed line) in the limit that 60 « 1. Both metals have a body-centered-cubic structure and the TBA electrons have s-like symmetry.
	A sketch of the density of states curve for a pure metal (solid line) and a completely disordered alloy (dashed line) in the limit that 60 « 1. Both metals have a body-centered-cubic structure and the TBA electrons have s-like symmetry.

	The structures are quite similar except that the infinity in the pure metal is finite
	The structures are quite similar except that the infinity in the pure metal is finite

	and somewhat wider in the alloy.
	and somewhat wider in the alloy.


	are just ex and e2. For the energy ex the wave functions are simply
	are just ex and e2. For the energy ex the wave functions are simply
	are just ex and e2. For the energy ex the wave functions are simply
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	where a^a are constants. In order to orthogonalize these wave functions we can set
	where a^a are constants. In order to orthogonalize these wave functions we can set
	where a^a are constants. In order to orthogonalize these wave functions we can set
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	where
	where
	where
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	and ri£a are integers, a given combination of which corresponds to the atom at point Ra. Also,
	and ri£a are integers, a given combination of which corresponds to the atom at point Ra. Also,
	and ri£a are integers, a given combination of which corresponds to the atom at point Ra. Also,
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	the V s are integers and LXL2L 3 = ^i*
	the V s are integers and LXL2L 3 = ^i*
	the V s are integers and LXL2L 3 = ^i*

	The wave functions will be orthogonalized regardless of the xa that is associated with the atom at point Ra. However, in order to minimize the off-diagonal elements of the Hamiltonian when a f 0, a special combination is chosen as follows. A fictitious lattice of points is superimposed on the real lattice. This fictititous lattice is chosen to have the same structure and fill the same volume as the real lattice but only has Ni points instead of iV. The type 1 atoms are associated with the closest point in t
	The wave functions will be orthogonalized regardless of the xa that is associated with the atom at point Ra. However, in order to minimize the off-diagonal elements of the Hamiltonian when a f 0, a special combination is chosen as follows. A fictitious lattice of points is superimposed on the real lattice. This fictititous lattice is chosen to have the same structure and fill the same volume as the real lattice but only has Ni points instead of iV. The type 1 atoms are associated with the closest point in t


	from their closest point in the fictitious lattice and placed elsewhere in order to maximize the correspondence between the nearest neighbors in the two lattices. This number of "removed" atoms may be small and will be neglected. We will assume that all the nearest type 1 neighbors in the real lattice are also nearest type 1 neighbors in the fictititous lattice, though the reverse is not true, This is taken into account by multiplying the number of nearest neighbors in the fictitious lattice by N^/N, the pr
	from their closest point in the fictitious lattice and placed elsewhere in order to maximize the correspondence between the nearest neighbors in the two lattices. This number of "removed" atoms may be small and will be neglected. We will assume that all the nearest type 1 neighbors in the real lattice are also nearest type 1 neighbors in the fictititous lattice, though the reverse is not true, This is taken into account by multiplying the number of nearest neighbors in the fictitious lattice by N^/N, the pr
	from their closest point in the fictitious lattice and placed elsewhere in order to maximize the correspondence between the nearest neighbors in the two lattices. This number of "removed" atoms may be small and will be neglected. We will assume that all the nearest type 1 neighbors in the real lattice are also nearest type 1 neighbors in the fictititous lattice, though the reverse is not true, This is taken into account by multiplying the number of nearest neighbors in the fictitious lattice by N^/N, the pr

	When the overlap a f 0 but 50 >> 1 we expect for energies near ex the wave functions will have the form
	When the overlap a f 0 but 50 >> 1 we expect for energies near ex the wave functions will have the form
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	where Aks are small. For energies near e2 the wave functions will have the form
	where Aks are small. For energies near e2 the wave functions will have the form
	where Aks are small. For energies near e2 the wave functions will have the form
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	where the Xg form a lattice of the same type as the real lattice and filling the same volume but containing /V2 points. The Aia are expected to be much less than one. The states in (33) and
	where the Xg form a lattice of the same type as the real lattice and filling the same volume but containing /V2 points. The Aia are expected to be much less than one. The states in (33) and
	where the Xg form a lattice of the same type as the real lattice and filling the same volume but containing /V2 points. The Aia are expected to be much less than one. The states in (33) and

	(34) are not orthogonal to one another, the overlap being of order A and thus small. We will limit ourselves to zero order in A so that we can neglect the non-orthogonality of the wave functions.
	(34) are not orthogonal to one another, the overlap being of order A and thus small. We will limit ourselves to zero order in A so that we can neglect the non-orthogonality of the wave functions.


	The energy is E(k) = Hkk,
	The energy is E(k) = Hkk,
	The energy is E(k) = Hkk,
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	where B(k) 1 e 3 and the sum is over nearest neighbors in the fictitious lattice.
	where B(k) 1 e 3 and the sum is over nearest neighbors in the fictitious lattice.
	where B(k) 1 e 3 and the sum is over nearest neighbors in the fictitious lattice.

	B(k) is the same as the B(k) defined in the previous section and its value for various types of structures is given in (20). Again, as in the previous section, the atomic wave functions (Dx and <D 2 are both assumed to be spherically symmetric and real.
	B(k) is the same as the B(k) defined in the previous section and its value for various types of structures is given in (20). Again, as in the previous section, the atomic wave functions (Dx and <D 2 are both assumed to be spherically symmetric and real.

	Differentiating £(k) with respect to A^ and setting it equal to zero gives
	Differentiating £(k) with respect to A^ and setting it equal to zero gives
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	where the sura is over the lattice points with type 1 atoms which are nearest neighbors to point Rs in the real lattice. This value for /4fcs* will be corrected by terms of order A when ortlio- gonalization is imposed. However, we do see from (36) that Aks and thus A is of order l/50,,
	where the sura is over the lattice points with type 1 atoms which are nearest neighbors to point Rs in the real lattice. This value for /4fcs* will be corrected by terms of order A when ortlio- gonalization is imposed. However, we do see from (36) that Aks and thus A is of order l/50,,
	where the sura is over the lattice points with type 1 atoms which are nearest neighbors to point Rs in the real lattice. This value for /4fcs* will be corrected by terms of order A when ortlio- gonalization is imposed. However, we do see from (36) that Aks and thus A is of order l/50,,


	and is small, confirming our initial guess.
	and is small, confirming our initial guess.
	and is small, confirming our initial guess.

	To zero order in A, equation (35) becomes
	To zero order in A, equation (35) becomes
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	We see that alloying decreases the width of the band in direct proportion to the dilution-of the type 1 atoms. However, the shape remains the same. The density of states of the alloy is calculated as follows. The density of states p0(£) of the pure solid of type 1 atoms (/V2= 0) is given by
	We see that alloying decreases the width of the band in direct proportion to the dilution-of the type 1 atoms. However, the shape remains the same. The density of states of the alloy is calculated as follows. The density of states p0(£) of the pure solid of type 1 atoms (/V2= 0) is given by
	We see that alloying decreases the width of the band in direct proportion to the dilution-of the type 1 atoms. However, the shape remains the same. The density of states of the alloy is calculated as follows. The density of states p0(£) of the pure solid of type 1 atoms (/V2= 0) is given by
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	where V0 is the volume of the pure solid. The density of states of the alloy p(E) is given by
	where V0 is the volume of the pure solid. The density of states of the alloy p(E) is given by
	where V0 is the volume of the pure solid. The density of states of the alloy p(E) is given by
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	where V is the volume of the alloy. Assuming that the alloying keeps the lattice constant the same, as is being assumed throughout, then adding iV2 type 2 atoms changes the volume from V0 to
	where V is the volume of the alloy. Assuming that the alloying keeps the lattice constant the same, as is being assumed throughout, then adding iV2 type 2 atoms changes the volume from V0 to
	where V is the volume of the alloy. Assuming that the alloying keeps the lattice constant the same, as is being assumed throughout, then adding iV2 type 2 atoms changes the volume from V0 to
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	Thus we see that
	Thus we see that
	Thus we see that
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	and alloying does not change the density of states. Alloying has two effects which cancel one another. The width of the band is decreased because the overlap is smaller, but the number of type 1 atoms per unit volume also decreases, the combination of the two effects keeping the density of states fixed.
	and alloying does not change the density of states. Alloying has two effects which cancel one another. The width of the band is decreased because the overlap is smaller, but the number of type 1 atoms per unit volume also decreases, the combination of the two effects keeping the density of states fixed.
	and alloying does not change the density of states. Alloying has two effects which cancel one another. The width of the band is decreased because the overlap is smaller, but the number of type 1 atoms per unit volume also decreases, the combination of the two effects keeping the density of states fixed.

	In the above discussion we have neglected the effect of scattering. To estimate this to zero order we calculate the transition rate by first evaluating
	In the above discussion we have neglected the effect of scattering. To estimate this to zero order we calculate the transition rate by first evaluating
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	where the sum over a is over nearest neighbors in the real lattice and
	where the sum over a is over nearest neighbors in the real lattice and
	where the sum over a is over nearest neighbors in the real lattice and
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	The quantities (5(a) and a(a, a') are random variables because the number of type 1 and type 2 neighbors will vary at each point Ra. In the Bloch limit discussed in the previous section the variation in (5(a) was neglected because it was assumed that since e1r « e2', Ux and U2 are closely the same at points in the overlap region. We cannot expect this to be true in the atomic limit discussed here. The energy width AE produced by scattering is given by
	The quantities (5(a) and a(a, a') are random variables because the number of type 1 and type 2 neighbors will vary at each point Ra. In the Bloch limit discussed in the previous section the variation in (5(a) was neglected because it was assumed that since e1r « e2', Ux and U2 are closely the same at points in the overlap region. We cannot expect this to be true in the atomic limit discussed here. The energy width AE produced by scattering is given by
	The quantities (5(a) and a(a, a') are random variables because the number of type 1 and type 2 neighbors will vary at each point Ra. In the Bloch limit discussed in the previous section the variation in (5(a) was neglected because it was assumed that since e1r « e2', Ux and U2 are closely the same at points in the overlap region. We cannot expect this to be true in the atomic limit discussed here. The energy width AE produced by scattering is given by
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	and we estimate that LE/2L, the energy width divided by the band width, is of order N2/Ni. Thus if the dilution is not too great the scattering will not affect the shape of the band. However, when N2 « iVj, scattering will become important and we can expect that the shape will be appreciably changed by it.
	and we estimate that LE/2L, the energy width divided by the band width, is of order N2/Ni. Thus if the dilution is not too great the scattering will not affect the shape of the band. However, when N2 « iVj, scattering will become important and we can expect that the shape will be appreciably changed by it.
	and we estimate that LE/2L, the energy width divided by the band width, is of order N2/Ni. Thus if the dilution is not too great the scattering will not affect the shape of the band. However, when N2 « iVj, scattering will become important and we can expect that the shape will be appreciably changed by it.

	The results for the band of the type 2 atoms can be obtained from the previous results by interchanging the subscripts 1 and 2. Thus the ratio of the energy width of a single state pro­duced by scattering divided by the band width is of order N\/N2. In the case where scattering does not appreciably affect the properties of the band of type 1 atoms (N2/Ni « 1), the properties of the band of type 2 atoms is greatly affected by scattering and cannot be deter­mined from the analysis here. This problem is that o
	The results for the band of the type 2 atoms can be obtained from the previous results by interchanging the subscripts 1 and 2. Thus the ratio of the energy width of a single state pro­duced by scattering divided by the band width is of order N\/N2. In the case where scattering does not appreciably affect the properties of the band of type 1 atoms (N2/Ni « 1), the properties of the band of type 2 atoms is greatly affected by scattering and cannot be deter­mined from the analysis here. This problem is that o

	Pseudoatomic Limit
	Pseudoatomic Limit

	Finally we consider another case which formally gives the same results as the atomic limit. The TBA electron wave functions of the type 2 atoms have a smaller radius than the type 1 atoms. To be more precise we assume that ctj2 = a2 l ^ ai ai*d a2 ^ ai* Under these conditions we find, using the same procedure as employed in the atomic limit, that
	Finally we consider another case which formally gives the same results as the atomic limit. The TBA electron wave functions of the type 2 atoms have a smaller radius than the type 1 atoms. To be more precise we assume that ctj2 = a2 l ^ ai ai*d a2 ^ ai* Under these conditions we find, using the same procedure as employed in the atomic limit, that
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	The wave function is assumed to have the same form as given in (33) and Ais assumed to be much less than unity. We see from (44) that Aks is much less than unity if the difference be­tween the energy of the k-state in the type 1 band in the atomic limit (obtained by removing the type 2 atoms without disturbing the type 1 atoms) and e2' is in absolute magnitude much greater than cc12. When this occurs the properties of the alloy are exactly the same as of the type 1 band in the atomic limit.
	The wave function is assumed to have the same form as given in (33) and Ais assumed to be much less than unity. We see from (44) that Aks is much less than unity if the difference be­tween the energy of the k-state in the type 1 band in the atomic limit (obtained by removing the type 2 atoms without disturbing the type 1 atoms) and e2' is in absolute magnitude much greater than cc12. When this occurs the properties of the alloy are exactly the same as of the type 1 band in the atomic limit.
	The wave function is assumed to have the same form as given in (33) and Ais assumed to be much less than unity. We see from (44) that Aks is much less than unity if the difference be­tween the energy of the k-state in the type 1 band in the atomic limit (obtained by removing the type 2 atoms without disturbing the type 1 atoms) and e2' is in absolute magnitude much greater than cc12. When this occurs the properties of the alloy are exactly the same as of the type 1 band in the atomic limit.


	6. Application to Real Metals
	6. Application to Real Metals
	6. Application to Real Metals

	We discuss in this section how the models presented in the previous sections can be applied to real metals. The previous sections considered a model of the band structure of binary alloys in the TBA with s-type electrons. It is possible to extend the analysis to cover the case of ri­bands. At first we neglect hybridization among the d sub-bands. For each spin there are then 5 degenerate atomic ri-states each having approximately equal values of e'. We can proceed with the analysis for each atomic ri-state s
	We discuss in this section how the models presented in the previous sections can be applied to real metals. The previous sections considered a model of the band structure of binary alloys in the TBA with s-type electrons. It is possible to extend the analysis to cover the case of ri­bands. At first we neglect hybridization among the d sub-bands. For each spin there are then 5 degenerate atomic ri-states each having approximately equal values of e'. We can proceed with the analysis for each atomic ri-state s


	6*1* Estimate of Parameters
	6*1* Estimate of Parameters
	6*1* Estimate of Parameters

	As shown in Sections 3 and 4, when the parameter 60 « l the rigid band approximation is valid. For a disordered alloy this statement is true in the sense that the energy spectrum (see equation (19')) and the wave functions (see equation (22)) have a deviation of order 602 and §Q:, respectively, from those of a single constituent metal. The property of this single constituent metal is some average of the properties of the two elements in the alloy. This average depends, among other things on the charging eff
	As shown in Sections 3 and 4, when the parameter 60 « l the rigid band approximation is valid. For a disordered alloy this statement is true in the sense that the energy spectrum (see equation (19')) and the wave functions (see equation (22)) have a deviation of order 602 and §Q:, respectively, from those of a single constituent metal. The property of this single constituent metal is some average of the properties of the two elements in the alloy. This average depends, among other things on the charging eff

	(1) The energy e° has two parts to it. It is composed of an effective Hartree-Fock energy
	(1) The energy e° has two parts to it. It is composed of an effective Hartree-Fock energy

	of the isolated atom plus an additional terra produced by the potentials of the surrounding atoms adding to the isolated atomic potential. It is difficult to determine the effective Hartree- Fock energy of the isolated atom. This is defined as the energy required to remove an electron in the state of interest keeping all the other electron states unchanged. This energy cannot simply be obtained empirically from data on the excited states of atoms because in the real case when an electron is removed, the rem
	of the isolated atom plus an additional terra produced by the potentials of the surrounding atoms adding to the isolated atomic potential. It is difficult to determine the effective Hartree- Fock energy of the isolated atom. This is defined as the energy required to remove an electron in the state of interest keeping all the other electron states unchanged. This energy cannot simply be obtained empirically from data on the excited states of atoms because in the real case when an electron is removed, the rem

	(2) The parameter W is the constant of proportionality between a, the deviation from neutral­ity of the average charge around an atom, and the atomic energy. From the virial theorem the corresponding change in the potential energy is twice as great. The parameter if the s electrons had no screening effect, would have a value of the order e2/rj)f where r$ is the radius of the atomic orbital of a (^-electron. This is about 10 eV. However, most recent workers on the origin of ferromagnetism have agreed that th
	(2) The parameter W is the constant of proportionality between a, the deviation from neutral­ity of the average charge around an atom, and the atomic energy. From the virial theorem the corresponding change in the potential energy is twice as great. The parameter if the s electrons had no screening effect, would have a value of the order e2/rj)f where r$ is the radius of the atomic orbital of a (^-electron. This is about 10 eV. However, most recent workers on the origin of ferromagnetism have agreed that th

	(3) The relationship between Ap and 60 for small 50 is obtained with the aid of the fact that in a full band there is no charging present. When the Fermi energy Ep is above or below the middle of the band the charging effect can be obtained, respectively, by either the nega­tive of the integral Ap(k) of equations (24') and (24") from Ep to the top of tl\e band, or by the integral from the bottom of the band to Ep. When 60 is large, the charging effect is obvious since the electronic states congregate on eit
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	Alloys of Ag and Au with Pd and Pt, respectively, have been used to obtain information on the density of states curve [6]. Although this is an alloy between a transition metal and a non­transition metal we can still apply our analysis to this case. The experimental and theoretical evidence is that the d-bands in Ag and Au are appreciably narrower than in the transition metals. The states near the Fermi level in the alloys under discussion satisfy the pseudoatomic limit discussed at the end of Section 5. The
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	When a transition metal is alloyed with a non-transition metal the situation is approximated by either the atomic limit or pseudoatomic limit discussed in Section 5. In the case of the noble metals just described the pseudoatomic limit was appropriate. In the case of Al, say, the atomic limit is more appropriate since the energy of any state that could be treated by the TEA is greatly removed from the energy of the cf-bands in the transition metals. In any case, the result on the cf-band of the alloy is the
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	In this paper a theory of the electronic structure of alloys in the TBA has been presented. The problem of an ordered 50%-50% alloy is solved exactly in the TBA. Then are considered the cases of disordered alloys of arbitrary composition and in the limits where '60 « l, the Bloch limit, 5„ » i, the atomic limit, and the pseudoatomic limit where the band width of the pure metal of one constituent is much less than that of the other. Here 6„ is the ratio between the difference of the atomic energies of the at
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	Scattering effects in a band become important as the number of other atoms becomes of the order of the number of atoms that comprise the band. In the transition region between the Bloch limit and the atomic limit the shape of the density of states of the alloy is greatly modified from the pure metal case and measurements on the alloy cannot directly give information on the pure metal.
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	The important characteristic of the theory is that there are differing amounts of charge on the two types of atom. In the Bloch limit the difference in charge is of order 80, while in the atomic and pseudoatomic limits practically all of the charge concentrates on one type of atom or the other. Except when the band or bands are completely full, there will be a difference in charge between the two constituents. This charging effect will change the relative atomic energies of the two constituents and their ov
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	The magnitude of the charging effects and the value of 80 have to be determined in a self- consistent manner. The values of e21' and A and thus 50 depend on the charging effects while the difference of charge deposited on each atom depends on 50 and the position of the Fermi level. When the Fermi level is near the top of the band of a Bloch limit alloy, a larger 60 is required for a given net charge difference than when the Fermi level is near the middle of the band or bands. The middle of the band or bands
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	When many body effects are neglected, the theory justifies the use of the rigid band model to calculate from specific heat measurements on PdAg and AuPt alloys the density of states curve for the d-band of the pure Pd and Pt. This is justified as long as the concentration of Ag and Au is not too great. At large concentrations of Ag and Au scattering effects will be important and are probably the cause of the tail found in the density of states curves at the top of the d-band in these alloys. Also, the distr
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	An important parameter that enters the theory is W which is a measure of how much charging changes the value of e\ This parameter is closely related to the Coulomb effects envisaged by Wolff [7], Hubbard [5], Anderson [8], Van Vleck [9], and Kanamori [lo] for problems different from the one considered here. The calculation of Vi is a difficult many body problem which must include screening effects by the other d-electrons and the surrounding s-electrons in a strong atomic potential.
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	An important simplification made in this paper is the assumption that the total width of the d-band in all of the transition metals is approximately the same. If this is far from the truth then an important error has been introduced. As an example consider the case of two metals, 1 and 2. Metal 1 in the pure state has a d-band with ten times the width of that for metal 2.
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	Also let e1' = e2 ' in a 50%-50% alloy of the two metals. We know from our analysis of the pseudoatomic limit in Section 5 that, neglecting scattering effects, the total width of the band in the alloy will be half that of pure metal 1, and states near the top of the band will be depositing essentially all of their charge on the 1 atoms. When the band is completely full all atoms have the same charge, 10 d-electrons. If the Fermi level is near the top of the band then the 2 atoms still practically have a cha
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	A sketch of the charging effect of a electronic state as a function of energy for a disordered binary alloy where the two constituents have quite different band widths in the pure state. It is assumed that = e2/ and type 2 atoms have the narrower bandwidth. The relative number of electrons deposited on type 1 atoms is shown by the curve marked Ap^ and correspondingly for the
	A sketch of the charging effect of a electronic state as a function of energy for a disordered binary alloy where the two constituents have quite different band widths in the pure state. It is assumed that = e2/ and type 2 atoms have the narrower bandwidth. The relative number of electrons deposited on type 1 atoms is shown by the curve marked Ap^ and correspondingly for the
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	The density of states curve for the same alloy as shown in Fig. 4a. The dashed curves are the density of states curves of the pure metals contracted by a factor of 2
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	of distortion found in actual alloys will qualitatively change anything. However, quantita­tively the overlap integrals and the potentials seen by an electron will be affected by dis­tortion, which should also quantitatively effect the expressions for Ap(fe) and E(k).
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	Finally, for the transition metal alloys it was assumed that the number of s-electrons per atom in the alloy is just the average of those in the two pure metals. The number of s-electrons in the vicinity of an atom was allowed to vary in the alloy in order to give screening but no net transfer of electrons between the s- and d-bands was allowed to occur. Probably not much transfer between the two bands does occur in alloys of transition metals but this is un­certain. It is unclear if any important qualitati
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	Recently Beeby [ll] has developed a theory of alloys in the TBA using total scattering matrices and elements of Green's function techniques. It is interesting to compare his theory with the one developed here by quite different techniques. He predicts a minimum in the middle of the band in the Block limit which we show does not really exist. Beeby does not include the very important charging effects because it is difficult by his method to determine the dis­tribution of the electrons in the alloy. He does, 
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