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ADIABATIC passage  through an almost degenerate intermediate state is a common experimental 

technique. It is based on the Ehrenfest principle which states that if the external conditions 

for a system are changed  slowly enough, the change of the system can be predicted by computing 

quasistatically the modification of its initial quantum state. The Ehrenfest principle is not 

a law of nature because the system has an alternate path it can follow, which might appropri-

ately be termed 'inertial*. This path is favored by a rapid change of the external variables. 

Among the two paths, the adiabatic one has a privileged position. Thus, it has been shown 

recently that if the external change is measured by a "slowness parameter" inversely pro-

portional to the time taken to effect the change then the Ehrenfest principle is valid to all 

orders in this para meter [l]. The following lines are to derive a rigorous formula for the 

probability  that the adiabatic path is not followed in the simple case of the near crossing of 

two quantum levels.

The general problem of two levels crossing in time contains several parameters some of which 

are irrelevant. After they are disposed of we are left with the two essential parameters of the 

problem, namely, the sweeping rate which energy difference of the two levels changes when we are 
not near to the crossing, and the minimum valu this difference takes at the time of closest 
approach. These parameters are shown in Pig. 1 in an energy time plot. The adiabatic paths of the 

systems are the two branches of the hyperbola, and the inertial paths are the asymptotes. If we 

treat the Hamiltonian as diagonal with respect to these inertial paths, the adiabatic tendency 

appears as an off-diagonal splitting factor, thus:

(1)

where r and s have the meanings discussed above. We now have to solve the Schrtfdinger equation

(2a)

or

(2b)

(2c)
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FIGURE 1

Elimination of b from this system yields

(3)

This is the equation for a parabolic cylinder function, a special type of confluent hypergeo- 

metric function. Its asymptotics is completely understood [2]. In terms of Whittaker functions 
equation (3) has the two solutions

(4a)

(4b)

Let us now assume that positive t points into the past and that in this remote past the system 
was with certainty in the state characterized by a. We must then write down the asymptotic ex-
pressions for the solutions (4) which are, with a modification of the factor

(5a)

(5b)

The solution (5a) corresponds to a situation where the probability is finite that state a was 
occupied in the remote past. In solution (5b) this same probability is zero. One can check from 

(2b) that the companion probabilities for the state b are inverted, being finite for the second



solution and zero for the first. If we assume that we start out with the system in state a, we 

must adopt the solutions ax( t ) and its companion bl ( t ) and derive from analysis the value of 
cii(t) in the remote future, that is t = - °°.

One may verify that the asymptotic expansion (5a) of the function (4a) is valid in the first, 
fourth and third quadrant of the complex plane, including the limiting lines. It is therefore 
also valid for negative t provided we introduce the interpretation
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(6)

Inserting this into (5a) we get for the amplitude a( t ) in the remote future

(7)

The last term gives the reduction in amplitude along the inertial path (asymptote of Fig. 1). 

Its square measures therefore the probability that the Ehrenfest principle is violated. This 

probability s thus

(8)

Formula (8) is incidentally an example for the general theorems discussed in reference [l]. When 
the 'slowness parameter' r is small, the probability  also small in such a way as to be smaller 
asymptotically than any finite power of r. The limiting case of fast passage, that is large r, may 

be derived by simpler methods [3].
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