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Macroscopic quantum properties of helium-4, one of the simplest and oldest elements in the universe,
continue to puzzle and amaze scientists. Supertransport in solid helium-4 is the most elusive and
controversial conundrum of all.
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Among known states of natural matter, supersolids are
often regarded as counterintuitive in the extreme. For
more than 50 years, a number of authors with different
perspectives such as Gross [1], Andreev and Lifshitz [2],
Thouless [3], and Chester [4], have contemplated this ex-
otic state. Thought to be the coexistence of superfluid
and crystalline orders in the same single-component ma-
terial, supersolids still attract broad interest. The orig-
inal predictions were made for perfect quantum crystals
in free space, with the most promising candidate be-
ing solid helium-4 (4He), which is known to have the
largest amplitude of zero-point motion of atoms in the
ground state. Such motion was presumed to create a
stable (repulsive) gas of zero-point vacancies undergoing
Bose-Einstein condensation at low temperature. Thus
the perfect crystal would simultaneously be a solid and
a superfluid. This simple and attractive idea sparked a
wide experimental search for supersolidity in solid 4He,
which, however, yielded no positive results. Recent in-
terest in the supersolid state of matter was reignited af-
ter observations of a signal consistent with supersolidity
in the torsional oscillator experiment performed by Kim
and Chan at Penn State [5] in 2004. In what follows, we
will survey both the recent experimental findings and the
theoretical landscape in supersolid research.

In terms of theory and calculations, the problem of su-
persolidity in free space for solids with one or two atoms
in the unit cell is not amenable to any existing analytical
scheme. This is the result of strong competition between
the two orders—superfluid and crystalline—at the inter-
atomic distance. In fact, the crystalline lattice is free to
adjust its period continuously in order to eliminate va-
cancies and/or interstitials introduced out of equilibrium.
As of today, there is no clear understanding of what is
required to obtain a stable supersolid state in free space
with few atoms in the unit cell, and this is one interesting
research direction to explore.

Widespread efforts are also aimed at finding simpli-
fied models of supersolids. Lattice supersolids are quite
well studied nowadays [6]; in such systems the lattice
is imposed externally, and accordingly, the solid period

is forced to take a discrete set of values, i.e., it cannot
change continuously. Crystalline order in such lattice
models breaks the discrete translation invariance of the
external lattice potential and is typically “pinned” to the
lattice, as shown in Fig. 1. As a result, excitations of
such order cost finite energy—as opposed to a solid in
free space. The superfluid component can be introduced
by doping the solid, i.e., by adding (removing) atoms to
produce particle (hole) excitations that, if stable against
phase separation—which is always an option—Bose con-
dense. In many respects, this picture is similar to that of
the so-called doped Mott insulator. In such an insulator,
the number of particles is exactly equal to the number
of the lattice sites. Should the onsite repulsion between
particles significantly exceed the kinetic energy loss due
to localization, particles become localized—one at each
site. If, however, the balance between particles and sites
is violated, the insulator becomes a superfluid. Most im-
portantly, pinned solid structures lack the ability to ad-
just their period continuously to make it commensurate
with the particle number and eliminate the superfluid
component (shown by open circles in Fig. 1). It seems
that most known lattice supersolids are of this kind, with
a notable exception presented recently in Ref. [7].
At the other end of the problem we find Bose-Einstein

condensates with the spatial modulation of density in-
duced by interparticle interactions, as first envisioned
by Gross [1] (see also Ref. [8]). These supersolids are
best described within the classical field approach, relying
on the mean-field description of bosons in terms of the
so-called Gross-Pitaevskii equation, where the quantum
bosonic operator is replaced by a classical field. They
emerge in the special limit of weak interatomic potentials
and a large (infinite in the classical-field limit) number
of particles in the unit cell. A nontrivial situation occurs
when the spatial period becomes comparable with the
interparticle distance. In this regime, the discreteness
of particle number becomes important and the Gross-
Pitaevskii approach fails when this number approaches
unity.
One may also think of tailoring a two-body potential
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FIG. 1: An example of the lattice supersolid: the checker-
board order formed by particles (filled circles) in the under-
lying square lattice coexists with the superfluidity of mobile
vacancies (open circles). (APS/A. B. Kuklov et al.)

to extend the region of stability for the supersolid phase
in free space, starting from the classical field perspec-
tive. This idea was realized by Cinti et al. and Sac-
cani et al.[9], when a microscopic model featuring the
supersolid phase (with the number of particles per self-
organized unit cell being around 10) was constructed.
The potential consists of a generic repulsive part, satu-
rating to a constant below some radius R0. The micro-
scopic structure of the supersolid state is that of liquid
droplets (each of a radius ∼ R0) arranged in a regular
solidlike structure. Since particles in each droplet are in
a liquid state, the overall phase coherence is achieved by
means of Josephson coupling between the droplets. Since
the interatomic distance is much smaller than a typical
wavelength of the density modulations, the discreetness
of the particle number in the unit cell becomes irrelevant
and the resulting supersolid can be described within the
classical field approach, that is, following from the solu-
tions of the mean-field equations. These key features are
depicted in Fig. 2, which shows the shapes of the interac-
tion potentials used in Refs. [8, 9], as well as the resulting
density modulation—the crystalline-type order. It would
be interesting to establish for some reference cases where
the boundary between the classical and quantum worlds
stands in terms of the number of particles per unit cell.
At the moment it seems very unlikely, though not im-
probable, that a supersolid with one atom per unit cell
exists for a two-body interaction potential of a standard
shape [10]. Similar classical field considerations apply to
lattice models in the limit of large occupation numbers
and weak interactions (on-site and nearest-neighbor), en-
suring large supersolid regions in the parameter space

FIG. 2: Two-body interaction potentials (the upper
panel)—Vsoftcore(r)[9] and Vroton-type(r)[8]—leading to a su-
persolid characterized by spatial density modulations (shown
in the lower panel) significantly larger than the interparti-
cle distance. Vertical axes—arbitrary units. Horizontal axes
measure distances in units of the interparticle separation.
(APS/A. B. Kuklov et al.)

[11]. Remarkably, the supersolid behavior in such lattice
models survives even at filling factors close to 1/2[7].
Although not yet observed experimentally or numeri-

cally, the supersolid state is guaranteed to exist in two-
dimensional dipolar systems. This is an immediate con-
sequence of the theorem that first-order transitions that
involve a density change, such as liquid-solid ones, are
forbidden due to log-divergent negative terms in the sur-
face tension (see, e.g., Ref. [12]). It is thus guaranteed
that on approach to the solid phase from the superfluid
side of the phase diagram (by changing any control pa-
rameter) one can construct a state containing large solid
domains that is lower in energy than the homogeneous
liquid. At T = 0, such domains will form a secondary lat-
tice superstructure leading to the global supersolid phase
(in fact, a whole set of supersolid phases [12]). The mi-
croscopic picture of this phenomenon, however, was never
quantified by measuring the surface tension parameters.

The experimental situation in
solid 4He

Apart from general fundamental questions, the main
puzzle is to understand what happens in 4He, where both
orders are in strong competition with each other. Ini-
tial attempts to detect supersolid properties [13] have
yielded essentially nothing, including the new results in
solids subject to pressure gradients [14]. However, follow-
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ing Leggett’s torsion oscillator (TO) proposal [15] and
hints of anomalous behavior found by Goodkind in ul-
trasound measurements of hexagonal-close-packed (hcp)
4He at temperatures T ≈ 0.2 K[16], in 2004 Kim and
Chan discovered a change in the TO period. They inter-
preted it as the signature of the nonclassical rotational
inertia (NCRI) of 4He atoms in the solid state [5]. Since
then, small TO period reduction by a few nanoseconds
(for a typical resonant period of ∼ 1 millisecond) be-
low T ≈ 0.2 K has been reproduced by many groups all
around the world. Specific heat measurements also show
an anomaly (a wide and weak peak) in the same tem-
perature range [17]. It is also worth mentioning quite
unique setups detecting the TO effect under overall dc
rotation [18]. Some observed features, however, (such
as low-T dissipation) are still controversial and require
further experimental investigation.

There are numerous difficulties with the standard su-
persolid interpretation of the period decrease. The most
striking ones are as follows:

(i) The NCRI fraction (NCRIF) is very sensitive to
the TO cell design: the NCRIF of ∼ 1%[5] originally de-
tected in a composite cell was found either to drop by
∼ 100 times in a much more rigid cell [19] or increase by
a factor of 20 in a narrow annulus space [20]. Polycrys-
talline samples grown by the blocked capillary technique
may have both larger and smaller NCRIF than samples
grown at constant temperature from the superfluid, not
to mention large annealing effects [20].

(ii) The potential flow tests (verifying that NCRIF is
sensitive to changes in the topology of the flow pattern)
remain controversial [21].

(iii) There is no clear evidence of a phase transition
yet. Typically, it is a crossover taking place within the
temperature interval 0.1 K < T < 0.25 K, which is barely
changing—despite enormous variations in the NCRIF by
several orders of magnitude (!)—from one TO setup to
the next. This is not expected even in strongly disordered
3D superfluids.

(iv) An enigmatic feature, which is impossible to rec-
oncile with the uniform condensation of vacancies in a 3D
sample, is a dissipation peak centered at the temperature
of the strongest variation of NCRIF [5]. This peak shows
up as a dip in the amplitude of the resonant oscillations
vs temperature.

(v) The NCRI suppression, occurring when the rim
velocity v oscillates at an amplitude as small as ν ∼
10–100 µ/s, cannot be accounted for by any known mech-
anism of lowering the superfluid critical velocity from a
typical value of a few m/s. More importantly, the ef-
fect of velocity does not seem to be of a sharp threshold
character, with a pronounced critical value νc. Rather,
it is found to be equivalent, in a certain sense, to tem-
perature [22]: the NCRIF depends on a single variable
ξ ∼ (T/T∗)ξ + (ν/ν∗)λ, with T∗, ν∗, ξ > 0, λ > 0,
λ/ξ ≈ 0.43 being some parameters. Such collapse of
the data into a single master curve, in particular, implies
that vc must be an increasing function of temperature:

νc ∼ Tξ/λ , with ξ/λ ≈ 2.3. However, this feature has
been recently questioned by Kojima whose data suggests
that νc first significantly decreases with T and then sat-
urates to a constant value [23].
(vi) At low temperature Th < 50–70 mK, the NCRIF

data demonstrate hysteretic behavior as a function of
velocity [24]. To some extent, a summary of this feature
and of the previous one can be presented in the form of
a “phase diagram” in the (ν , T ) plane [25].
(vii) Extremely small concentrations of 3He impurities

(as small as 10 ppb–1 ppm) strongly affect the onset tem-
perature and the NCRIF amplitude [26].
The phenomena described above (and also the results

of first-principles simulations discussed below) unam-
biguously indicate that NCRI is induced by structural
disorder. Nevertheless, a consistent microscopic picture
behind the experimental findings is still missing. Being
the hallmark signature of the superfluid behavior, sensi-
tivity to the sample topology has to be settled beyond
reasonable doubt in future experiments. The current re-
search trend is to design new experiments to attack the
problem from different angles; on the theoretical side, the
challenge is to understand the mechanisms leading to the
observed striking phenomena. Below we review some of
the new and existing directions.
A strong indication of structural disorder comes from

NMR experiments [27] where a large fraction of 3He im-
purities (about 100 ppm) is trapped by some lattice de-
fects. If these defects are dislocations, then their density
is at least 4 orders of magnitude larger than the tradi-
tionally accepted values in the bulk. Most recent NMR
measurements [28] at low 3He concentrations have found
a peak in T1 relaxation time (a measure of how fast the
magnetization along the applied magnetic field relaxes
to its equilibrium value) at temperatures where the TO
anomaly, specific heat anomaly [17], and the maximum of
dissipation are observed [5]. This peak [28] might be an
indication of some phase transformation occurring within
the defect structure.
An unexpected discovery by Day and Beamish [29] was

that the shear modulus µ(T ) of hcp 4He hardens below
T0 ∼ 0.15 K at frequencies 2–2000 Hz—exactly in the
range of the TO anomaly. Such a hardening in solid 4He
was observed much earlier by Tsymbalenko [30] at sig-
nificantly larger temperatures and frequencies. At the
moment it is not clear if these two anomalies are due
to one and the same mechanism. Originally, the low-
temperature hardening effect was observed by Friedel [31]
in pure aluminum more than 50 years ago. Amazingly,
many properties of µ(T ) and NCRIF regarding temper-
ature and rim velocity dependencies, the responses to
3He impurities, or the hysteretic behavior [24, 29], are
similar, if not identical, to each other. The hardening
of 4He can be related to pinning of dislocations by 3He
impurities [29] as well as to self-trapping [32] in the pe-
riodic potential provided by the surrounding crystalline
lattice—the so-called Peierls potential. Within the linear
response regime, the shear modulus increase leads to the
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TO period decrease at frequencies well below acoustic
resonances; i.e., there is a possibility for a purely “classi-
cal” interpretation of the TO anomaly. This explanation,
however, does not pass the quantitative test: numerical
evaluation of the TO period shift due to a 20% change
in µ shows that it is barely a few percent of the observed
effect [33]. The other difficulty is that similar period
shifts, including hysteresis, small critical velocities, and
the effect of small concentrations of 3He are observed in
porous materials (Vycor [5], porous gold [34] and Gel-
sil [35]) where dislocations, whatever they are in such
highly disordered medium, should be strongly pinned by
pore walls. Finally, critical stresses for suppression of
the shear modulus effect are almost 2 orders of magnitude
larger than stresses generated by ac velocities ∼ 10 µm/s
influencing the NCRI effect [36].

The “ordinary glass” approach [37] involves proposing
a phenomenological model for the generalized response
function to describe period shifts using several fitting pa-
rameters and functions. The goal of this phenomenology
is to demonstrate that the experimentally observed re-
sponse is consistent with zero superfluid fraction and thus
can be of nonsuperfluid origin. This approach, however,
does not explain the microscopic origins of the “ordinary
glassiness,” which is known not to exist (at least, on the
classical level) in solids made of simple atomic elements,
nor does it explain the physics behind model parameters
and their temperature dependencies. In this sense the or-
dinary glass framework is as enigmatic as the supersolid
interpretation itself.

Recent work by Reppy [38] posed serious experimental
objections to the idea of a superfluid origin of the pe-
riod shift. In this experiment, the change of the period
of oscillation—as a function of deliberately introduced
disorder—was observed at high (∼ 1 K), not low, tem-
peratures, while in the T → 0 limit the oscillation peri-
ods of samples with different amounts of disorder were
approaching one and the same value. Similar behavior
was observed upon annealing—period changes occurred
at high T . Clearly, experiments of the kind carried out
by Reppy (or at least the annealing part) should be re-
peated by other groups to settle the issue. The most re-
cent results on the triple-frequency TO [39] have clearly
demonstrated that the NCRIF can be extremely sensi-
tive to the mechanical properties depending on the TO
design. The possibility of the nonsuperfluid origin of the
NCRI was also reported by Eyal et al.[40], where a strong
NCRI effect has been seen at temperatures as high as
1.3− 1.9 K—well above the 0.2 K anomaly [5].
Given the rather unknown character of structural dis-

order in solid 4He, it is desirable to study behavior of al-
most ideal crystals. Working in this direction, the group
at École Normale Supérieure in Paris is now growing es-
sentially monocrystalline 4He samples, free from 3He im-
purities, and is performing ultrasound [41] and TO ex-
periments on them [42]. One of the striking effects found
recently is the strong low-T shear modulus softening ef-
fect [41]—just the opposite to the observation of Day

and Beamish. Such softening is metastable—it disap-
pears upon the thermal cycling. The nature of this effect
requires further study.

Observation of direct superflow
through 4He

A unique experimental setup for studying the dc flow
response of solid helium was created by Ray and Hallock
[43]. In these experiments, atoms of 4He can be injected
into solid 4He from the superfluid reservoirs through two
Vycor rods. A schematic of the setup is shown in Fig.
3, the so-called syringe regime, when both electrodes are
utilized for injecting liquid helium into the solid. In flow
experiments one looks at the system response when pres-
sure/temperature is changed in one reservoir by moni-
toring pressure/temperature in the second reservoir. The
syringe regime is used for studying the so-called isochoric
compressibility, that is, the variation of the density of
atoms—injected one-by-one into a constant-volume solid
phase—in response to varying the outside chemical po-
tential. Such compressibility has been found to be com-
parable to that of liquid 4He, despite the fact that in an
ideal solid it is essentially zero. As suggested by Söyler
et al.[44], crystal growth is possible by the mechanism of
dislocation superclimb—edge dislocations add atoms to
atomic layers provided there is superfluid atomic trans-
port along their cores (see Fig. 3). It is important
that the giant isochoric compressibility regime has always
been observed together with the superflow through the
solid. Furthermore, while the solid may contain frozen-
in pressure gradients of about 0.1 bar, the accumulation
of matter under the injection occurs in a uniform man-
ner—the pressure rises in unison at the opposite ends
of the sample. This feature is clearly inconsistent with
any type of classical plastic behavior, which results in
time-dependent pressure gradients. At the same time,
the picture of a percolating network of dislocations with
superfluid cores delivering matter independently of the
pressure gradients is consistent with such an observation.

Another important piece of evidence for superfluidity
in the experiment [43] is the observed regime of supercrit-
ical flow—linear dependence on time of the pressure dif-
ference between the two superfluid reservoirs. The value
of the onset temperature T ≈ 0.5 K is about 4 times
smaller than the λ temperature of liquid 4He. This ex-
cludes the interpretation that the flow proceeds along sta-
ble mesoscopic liquid channels, which are known to exist
in polycrystalline samples at the melting curve [45]. The
strongest evidence against the liquid-channel picture is a
striking and dramatic drop of the critical dc flux taking
place at temperatures around 70 mK, with a surprising
subsequent revival at temperatures around 60 mK[40].
This phenomenon appears to be the key to understand-
ing properties of superfluid structural defects in solid He,
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FIG. 3: Schematic diagram for the Ray and Hallock setup
[43] depicting the superclimb effect [44]. The main rectangle
features solid 4He, containing an edge dislocation with the
superfluid core shown as the thick blue line. Dashed lines
outline the Vycor “electrodes” (or, more precisely, “helium-
rodes”) protruding from the liquid 4He reservoirs (rectangles
atop of the Vycor) into the solid. The “electrodes” feed super-
fluid 4He (shown in blue) from the reservoirs to the disloca-
tion core. As the level of superfluid in the reservoirs decreases
(shown by the grey arrows), the core climbs upward (in the
direction of the red arrow) which results in building up the
extra plane of atoms shown by red hatching. (APS/A. B.
Kuklov et al.)

and definitely deserves more attention.
Given the extremely controversial character of the TO

data in terms of their superfluid interpretation, the nat-
ural question to ask is whether phenomena revealed by
Ray and Hallock have anything to do with the TO behav-
ior. Formally, the results by Ray and Hallock do imply
that there should be some mass decoupling correspond-
ing to the superfluid fraction. However, the estimates of
the superfluid fraction they observed [43] show that it is
too small to be resolved in a TO experiment. An intrigu-
ing connection might be through yet-to-be-understood
quantum physics of structural defects.

Theoretical understanding of
solid 4He

Theorists have also been hard at work shedding light
on what is and what is not possible in bosonic continuous-
space solids with the typical interparticle interaction
U(r), and in particular, in the hcp crystal of 4He. Let
us consider an interaction potential that does not fa-
vor vacancies or interstitials in the classical, not quan-
tum, crystal at zero T (in fact, we are not aware of any
counterexample) and ask whether quantum mechanics

FIG. 4: The representation of supersolid in terms of parti-
cle (upper panel) or vacancy (lower panel) world lines, with
the vertical and horizontal directions standing for the imagi-
nary time and space, respectively. The world lines are “coarse
grained” to involve only two discrete elements—sitting on a
site and intersite hopping. Periodic boundary conditions are
used along both directions. Upper panel: dotted lines mark
the most probable particle positions at (seven) sites of the
crystalline lattice. Solid blue lines show world lines of (five)
particles, with (two) empty sites at any instance of time fea-
turing (two) vacancies. Lower panel: world lines of the (two)
vacancies shown by solid red lines. These are obtained from
the upper panel configuration by (i) converting the vertical
solid blue lines into the dotted blue ones, (ii) replacing the
dotted red lines by the solid red lines, (iii) recoloring the hor-
izontal solid segments from blue to red and inverting the di-
rection of motion. (APS/A. B. Kuklov et al.)

can change this situation and induce zero-point vacan-
cies or interstitials (to become superfluid according to
the Andreev-Lifshitz scenario [2]). Remember that Feyn-
man’s path integral representation of the equilibrium
statistics of bosons in d dimensions establishes an exact
mapping onto statistics of classical (d+ 1)-dimensional
“polymers” (particle world lines). With the celebrated
Pollock and Ceperley formula this yields an explicit rela-
tion between the variation of polymer windings and su-
perfluid response. Thus supersolidity can be pictured
(see Fig. 4) as a disordered state of world lines of vacan-
cies (interstitials) among relatively straight and ordered
world lines of the rest of the bosons.
Within the path integral representation one can per-

form first-principles simulations of systems consisting of
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thousands of 4He atoms. This representation is also a
powerful tool for general qualitative analysis. Using the
language of path integrals, Prokof’ev and Svistunov have
proven a theorem (see Ref. [26] in Ref. [46]) that no su-
persolid is possible without such zero-point defects. The
crucial control parameter ξins = mUR2

0/h2, where m de-
notes the particle mass, and U and R0 are the character-
istic values of the interaction potential and interparticle
distance, respectively. This parameter controls the ra-
tio between the potential and zero-point kinetic energy
terms for vacancy/interstitial world lines. Large ξins en-
sures that no zero-point vacancies (or interstitials) can be
induced. In other words, for large ξins the crystal adjusts
its volume so that no zero-point defects—either vacancies
or interstitials—are present in the ground state. Further-
more, energy gaps for their creation in pairs are large (cf.
the discussion presented by Andreev and Lifschitz in Ref.
[2]), and thus the ground state is insulating according to
the above mentioned theorem.

Reliable first principles Monte Carlo simulations al-
low us to explore basic properties of ideal hcp crystals,
as well as point and extended defects embedded in it.
These simulations have demonstrated that a perfect hcp
crystal of 4He is an insulator with the gap of about 13 K
for vacancies and 23 K for interstitials (see Refs. [32,33]
in Ref. [46]). Furthermore, it has been numerically ob-
served that injection of vacancies into a perfect sample
leads to their clustering (see Ref. [38] in Ref. [46]) into
Frank’s dislocation loops (see Ref. [31]) in the basal
plane (or phase separation at the melting curve). These
results invalidate the Andreev-Lifshitz-Thouless-Chester
(ALTC) proposal.

Having argued against the ALTC supersolid, we stress
that the hcp solid 4He is likely to support supersolidity
induced by a network of superfluid structural topologi-
cal defects. Ab initio Monte Carlo simulations have re-
vealed that some grain boundaries [47] and dislocations
[44, 48] support superflow. More than two decades ago,
Shevchenko predicted very unusual dynamical properties
of a network of superfluid dislocations [49]—large tem-
perature range where at extremely low frequencies the
behavior is normal, while at frequencies relevant to the
experiment the response is superfluid. In the macroscopic
limit, this microscopic model realizes a state filled with
long-lived circulating persistent currents (cf. the “vortex
fluid” model of Anderson [50] and the interpretation of
the TO data in terms of such a fluid by Penzev et al.[51]).
The normal response of the Shevchenko state is controlled
by the rate of phase-slip events, which are processes by
which the superflow dissipates its energy. As a result,
the flow can be characterized by frequency-dependent
viscosity (significantly suppressed at times shorter than
a typical phase-slip time). The thermodynamic super-
fluid transition sets in at a temperature Tc ≈ T∗/L,
where L stands for a typical length of free dislocation
segments in units of its width (of the order of the lattice
spacing) and T∗ ∼ 1 K is the temperature of the super-
fluid transition in liquid 4He. Thus, if the specific heat

anomaly around 50–100 mK[17] is due to a thermody-
namic transition into the superfluid state of the disloca-
tion network, a typical length of the dislocation segments
must be only 50–100 angstroms, which corresponds to
an extremely large density of dislocations—in the range
1011–1013 cm−2—that may require special growth con-
ditions, with additional deformations produced akin to
the setup [52]. By the same token, for typical densities
of dislocations 106–109 cm−2, the true thermodynamic
transition may never be observed unless temperatures
are lowered below 0.1 mK. It is important to note that,
while Tc is strongly dependent on dislocation density, the
onset temperature of superfluid-type behavior, T0, is de-
termined by local phase-slip rates and, therefore, is inde-
pendent of L.
There are strong reasons to believe that the effect

of anomalous isochoric compressibility observed by Ray
and Hallock points to the dislocation network scenario
of supersolidity. Söyler et al.[44] argued that the natu-
ral framework for the giant isochoric compressibility is
the climb of (rough) edge dislocations supported by the
superfluidity of their cores as it requires mass transport
in the crystal. Most recently, it was noted [53] that the
dip in the flow rate [54] may be due to the dislocation
roughening induced by the frozen internal stresses. Su-
perclimb is one of the qualitatively new effects in the
emerging subfield of metallurgical behavior induced by
quantum phenomena—“quantum metallurgy,” as called
by A. Dorsey. It provides strong evidence that superso-
lidity of structural defects and metallurgical behavior of
solid 4He are closely interconnected and the setup of Ray
and Hallock [43] is highly promising for studying this new
physics.
Solid 4He may also exist in the metastable superglass

state observed in Monte Carlo simulations of quenched
liquid 4He (see Ref. [32] in Ref. [46]). This state is char-
acterized by the absence of any long-range structural or-
der and superfluid fractions as large as ten percent. It
is, however, unlikely that this phase can form under the
experimental conditions of relatively slow cooling in TO.
A recent experiment [52] challenges this view and sug-
gests that bosonic 4He, as opposed to fermionic 3He, can
form stable glass or dense dislocation network at low T .
It has been observed that inducing structural disorder by
external stress in solid 4He leads to the ∼ T 2 contribu-
tion to pressure. No such effect has been seen in samples
of solid 3He. This contribution is consistent with linear
specific heat due to two-level systems in glasses and/or
dislocations.

New challenges

Clearly, more measurements are needed. In our opin-
ion, in order of priority, it is crucial to measure the iso-
choric compressibility χ(T ,ω) and the critical superflow
rate R(T ,ω) as functions of temperature T , frequency ω,
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and 3He concentration. The superclimb effect is expected
to be suppressed below a temperature Tr, determining
dislocation roughening [44]. Such suppression must lead
to reduced χ(T ,ω) and enhanced R(T ,ω). We note that
R(T ,ω) and χ(T ,ω) are sensitive to the nature of the
Shevchenko state, that is, to the phase-slip rate. Such
dependencies will provide valuable information for con-
structing theoretical models of the network where purely
superfluid dynamics is coupled to climbing and gliding
motion of structural defects. One possible structure of
such dynamical network is shown in Fig. 5. Another im-
portant aspect is understanding the nature of the dip in
the flow rate at low temperature [54] and, in particular,
its shape and position as a function of 3He concentration
(see the proposal in Ref. [53]). The “smoking gun” ev-
idence for supersolid behavior would be the observation
of the persistent currents.

The Ray and Hallock setup can shed light on the funda-
mental question: Why was there no flow observed upon
applying mechanical pressure to the solid in a number
of experiments [13, 14]? In this regard we note that the
syringe effect [43] immediately implies the possibility of
reversing it, i.e., creating a flow of matter from the solid
to a reservoir (via a super link) upon applying pressure
to the solid. To what extent the very large aspect ratio
(length/width∼ 100–400) of the capillaries and, possibly,
the crystal growth conditions in the setups [13, 14] are
relevant to the answer remains to be seen. Interestingly,
Ray and Hallock have observed that the syringe effect
does not take place if the crystal is grown by injecting
atoms into the superfluid at sufficiently low temperature
[43].

The “conductance through solid” measurements can
be helpful in resolving yet another puzzle, namely, the
close similarity between all TO features observed in crys-
talline 4He and solid 4He confined in Vycor [5] and other
nanopore materials [34]. The key question is whether or
not there are differences in R(T ,ω) and χ(T ,ω) in both
media. At this point it is instructive to recall the history
of discovering linear topological defects in solids—the dis-
locations and disclinations. This discovery was made
by Vito Volterra long before the crystalline structure
of solids had been seen [55]. In fact, the only require-
ment for having a dislocation characterized by typical
long-range stresses around the core is that a medium can
sustain shear stresses up to some threshold. Thus, while
crystallinity introduces exact quantization of the Burgers
vector and related topological protection of the defect,
such exactness is not required for characterizing dislo-
cations as linear concentrators of stresses. Dislocations
introduced at this level of description could explain the
similarity between TO responses of crystalline 4He and
strongly disordered solid 4He in Vycor.

FIG. 5: The structure of the percolating Shevchenko net-
work of superfluid dislocations [49] can, in principle, be very
complicated (see top panel—a “plumber’s nightmare”). The
schematic in the bottom panel shows one of the simplest pos-
sibilities: Vertical lines represent superfluid screw dislocations
[48] linked to the superfluid and superclimbing edge disloca-
tions [44] forming prismatic loops (shown by elliptical shapes).
The inside of such loops are the (insulating) basal plane fcc
faults. The links between the dislocations are shown as blue
solid dots. The percolation of the superflow occurs in the ver-
tical (along the hcp axis) as well as in the horizontal (along
the basal plane) directions. One such path is shown by the
dotted green line. ((Top) iStockphoto.com/ilbusca; (Bottom)
APS/A. B. Kuklov et al.)
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