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Viewpoint
Staying or going? Chirality decides!

Edward McCann

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

Published November 23, 2009

Due to unusual spinlike properties, electrons in graphene—despite scattering—exhibit a small increase in their

conductivity.
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When an electronic device is cooled to low temper-
ature, the wavelike nature of charge carriers becomes
detectable through quantum interference effects. One
example is weak localization, a small decrease in the
conductivity of a disordered conductor [1, 2]. Since in-
terference depends on the quantum-mechanical phase
of electronic waves, the experimental signature of weak
localization has been used over the last thirty years to
probe the nature of charge carriers and disorder in nu-
merous conducting materials [3, 4]. A new material to
recently undergo such scrutiny is graphene [5], a one-
atom-thick layer of carbon atoms. It has created a huge
amount of interest, partly because electrons in it act like
massless neutrinos. This behavior is manifest in a range
of observed phenomena, including the integer quantum
Hall effect [6-8], and it gave rise to the prediction of
weak antilocalization in graphene [9], a small increase
in the conductivity [2], rather than weak localization.
So far, however, experiments have failed to clearly see
this effect, reporting instead either weak localization or
a suppression of it [10-13]. But now, writing in Physi-
cal Review Letters, F. V. Tikhonenko, A. A. Kozikov, A. K.
Savchenko, and R. V. Gorbachev [14] at the University
of Exeter, UK, demonstrate how to observe a transition
from weak localization to antilocalization in graphene.

A qualitative picture of weak localization has been de-
veloped using Feynman’s formulation of quantum me-
chanics, in which the amplitude for propagation is given
by a sum over classical paths, each path having its own
amplitude and phase [3, 4]. Typical classical paths con-
necting two points, A and B, are sketched in Fig. 1 (a) for
a two-dimensional disordered conductor. Each path fol-
lows the random walk of an electron experiencing dif-
fusive motion—a series of straight-line segments con-
necting each scattering event. The scattering is elastic,
so that the phase acquired along any given path is well
defined. However, for propagation from A to B, there
are many different paths in addition to the two shown
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in Fig. 1 (a). Each has a different length and acquired
phase, so that the sum over them involves many ran-
dom phases. Interference between such paths averages
to zero and electrical conductivity remains as described
by the classical Drude model.

Interference effects become relevant for closed paths
because two electrons may start from a given point, C,
and travel in opposite directions, as illustrated in Fig.
1 (b). Two phases 9, and ¢ acquired by the elec-
trons as they propagate along the closed path in a clock-
wise and counterclockwise direction, respectively, are
exactly equal. This results in constructive interference
of the counterpropagating electrons when they return
to the starting point C, which enhances the probability
to backscatter and produces a decrease of conductivity
[1]. Traversal of a closed loop in two directions may
be viewed as motion of a particle and its time-reversed
counterpart that traverse the path in opposite directions,
indicating that their constructive interference is based
on time reversal symmetry. A weak magnetic field per-
pendicular to the conductor violates time reversal sym-
metry and suppresses weak localization. This manifests
in experiments as a negative magnetoresistance.

Weak localization relies on the phase coherence of
electrons as they travel along closed paths. Inelastic
scattering—caused by collisions with phonons or other
electrons, for example—destroys phase information and
sets the typical scale, the dephasing length, for sup-
pression of the interference effect. Thus contributions
to the constructive interference only come from return
paths that are short enough (compared to the dephasing
length) to remain phase coherent. Since the dephasing
length tends to decrease with increasing temperature,
observation of the effect usually requires low temper-
ature (typically, a few tens of kelvin).

The above picture is strongly modified in graphene
[5] because electrons in it possess an additional spinlike
quantum number, known as pseudospin. It appears be-
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FIG. 1: (a) Two classical paths connecting arbitrary points A
and B in a two-dimensional disordered conductor. (b) A pair
of closed paths that contribute to the weak localization cor-
rection. (c) In a single scattering event, a long-range potential
is unable to scatter chiral quasiparticles in the backwards di-
rection (upper left) because it can’t reverse the pseudospin di-
rection (black arrows), whereas scattering in the forwards or
sideways direction (lower right) is allowed [15].

cause the honeycomb lattice consists of two triangular
sublattices, and two components of the electronic wave
function on them are analogous to the two components
of spin 1/2. An “up” pseudospin state would corre-
spond to all the electronic density lying on one sublat-
tice, “down” to all the density on the other, but since
the density is shared equally between the two sublat-
tices, the pseudospin is a linear combination of “up”
and “down,” and it lies in the plane of the graphene
sheet. Furthermore, quasiparticles in graphene are chi-
ral, meaning that the orientation of the electron’s pseu-
dospin is either parallel or antiparallel to the direction
of its momentum.

A long-range potential, due, for example, to charges
trapped in the substrate, is not able to differentiate be-
tween neighboring atoms and thus it does not affect the
pseudospin. Owing to the conservation of pseudospin,
such a potential is unable to scatter chiral quasiparticles
in the backwards direction [15], Fig. 1 (c), and this sup-
pression of backscattering is associated with weak an-
tilocalization of electrons in graphene [9]. As electrons
propagate around closed paths, Fig. 1 (b), the pseu-
dospin remains parallel to the momentum. For a clock-
wise path [blue line in Fig. 1 (b)], the pseudospin ro-
tates by an angle of —7 in the graphene plane; for an
anticlockwise path (red line), the angle of pseudospin
rotation is 77. The difference in the angle of rotation of
the pseudospin for the counterpropagating paths is then
27t. In analogy to the rotation of a spin-1/2 fermion,
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for which a rotation by 27t doesn’t return the wave
function to its original state, net rotation of the pseu-
dospin by 27 induces a phase difference of 7w between
the counterpropagating paths. The returning electrons
are now out of phase. This leads to destructive inter-
ference that suppresses backscattering, producing an in-
crease of conductivity called weak antilocalization [2, 9].
Suppression of antilocalization by a perpendicular mag-
netic field will then be seen as positive magnetoresis-
tance.

Graphene has two copies—known as valleys—of the
gapless Dirac-like spectrum. In the absence of inter-
valley scattering, the interference of counterpropagating
electrons from the same valley is sensitive to intravalley
symmetry-breaking perturbations that affect the pseu-
dospin. Counterpropagating electrons accumulate dif-
ferent phases, suppressing any (negative or positive)
magnetoresistance effect. Intervalley scattering, on the
other hand, allows the counterpropagating electrons to
occupy different valleys [16, 17]. As the two valleys
have opposite chirality, the phases acquired by the elec-
tron and its time-reversed partner around a closed loop
are equal, resulting in constructive interference and a
restoration of the weak localization effect [10-13, 16, 17].

The tendency of symmetry-breaking perturbations,
either intra- or intervalley, to destroy weak antilocaliza-
tion suggests that it shows up only in relatively clean
samples. Not only did Tikhonenko and coauthors [14]
improve sample quality, they were also able to tune the
ratio of the dephasing length to the symmetry-breaking
length. They did this by (a) increasing temperature to
reduce the dephasing length and (b) employing an ap-
plied gate voltage to decrease carrier density— thus in-
creasing the intervalley scattering length. In this work
they exploited behavior established by them in earlier
experiments [13].

At low temperature, when the dephasing length ex-
ceeds the symmetry-breaking length, weak localization
is observed, as in previous experiments [10-13]. How-
ever, by decreasing the ratio of the dephasing length
to the symmetry-breaking length, it was possible to en-
ter the regime when decoherence suppresses the influ-
ence of symmetry-breaking perturbations. In this case,
Tikhonenko et al. observe positive magnetoresistance,
a clear signature of weak antilocalization arising from
phase-coherent paths short enough to preserve the chi-
ral nature of counterpropagating electrons. Surpris-
ingly, they find that weak antilocalization persists up to
a relatively high temperature of around 200 K, owing
to weak electron-phonon scattering in graphene, so that
the main source of dephasing over a broad range of tem-
perature remains electron-electron scattering.

The observation of weak antilocalization in graphene
arises from a phase difference of 7 acquired by counter-
propagating chiral electrons. One does not expect this
in bilayer graphene where the chirality of low-energy
quasiparticles is different [8, 18]. In bilayers, pseu-
dospin is linked to the direction of momentum, but

(© 2009 American Physical Society



PhysiCs

Physics 2, 98 (2009)

turns twice as quickly as momentum does. The acquired
phase difference of counterpropagating chiral electrons
would be a multiple of 7, resulting in weak localiza-
tion [12, 16, 19]. So far, the story of weak localization
in graphene involves the interplay of additional spinlike
quantum numbers, related to lattice and valley degrees
of freedom, but not electronic spin itself. Spin-orbit cou-
pling may be an alternative way to induce weak antilo-
calization in graphene and bilayer graphene, as in con-
ventional conductors [2, 3], but its observation is likely
to be challenging in view of the predicted weakness [20]
of the spin-orbit interaction in graphene.
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