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A Unifying View of Thin-Plate
Fracture
A new theoretical framework simultaneously describes the bending and
the fracturing of thin plates, offering a way to tackle complex cracking
problems that involve bothmodes of mechanical deformation.

By Joel Marthelot and Benoit Roman

T earing a piece of paper is a common experience
of mechanical fracture. But describing the fracturing
process poses a challenge for mechanical theories. The

difficulty lies in the fact that its modeling involves two
frameworks that aren’t easily brought together. The first is a
geometrical framework that represents the whole sheet as a
mathematical surface that, under stress, bends out of its
plane—for example, by buckling, wrinkling, or crumpling. In
contrast, the second framework, called linear elastic fracture
mechanics, models smaller spatial scales within the sheet,
describing how diverging stresses trigger a propagating crack.

Figure 1: According to Gauss’s theorem, distance measurements
on a surface can reveal the surface curvature. For Earth, the
diameter p of parallel lines at a distance r from the pole (left)
reaches a maximum at the equator and then decreases (right),
which indicates that Earth is an oblate spheroid.
Credit: APS/Carin Cain

Now, Yael Klein and Eran Sharon of the Hebrew University of
Jerusalem propose a way to unify the out-of-plane and in-plane
frameworks [1]. The duo shows that the fracture can be
incorporated into a geometrical description by “translating” the
fracture-inducedmaterial deformation into equivalent changes
of the material’s curvature. The elegant description based on a
purely geometric quantity allows the researchers to successfully
model a series of experiments onmillimeter-thick polymer
strips, explaining why—depending on the conditions—the strips
may either buckle or fracture into pieces. This geometrical
approachmay be extended to tackle so-far intractable cracking
problems in slender structures such as plates and shells.

A classical mechanics approach describes the deformation of a
material in terms of a change of distances. In such an approach,
the deformation is quantified by considering the movement of
neighboring points in the material: The stress-induced change
in the points’ mutual distances defines the strain. More recently,
however, researchers have developed an alternative approach
[2] that quantifies deformation not in terms of a change of
distances but in terms of a change of metric—the way of
computing the distance between two points.

Measuring deformation in terms of a change of distances or of
metrics is fully equivalent. But the notion of metrics comes with
the beautiful and useful tools of differential geometry, including
Gauss’s Theorema Egregium, or “remarkable theorem.” Gauss’s
theorem states that measuring the distance on a surface gives
information about the 3D deployment of the surface in space,
that is, the surface’s curvature. To understand the meaning of
the theorem, imagine measuring the length p of a latitude line
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that encircles Earth at points lying at a distance r from the North
pole (Fig. 1, left). That distance isn’t equivalent to 2πr, as it
would be for a planar surface. Rather, p reaches a maximum
value at the equator and then decreases beyond that (Fig. 1,
right). By simply measuring distances along the surface, one
can deduce that Earth isn’t flat. (The exact dependence of p on
r can also reveal the object’s curvature: Earth’s
smaller-than-2πr perimeter indicates a spherical object, while a
larger-than-2πr perimeter would point at a saddle shape).

A powerful implication of Gauss’s theorem is that curvature
stays the same if one bends a surface without stretching it.
That’s why there cannot be a flat map of Earth without distance
distortion. This curvature invariance previously allowed
researchers to rephrase deformation in terms of geometry—an
approach that has proven very useful to describe themechanics
of thin plates. For instance, the formation of wrinkles [3, 4] and
of crumpling singularities [5, 6] can be explained using Gauss’s
theorem: It is impossible to fold a flat sheet (zero Gaussian
curvature) onto a sphere or a saddle without deforming the
plate. Conversely, in biology, the morphogenesis of organs into
3D curved shapes is due to the fact that the nonuniform growth
of living tissue leads to a change of metric [7]. Current research
onmorphable plates actively makes use of these ideas,
describing material distortion in terms of a change from a flat,
or Euclidian, metric of an initial shape toward a nonflat, or
non-Euclidean, metric of the final shape [8].

Klein and Sharon now demonstrate that fracture can be
incorporated in this geometrical framework. When fracture
propagates in a material, the stress is amplified around the
crack front. Conventional theoretical approaches model crack
propagation by computing the stress field within the sheet
around the crack tip. These approaches describe the material’s
in-plane deformation using the linear theory of elasticity,
except for the vicinity of the crack front, where all dissipation
occurs. Such an approach successfully describes brittle fracture
(in which the crack length is large compared to the plastically
deformed region around the crack tip). But extending this
approach to the fracture of thin plates is difficult because these
plates tend to bend out of plane. This bending can only be
described on the global scale of the sheet, which linear elastic
models can’t do [9]. The researchers overcome this difficulty by
showing that crack-induced deformations have an equivalent
description in terms of a distribution of Gaussian curvatures

Figure 2: The experiments by Klein and Sharon illustrate
equivalence between in-plane plate fracture and out-of-plane
curvature. The images are front (blue) and lateral (gray) views of a
submerged plate at three different times. As the soft gel plate is
lowered into a solution of water and polyethylene glycol, it shrinks
and cracks. As long as cracks propagate, the plate remains on the
same plane (left and center panels), but when the cracking stops,
the plate bends out of its plane (right panel).
Credit: Y. Klein and E. Sharon [1]

along the path of the cracks.

Mathematicians and tailors alike know that cutting off a portion
of a planar sheet and sewing the seam back together creates
Gaussian curvature because the distances between points on
each side of the seam have been irreversibly shortened. When
stitched back together, the sheets form curved bodies without
wrinkles. The subtle idea of Klein and Sharon is that—similarly
to the addition or subtraction of material—the reversible elastic
deformation that accompanies fracture can be translated into
changes of Gaussian curvature by defining a newmetric that
accounts for the varying distances between the various material
elements. The resulting formalism can thus account for both
bending and fracture simultaneously.

To test the new geometry-based formalism, the researchers
slowly immersed sheets of soft gel, with thicknesses of between
0.1 and 2mm, in a solution of polyethylene glycol. The
immersion into this concentrated solution caused the water
contained in the gel to be expelled, so the gel sheet shrank. The
researchers modeled the shrinking by defining a new reference
metric plate. In this dynamic dipping process, the gel sheet’s
shrinking was not uniform, and the highly distorted metric
resulted in a strong Gaussian curvature.

The experiments revealed that thin samples eventually bend
into curved bottle shapes (Fig. 2). Thicker plates, however, tend
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to stay flat because of the large energy cost needed for bending.
Rather than bending, they form cracks. Thanks to the new
geometric approach, the researchers could derive a phase
diagram for these thin plates, which can reliably predict—from
thickness and other material parameters—whether the
dominant response to shrinking is buckling, stretching, or
fracturing. In Klein and Sharon’s framework, this behavior has a
simple explanation: The Gaussian curvature due to shrinking is
to a large extent canceled by a Gaussian curvature with
opposite sign that arises from fracture.

The new Gaussian language developed by Klein and Sharon
may allow researchers to treat fracture and buckling within a
universal framework. Such a framework could tackle complex
fracture problems in thin structures, such as curved shells, that
are relevant to both industry and biology. In particular, it could
explain the formation of cracks during the manufacture of
metallic shells or the rupture of seedpods that leads to the
dispersal of seeds.
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