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In this article, we unravel an intimate relationship between two seemingly unrelated concepts: elasticity,
that defines the local relations between stress and strain of deformable bodies, and topology, that classifies
their global shape. Focusing on Möbius strips, we establish that the elastic response of surfaces with
nonorientable topology is nonadditive, nonreciprocal, and contingent on stress history. Investigating the
elastic instabilities of nonorientable ribbons, we then challenge the very concept of bulk-boundary
correspondence of topological phases. We establish a quantitative connection between the modes found at
the interface between inequivalent topological insulators and solitonic bending excitations that freely
propagate through the bulk nonorientable ribbons. Beyond the specifics of mechanics, we argue that non-
orientability offers a versatile platform to tailor the response of systems as diverse as liquid crystals and
photonic and electronic matter.
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I. INTRODUCTION

Sewing the first piece of fabric, prehistoric men laid out
the first principles of metamaterial design [1]: Elementary
units assembled into geometrical patterns form structures
with mechanical properties that can surpass those of their
constituents [2]. In the early 2010s, building on quantitative
analogies with the topological phases of quantum matter,
researchers laid out robust design rules for metamaterials
supporting mechanical deformations immune from geo-
metrical and material imperfections [2–8]. Today, mechani-
cal analogs of virtually all topological phases of electronic
matter have been experimentally realized, or theoretically
designed, with mechanical components as simple as
coupled gyroscopes or lego pegs [2,5,6,9–12]. The basic
strategy consists of connecting mechanical systems with
gapped vibrational spectra having topologically distinct
eigenspaces [8,13,14]. At the interface, this mismatch
causes a local gap closing revealed by linear edge modes
topologically protected from disorder and backscattering.
Until now, as topological mechanics was inspired by
analogies with condensed matter, it has been essentially
restrained to metamaterials assembled from repeated
mechanical units that inherit robustness from the topology
of their abstract vibrational eigenspace [8,15].

In this article, we elucidate the consequences of real-
space topology on the mechanics of homogeneous materi-
als. First, we demonstrate that non-orientability makes
Möbius strips’ elasticity nonadditive, nonreciprocal, and
multistable. In particular, we demonstrate how the static
deformations of nonorientable surfaces encode their stress
history: Möbius strips have a mechanical memory. Second,
we address the impact of non-orientability on the para-
digmatic Euler elastic instability. We show that the asso-
ciated buckling patterns propagate as solitary waves on
Möbius strips. We finally establish the equivalence between
these nonlinear bulk excitations and the edge modes found
at the interface between inequivalent topological states in
one-dimensional topological insulators [13].

II. TOPOLOGICAL ELASTICITY
OF NONORIENTABLE SURFACES

Simply put, a nonorientable surface is a one-sided thin
sheet. A paradigmatic example is given by the Möbius strip
shown in Fig. 1 that can be easily replicated by applying a
half twist to a band of paper before gluing its two ends.
Orientability is indeed a global (topological) property that
can be altered only by cutting and gluing back a geomet-
rical surface. In contrast, linear elasticity describes local
deformations in response to gentle mechanical stresses.
Before introducing a technical framework to relate these
two seemingly unrelated concepts, let us first gain some
insight into their relationship. We consider the simple
example of a Möbius strip made of an elastic material
shown in Fig. 1. The shear deformations of the strip are
locally quantified by the angle θSðsÞ, where s ∈ ½0; L�
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indicates the curvilinear coordinates along the strip center-
line. θSðsÞ is a rotation angle defined with respect to the
vector nðsÞ normal to the surface. A direct consequence of
non-orientability is that no stress distribution can yield
homogeneous shear deformations over a Möbius strip. As
we illustrate in Fig. 1, when transported around the entire
strip, nðsÞ changes sign, thereby implying that θSð0Þ ¼
−θSðLÞ and that the shear angle must vanish at least once
along the ribbon. The impossibility to assign an unam-
biguous orientation to the surface constrains the ribbon to
remain undeformed at one point whatever the magnitude of
the applied stress. We now account for this topological
protection against shear by describing the elasticity of
nonorientable ribbons as a Z2 gauge theory.

A. Orientability as a Z2 gauge charge

For the sake of clarity, we restrict ourselves to strips of
constant width w akin to that shown in Figs. 1 and 2. They
are defined as ruled surfaces Sðs; zÞ ¼ CðsÞ þ zbðsÞ where
CðsÞ is a base circle of perimeter L, and bðsÞ is a unit-
vector field normal to the tangent-vector field tðsÞ; see
Fig. 1. Given this definition, s ∈ ½0; L� and z ∈ ½−w=2;
w=2�. We stress that the direction of bðsÞ is arbitrary:
A local transformation bðsÞ → ϵðsÞbðsÞ, where ϵðsÞ ¼ �1
leaves the strip geometry unchanged. With the tangent to
the base circle tðsÞ being unambiguously defined, the
normal vector nðsÞ ¼ tðsÞ × bðsÞ is defined up to the
same ϵðsÞ sign factor as bðsÞ.
By definition, nonorientable strips correspond to shapes

where the fields ϵðsÞbðsÞ and ϵðsÞnðsÞ are discontinuous
regardless of the sign convention ϵðsÞ. This intrinsic
ambiguity in defining the orientation of the (bi)normal
vector is better illustrated when discretizing the strip; see
Fig. 2. Setting s ¼ ia, where a ¼ L=N and i ∈ ½1; N − 1�,
we introduce the Z2 gauge field ηi;iþ1 ¼ ϵiϵiþ1, which

represents the connection between adjacent sign conven-
tions. The topological charge O ¼ Q

N
i¼1 ηi;iþ1 defines the

surface orientability: Orientable surfaces correspond to
O ¼ þ1 and nonorientable ones correspond to O ¼ −1.
The independence of O with respect to the sign convention
becomes clear when applying the series of gauge trans-
formations sketched in Figs. 2(a) and 2(b). Starting from an
arbitrary position iG þ 1 and moving along the base circle,
wherever a link with ηi;iþ1 ¼ −1 is found, we change the
sign of ϵiþ1. This transformation simultaneously reverses
the signs of both ηi;iþ1 and ηiþ1;iþ2 thereby leaving O
unchanged. Moving along the strip and repeating this
procedure, we find that the gauge field on all links but
the last one can be set to η ¼ þ1. On the last link, it takes
the value ηiG;iGþ1 ¼ O. Therefore, whenO ¼ −1 there is an
obstruction to define a homogeneous surface orientation:
The surface is nonorientable.

B. Elasticity of twisted elastic strips

We now make use of this geometric framework to
describe the elastic response of a soft Möbius strip having
a stress-free equilibrium shape defined by the triad
½t0ðsÞ;b0ðsÞ;n0ðsÞ�. For the sake of simplicity, we do
not resort to the full Foppl–von Karman theory of elastic
plates [16]. Instead, we consider simplified models to
single out the impact of non-orientability on shear, twist,
and bend deformations leaving a more realistic mechanical
description for future work. The amplitudes of the pure-
shear θSðsÞ and pure-twist θTðsÞ angles are usually defined
from the deformation vector uðsÞ ¼ bðsÞ − b0ðsÞ≡
θSðsÞt0ðsÞ þ θTðsÞn0ðsÞ. As we discuss in the previous
section, however, both bðsÞ and nðsÞ are defined up to a
sign convention ϵðsÞ, while all physical quantities must be
independent of this arbitrary choice. We therefore introduce
the orientation-independent deformation field:

0

FIG. 1. A nonorientable elastic ribbon. Example of a 3D-
printed Möbius strip of width 1 cm. The tangent and binormal
vectors tðsÞ and bðsÞ are indicated with white arrows, the normal
vectors nðsÞ with red arrows. The shear deformations in the (t;b)
plane are measured by the rotation angle θsðsÞ defined with
respect to the local normal vector nðsÞ. Note that nðsÞ reverses its
sign after one full turn around the strip nð0Þ ¼ −nðLÞ.

FIG. 2. Orientability as a Z2 gauge charge. Two discretized
ribbons: a Möbius strip (a) and a cylinder (b). The arrows indicate
the orientation of the bi vectors, and the plaquettes’ color the sign
of ηi;iþ1 on each link yellow ηi;iþ1 ¼ þ and blue ηi;iþ1 ¼ −1. The
gauge transformations that we describe in Sec. II A are illustrated
by the red arrows. (a) No series of orientation-gauge trans-
formations can result in a homogeneous η field on a Möbius strip:
O ¼ −1. (b) Starting from a heterogeneous η field, the gauge
transforms result in a homogeneous η ¼ þ1 field on a orientable
cylinder: O ¼ þ1.
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ðϵuÞ ¼ ðϵθSÞt0 þ θTðϵn0Þ: ð1Þ

ðϵuÞ is invariant upon the orientation transformation:
fϵðsÞ → −ϵðsÞ; θSðsÞ→ −θSðsÞ; θTðsÞ → θTðsÞg. Because
of the possibly discontinuous nature of the ϵ field, we
first define the harmonic elasticity associated with ðϵuÞ
by resorting to a discretization of the ribbon geometry.
The simplest harmonic elasticity is then given by E ¼
K=ð2aÞPi ½ðϵuÞiþ1 − ðϵuÞi�2, where K is an isotropic
elastic constant, and E is readily recast into

E ¼ K
2a

X
i

½uiþ1 − ηi;iþ1ui�2: ð2Þ

The invariance of ðϵiuiÞ under orientation transformation
translates into a Z2 gauge symmetry of the elastic energy:
fηi;i�1 → −ηi;i�1; θSi → −θSi ; θTi → θTi g. Following the pro-
cedure sketched in Fig. 2, Eq. (2) can be simplified by
gauging away the ηi;iþ1 at all sites but one, at i≡ iG
where ηiG;iGþ1 ¼ O. For this gauge choice, E takes the
compact form: E¼ðK=2aÞPið½θSiþ1−θSi �2þ½θTiþ1−θTi �2Þþ
ðK=aÞð1−OÞθSiGθSiGþ1, where we implicitly assume w=L to
be vanishingly small and leave finite-size geometrical
corrections to future work [17]. The last term of this

expression accounts for the coupling between the topo-
logical charge O and the shear angle at the unspecified site
iG. Continuum elasticity then follows from the limit a → 0
in Eq. (2):

EðfθS;θTgÞ ¼ K
2

Z
L

0

ð∂sθ
SÞ2 þ ð∂sθ

TÞ2ds

þ ð1−OÞlim
a→0

K
a
½ðθSÞ2 þ aθS∂sθ

S�s¼sG: ð3Þ

For orientable strips, one recovers the familiar harmonic
energy of elastic bodies. In contrast, for Möbius strips
where O ¼ −1, the topological term in Eq. (3) constrains
the continuous shear deformations to vanish at s ¼ sG [18].
Two comments are in order: First, unlike shear deforma-
tions, we find that twist deformations are insensitive to
orientability and obey unconstrained harmonic elasticity.
Second, we stress that the location of the zero-shear point
sG is an independent and crucial gauge degrees of freedom
that must be dealt with when computing the fluctuations
and mechanical response of nonorientable elastic ribbons
as we illustrate below.

C. Nonadditive elasticity

From now on, the ribbon elasticity is prescribed by
Eq. (3), and the constraint θSðsGÞ ¼ 0. It then readily
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FIG. 4. Nonreciprocal response to shear stress. A Möbius strip
is sheared by a localized stress distribution σ0 ¼ σδðs − s0Þ with
σ ¼ K and s0 ¼ 0. (a) Overall excess shear deformations θAðsÞ
due to an additional stress σA ¼ σδðs − sAÞ applied at sA ¼ 7=16.
(b) Plot of the excess shear deformations θBðsÞ measured when
σA is released and σB ¼ σδðs − sBÞ is applied at (sB ¼ 23=32).
Same color map as in (a). Together, the plots reveal that
θAðsBÞ ≠ θBðsAÞ. (c) Variations of the nonreciprocity factor
Δθ as a function of the locations of sA and sB. The finite value
of Δθ over a finite region of space proves that the Maxwell-Betti
theorem breaks down on nonorientable elastic surfaces: Non-
orientable elasticity is nonreciprocal.
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FIG. 3. Nonlinear response to shear stress. Top panels: The
color indicates the magnitude of the shear angle along the Möbius
strips. The red lines show the positions of the applied stresses and
the dark line the position of sG. Bottom panels: Corresponding
plots of θSðsÞ. (a) Response to a pointwise stress source σðsÞ ¼
σδðs − 1=4Þ with σ ¼ K. The shear angle decays linearly from
the stress source and vanishes at s ¼ 3=4. (b) Nonlinearity:
Response to two pointwise stress sources σS ¼ Kfδðs − 1=6Þ−
δ½s − ð1=6þ 1=2Þ�g. The deformations computed from the min-
imization of the elastic energy as explained in Appendix A 3
vanish at sG ¼ 11=12. The deformations computed from the
minimization of the elastic energy (solid line) are markedly
different from the linear superposition of two responses to two
individual point sources (dashed line).
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follows that nonorientable ribbons cannot support any
homogeneous shear deformation as anticipated in the
introduction of Sec. II and further discussed in the
Appendix A 1. The simplest mechanical stress we can
consider is a pointwise shear localized at an arbitrary
position s1: σSðsÞ ¼ σδðs − s1Þ. The resulting deforma-
tions shown in Fig. 3(a) are computed minimizing E þW
with respect to both the shear and gauge degrees of
freedom, where W ¼ −

R
L
0 σSðsÞθSðsÞds is the work per-

formed by the external stress; see Appendix A. We find a
positive elastic response that vanishes at a single point
located at maximal distance from the stress source:

θ1ðs; s1Þ ¼
σ

2K

����s − s1 − sgnðs − s1Þ
L
2

����: ð4Þ

This simple expression has a deep consequence: The
response of Möbius strips to shear stresses is intrinsically
nonlinear, although the local stress-strain relation is
linear. We establish this counterintuitive property by con-
sidering the case of two identical stress sources: σSðsÞ ¼
σ½δðs − s1Þ þ δðs − s2Þ�. The linear superposition of two θ1
functions will result in strictly positive shear deformations
over the whole strip, which is topologically prohibited as θS

must vanish at least at one point sG. We therefore conclude

that the response of Möbius strips to shear stresses is not
pairwise additive and therefore nonlinear. This property is
illustrated in Fig. 3(b) where we compare the shear angle
θ2ðs; s1; s2Þ computed from the minimization of E þW
with respect to θS and sG to that derived from a mere
superposition principle; see also Appendix A 3.
We explain below the practical consequence of this

topological frustration.

D. Nonreciprocal elasticity

The static response of elastic bodies is generically
reciprocal. By virtue of the so-called Maxwell-Betti theo-
rem, the deformations measured at a point B, as a result of a
force applied at a point A, are identical to the deformations
measured at point A as a result of the same force when
applied at point B [19–21]. The mechanics of nonorientable
surfaces, however, is not reciprocal. To prove this counter-
intuitive result, we consider as a reference state a Möbius
strip sheared by a localized source σ0 ¼ σδðs − s0Þ causing
a deformation θ1ðs; s0Þ. Let us now apply an addi-
tional stress σ at sA and measure the response at sB:
θAðsBÞ ¼ θ2ðsB; s0; sAÞ − θ1ðs; s0Þ. We now release the
stress applied at sA, apply as stress σ at sB, and measure
the response at sA: θBðsAÞ ¼ θ2ðs; s0; sBÞ − θ1ðs; s0Þ. The
two corresponding excess shear angles are shown in
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Figs. 4(a) and 4(b) and are obviously different. Following
Ref. [21], we plot in Fig. 4(c) the nonreciprocity factor
Δθ ¼ ½θAðsBÞ − θAðsBÞ�K=σ as a function of the locations
of the two applied stresses (sA and sB). We find that Δθ is
finite over a large fraction of the parameter space and
extremal when the stress sources are distant from L=4 and
L=2 from s0: The mechanical response of the strip is
nonreciprocal. Two comments are in order. By contrast
with the polar metamaterials considered in Ref. [21], here
nonreciprocity does not rely on nonproportional response.
The constitutive relation between stress and strain is linear,
the strip is not unstable, and no floppy mode is excited.
Nonreciprocity solely stems from the nonadditive response
of nonorientable strips. We also stress that nonreciprocity
does not require any fine-tuning of the strip geometry or of
the applied stresses: Möbius strip mechanics is generically
nonreciprocal.

E. Elastic memory

In addition to being nonlinear and nonreciprocal, non-
orientable elasticity is multistable. This remarkable feature
is demonstrated in Fig. 5(a) showing three equilibrium
shear deformations of a strip stressed by the same shear
distribution: σðsÞ¼σ1δðs−s1Þþσ2δðs−s2Þþσ3δðs−s3Þ,
with σ1 ¼ σ2 ¼ σ3 ¼ σ. The difference between the three
equilibrium states solely lies in the order used to switch on
the three stresses, as we illustrate in Fig. 5(b). The very
origin of this elastic multistability stems from the trapping of
sG at different locations between the si points. Integrating out
the shear degrees of freedom, we derive in Appendix A 3 the
effective potential U3½sG; σiðtÞ� acting on the zero-shear
point sG. We find that U3 possesses as many minima as
applied stress sources. Three possible shear deformations
are therefore compatible with mechanical equilibrium; see
Fig 5(c). We show in Fig. 5(c) how the sequential increase of
the three stresses selects one of the three minima and
therefore the final mechanical state of the Möbius strip.
Nonorientable surfaces offer a paradigmatic example of
static mechanical memory. Information is coded and stored
by the temporal variations of the stress. Information is read
measuring the shear angle and deleted releasing the applied
stresses.

III. BUCKLING A MÖBIUS STRIP

A. Solitary buckling waves

We now show how heterogeneous deformations emerge
from homogeneous stresses. To do so, we address the
consequences of non-orientability on the bending defor-
mations of Möbius strips; see Fig. 6(a). We consider a
simplified description where the strip is modeled by a
ladder made of flexible hinges of length l as sketched in
Fig. 6(b). For the sake of simplicity, we restrain ourselves to
bending deformations along the normal vector which
naturally couple to the ribbon orientation. The total elastic

energy EB is composed of three terms: (i) the conformation
ith hinge is defined by the angleΦi and is associated with a
harmonic bending energy of ð1=2aÞK0

BΦ2
i , (ii) a harmonic

coupling between the hinges adds a contribution of
ð1=2aÞKBðΦiþ1 − ηi;iþ1ΦiÞ2, and (iii) applying an external
compression load Σi contributes to a mechanical work
defined as the scalar product between the applied force and
the resulting displacement ðΣialÞðcosΦi − 1Þ. We are now
equipped to tackle the classical Euler buckling problem:
the bending instability of a Möbius strip in response to a
homogeneous compression. We first construct a continuum
description of EB following the same procedure as in
Sec. II B, gauging away the ηi;iþ1 variables, taking the
continuum limit, and restraining ourselves to deformations
close to the onset of buckling. EBðfΦgÞ then takes the
compact form:

EB ¼
Z

KB

2
ð∂sΦÞ2 þU2ðΦÞds

þ ð1 −OÞlim
a→0

KB

a
ðΦþ aΦ∂sΦÞ2s¼sG ; ð5Þ

where the quartic potential

UðΦÞ ¼
ffiffiffiffiffiffiffi
KB

p
ξ

ðΦ2 −Φ2
0Þ ð6Þ

is classically parametrized by the scale ξ2 ¼ 24a2ðKB=K0
BÞ

ðΣ0=ΣÞ over which bending deformations occur, and the
distance to the critical buckling load of an isolated hinge
Φ2

0 ¼ 6ð1 − Σ0=ΣÞ, with Σ0a2 ≡ K0
B=l. The last term of

Eq. (5) is the gauge-fixing term which constrains ΦðsÞ to
vanish at a point sG, thereby protecting Möbius strips
from homogeneous buckling. However, unlike shear
stresses, the compression Σ can be applied uniformly
along the ribbon and does not break translational
invariance. sG is then a free degrees of freedom that
parametrizes the broken-symmetry deformations.
The buckling patterns minimize EB with the constraint

ΦðsGÞ ¼ 0. This minimization is performed using a
dynamical-system analogy elaborated in Appendix B. In
short, the strip remains flat until Σ exceeds Σc ¼
Σ0½1þ ðKB=K0

BÞπ2ða=LÞ2�. Above Σc it undergoes a
buckling transition and deforms into the inhomogeneous
pattern illustrated in Fig. 6(c). The bending angle Φ
remains close to Φ0 everywhere except in a region of size
ξ=Φ0 around sG where it vanishes. The buckling pattern is
the norm of a Φ4 kink centered on sG [22]. In the limit of
long strips, ΦB reduces to

ΦBðs− sGÞ¼�Φ0

���� tanh
� ffiffiffi

2
p

Φ0

ξ
ðs−sGÞ

�����þO
�
ξ

L

�
; ð7Þ

where the sign of the solution reflects the arbitrary choice
of orientation of the ribbon. The exact solution beyond the
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very long strip approximation does not bring more insight
and is left to Appendix B.
Remarkably, both the Z2 gauge symmetry and transla-

tional invariance are spontaneously broken at the onset of
buckling. The ground state of EB is continuously degen-
erate leaving the bending direction and the location of the
flat section sG undetermined. As a consequence, the
buckling patterns are free to translate around the strips.
More quantitatively, having macroscopic systems in mind,
we now consider the inertial dynamics of the buckled strip
described by the continuum Hamiltonian:

HB ¼
Z

I
2

�
ð∂tΦÞ2 þ KB

2
ð∂sΦÞ2 þ U2ðΦÞ

�
ds; ð8Þ

where I is the local moment of inertia. As in the static case,
HB is complemented by the constraint Φ½sGðtÞ; t� ¼ 0. The
existence of solitary waves readily follows from the
Lorentz invariance of HB. The solitary waves are deduced
from Eq. (7) by a Lorentz boost: Φðs; tÞ ¼ ΦBðγ½s − vt�Þ,
where γ ≡ ½1 − ðv=cÞ2�−1=2 [22], and the propagation speed

v satisfies v2 < c2 ¼ KB=I. The free propagation of these
solitary bending waves restores translational and gauge
invariance of Eq. (5): Moving the topologically protected
section sG along the strip corresponds a mere gauge
transformation which operates at zero energy cost. We
note that traveling kinks of the very same nature were first
found theoretically and illustrated experimentally in soap
films forming nonorientable minimal surfaces [23]. In the
context of topological mechanics, spectacular zero-energy
mechanisms having a similar solitonic structure were also
found at the interface between an open one-dimensional
isostatic lattice having topologically distinct band spectra
[9,24]. In the next section, we show that the latter
resemblance is the first hint of a deeper connection between
the topological mechanics of nonorientable ribbons and
that of one-dimensional isostatic metamaterials.

B. From buckled Möbius strips
to SSH topological insulators

We characterize above the orientability of the ribbon by
the invariantO and show thatO ¼ −1 implies the existence
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FIG. 6. From buckled a Möbius strip to topological interface states. (a) A 3D-printed Möbius strip buckles upon application of a local
compressive stress. (b) Sketch of the simplified buckling-elasticity model. A Möbius ladder is composed of rigid bars of length l
connected by soft hinge of stiffness K0

B. The hinges are themselves coupled by harmonic springs of stiffness KB. The deformation of the
ith hinge is parametrized by the angle Φi. Σ indicates the strength of the applied compressive stress. (c) Heterogeneous buckling pattern
of a Möbius ladder. The location of the undeformed bar at s ¼ sG is indicated with a dark color. Φ0 ¼ π=6, ξ ¼ L=5. (d) Solid line:
Shape of the soliton, i.e., variations of the bending angle ΦBðsÞ. sG topologically protects the strip from homogeneous bending. Dashed
line: Shape of the floppy mode bound to the solitonic excitation. Φ0 ¼ 1, ξ ¼ 0.12L. (e) Sketch of the mechanical Su Schrieffer Heeger
(SSH) model introduced in Ref. [3]. This simple mechanical metamaterial is composed of a canted rigid bar free to rotate around a single
axis connected by harmonic springs; see Ref. [9] for an experimental realization. (f) Solid line: The interface between two topologically
distinct mechanical metamaterials is a ϕ4 kink. Dashed line: Topological interface mode of the SSH model. φ0 ¼ 1, ξ ¼ 0.12.
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of solitary bending waves. Here, we show that these
excitations are characterized by their own topological
number nwhich we relate to that of interface states between
topological insulators. The standard topological characteri-
zation of both phononic and electronic excitation was
established for lattice models and does not apply to
continuous elasticity [8,13]. We circumvent this technical
obstacle following Ref. [24]. Resorting to an index theorem
applied to the linearized elasticity of the strip, we establish
that the soliton carries a topological charge n ¼ 1 that
counts the zero-energy translational modes.
In practice, we introduce the linear bending fluctuations

of the ribbon around a static buckled state (7): Φðs; tÞ ¼
ΦBðs − sGÞ þ Ψðs; tÞ and deduce the dynamics of Ψ by
linearizing Eq. (8):

∂2
tΨðs; tÞ ¼ −DΨðs; tÞ; ð9Þ

where D ¼ ∂2
s − 2U02ðΦBÞ − 2UðΦBÞU00ðΦBÞ. The topo-

logical properties of mechanical vibrations are revealed by
the “square root” of the dynamical operator D [3]. In the
limit of very long yet finite ribbons, the dynamical operator
can be recast into the factorized form (see Appendix C):

D ¼ Q†QþO½ðξ=LÞ2�; ð10Þ

where Q† ¼ ∂s þ signðs − sGÞ
ffiffiffi
2

p
U0ðΦBÞ and Q ¼ −∂sþ

signðs − sGÞ
ffiffiffi
2

p
U0ðΦBÞ. The soliton is then associated with

the topological index n that counts the zero modes of D
making a distinction between floppy modes and self-stress
states [3,8,24]:

n ¼ dim kerQ − dim kerQ†: ð11Þ

We compute n by determining explicitly the kernel of the
two linear operators Q and Q†. In the limit L=ξ ≫ 1, the
corresponding eigenequations reduce to

∂s lnΨ� ¼ �∂s ln½∂sΦBðsÞ�: ð12Þ

Solving Eq. (12) on the circle, we find that the kernel
of Q† is trivial, while Q has a one-dimensional kernel:
Ψþ ¼ δsG∂sΨG, where δsG is a parametrization factor.
This solution corresponds to an infinitesimal translation of
the soliton: Ψþðs; sGÞ ¼ ΦBðs − sG − δsGÞ −ΦBðs − sGÞ
and is plotted in Fig. 6(d). We stress that this translational
mode is a floppy mode that operates, by definition, at zero
energy cost. The topological index defined by Eq. (11)
being nontrivial (n ¼ 1) ascertains the topological nature of
the floppy modes and of the associated solitary wave.
This zero mode is reminiscent of the boundary states

predicted by topological band theory at the interface between
materials having topologically inequivalent eigenspaces
[3,13,14]. These two types of zero modes are, however,
essentially different. More precisely, Eqs. (9) and (10) are

similar to the equations describing the vibrations of the
interface between two SSH mechanical metamaterials illus-
trated in Fig. 6(e); see Refs. [9,24]. In this different context,
the existence of an interfacial zeromode is guaranteed by the
imbalance between the number of self-stress and floppy
modes given by the Kane-Lubensky generalization of the
Maxwell-Calladine index [3]. In the settings of Fig. 6(e), the
Kane-Lubensky count is equal to 1 thereby imposing
the binding of a floppy mode to the interface. By contrast,
the buckled Möbius ladder sketched in Fig. 6(c) is a closed
isostatic system with a vanishing Maxwell-Calladine index.
Therefore, the existence of its zero mode is not captured
by the Kane-Lubensky-Maxwell-matter index, which dis-
regards the gauge degrees of freedom associated with
orientability. Beyond the specifics of mechanical systems,
this counterintuitive observation prompts us to reconsider the
very concept of the bulk-boundary correspondence of
topological band theory when applied to nonorientable
(meta)materials [25–27].

IV. CONCLUSION AND PERSPECTIVES

We demonstrate how to surpass the native properties
of materials without resorting to geometrical tuning.
Constructing a minimal elastic theory for Möbius strips,
we establish that non-orientability makes their local
mechanics nonlinear, nonreciprocal, and capable of memo-
rizing its stress history. Investigating their simplest bending
instability, we demonstrate how non-orientability guaran-
tees the existence of a topological phase that supports zero-
energy solitons. This mechanical phase, without known
condensed-matter counterparts, begs for a generalization of
the current bulk-boundary correspondence in topological
materials [28–33].
Our main predictions are elaborated building on proto-

typical models. We therefore expect their experimental
implications to extend beyond the specifics of mechanical
systems. In particular, the relation between nematic elasticity
and Z2 gauge theories was realized in the early 1990s by
Lammert et al. in the context of phase ordering, but to the best
of our knowledge, it has remained virtually uncharted [34].
We stress here that our central equation (3) also describes the
Frank energy of nonorientable nematic films and can be
generalized to describe nematic elasticity around a disclina-
tion [35]. A remarkable experimental realization of a
nonorientable nematic liquid crystal was provided by
self-assembled viral membranes where rodlike units self-
organize into Möbius conformations at the membrane edge
[36]. Beyond elasticity, we also envision our prediction to be
relevant to Möbius configurations of light polarization
[37,38] and to transport in twisted nanocrystals [39].
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APPENDIX A: RESPONSE TO SHEAR

1. No homogeneous shear stress

We show in Sec. II C that a Möbius strip cannot support
any homogeneous shear deformation. The situation is even
more constrained, as no uniform shear stress can be
applied. The shear stresses σS and θS are conjugated
variables, and the mechanical work associated with shear
is given by W ¼ −

R
σSðsÞθSðsÞds. As W must be inde-

pendent of the arbitrary definition of the ribbon orientation,
σS and θS must obey the same transformation rules upon
any change in the ribbon orientation: σðsÞ is also topo-
logically constrained to vanish at sG.

2. Response to a pointwise shear stress

We consider the response to the shear-stress distribution
given by σS ¼ σ1δðs − s1Þ. For the sake of clarity, units are
chosen here so that L ¼ 1. The equilibrium configuration is
obtained minimizing the total energy E þW defined in
Sec. II C with respect to both θS and the gauge degrees of
freedom sG:

F ¼ E þW ¼ K
2

Z
1

0

ð∂sθ
SÞ2 −

Z
1

0

σSðsÞθSðsÞds: ðA1Þ

We recall that sG is the location of the strip section where
θSðsÞ is topologically constrained to vanish. Within this
framework, the two mechanical equilibrium conditions are

δF
δθS

¼ −K∂2
sθ

S − σSðsÞ ¼ 0; ðA2Þ

∂F
∂sG ¼ 0: ðA3Þ

These equations are supplemented by the boundary
conditions

θSðs; s1; sGÞ ¼ θSðsþ 1; s1; sGÞ; ðA4Þ

and the topological constraint

θSðs ¼ sG; s1; sGÞ ¼ 0: ðA5Þ

The algebra is simplified by redefining the origin of
the curvilinear coordinate (s → s̃) such that s̃G ¼ 0.
The conditions (A4) and (A5) then reduce to

θSðs̃ ¼ 0; s̃1Þ ¼ θSðs̃ ¼ 1; s̃1Þ: ðA6Þ

In this frame, the gauge degrees of freedom then becomes
the position of the applied stress s̃1 ¼ s1 − sG mod (1).
Solving Eqs. (A2) and (A6), we readily find that the shear
deformations are given by θS1ðs̃; s̃1Þ ¼ σ1Gð1Þðs̃; s̃1Þ with

Gð1Þðs̃; s̃1Þ ¼ −
1

2K
½js̃ − s̃1j þ ðs̃1 − 1Þs̃þ ðs̃ − 1Þs̃1�:

ðA7Þ

The corresponding total energy

F ¼ −
σ21
2K

s̃1ð1 − s̃1Þ ðA8Þ

is minimized for s̃1 ¼ 1
2
, i.e., for sG ¼ s1 þ 1

2
mod (1). In

other words, the point sG where the shear deformation
vanishes is maximally separated from the applied stress.
Going back to the original frame, the static shear defor-
mations at mechanical equilibrium are easily recast into

θ1ðs; s1Þ ¼
σ1
2K

����s − s1 −
1

2
sgnðs − s1Þ

����; ðA9Þ

which corresponds to Eq. (4) in the main text.

3. Response to N localized shear sources

We now consider the superposition of N fixed pointwise
sources σSðsÞ ¼ P

N
i¼1 σiδðs − siÞ. The equilibrium con-

formation θSNðs; fsig; sGÞ of the Möbius strip satisfies the
conditions (A2) and (A3) with the boundary conditions
(A4) and (A5). Working in the frame where sG ¼ 0, the
solution of this equation is

θSNðs̃; fs̃igÞ ¼
XN
i¼1

σiGð1Þðs̃; s̃iÞ; ðA10Þ

where s̃i ¼ si − sG mod (1); i.e., s̃i ¼ si − sG þ ΘðsG − siÞ
where ΘðsÞ is the Heaviside step function. At first sight,
Eq. (A10) resembles the mere superposition of independent
Green’s functions and suggests typical linear response
behavior. However, we have to keep in mind that the
position sG is yet to be determined to prescribe the
equilibrium deformations. As a shift in the position sG
corresponds to a uniform translation of all the stress
sources, we need to compute the equilibrium value of s̃1
keeping all distances s̃i − s̃1 fixed. Inspired by the classical
calculation of the elastic interactions between inclusions in
soft membranes and liquid interfaces (see, e.g., Ref. [40]),
we integrate over the shear degrees of freedom and derive
the effective potential UNðsGÞ that controls the position
of sG along the strip. To compute UN , it is convenient to
solve a seemingly more complex problem where the strip
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undergoes thermal fluctuations. The thermal statistics is
then defined by the partition function

Z½fσig�¼
Z

1

0

dsG

Z
DθSe−β½

R
ds̃ 1

2
ð∂ s̃θSÞ2−

P
i
σiθ

Sðs̃iÞ�; ðA11Þ

where β−1 ≡ KBT, and the field θSðs̃Þ satisfies the con-
dition (A6). Integrating out the θs degrees of freedom
defines the effective potential UNðsGÞ:

Z ¼
Z

1

0

dsGe−βUNðsGÞ; ðA12Þ

with UNðsGÞ ¼ −
1

2

X
i;j

σiσjGð1Þðs̃i; s̃jÞ: ðA13Þ

Going back to the original mechanics problem, i.e., taking
the zero-temperature limit in Eq. (A13), we find the
equilibrium position of sG ¼ 0 by minimizing UNðsGÞ.
The nonlinearity of the shear response of the Möbius strip
originates from this last minimization procedure, which
translates the topological constraint.
We illustrate this method for two identical stress sources

located at s1 and s2 separated by a constant distance Δ:
σsðsÞ¼ σ½δðs−s1Þþδðs− s2Þ�, with s2¼ðs1þΔÞmod ð1Þ
and find

U2ðsGÞ ¼
σ2

2K
½js̃2 − s̃1j þ ðs̃1 þ s̃2Þðs̃1 þ s̃2 − 2Þ�: ðA14Þ

Minimizing U2ðsGÞ, we find two local minima satisfying
∂sGU2 ¼ 0 at sG ¼ ðs1 þ s2Þ=2 mod (1) and sG ¼ ðs1 þ
s2Þ=2þ 1

2
mod (1). They are sketched in Fig. 7 and reflect

the mirror symmetry of the problem. The lowest energy
conformation always corresponds to the value of sG the
farther away from the stress sources. In the symmetric case,
where Δ ¼ 1

2
, the shear response possesses two degenerate

equilibrium positions. With the knowledge of the position
sG the shear-deformation profile is fully determined. It is
given by Eq. (A10) and illustrated in Fig. 3 for various
positions of s1, s2.

APPENDIX B: BUCKLING PATTERNS AND
SOLITARY WAVES: DYNAMICAL-SYSTEM

INSIGHT

We compute the shape of buckled Möbius strips making
use of a dynamical system analogy. The expression of the
elastic energy given by Eq. (5) is indeed analogous to the
Lagrangian of a classical particle of unit mass and moving
in a potential VðΦÞ ¼ −ξ−2ðΦ2 −Φ2

0Þ2, where Φ indicates
the particle position, s the time, and ∂sΦ the particle
velocity; see Fig. 8. Both the non-orientability constraint
and the finite size of the strip complexifies the dynamics of
this seemingly simple dynamical system. We show below
that the trajectories are not periodic and singular at sG.
Without loss of generality, we chose sG ¼ 0. Non-

orientability therefore implies that Φð0Þ ¼ ΦðLÞ ¼ 0
regardless of the value of the particle speed ∂sΦðsGÞ.
The trajectory ΦðsÞ is found noting that the mechanical
energy Em ¼ 1

2
½∂sΦðsÞ�2 þ V½ΦðsÞ� is a constant of

motion. Noting Φm ¼ max½ΦðsÞ�, the periodicity of the
trajectory (reflecting the periodicity of the strip shape)
imposes jΦmj < Φ0. Otherwise, one would simultaneously
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FIG. 7. Equilibrium positions of sG. Effective potential U2ðsGÞ
trapping the position of sG along the strip when two identical
shear stresses are applied at positions s1, s2. The blue circles
indicate the two locally stable positions of sG. U2 is minimized
when sG is maximally distant from the applied stresses. Illus-
tration with s1 ¼ 1=10 and s2 ¼ 1=2 and σ1 ¼ σ2 ¼ K.
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FIG. 8. Soliton shape: Kicked particle in a potential. The
potential VðΦÞ is plotted versus Φ. At time s ¼ 0, the particle
is located in the potential well (dark circle). It is, however, not at
rest as its velocity is nonzero; it is kicked uphill and reaches its
maximal position at s ¼ 1

2
(light circle). It then falls back to its

initial position at t ¼ 1. The particle speeds at s ¼ 0 and s ¼ 1
are opposite.Φ0 ¼ 1=2, ξ ¼ 1. This feature translates into a slope
discontinuity of the soliton shape at sG.

TOPOLOGICAL ELASTICITY OF NONORIENTABLE RIBBONS PHYS. REV. X 9, 041058 (2019)

041058-9



have ∂sΦ ¼ 0 and Φ > Φ0, thereby leading to runaway
solutions. Invariance upon time reversal of the particle
Lagrangian also imposes Φm ¼ ΦðL=2Þ. Therefore, the
conservation of mechanical energy implies

∂sΦðsÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fVðΦmÞ − V½ΦðsÞ�g

p
: ðB1Þ

Let us consider solutions where Φm > 0. The sign of
∂sΦðsÞ in Eq. (B1) is then positive when 0 < s < L=2 and
negative when L=2 < s < L, and the inverse function s ¼
Φ−1½ΦðsÞ� is readily found integrating Eq. (B1) on the two
separate intervals:

s ¼ �ξ

Z
Φ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx2 −Φ2

mÞðx2 þΦ2
m − 2Φ2

0Þ
p ;

¼ ξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Φ2
0 − 2Φ2

m

p F½arcsinðΦ=Φm; kÞ�; ðB2Þ

where k≡Φ2
m=ð2Φ2

0 −Φ2
mÞ and Fðx; kÞ is the incomplete

elliptic integral of the first kind. The final form of the
trajectory follows from the definitionΦm ≡Φð1=2Þ, which
imposes Φ2

m ¼ 2Φ2
0 − 2ðξL−1ÞFðπ=2; kÞ. We stress that

our gauge choice constrains ϕðsÞ to vanish at sG ¼ 0,
thereby imposing the derivative of Φ to be discontinuous at
sG. The solution corresponds to two symmetric half Φ4

kinks defined on a compact interval plotted in Fig. 6(d) in
the main text. One last comment is in order. In the limit of
large ribbons assembled from very stiff hinges, ξ=L ≪ 1,
Φm ¼ Φ0, and the integration of Eq. (B1) results in the
usual tanh profiles given by Eq. (7). The buckling pattern
corresponds to the symmetrization of the usual Φ4 soliton.

APPENDIX C: FACTORIZATION
OF THE DYNAMICAL OPERATOR

We show how to factorize the dynamical operator
D ¼ ∂2

s − 2U02ðΦ0Þ − 2UðΦ0ÞU00ðΦ0Þ defined in Eq. (9).
As we discuss in Appendix B, in the limit of infinitely long
ribbons, Φ∞

m ¼ Φ0 and VðΦ∞
m Þ ¼ Em ¼ 0. The latter rela-

tion simplifies Eq. (B1):

∂sΦ∞ðsÞ ¼ sgnðs − sGÞ
ffiffiffi
2

p
U½Φ∞ðsÞ�: ðC1Þ

Together with the definition of D, this relation implies the
factorization D ¼ Q†Q with

Q† ¼ ∂s þ sgnðs − sGÞ
ffiffiffi
2

p
U0ðΦ∞

0 Þ; ðC2Þ

Q ¼ −∂s þ sgnðs − sGÞ
ffiffiffi
2

p
U0ðΦ∞

0 Þ; ðC3Þ

where Φ∞
0 is the shape of the unperturbed buckled ribbon.

A ξ=L expansion shows that this form is preserved for
very long but finite ribbons. This result is obtained express-
ing the ribbon shape as a linear perturbation of Φ∞:

Φ0 ¼ Φ∞
0 þ ðξ=LÞΦ̃. Evaluating Em and keeping in mind

that UðΦ0Þ ¼ 0, we find Em ¼ U2ðΦ0 þ Φ̃mÞ ¼ U2ðΦ0Þþ
2UðΦ0ÞU0ðΦ0ÞΦ̃m þO½ðξ=LÞ2� ¼ O½ðξ=LÞ2�. The rela-
tions Em ¼ 0 and Eq. (C1) are hence preserved at first order
in ξ=L. Therefore, even though the HamiltonianHB defined
in Eq. (8) does not enjoy the Bogomol’nyi–Prasad–
Sommerfield symmetry of the continuum description of
the isostatic chain of linkages introduced in Ref. [24], the
corresponding dynamical matrix can still be factorized as
D ¼ Q†Q, substituting Φ∞ by Φ in Eqs. (C2) and (C3).
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