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Network growth processes can be understood as generative models of the structure and history of
complex networks. This point of view naturally leads to the problem of network archaeology:

reconstructing all the past states of a network from its structure—a difficult permutation inference
problem. In this paper, we introduce a Bayesian formulation of network archaeology, with a generalization
of preferential attachment as our generative mechanism. We develop a sequential Monte Carlo algorithm to

evaluate the posterior averages of this model, as well as an efficient heuristic that uncovers a history well
correlated with the true one, in polynomial time. We use these methods to identify and characterize a phase
transition in the quality of the reconstructed history, when they are applied to artificial networks generated

by the model itself. Despite the existence of a no-recovery phase, we find that nontrivial inference is
possible in a large portion of the parameter space as well as on empirical data.
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I. INTRODUCTION

Unequal distributions of resources are ubiquitous in
the natural and social world [1]. While inequalities abound
in many contexts, their impact is particularly dramatic
in complex networks, whose structures are heavily
constrained in the presence of skewed distributions of
resources, such as edges or cliques [2]. For instance,
the aggregation of edges around a few hubs determines
the outcome of diseases spreading in a population [3], the
robustness of technological systems to targeted attacks and
random failures [4], or the spectral property of many
networks [5]. It is therefore not surprising that much effort
has been devoted to understanding how skewed distributions
come about in networks. Many of the satisfactory explan-
ations uncovered thus far have taken the form of constrained
growth processes: the rich-get-richer principle [6], sampling
space reduction processes [7], and latent fitness models [8].

A common characteristic shared by these processes is that
they do not—nor are they expected to—give a perfect
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account of real complex systems and networks [9]. Their
rules are simple and only capture the essence of the
mechanisms at play, glossing over details [10]. But despite
these simplifications, growth processes endure as useful
models of real complex systems. At the level of macroscopic
distributions, their predictions have often been found to fit the
statistics of real networks to surprising degrees of accuracy
[11]. At the level of detailed mechanisms, they have been
shown to act effectively as generative models of complex
networks [12,13], i.e., as stochastic processes that can explain
the minutia of a network’s growth [14,15]. This point of view
has led, for example, to powerful statistical tests that can help
determine how networks evolve and change [16,17].

The notion of growth processes as generative models is
now being pushed further than ever before [17]. The
burgeoning field of network archaeology [18], in particular,
builds upon the idea that growth processes are generative
models of the history of complex networks, able to reveal
the past states of statically observed networks. This point of
view is perhaps the most clearly stated in the bioinformatics
literature, which seeks to reconstruct ancient protein-
protein interaction (PPI) networks to, e.g., improve PPI
network alignment algorithms [19,20] or understand how
the PPI networks of organisms are shaped by evolu-
tion [21]. Indeed, almost all algorithmic solutions to
the PPI network archaeology problem are based on
explicit models of network growth (variations on the
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duplication-divergence principle) and take the form of
parsimonious inference frameworks [21-23]; greedy local
searches informed by models [18,24-26]; or maximum
likelihood inference of approximative [27], graphical [20],
and Bayesian [28] models of the networks’ evolution.

Less obvious is the fact that a second body of work,
rooted in information theory and computer science, also
makes the statement that growth processes can generate the
history of real complex networks. This second strand of
literature [29-36] focuses on temporal reconstruction
problems on treelike networks generated by random attach-
ment processes [6,37]. It has led to efficient root-finding
algorithms (whose goal is to find the first node) [29—32] and
to approximative reconstruction algorithms on trees [33-35].
Applying any of these algorithms to a real network amounts
to assuming that growth processes—here, random attach-
ment models—are likely generative models.

The goal of this paper is to investigate classical growth
processes as generative models of the histories of networks,
from the point of view of Bayesian statistics and hidden
Markov processes. This investigation is made possible by
recent advances in particle filtering methods as applied
to temporal reconstruction from static observations
[28,38,39]. Our contribution is threefold. First, we give a
latent variable formulation of the network archaeology
problem for a generalization of the classical preferential
attachment (PA) model [6,40-42]. We derive all the tools
necessary to infer history using the model, including a
sampling algorithm for its posterior distribution adapted
from Ref. [38], provably optimal estimators of the history,
as well as efficient heuristics well correlated with these
estimators. Second, we establish the extent to which
complete history recovery is possible and, in doing so,
identify a phase transition in the quality of the inferred
histories (i.e., we find a phase where recovery is impossible
and a phase where it is achievable in large networks). Third,
we demonstrate with numerical experiments that we can
extract temporal information from a statically observed
network not generated by the model, including an aging
model [43] and the phylogenetic tree of the Ebola virus. We
conclude by listing a number of important open problems.

II. METHODS FOR NETWORK ARCHAEOLOGY

A. The problem

A network G generated by a growth process is, by
construction, associated with a history X, i.e., a series of
events that explains how G evolved from an initial state G,.
We consider the loosely defined goal of reconstructing X,
using the structure of G and the fact that it came from a
growth process as our only sources of information.
Formally, this is an estimation problem in which the history
X is a latent variable, determined by the structure of the
network (see Fig. 1). The relationship between the network
and its history is expressed using Bayes’ formula as

(b) Posterior distribution

(a) True arrival times

FIG. 1. Reconstructing the history of a growing network.
(a) Artificial network generated by our generalization of the
preferential attachment model (with parameters y = —1.1,
b =0.9, T =50; see text). Since the network is artificial, its
true history—i.e., the time of arrival of its edges in time—is
known. The width and color of edges encode this history; older
edges are drawn with thick, dark strokes, while younger edges are
drawn using thin, light strokes. The age of the nodes is encoded in
their radius. Our goal is to infer this history as precisely as
possible, using the (unlabeled) network structure as our only
input. (b) Accurate reconstruction obtained with 10° samples of
the posterior distribution over possible histories.

P(G|X)P(X]0)

PXIG.0) = ===

(1)

where we assume, for the sake of simplicity, that the growth
process parameters (denoted by the tuple #) can be
estimated reliably and separately from G (see the
Appendix A, where we test this assumption).

A complete specification of the probabilities appearing
in Eq. (1) is obtained upon choosing a growth process as
our model: This choice fixes the unconditional probability
P(X|0) of the histories, the likelihood P(G|X) of the
network given X, and the evidence P(G|6) given as the
sum of P(G|X)P(X|0) over all histories X.

B. Random attachment model

For the sake of concreteness, we carry out our analysis of
the network archaeology problem in the context of a
specific growth process. We use a variant of the classic
PA model that incorporates both a nonlinear attachment
kernel [41] and densification events, i.e., attachment events
between existing nodes [40,42,44.,45].

1. Model description

In this model, a new undirected edge is added at each
time step t = 1,2,...,T — 1, starting from an initial net-
work G comprising a single edge. With probability 1 — b,
the new edge connects two existing nodes, and it connects
an existing node to a new node with complementary
probability b. Whenever an existing node i needs to be
selected, it is chosen randomly with probability propor-
tional to k7 (r), where k;(1) is its degree at time 7 (prior to
any modifications to the network) and where y is called the
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exponent of the attachment kernel. Hence, the probability
of choosing node i when an existing node is needed is

Ki(t) k(1)
Zjev,kg(t) - Z(ny)’

where V, is the set of nodes in G prior to adding the
new edge.

The parameter b € [0, 1] controls the density, while y €
R controls the strength of the rich-get-richer effect. We
refer to these parameters collectively with 6 = (y,b). We
recover the classic PA model by setting (y =1,b=1)
[6,46]; the random attachment model with (y =0,b = 1)
[37]; one of the models of Aiello, Chung, and Lu with
y=1,b €0, 1] [45,47]; and an undirected version of the
Krapivsky-Redner-Leyvraz generalization if y is free to
vary and b =1 [41]. The model technically generates
multigraphs for any b < 1, although numerical experiments
show that the proportion of redundant edges and self-loops
decreases rapidly with increasing network size, for all
b > 0, when y < 1. Itis thus an appropriate model of sparse
multigraphs, but also a reasonable approximation of large
sparse networks, with few or no redundant edges and
self-loops.

ui(y) = (2)

2. Posterior distribution over histories

The posterior distribution over histories P(X|G,y, b) is
proportional to the product of two terms; see Eq. (1).

The first term, the likelihood P(G|X), only weakly
depends on the details of the model. Its role is only to
enforce consistency: It equals 1 if X is a possible history of
G under the model (in which case, we say that X is
consistent with G), and it equals O otherwise. In any model
where growth events consist of attaching new edges or
nodes to an already existing network, a consistent history X
is one that describes a sequence of connected subgraphs of
G, each a subgraph of the next. Our model is one such
process, which settles the issue of calculating P(G|X).

The second term, the probability of a history P(X|y, b), is
more sensitive to the choice of model. We notice that the
growth model defined above is a Markov process because
the probability of growth events is defined in terms of the
current state of the network and nothing else. Hence,
P(X|y,b) can be written as a product of transition prob-
abilities. Denoting by X, the state of the history at time ¢,
we write P(X|y,b) = [[=! P(X,|X,_,7,b). Combining
Eq. (2) with the fact that a new node is involved in the
growth event with probability b, we find that the transition
probability is given by

PXi| X7, 0) =& bu, (v) + (1-¢)
: (1 - b) C Uy, (7/) : M1;2(}/), (3)

where v, is the existing node and v, is the incoming node
or the node chosen to close a loop. In this equation, we use

& =1 to indicate that v, is new in the transition X,_; — X,,
and we set £ = 0 otherwise.

Using Eq. (1), we can then write the posterior probability
P(X|G,y,D) of a history X as

H;rz_ll P(Xl|Xt—l’y’ b)
P(X|G,y,b) =
(KIG.7.) P(Gly.b)

Ixe¥G). (4)

where I[X € ¥(G)] is an indicator function equal to 1 if X
is in the set W(G) of histories consistent with G (and 0
otherwise), and where the normalization is given by a sum
over histories in ¥(G),

P(Gly.b) = > P(Xly.b). (5)

XeY(G)
C. Inference: Goal and algorithms

In the latent variable formulation of the network archae-
ology problem introduced in Egs. (1)—(4), reconstructing
the past amounts to extracting temporal information from G
via the posterior distribution P(X|G,y,b). We need to set
our goals carefully, however, since not all problems of this
type are solvable. For example, the posterior distribution in
Eq. (4) is heavily degenerate—and even uniform over the
set of all histories consistent with G [36] for some choices
of parameters y and b (see Appendix B for details). As a
consequence, an attainable goal cannot be to find the one
true history X(G) of G because this history is generally not
identifiable [36].

To find a better inference task, we notice that, according
to the model, every growth event marks the arrival of
precisely one new edge (see Sec. II B). Consequently, we
can represent histories X compactly as an ordering of the
edges of G in discrete time t =0, ..., 7 — 1. And, in turn,
this representation suggests a natural inference task, which
we will henceforth adopt as our inference goal: estimating
the individual arrival times z(e) of the edges e € E(G) of
the network. We can hope to get good estimates in this case
because we know of a number of network properties that
correlate with the age of nodes and edges in growth
models [48].

One possible estimator Z(e) of the arrival time of edge e
is the posterior average:

#(e) = (z(e)) = > _wx(e)P(X|G.7.b), (6)

X

where 7y (e) denotes the arrival time of e in history X. It is
straightforward to show that (z(e)) minimizes the expected
mean-squared error (MSE) on 7(e), and we therefore refer
to it as the MMSE estimator of the arrival time. It turns out
that this estimator also maximizes the correlation of the full
set of estimates {%(e)} and the true arrival times, when G is
generated by the model (see Appendix C for a proof)—it is
therefore optimal in some sense.
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Since we are working with a distribution over histories,
we can do much more than simply estimate (z(e)). One
posterior estimate is particularly informative: the variance
on 7(e), calculated as

(r(e)?) = (z(e))?
:ng((e) (X|G,y,b)— (ZTX P(X|G,y, ))2
X

X
(7)

It can tell us how much we should trust our estimate of z(e).
A small variance means that the (unimodal) marginal
distribution P(z(e) = t|G, 7, b) is peaked on a few values
of time 7, i.e., that we should be confident of our estimate of
7(e). But conversely, if it is large—say, in the extreme case
of a uniform marginal distribution over t =0, ..., T — 1—
then we do not know much about z(e) and our estimate
should not be trusted. In the applications of Sec. III, we
quantify our uncertainty by calculating this variance along-
side our estimate. To summarize this information in a single
number, we compute the normalized variance per edge,

12
= TaE =) > d(e), (8)

¢€E(G)

o*(e)=

U(G)

where the leading factor bounds U(G) in the range [0, 1],
with 1 corresponding to the maximal overall variance, i.e.,
maximal uncertainty.

We are not ready to move on to applications, however, as
the computation of a complete set of MMSE estimators and
the associated uncertainty score U(G) is unfortunately
intractable. Explicit summation is impossible because there
are far too many histories consistent with networks of even
moderate size (the upper bound |¥(G)| = T'! holds, some-
times tightly). In general, we cannot exploit some special
symmetries of G to evaluate the sum since the network is an
input of the problem and therefore arbitrary. Hence, we
have to resort to approximations, which we now introduce.

1. Sequential importance sampling

Following the standard practice in Bayesian statistics, we
use a Monte Carlo approximation to evaluate the MMSE
estimators as

o) o Y (o), ©)

where x; is a random history drawn from the posterior
distribution P(X|G, y, b). In theory, the error on the average
decreases rapidly as O(1/4/n), such that we can calculate
%#(e) to a good approximation quite easily.

Things are not so simple in practice, however, because
it is hard to sample from the posterior distribution

P(X|G,y,b) directly. The consistency constraint X €
¥(G) depends on the minutia of the structure of G and
makes generating samples from P(X|G,y,b) a difficult
endeavor. For this reason, and following earlier work on
network history sampling [49,50], we prefer a simple
transformation of Eq. (9) that allows for more straightfor-
ward sampling.

The transformation relies on the introduction of a second
distribution Q(X|G) over the consistent histories ¥(G).
The idea is to reexpress the MMSE estimators as

#e) er P(X|G.7.b)
x(e)P(Xly, b)
xéw PGlr.b)

_ (x(e)o(X|G.7.b))o
P(Gly,b) ’

0(X|6)
0(X|G)

(10)

where the average is now computed over O and where
o(X|G,y,b) = P(X|y,b)/Q(X|G) is called the (unnormal-
ized) weight of history X. Equation (10) is a useful
reformulation of the average in that the distribution
O(X|G) is now arbitrary. Hence, in particular, we are free
to choose a distribution that is easy to sample, which allows
us to evaluate Eq. (10) as

> n@etG.r . (1)

(e) nP(Gly,b) <

A

T

where the set of n histories {x;} is now drawn from the
distribution @, known in this context as the proposal
distribution [51]. We can safely ignore the intractable
normalization P(G|y, b) introduced by the transformation
because the estimators (z(e)) must satisfy the sum

> (ele)) = > Z x(e)P(X[G.7.b)
e€E(G) ¢€E(G) Xe¥(G
= > P(X|G,y,b> > wxle)
Xe¥(G) ¢€E(G)
T-1
= 3 PGy b)Y = (g) (12)
XeY(G) =0

where the last equality follows from the normalization
of P(X|G,y,b). As a result, we may compute Z(e) up to
a multiplicative constant and use Eq. (12) to set the
global scale.

It is advantageous to choose a Markov process as the
proposal distribution @, i.e., one that factorizes as
0(X|G) =[1=! O(X,|X,_1,G), as we then obtain what
is known as a sequential importance sampling (SIS) method
[52]. The method is said to be “sequential” because all
computations can now be done on the fly. We generate X,
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from X,_; with Q(X,|X,_;,G) and update the sample
weight as

P(X;|X-1.7.b)

CU(X():I|G,]/,Z’)) :a)(X0:,_1|G,y,b) Q(X |X | G) ’
HA =1

(13)

where X., = {Xo, X1, ..., X,} refers to a history, with all
states included up until time z. Neither the transition
X,_1 = X, nor the weight update equation makes use of
old states. Hence, after the weights have been updated, we
can simply discard X;_; and save memory—an important
benefit when the network G is large.

With the above considerations in mind, we propose to
use a variation on snowball sampling [53,54] as the
proposal distribution Q(X|G). Informally, a snowball
sample mimics the growth process itself, by enumerating
the edges of G, radiating outward from a random starting
point ¢ (the seed). We determine the next edge e; of the
history by drawing uniformly at random from the set of
edges that share at least one node with ¢, (excluding e
itself). The next edge after that is picked from the set of
edges that share at least one node with ¢, or ¢, (excluding
eo and e;) and so on until the graph is exhausted.

We can give a more formal definition of Q(X|G) by
defining the boundary Q(X,) of X, as the set of all edges
that share at least one node with edges already appearing in
X, but that are themselves not in X,. With this notation, a
snowball sample is obtained by repeatedly drawing an edge
from Q uniformly at random and updating € accordingly. It
is then easy to see that the transition probability associated
with this proposal distribution is

O (Xi|X,—1, G) = [JQ(X,)[]™". (14)

with the convention that Q(X|X_;,G)=1/|Q(X,)|=1/|E|.

Our choice of proposal distribution is motivated by the
fact that (i) it is a Markov process such that we can use SIS,
(i1) it only generates histories that are consistent with G,
and (iii) transitions X, — X, can be computed efficiently.
This choice leads to an overall sampling algorithm that is
itself efficient. The worst-time complexity of generating
one sample is O(|E| X kpay), where ky,, is the maximal
degree of G (due to the boundary updates). When this
maximal degree is a slowly varying function of |E|, as is the
case for a large portion of the parameter space [41],
snowball sampling generates samples in near linear time
in the number of edges—as fast as possible.

2. Sequential Monte Carlo algorithm

The SIS method described above is not perfect, however.
The error on the true average, for example, no longer
decreases as O(1/+/n) because we are not sampling from
the true posterior distribution anymore. To get an intuition
as to why, notice that probability mass is conserved, such
that any proposal distribution Q(X|G) that is not equal to

the posterior itself must, by necessity, place a low probability
on some histories that have a high posterior probability. As
soon as we generate one of these rare samples, the sum in
Eq. (11) becomes dominated by a single term because of its
large weight P(X|G,y,b)/Q(X|G), which essentially
washes out the contribution of other terms.

The impact of these high weight samples on our estimates
can be quantified with the effective sample size [55]

Do o(xi|G,y,b) :

ESS({x;}|G.7.b) = ’
i G 7. b) =S Gy b)?

(15)

An ESS close to n tells us that all samples contribute
roughly equally, while an ESS close to O tells us that we
only have a few useful samples at hand. It turns out that for
problems with the structure of network archaeology, the
ESS of a population of samples generated with a SIS
algorithm will go to 0 unless Q is extremely close to P [52].
Hence, the SIS algorithm introduced above tends to
evaluate its estimators with very few effective samples.
A natural extension of SIS, called the adaptive sequential
Monte Carlo (SMC) algorithm, is designed to address this
problem [52].

In a SMC algorithm, one still generates samples using
the imperfect proposal distribution Q, but this is now done
in parallel. In other words, we first pick e for a set of n
histories, then e, for all these histories, and so on, all the
while updating the weights with Eq. (13). We could do the
same with the SIS algorithm, so the two algorithms are not
truly different in this regard. The defining difference
between SIS and SMC comes from the way we handle
these samples. Denote the set of parallel histories evolved

up until step 7 as H(r) = {Xg:)r} i—1.. ., and the associated

the parallel histories, we monitor the ESS as a function of ¢,
using Eq. (15) and the partial weights W(¢). Whenever the
ESS becomes too small and crosses a threshold ESS*, we
perform an additional resampling step. The goal of this
additional step is to eliminate histories that look like they
will not contribute much to our estimators. It is imple-
mented by creating a new set H'(z) of uniformly weighted
histories from H(¢), obtained by randomly duplicating
histories with probability proportional to their current
weight. Following standard practice [52], we choose
ESS* = n/2 as the threshold that triggers a resampling
step, and we implement resampling by drawing n indexes
{a;};—..._, from the multinomial distribution of probabil-

.....

One can show that this resampling step does not bias the
estimators in the limit of large n [52], which gives us a
method to obtain unbiased estimators of z(e) calculated
with a high ESS.

It is important to realize that while the resampling step
increases the ESS by design, it does so at a cost. A history
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that evolved from an unlikely starting point or in an
unlikely direction has a significant probability of getting
overwritten. Erasing this history can be a “mistake” in that
it could eventually evolve to a high weight state, which we
never get to see. We can never make such a mistake when
the number of samples n is extremely large, as a few low
weight histories will survive repeated resampling. But for
finite n, this effect—known as path degeneracy [52]—can
actually lead to poor inference results in practice. We
somewhat mitigate path degeneracy by resampling only
when the ESS becomes small, as opposed to at every step as
is done recently in Ref. [38]. Even then, numerical experi-
ments suggest that the downsides of path degeneracy
outweigh the benefit of an increased ESS on loopy net-
works and very heterogeneous trees (see Supplemental
Material [56]). As a result, we use resampling only when
b=1andy <.

This resampling technique completes the set of methods
needed to draw samples from the distribution over histories.
The derivation is complex, but the end result is straightfor-
ward. To summarize, we (i) initialize n > 1 histories by
setting their weights to 1 and by drawing, for each, a seed
uniformly at random from the edge set E(G). Then, we
(i1) evolve the n histories, in parallel, using the snowball
proposal distribution of Eq. (14) to generate random moves
and Eq. (13) to update the weights. When » = 1 andy < 1,
we (iii.a) keep track of the ESS with Eq. (15) and trigger a
resampling step whenever it drops below n/2. In all other
cases, we (iii.b) never resample, so we do not need to
calculate the ESS. Once we have our final set of histories, we
(iv) approximate (z(e)) for all edges using Eqgs. (11) and (12)
and our set of samples, and we calculate the uncertainty
appearing in Eq. (8) in the same way. Our reference
implementation of this method is freely available online [57].

3. Structural estimators

We put the SIS and SMC sampling algorithms to the test
in Sec. III, but before we do, we introduce two last—much
simpler—estimation algorithms as baselines. These algo-
rithms only rely on the structure of G to estimate the arrival
times z(e), instead of an explicit knowledge of the posterior
distribution P(X|G,y,b). They follow the same overall
pattern: We rank the edges in descending order, based on
some network property P that is known to positively
correlate with the age of edges, and we output these ranks
as our estimated arrival times. Whenever the edges of a
subset S C FE are indistinguishable according to property P,
we cannot order them reliably with P, so we instead give
them the same rank A(S). To set A(S), we require that the
average time of arrival () be preserved; this constraint
forces A(S) =t + (m + 1)/2, where m = |S]|.

Our first structural estimator is based on the observation
that the nodes that arrive earlier in a growth process have,
on average, a larger degree [6,48]. This result is a
consequence of the fact that older nodes have many more

opportunities to acquire new neighbors as the growth
process unfolds than nodes that arrived at the very end.
Because we want to order edges and not nodes, we use the
degree of nodes to induce a ranking of edges as follows. We
define (k°%, kM€") as the degree of the nodes connected by

edge e, with KoV < KMe" We rank edges in descending

order of k' and break ties with k°¥. The idea behind this
strategy is that an edge connected to at least one high-
degree node is likely to be older than an edge connected to
two nodes of a lower degree.

We also know that the model generates networks that
nucleate from a core, such that their central nodes tend to be
older. Hence, our second structural estimator makes use of
a centrality measure to order edges. We use a recursive
peeling method known as the onion decomposition (OD)
[58], where we create a sequence of nested subnetworks by
repeatedly removing the nodes of the lowest degree. At step
t of this peeling process, all nodes with degree k,;,, the
current lowest degree, are removed simultaneously and
assigned a layer number. We turn these numbers into the
time of arrival of nodes by assuming that nodes in the
outermost layers appeared last. A simple modification
allows the algorithm to order edges: An edge is assigned
to a class as soon as one of its nodes is peeled away. All
edges removed in the same pass are declared as tied. We
note that OD is closely related to the peeling method
introduced in Ref. [35] to tackle the archaeology problem
in the special case (y = 1, b = 1), although the method of
Ref. [35] removes the lowest-degree nodes without batch-
ing, which leads to a slightly different ordering.

III. RESULTS

A. Inference on artificial networks

To calibrate the methods and understand the conditions
under which they perform well, we first apply our algo-
rithms to networks drawn from the generative model itself.
In this situation, we know the ground truth X and therefore
the true arrival times 7 (e) of all the edges. As a result, we
can compute the quality of our estimates {#(e)} with the
Pearson product-moment correlation as

P > eer(e) (Be) — () (zx(e) — (7))
V0 (Ee) = )\ cericr (x(e) ()
(16

El

where (7) = (T — 1)/2 is the average arrival time, which is
fixed by the choice of timescale. This correlation takes
values in [—1, 1], where |p| = 1 indicates a perfect recovery
up to a time reversal and where |p| = 0 indicates that no
information is extracted from the graph at all. It is not
affected by an arbitrary linear transformation of the time-
scales, it penalizes spurious ordering of tied events, and it is
robust to small perturbations of the estimators [59].
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FIG. 2. Network zoo. Examples of networks generated by the process with b =1 (top row) and b = 0.75 (bottom row), and
y € {-10,-1,0, 1,10} (from left to right). The width and color of edges encode this history; older edges are drawn with thick, dark
strokes, while younger edges are drawn using thin, light strokes. The age of the nodes is encoded in their radius.

1. Inference on artificial trees

We consider the regime b = 1, i.e., the regime where the
model generates trees, for our first set of experiments. The
generative model is well understood in this case, which will
help us interpret the inference results more readily. In
Ref. [41], it is shown that different values of y € R
correspond to different phases that are characterized by
different degree distributions (see also Fig. 2, upper row).
In the limit y - —oco, the model generates long paths,
where every node has degree 2 except for the two end
nodes, of degree 1. For all negative values of y, the model
favors homogeneous degrees. When y = 0, the degree
distribution is geometric, of mean 2 (since we recover
the uniform attachment model [37]). In the interval
0 <y <1, the degree distribution takes the form of a
stretched exponential, with an asymptotic behavior fixed
by y. At precisely y = 1, the attachment kernel becomes
linear, and the networks are scale-free: The degree dis-
tribution follows a power law of exponent —3 [6]. In the
interval 1 <y < 2, the networks condensate in a rapid
succession of connectivity transitions at y,, = (m + 1)/m
for m € N*. When y > y,,, the number of nodes of degree
greater than m becomes finite. As a result, an extensive
fraction of the edges aggregates around a single node—the
condensate—and this fraction grows with increasing y [60].
The condensation is complete at y = 2, where the model
enters a winner-takes-all scenario characterized by a central
node that monopolizes nearly all the edges.

The average of the correlation attained by our various
inference algorithms is shown as a function of the attach-
ment kernel y in Fig. 3(a), on small networks (7" = 50). As
previously stated in Sec. II, we assume that the parameters
are known when we compute the MMSE estimators, and
we therefore use the true values of (y, b) in our calculations.

We distinguish two broad regimes based on the inference
results: the regime y < 0, characterized by a homogeneous

() 1.0 == D x 1.0
S X
c * Sym. bound ¢ >
2 MMSE 0 =
(] ©
B 051 OD A} 05 %
= o
8 Degree ] 5
Uncertainty x
X
0.0 0.0
-10 -5 0 5 10

(6) 1.0 1.0
c =
2 c
$ 051 H05 &
S e
o >

0.0

-10
Y
FIG. 3. Effect of the rich-get-richer phenomenon on recovery.

We analyze artificial networks of 7' = 50 edges, generated with
our generalization of the preferential attachment and the param-
eters y € [—-10,10], (a) b =1 (trees), and (b) b = 0.75 (loopy
networks). We plot the average correlation attained by the
Monte Carlo approximation of the minimum mean-squared error
(MMSE) estimators and two efficient methods based on network
properties (a degree-based method and the onion decomposition
[58]). A loose upper bound that accounts for network symmetry is
also shown [see Eq. (17)] as well as a measure of our uncertainty
of the MMSE estimators (right axis) [see Eq. (8)]. Each point is
obtained by averaging the results over m different network
instances, where (b = 1) m =40 and (b = 0.75) m = 250. We
use the true parameters (y, b) and n Monte Carlo samples to
approximate the MMSE estimators, where n = 10° (b = 1) and
n=>5x10° (b =0.75).
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distribution of degrees, and the heterogeneous regime
y > 0. The three methods behave similarly in the first
regime: They first yield a relatively large correlation at
y = 0, but their quality quickly plummets with growing ¥,
ultimately converging to a null average correlation for
sufficiently large values of y. The MMSE estimators remain
slightly superior to the OD estimators throughout, and they
both outperform the degree estimators by a significant
margin. The degree estimators perform even worse in the
homogeneous regime. While the quality of the OD and
MMSE estimators increases with decreasing y, the corre-
lation achieved by the degree estimators goes in the
opposite direction and shrinks with y. From these results,
we can already draw the conclusion that the MMSE and
OD estimators should be preferred on trees—MMSE for
their accuracy and OD for their speed. [It can be shown that
the OD algorithm returns its final point estimates in O(|E| x
log |V|) steps [58], whereas a single Monte Carlo sample
takes roughly as many steps to generate.]

It is natural to ask whether these results are good. To
answer this question, we also show in Fig. 3(a) two
measures that can help us assess the results.

The first, shown as gray crosses in the figure (right axis),
is the uncertainty U(G) defined in Eq. (8). It correctly
increases as our ability to infer correlated histories
decreases, reaching its maximal value of 1 in the condensed
phase y > 2 where inference does not seem possible.

The second, drawn in black, shows an upper bound on
the average correlation as a function of y. This bound takes
the symmetries of the generated graphs into account and
shows that they can seriously hamper our ability to conduct
network archaeology.

Before we describe how this bound is derived, it is
helpful to understand where symmetries come from
and why they matter. Notice that some edges fulfill the
same structural role in a network, say, the three edges
of a triangle or the first two edges of the small network
E ={(a,b),(a,c),(b,c),(a,d)}.If we were to draw these
networks twice with different layouts and the labels
removed, we would not be able to tell which of these
edges is which. In other words, some edges can only be
identified because we have labels on the nodes.

Since labels represent an arbitrary choice [61], estimators
cannot rely on them to make predictions. As a conse-
quence, structurally equivalent edges are impossible to
order reliably. Hence, the more equivalent edges there are,
the harder the archaeology problem becomes.

Now, to actually compute the symmetry bound, we first
find all the structurally equivalent edges in the generated
graph G, using a method discussed in Appendix D. We then
construct an estimator 7*(e) of the arrival time of e by
averaging the true time of arrival 75 (e) of all edges in its
equivalence class, as

* _; (e
T(e)_|C(€)| Z X( )’ (17)

e'eC(e)

where C(e) is the set of edges indistinguishable from e. We
finally compute the correlation between {7*(e)} and the
ground truth, using Eq. (16). The resulting bound corre-
sponds to the correlation we would have obtained had we
known the true arrival time of edges, without the labeling
of G.

There is no reason to believe that we can recover such a
precise temporal reconstruction from G alone, which means
that the bound is probably loose. That said, as shown in
Fig. 3(a), it does a good job of explaining the maximal
correlation attained in the extreme regimes—our estimators
perform as well as possible when |y| > 0. In the large
positive-value regime, the networks condensate, and sym-
metries upper bound the correlation at 0. In the large
negative-value regime, the networks are effectively grown
as random paths, where all nodes are of degree 2 except the
two end nodes, which are of degree 1 (see Fig. 2). All edges
are thus ordered up to a mirror symmetry around the
middle, such that the equivalence classes are of size 2.
Standard concentration inequalities then tell us that the time
of arrival of any edge can be identified with a variance that
vanishes in the large-7 limit. Near-perfect recovery is
therefore trivial: Peeling the path symmetrically from both
sides yields a close approximation of the arrival time of
every edge.

2. Inference on artificial loopy networks

Figure 3(b) shows the outcome of the same experiments,
in a case where loops are allowed (b = 0.75). The
phenomenology of the generative model is not the same
as in the case of trees—we do not know that there are sharp
structural connectivity transitions at many values of y, for
example. That said, the same general principle still holds
(see Fig. 2, bottom row): Large positive values of y still
mean that the network condensates on a few nodes, and
negative values of y lead to a homogeneous distribution of
degrees.

Comparing the results of Fig. 3(b) with the case of trees
shown in Fig. 3(a), we find a number of noteworthy
differences. The most noticeable differences perhaps con-
cern the homogeneous regime y <« 0: We find that near-
perfect recovery is no longer possible, that the symmetry
bound is much looser, and that the average uncertainty is
not predictive of the reconstruction accuracy anymore.
Other important differences include an increased gap
between the quality of the MMSE estimators and the
structural methods (OD, degree) for all y and the fact that
nontrivial inference remains possible deep into the con-
densation phase y > 0 with MMSE estimators.

Starting with this last difference, let us analyze the
condensation phase of the generative model with loops
(b < 1), which bears a strong resemblance to the analog
phase in the case of trees (b =1). A typical network
realization in this regime is comprised of the following:
many self-loops centered on the condensate, a number of
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parallel edges connecting high-degree nodes, and starlike
node arrangements around high-degree nodes. In the
regime y > 0, in particular, the typical network becomes
a star with (1 — b)|E| self-loops on average (see bottom-
right diagram of Fig. 2). These self-loops help the degree of
the condensate grow faster (incrementing its degree by 2
every time instead of 1), which leads to a more pronounced
condensation for fixed 7, b < 1, and y > 1. One might be
tempted to conclude that as a result, inference becomes
harder as we decrease b, but this would be discounting the
fact that self-loops carry some temporal information.
Indeed, the MMSE estimators achieve a slightly positive
correlation by exploiting the difference between the self-
loops and the spokes of the star in the condensation regime.
Because the growth process starts from a single edge and a
geometric distribution of mean 1/(1 — b) determines the
time step at which the first self-loop is created, it is possible
to obtain a positively correlated time of arrival by guessing
that self-loops are slightly younger than the spokes, on
average. Neither the degree nor the OD estimators can
detect this difference, and they therefore declare all edges
as tied.

A different phenomenon explains the disappearance of
near-perfect recovery in the regime y << 0 when we set
b < 1. The large gap between the symmetry bound and the
best inference results shows that the symmetries are not at
fault: One can clearly distinguish every edge, yet inference
is still difficult. We argue that the poor performance of the
estimators is instead imputable to the appearance of random
long-range connections not found in other regimes. One
such edge appears when two low-degree nodes, typically
located in the outermost layers of the network, are chosen
as the end points of a new connection—an event that is only
possible when y < 0 and b < 1. These connection in turn
(1) increase the number of histories consistent with G and
(i1) introduce uncertainties in the ordering of large subsets
of edges, for example, when a long-range connection closes
a long path. The inference problem becomes harder as a
result.

The correlation attained by the MMSE in the regime
y < 0, b < 1 is probably not too far from its optimum—
despite what the symmetry bound says. The uncertainty
estimates U(G) are small, which tells us that the MMSE
estimators are as precise as one could have hoped. Hence, a
bound of a completely different nature—one that accounts
for cycles—would be needed to explain the diminishing
correlation as y goes to negative infinity. We leave the issue
of finding this bound to future work.

3. Phase transitions in heterogeneous networks

In the previous sections, we have shown that when we
apply our methods to networks G drawn from the gen-
erative model itself, the history encoded in the network’s
structure can be recovered to varying degrees of accuracy,
depending on the exponent value of y. Focusing on the

heterogeneous regime y > 0, we have seen in Fig. 3 that
robust inference only seems possible when y is positive but
close to 0. These results are suggestive of a phase transition
in our reconstruction capabilities—although we cannot yet
reach any conclusions because our analysis has so far been
limited to small networks of 7' = 50 edges, fraught with
possible finite-size effects. Therefore, to get a better
numerical portrait of the dependence of the attained
correlation on y, we now turn to large networks. Our goal
is to uncover a single critical threshold y, marking the onset
of this transition. We define the threshold precisely as
follows: On one side of y,., there exists an algorithm that
returns estimators {#(e)} attaining a nonvanishing average
correlation with the ground truth in the limit of large
network sizes, while there is no such method on the other
side of the divide, in the no-recovery phase.

To find the location of y,., we run a finite-size scaling
analysis of the correlation attained by different methods, on
increasingly larger networks generated at different values
of the structural transitions y,, = (m + 1)/m [41]. First, we
apply the OD method to these networks. Our goal is to find
a value of y,, for which the correlation attained by OD is
independent of 7. If we find one such y,,, then we have
evidence for a lower bound on y,. since we then know of at
least one method (OD) that returns correlated estimates in
the large-network limit. Second, we compute the scaling of
the symmetry bound for the same networks. If we can find
another value of ¥/, for which the bound goes to zero as T
increases, then we also have an upper bound on y,. since no
method can outperform the symmetry bound by definition.
Hence these two methods combined can help us bracket y...

The outcomes of these experiments are shown in Fig. 4.
We find that for most values of y > 1, the average
correlation attained by the OD decreases as T-°), with
5(y) > 0. If y is close enough to 1, however, the average
correlation becomes independent of 7" (verified for network
sizes up to T < 3 x 10°). In the case of trees (b = 1), we
find that the correlation is independent of 7 when
y = 11/10, but that is not the case for y = 5/4, which
gives us a lower bound of y. > 11/10. In the case of loopy
graphs with b = 0.75, we find a smaller lower bound of
7. > 1, with the correlation decreasing slowly for kernel
exponents as small as y = 11/10.

Interestingly, the upper bound on y,. provided by the
second scaling analysis [Fig. 4(c)] shows that the OD
results are nearly optimal: When the symmetry bound
decreases, the correlation attained by OD also decreases.
Conversely, when the symmetry bound stays steady, the
correlation attained by OD becomes independent of 7.
Hence, while we have not computed the scaling analysis for
all values of y, our results suggest that y,. is bounded away
from—but close to—y = 1.

This raises the question of where exactly the critical
threshold y. lies. As we have mentioned previously,
the generative model has infinitely many connectivity
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FIG. 4. Finite-size scaling analysis for the results of Fig. 3. The average correlation attained by OD is shown against the size T of
networks generated using (a) b =1 and (b) b = 0.75, for y € {1.00, 1.10, 1.25, 1.50, 1.75,2.00, 2.25} (from top to bottom). Two
scaling curves are highlighted and annotated in each figure: the curve associated with the largest value of y that does not decline with T
(blue), and the first curve that varies with T after that (orange). (c) Scaling of the symmetry bound for the same values of y in the case of
trees (left) and dense graphs (right). The scaling is not computed for large values of 7' due to computational costs. Note that there are
many known structural transitions between the highlighted curves [41], which are not shown for the sake of clarity.

transitions in the case of trees, aty,, = (m + 1)/m form =
1,2, ... [41]. Our numerical results suggest that there is a
single important value of y that matters in the infinite size
limit; as such, our parsimonious hypothesis is that one of
the critical values y,, aligns with y. when b = 1. Com-
bining this simple observation with our numerical bounds
leaves m = 5, ..., 10 as options when » = 1 and all values
of y € (1,1.10) when b = 0.75.

The appearance of a condensate from y > 1 onwards
gives anice qualitative explanation as to why there should be
a phase transition in the recovery quality. When an edge
attaches to the condensate, the temporal information it
carries becomes inaccessible. Furthermore, because these
edges are added throughout the growth process, any esti-
mation technique that tries to find a total ordering will
conflate old and new edges in a single class. The diminishing
correlation of the estimators in the regime y > 1 is hence, at
least in part, attributable to the presence of this condensate.

To quantify the impact of equivalent edges on the
structure, we run a second scaling analysis and verify
how the average information content (IC) of the generated
networks scales with network size. The IC is, in a nutshell,
an information theoretic quantity that measures the preva-
lence of equivalent edges [62]—the same edges we have
used to define the symmetry bound. It gives us a single
number that summarizes the abundance but also the hetero-
geneity in size of the sets of equivalent edges. It is defined as

5(6) = = > 1o 1 _1og 11 - L3 6 10g .
— |El " |E| E|

(18)

where Cy, ..., C, are the g < |E]| sets of equivalent edges

[63] (see Appendix D for how to find these edges). If all the
sets of equivalent edges are finite, then the information
content of G is of order log |E|. Conversely, if one extensive

set accounts for the totality of edges—e.g., when G is a star
graph—then S(G) is zero. In general, if there are #
extensive sets accounting for a nonvanishing fraction a =
a; + -+ -+ a, of all edges, then S(G) = (1 —a)log |E|—
> a;loga;. Hence, the scaling of S(G) with |E| tells us
how fast new sets of distinguishable edges are created as
the network grows. What we want to verify is whether good
performance correlates with the presence of many distin-
guishable sets of edges, i.e., a large IC.

Our results are shown in Fig. 5(a). The scaling behavior
of the IC confirms that there is an extensive number of
equivalence classes when y = 1. Figure 5(b) shows the
difference between the true information content and the
information content obtained by assuming that the equiv-
alence classes of edges are determined only by the degree of
the nodes at the end of the edges (a coarsening of the true
equivalence classes). Because the difference is close to zero
for high values of y, this second figure tells us that most of
the equivalence classes are degree classes in this regime.
The figure also tells us that many new equivalence classes
are created as y approaches 1, precisely in the regime where
OD does well. Coupled with Fig. 4, Fig. 5 shows that an
abundance of equivalent edges—specifically those of the
condensate—drives the recoverability transition.

B. A different task: Root finding

In Sec. IIC, we briefly mentioned that inferring the
complete history of a network is only one of many possible
problems that fits within the Bayesian formulation of
network archaeology. Any other temporal inference task
that makes use of the posterior distribution P(X|G,y,b)
can be solved with the same set of tools—Ilike evaluating
the uncertainty U(G). As a further example of the versa-
tility of this framework, we now briefly turn to another
problem: finding the first edge (root) of G [32].
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FIG. 5. Finite-size scaling of the average information content.
(a) Average information content (S(G)) of tree networks (b = 1),
as a function of network size 7', for exponents y € {5, . %, 1}
of the nonlinear kernel. Color matches what is highlighted in
Fig. 4(a). We know that these are upper and lower bounds on y..
due to the scaling analysis. The dotted line is the upper bound
log(T) on the information content. (b) Information content not
accounted for by the degree classes, ie., (S(G)— Sue(G)),
where Sg.,(G) is the Shannon entropy of the partition obtained
by classifying edges according to their nodes’ degree (see text).

The most comprehensive analysis of a root-finding
algorithm is put forward by the authors of Ref. [29], where
the goal is to find the first node of a growing tree in the case
y = 0 and y = 1. Their strategy is to compute the number
@(v) = [{X|7x(v) = 0}| of histories rooted on » and to
return the K nodes with the largest ¢(v). They show that
this algorithm can be employed to construct sets of constant
size that contain the root with a fixed errorrate ¢ < 1 as T
goes to infinity and that the case y = 0 is easier than the
case y = 1 (smaller sets are needed to attain the same
error rate €). In line with this reference and following
Refs. [29-31], we can give a solution to the problem in
terms of sets—with the crucial difference that we look for
the first edge instead of the first node.

We use the marginal distribution P(X|G,0) over time
steps P(z(e) = t|G,y,b) to construct the set R of likely
roots. More precisely, we use the SMC sampler to approxi-
mate the probability that an edge e is the first,

P(z(e) = 0|G,y,b) = Y Tlzx(e) = 0]P(X|G.y.b), (19)
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FIG. 6. Root finding on artificial trees. We show the success
rate of the root-finding algorithms, with sets R of sizes K =5
and K = 20 on artificial networks of T = 50 edges. The results of
OD are shown with solid lines and symbols, while the sampling
results are shown with symbols and error bars of 1 standard
deviation. The horizontal solid lines show the accuracy of
randomly constructed sets R (no information retrieval), while
the horizontal dotted lines show the expected success rate in the
limit y — —oo, where a simple peeling technique is optimal. The
sampled root sets are computed for y € {—1,—1,0,, 1}, using

n = 10° samples.

where I[S] is an indicator function, which is equal to 1 if the
statement S is true and equal to O otherwise. We then define
R as the set formed by the K edges that have the largest
posterior probability P(z(e) = 0|G,y, b), which gives us
our prediction. For comparison, we also infer the root with
the much-faster onion decomposition by constructing R
with the K most central edges (with ties broken at random).

The accuracy of the resulting algorithms is shown as a
function of y in Fig. 6. We distinguish, again, two main
regimes: Accurate recovery is possible in the strongly
homogeneous regime y < 0, but the success rate dimin-
ishes with growing y, reaching a noninformative limit in the
regime y > 0. This result shows that, much like full
temporal reconstruction, root finding is also negatively
affected by the presence of equivalent edges.

It is worth noting that our results (Fig. 6) put the work of
Refs. [31,64] in the broader context of Bayesian inference.
Their counting strategy, based on calculating the number
¢(v) of histories rooted on v, for example, can be formally
related to our posterior inference formulation via

p(v) « Z I[7x(v) = 0]P(X|G,y) = P(vis first|G, y, b)
Xe¥Y(X)

because the posterior distribution P(X|G,y, b) is uniform
over all histories (see Appendix B for a proof) in the case
studied in those works, defined by » =1 and y =0, 1.
Thus, the estimators proposed in Refs. [29,30,32] can be
seen as outputting the K nodes that have the largest
marginal distribution at # = 0—assuming a uniform dis-
tribution over histories. In contrast, our method remains
correct for arbitrary values of y (a generalization suggested
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in Ref. [29]) but also for any choice of b. It can be easily
extended to seeds that are not edges but instead small
subgraphs [31]—we simply have to change the initial
distribution over states used in the SMC sampler.

C. Application: Effective modeling and the
phylogenetic tree of the Ebola virus

The end goal of network archaeology is to uncover
temporal information from statically observed networks not
explicitly generated by growth processes. It was recently
shown that it can sometimes be difficult to tell growth
processes apart, even when perfect temporal data are
available [17]. Turning this observation on its head, there
are situations where the details of the growth process do not
matter much—many mechanisms can explain the same data
equally well. One consequence of this finding is that our
generalization of PA—and many more models—could find
applications as effective models of the growth of real
networks, without getting all the details right. In other
words, we can hope to make reasonable temporal inference
even if we use an otherwise simplistic growth process as
our model.

To put this hypothesis to the test, we first use our
methods to reconstruct the past of an artificial model that is
not generated by our generalization of preferential attach-
ment. To this end, we consider a growth model that
combines preferential attachment and added memory
effects [43]. At each time step, a new node is added to
the network, and it chooses its neighbor with probability
proportional to

ui(a) = k;(0) (e = z(v;) +1)77 (20)

where k; (1) is, again, the degree of node v; at time ¢, 7(v;) is
its time of arrival, and a € R is a parameter of the model.
Much like our generalization of PA, this model has a rich
phenomenology (see the top row of Fig. 7). The classical
preferential attachment model [6] is recovered by setting
a = 0. Older nodes are chosen preferentially in the regime
a < 0, whereas the newer ones are preferred in the
regime @ > 0. This effect is the strongest in the regime
a > 1, where the network is no longer scale-free and tends
to organize in long chains as a goes to infinity [43].

Our inference results are shown in Fig. 7, where we apply
our methods to a few typical networks generated with
this model. Since the parameters (y, b) are not known in
this case, we estimate them with a method detailed in
Appendix A—this method allows us to compute the prob-
ability P(X|G,y,b) when we approximate the MMSE
estimators. For the network generated with « = —2, we find
that the best fit is given by the exponent # = 1.76. In other
words, in this case, aging helps nodes accumulate neighbors
faster than PA would, which leads to networks reminiscent of
those generated by generalized PA in the superlinear regime
of Ref. [41]. As a result, even though our model is, strictly
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FIG. 7. Application to synthetic networks grown with a model
that includes memory effects. (Top row) Single network instances
with various values of the memory parameters o [43]. Edge
thickness and node size encode age according to the ground truth
(thicker and bigger equals older). Older nodes have a large
probability of attracting new neighbors for the network shown on
the left (memory parameter @ = —2), while newer nodes are
advantaged in the other two cases (@ = 0.75 and 2). The negative
effect of memory on attachment probability is strongest for the
network shown on the right, with @ = 2. We find that these
networks are best modeled with 5 = 1 and, from left to right,
7 =1.76,0.00,—-1.61 for the growth model (see Appendix A
for details). The KS statistics D* on our estimates of y are
D* =0.044, 0.055, 0.052, and the significance levels are
P(D > D*) = 0.47, 0.45, 0.39, signaling a good fit (see Appen-
dix A for details). The uncertainty scores are U(G) = 0.24, 0.39,
and 0.22 [see Eq. (8)]. (Bottom row) Fraction of edge pairs
correctly ordered by the estimators, when separated by at least
Imin time steps according to the ground truth, for the single
instances of the model shown in the top row. Ties are broken at
random for the degree and OD estimators. MMSE estimators are
calculated from n = 200000 Monte Carlo samples, using the
estimated parameters.

speaking, the wrong one, it can still give useful inference
since the mechanisms behave similarly (with the difference
that there is now more than one condensate node). For the
network generated with a = 0.75, we find that the best fit is
given by the exponent 7 = 0. Older nodes now fade out of
memory so fast that the beneficial effect of PA barely allows
them to attract new neighbor. This case leads to an attachment
that is now more or less uniform, which again allows us to
calculate useful estimates with an effective model.

The case of @ =2 is interesting—it shows that we
should be careful when we interpret the results of temporal
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inference, in the situation where we know nothing of the
growth mechanism that actually produced the network.
When a is large, new nodes are moved out of memory
immediately. As a result, the model generates long chains
similar to those generated by our model when we set b = 1
and y < 0 (see Fig. 7, top right), best fitted by 7 — 1.61. A
crucial difference, however, is that the oldest nodes are now
concentrated on one side of the chain instead of in its center.
Our model is a poor description of this process since it
assumes that central nodes are the oldest, which leads us to
estimates that are close to the random baseline (see Fig. 7).

With this cautionary tale in mind, we can apply network
archaeology to real data—provided that we carefully
choose a good growth model based on the data. An area
where network archaeology could be useful is the study of
how biological systems evolved. Biological analyses often
call for an estimation of the sequence in which the different
constituents emerged, based on the currently observed
biological diversity. This information is typically encoded
in phylogenetic trees that track how species evolved and
diversified from common unobserved ancestors. Much
work has gone into inferring the structure of these trees
from current observations, but this structure does not
necessarily tell us about the ordering of speciation events.
Hence, as a proof of concept, we apply our method to the
inferred phylogenetic tree of the Ebola virus for the 2013—
2016 West African Ebola epidemic [65,66]. The relatively
short duration of the epidemics and the lack of selective
pressure on the virus means that Ebola underwent neutral
evolution. As a result, new lineage of strains can sprout
from new and old strains alike, such that a simple attach-
ment process is a good model of growth in this case. The
extensive coverage of the surveillance and sequencing
effort for this epidemic [67] means that on top of the
structure, we have access to temporal metadata that are a
close approximation for strain emergence. In this case, we
can treat the phylogenetic tree as ground truth; our goal is to
find an ordering of the emergence of all strains consistent
with the metadata.

In Fig. 8, we show that all the inference methods recover
some level of temporal information; statistical inference,
however, performs much better than the others, regardless
of the measure of quality used. The naive estimators yield
correlations of pgegree = 0.152 and pop = 0.150 with the
known metadata, while we find pypsg = 0.456 with the
sampling method (using 25000 samples). Furthermore,
while all the methods resolve pairs of mutations separated
by any number of time steps better than chance, the
MMSE estimators outperform the other techniques. This
performance gap is in part due to the presence of equivalent
edges; the OD identifies only 26 sets of distinguishable
edges, while the degree estimators identify 47. In contrast,
the true MMSE estimators can order all pairs of edges that
are not equivalent (there are 1588 sets of distinguishable
edges), a property that is retained by the subsampled
estimators.

0857 o MMsE

@ Degree
0.8044 0D

0.75 1 o
0.70 1 o
0.65 |

0.60

tos ] f

Random baseline

Fraction correctly ordered

0.50

0.45

0 500 1000
Minimal separation tmin

FIG. 8. Application to the phylogenetic tree of strains of the
Ebola virus. (Left diagram) Leaves (n = 1238, in orange)
represent strains of Ebola sequenced during the 2013-2016 West
African outbreak [65], while the remainder of the nodes represent
inferred common ancestors (n = 959, in blue), and edges are
most likely mutations [66]. Edge thicknesses indicate age
according to the ground truth. We find that this network is best
modeled with 5 =1 and y = —0.71, associated with a KS
statistic of D* = 0.17 and a significance level of P(D > D*) =
0.53 under the random model, signaling a good fit (see Appen-
dix A for details). The uncertainty score of the MMSE estimators
is equal to U(G) = 0.001 [see Eq. (8)]. (Right diagram) Fraction
of edge pairs correctly ordered by the estimators, when separated
by at least f,;, time steps according to the metadata. Ties are
broken at random for the degree and OD estimators. MMSE
estimators are calculated with the n = 25000 Monte Carlo
samples.

Similar analyses are not possible for most epidemics due
to a lack of data. For epidemics that are more sparsely
monitored than the 2013-2016 Ebola outbreak, recon-
struction typically relies on models that are hard to para-
metrize (transmission rates, mutation rates, demographics,
etc.) [68]. The quality of our results suggests that recon-
structing the history of phylogenetic trees should be one of
the interesting avenues for future network archaeology,
especially since the method does not rely on parameters
that require additional data sources.

IV. CONCLUSION

In this paper, we have addressed the network archae-
ology problem from the point of view of Bayesian
inference, with generalized preferential attachment as our
generative model. In doing so, we have shown that the
equivalent edges that appear in random growing trees make
inference difficult, to the point where inference becomes
impossible in some regimes. This difficulty does not mean
that the problem is generally impossible, however, since we
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have also shown that reconstruction is possible in both
artificial and real systems.

The opportunities brought about by network archaeology
are tantalizing. In bioinformatics alone—the only field
where it has found widespread use thus far [28,69]—
network archaeology with the divergence-duplication mod-
els has already yielded insights into the past states of real
PPI networks [18,21] and improved on network alignment
[19,20]. Generalization to models that are relevant beyond
bioinformatics will allow us to answer new questions about
the past of statically observed systems and improve net-
work analysis techniques [70].

Our paper shows an example of how to carry this
analysis almost automatically. One simply has to define
a Markov growth process; our adaptive sequential
Monte Carlo algorithm—an extension of the algorithms
proposed in Refs. [38,49,50]—can then generate weighted
histories that can be aggregated as MMSE estimators to
yield optimal estimators of the history of the network.

Our analysis is, of course, far from complete, and it
leaves a number of important theoretical and computational
problems open. First, while we have provided compelling
evidence for the existence of a scalable inference phase and
ano-recovery phase, we have yet to pinpoint the location y,.
of the transition that separates them. Our numerical analysis
suggests that it lies at some rational value y. = (m + 1)/m
when b = 1, but finding the exact location will require
further analytical work, perhaps relying on a detailed
analysis of the expected information content of the gen-
erated graphs, for example, using the counting techniques
introduced in Ref. [71]. Second, we have used correlation
as our notion of inference quality, but a recent analysis of
the special cases y =0, 1 [35] instead emphasizes trade-
offs between precision—how many elements are correctly
ordered—and density—how many elements we can order.
It would be useful to study the full range of parameters y
under this alternate definition of quality. Third, the phe-
nomenology of the observed phase transition is strikingly
similar to that observed in many disorder models [72,73].
While growth models are formally out-of-equilibrium
processes—and thus cannot be obviously mapped onto
disorder models—it will be important to establish how the
network archaeology phase transition fits within the
broader family of phase transitions in Bayesian inference
problems. The tools introduced in Ref. [36], further work
on information content, and the concept of exchangeability
[74,75] all might offer insights into this issue. Fourth, we
have shown that nonlinear preferential attachment can
sometimes act as a useful effective model of a network’s
growth, even when the network is definitely not generated
by this model. A systematic study of how generalizable
these conclusions are could also be an interesting direction
for future work. Finally, we have used the OD algorithm
[58] in large networks because sequential Monte Carlo is,
ultimately, not very scalable. We have shown that this

substitution does not work in all cases because it is based
on a correlation between the true arrival times and the order
of peeling of a network specific to the class of models
studied. As a result, the next step for general network
archaeology should be to derive efficient approximation
methods that work with general models to allow for flexible
network archaeology. These methods will have to handle
models specified as chains P(X|6) with some arbitrary
notion of consistency P(G|X). The relaxation technique of
Ref. [76] for permutation inference comes to mind, but one
could also consider the message-passing algorithm [77] and
its dynamical variant [78].
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APPENDIX A: MODEL PARAMETERS

1. Estimation

Throughout the text, we assumed that the parameters
(y, b) are known or can be estimated, which has allowed us
to use the simpler conditional posterior P(X|G,y,b) (as
opposed to a joint distribution over histories and para-
meters). We now give a method to calculate these para-
meters in the cases where they are not known (such as with
a real graph; see Sec. 111 C).

Estimating b is easy because the observed graph can be
seen as the outcome of |E| — 1 independent and identically
distributed Bernoulli trials of success probability b. Every
excess edge beyond the minimum needed to ensure con-
nectivity is seen as a failure, and the total number of edges
gives the number of trials. After adjusting for the initial
conditions, we obtain the unbiased estimator

e V(G)[ =2

h(G) =17

“EO)| -1 (A1)

The exponent y is, in theory, more difficult to estimate
because the degree distribution is only a sufficient statistics
for y once it is conditioned on the arrival times [79,80].
A principled estimation technique should therefore rely on
a known history [13,81] or a joint sampling mechanism
for X and the parameters; see Ref. [38] for a general
particle MCMC method. But as we show in Fig. 9, a simple
non-Bayesian heuristic—the Kolmogorov-Smirnov (KS)
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FIG. 9. Consistency of the estimator of y in small networks. We
show the average difference between the true value and estimated
value of y, for networks of 7 = 1000 edges generated with
parameters y € [—-1,1] and b € [0.25,1.00]. This difference is
averaged over 20 different network realizations at each point of
the parameter space. We use n = 1000 samples each time we
evaluate the average KS statistic.

minimization of Ref. [82]—yields accurate enough esti-
mates from a single snapshot.

The KS statistic of a pair of distributions (P, Q) is given
by the supremum of the difference of their cumulative
distribution function (CDF), i.e.,

D(P, Q) = supy |fp(k) — folk)

where fp(k) is the CDF of P at point k. Given an empirical
degree distribution P(G) derived from an observed network
G, we estimate y by minimizing the KS statistic averaged

over a set of n random degree distributions {0 (y)},_,

, (A2)

generated by the model of parameters (y, l;) The minimum
D*(G) can be found efficiently using Brent’s method [83]
since the average KS statistic is convex. We use n > 1
random network instances to compute the average D at
each probed y, which can be costly when T is large.
Therefore, in practice, we first compute the expected degree
distribution of the model using mean-field equations and
then draw n finite samples from the resulting distribution.
This approach is equivalent to—but much faster than—
direct simulations. Note that the above framework also
provides a natural (non-Bayesian) notion of goodness of fit
for y [82]. It can be assessed by generating random degree
distributions with the estimated parameters (7, b), to which
we apply the complete testing procedure. This method
provides a null distribution for D, which tells us whether
D*(G) is an extreme value of the average KS statistic or
not. Following the standard, we assume that if P[D >
D*(G)] > 0.1, then the fit is good [82].

2. Sensitivity

To show that conditioning on point estimates of the
parameter does not alter temporal inference significantly,

we run a sensitivity analysis in which we generate
synthetic networks with some parameters (y, b), perturb
the parameters (y,b) — (y/,b'), and then run the SMC
algorithm with the perturbed parameters. We use Fig. 9 to
select meaningful perturbation sizes: We investigate
differences A, =y’ —y that are much larger than the
maximal error made in estimating 7 (the error is over-
whelmingly bounded to 7 —y € [-0.05,0.05] in Fig. 9).
We also investigate large perturbations A, to the proba-
bility b, but we note that large errors are unlikely since the
standard deviation on the success rate of Bernoulli trials
varies as O(1/y/n).

The analysis, shown in Fig. 10, confirms that we can
safely conduct temporal inference by conditioning on point
estimates of the parameters.
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FIG. 10. Sensitivity analysis of the parameter estimators.
Average correlation with the ground truth (top six panels) and
relative error on the true correlation (bottom six panels) of the
histories estimated by running the inference with misspecified
parameters. These results are produced on trees (b = 1, top rows)
and on loopy graph (b = 0.75, bottom rows), at various levels of
heterogeneity (y € {—1,0+ 1} from left to right); see also inset
text. The bold square shows the reference value (no perturbation),
while the rest of the heat map shows results for absolute
perturbations of magnitude A, A, € {-0.2,-0.1,0.1,0.2}.

Estimates above b = 1 are impossible and therefore not com-
puted (shown as a hatched region). We use the sampling level
most appropriate for each case and n = 100 000 samples, and we
average the results over 35 network instances.
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APPENDIX B: MAXIMUM POSTERIOR
MAXIMIZATION DOES NOT WORK

In the main text, we mention that the posterior distri-
bution P(X.7_;|G, 7, b) is often uniform over large sets of
histories, and this epitomizes why posterior maximization
(MAP) is not a suitable method to extract information from
G. We now demonstrate that the Krapivsky-Redner-
Leyvraz generalization of preferential attachment [41] is
an extreme example of this problem. Namely, we explicitly
show that when y € {0, 1}, the posterior distribution of this
model is uniform over all histories in ¥(G) [84]. We then
further argue that there exist large equivalence classes for
general y € R and b € [0, 1].

1. Strict uniformity on trees

Recall from Egs. (2) and (3) that in the model where
b =1, the logarithm of the unconditional probability of a
history is given by

log P(Xo:7-1]y) = Zlogu 7. Vi),
k]’
ui(y. Vi) = =5~ ()
> jev, Ki(1)

where V, is the node set of G, prior to any modification of
the graph’s structure and where we have denoted by a, the
node selected as the fixation site at time ¢ in Xy.7_;. To
demonstrate that the distribution is uniform over the set of
all consistent histories, we first define the normalization
Z(t;7) = > ey, k(1) and rewrite

~logZ(t:y)].  (B1)

T-1
10gP XOT ]|]/ Z ]ng

t=1

Now, in the special cases of uniform attachment and linear
preferential attachment, corresponding toy = 0 and y = 1,
the normalization Z(z;y) always takes a special value
independent from the actual content of V,, namely,

=Y K=|V[=r+1,
Jjev,

Z(ty=1)=) k=2t
JEV,

The second identity follows from the fact that exactly one
edge is created at each ¢ and that the sum of all degrees is
always equal to twice the number of edges. These nor-
malizations are independent of X().7_;, meaning that they
can be dropped as an additive constant. Using y = 0 and
y =1 in Eq. (B1), we are left with

Constant y=20
Z IOg ka,( ) V= 1.

This last equation directly shows that the distribution
P(Xy.7_1]y) (and therefore the posterior distribution) is
uniform over all histories when y = 0. Less obvious is the
fact that the equation also implies a uniform posterior
distribution in the case y = 1. To see why, notice that the
posterior distribution is obtained by conditioning on G and
that this restricts the possible histories to those in which a
node i of degree ki in G appears k; — 1 times in the sum
>-I7!logk, (t): once as a node of degree one, once as a
node of degree 2, etc. Hence, every history consistent with
G is associated with some permutation of the same sum.
Obviously, a permutation does not change the value of the
sum; therefore, the posterior distribution is uniform over all
histories consistent with G.

log P(Xo.71ly) { (B2)

2. Extension to all parameters

Large sets of equally likely histories also arise in the
more general attachment model on trees (i.e., when y € R
with b = 1). The proof that these sets of histories exist is
similar in spirit to that of the special cases above. We first
make use of the permutation argument again, noting that it
applies to the general sum Y - log k} (¢), regardless of
the value of y. The problem therefore reduces to the
study of the evolution of the normalization constant.
Different from the special cases y =0 and y =1, the
normalization Z(#; y) does not grow at the same rate for all
histories when y is arbitrary. But, as we now show,
there are still equivalence classes with respect to the
posterior distribution. For example, consider two histories
identical in all respects until a last node of degree k
and its k — 1 remaining neighbors are encountered. The
(k—1)! histories resulting from the enumeration of
this neighborhood will have, by construction, equiv-
alent sequences of normalization constants Z(1;7) —
Z(2;7) = -+ Z(T — 1;y), which imply that these histories
will be associated with the same posterior probability and
that they will form a small equivalence class. Broader
equivalence classes can be identified by noticing that
similar permutations arise not only at the end but also
at any point of the histories, and that they interact
combinatorially: If there are m such equivalent sets of
edges, of sizes ki, ..., k,,, then each different point of the
posterior is degenerated k;! x ... X k,,! times. This argu-
ment trivially extends to any b € [0, 1].

APPENDIX C: OPTIMALITY
OF MMSE ESTIMATORS

The proof that the posterior average of 7y (e) maximizes
correlation a posteriori goes as follows.

By a slight abuse of notation, let us refer to an estimated
history constructed with some arbitrary estimators
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{#(e)}eer(c) as Y, such that zy(e) = #(e). Then, assuming
again that X is drawn from the posterior distribution, the
expected correlation of X and Y is

p(X.7)= > PX|G.r.b)p(X,Y). (Cl)

XeY(G)
which we rewrite as

1

Y PX|G.y.b) Y (zx(e) = (0)(zy(e) = (7))

OX0Y xew(G) ¢€E(G)

- > la(e) = ()]lev(e) = (7).

OXOY .CE(G)

2 2

where &% = 3" cp(c)(7x(e) = (7))* and &3 are sums of
individual variances [the same variances we use to calculate
uncertainty U(G), see Egs. (7) and (8)]. We are able to take
these standard deviations out of the sum because (1) 6y is
independent of X and (2) the value of &y is constant for all X
since one edge must occupy each “timeslot” ¢t =0, ..., 7 — 1
by definition, implying 5% = >} (r — (z))?. Again, some-
what stretching the notation, we define Z as the history
constructed with the MMSE estimators, i.e., the history such
that 7,(e) = (z(e)). We can then express the expected
correlation compactly as

(p(X.Y)) = %p(Z, Y), (C2)

where 6, # 6y, in general. Equation (C2) tells us that when
histories are actually drawn from the posterior distribution,
the expected correlation of the arbitrary estimators {zy(e)} is
proportional to the correlation between these estimators and
the MMSE estimators. The expected overall correlation
is therefore maximized if we choose Y to be the MMSE
estimators of the arrival times.

APPENDIX D: FINDING EQUIVALENT EDGES

We gave an intuitive definition of equivalent edges in the
main text. A more formal definition can be given by using
the concept of orbits [85]. An orbit is a set of nodes that
map onto themselves when we take an automorphism of G.
Hence, for example, the three nodes of a graph comprising
a single triangle form a single orbit. As another example,
the two end nodes (a and c¢) of the graph with edges
{(a, b), (b, c)} also form an orbit, while the central node b
forms an orbit by itself.

Our goal is, of course, to find the equivalent edges of G
and not the equivalent nodes, so we need to adapt the
concept slightly. One can easily define “edge orbits” in the
same way, but standard graph isomorphism software tends
to deal with node orbits only [85]. Instead, we take a
shortcut and resort to the line graph L(G) of G. The line

graph L(G) is constructed by replacing every edge of G by
a node and by connecting two of these nodes if the
corresponding edges share an endpoint in G. This trans-
formation is useful because the indistinguishable edges of
G are mapped to the (node) orbits of L(G) by construction
since the L(G) preserves the graph symmetries of G. This
method gives a straightforward algorithm to find equivalent
edges: We transform G into a line graph L(G), run a
standard orbit identification algorithm on L(G), and trans-
late the result back to G.

We note that the definition of the line graph is ambiguous
when G has self-loops and parallel edges. (Should a self-
loop be connected with itself in L(G)? What about sets of
parallel edges: Should the copies of an edge be connected
with the other copies?) Since our goal is to find the
distinguishable edges of G, we must ensure that the
transformation does not erase the important symmetries
of G. With this goal in mind, we choose to (i) not connect
the parallel edges of G among themselves and (ii) add a
self-loop to the nodes of L(G) that stand in for self-loops
in G. Choice (i) allows us to distinguish the parallel edges
from simple edges. As an example, suppose we have a
triangle with a parallel edge {(a,b), (a,b), (b,¢),(c,a)}.
The resulting line graph is a clique with a missing edge
between the two copies of (a, b), which allows us to
disambiguate the parallel and simple edges. Choice
(i1) allows us to tell self-loops apart from other edges.
For example, if we have a star graph G with added self-
loops on the central nodes, then the line graph is again a
clique, but the self-loops are marked as such—again
allowing us to tell them apart from the spokes.
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