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We study a possible deconfined quantum phase transition in a realistic model of a two-dimensional
Shastry-Sutherland quantum magnet, using both numerical and field theoretic techniques. Using the
infinite density matrix renormalization group (IDMRG) method, we verify the existence of an intermediate
plaquette valence bond solid (PVBS) order, with twofold degeneracy, between the dimer and Néel ordered
phases. We argue that the quantum phase transition between the Néel and PVBS orders may be described
by a deconfined quantum critical point (DQCP) with an emergent O(4) symmetry. By analyzing the
correlation length spectrum obtained from IDMRG, we provide evidence for the DQCP and emergent
O(4) symmetry in the lattice model. Such a phase transition has been reported in the recent
pressure-tuned experiments in the Shastry-Sutherland lattice material SrCu2ðBO3Þ2 [Nat. Phys. 13, 962
(2017)]. The nonsymmorphic lattice structure of the Shastry-Sutherland compound leads to extinction
points in the scattering, where we predict sharp signatures of a DQCP in both the phonon and magnon
spectra associated with the spinon continuum. The effect of weak interlayer couplings present in the three-
dimensional material is also discussed. Our results should help guide the experimental study of DQCP in
quantum magnets.
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I. INTRODUCTION

Quantum magnets can host some of the most exotic
phenomena in condensed matter physics, due to the strong
quantum fluctuations of the microscopic spin degrees of
freedom (d.o.f.). Notably, deconfined gauge fluctuations
and fractionalized spinon excitations can emerge in quan-
tum magnets, which bear no analog in classical spin
systems. Such behavior can exist either in a quantum spin
liquid, which is a stable phase of matter with topological
order [1–3], or by tuning a single parameter to a critical
point known as the deconfined quantum critical point
(DQCP) [4,5]. The DQCP describes the possible continu-
ous phase transition between two distinct symmetry-
breaking phases, which is beyond the conventional
Landau-Ginzburg paradigm. While the search for quantum
spin liquids is still an ongoing research effort in condensed
matter physics [6], the possibility of observing the DQCP
in materials could provide us with an alternative oppor-
tunity to study the properties of deconfined spinons and

emergent gauge fields in quantum magnets, as well as in
interacting fermion systems that realize the DQCP [7–12].
In a recent experiment [13], a phase transition between

a Néel antiferromagnet and a plaquette valence bond
solid (crystal) [14] was observed in a single crystal of
SrCu2ðBO3Þ2 under pressure. The material is a layered
quantum magnet. Within each two-dimensional layer, the
copper ions carry the spin-1=2 d.o.f. and are arranged on a
Shastry-Sutherland lattice as shown in Fig. 1(a). The spin
system is proposed to be effectively described by the
Shastry-Sutherland model [15,16]

H ¼ J1
X
ij∈nn

Si · Sj þ J2
X

ij∈dimer

Si · Sj; ð1Þ

where the J1 and J2 bonds are specified according to
Fig. 1(a). The ratio J1=J2 between the coupling constants
is tunable by pressure in experiments within a certain range.
In the large J1 (or large J2) limit, the model reduces to the
square lattice Heisenberg model (or the decoupled dimer-
ized model), which stabilizes the Néel phase [or the dimer
valence bond solid (DVBS) phase]. Between these two
limits, numerical [14,17–20] and theoretical [21] analysis of
the model reveals an intermediate plaquette valence bond
solid (PVBS) phase, as illustrated in Fig. 1(c). Remarkably,
the experiment in Ref. [13] seems to confirm this phase
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diagram. Since the PVBS and Néel phases separately break
two distinct symmetries, the lattice and the spin-rotation
symmetry, a direct second-order transition between them
would necessarily go beyond the Landau-Ginzburg para-
digm and point to the possibility of the DQCP. Although the
nature of the PVBS-Néel transition remains unresolved by
experiments, there are promising signs for the exciting
opportunity that SrCu2ðBO3Þ2 might provide the first
experimental platform to realize a DQCP.
Recent studies on different models with the same

symmetry class show that the transition between PVBS
and Néel phases could be first order [22,23]. However,
despite being first order, the transition is accompanied with
an extended region of quantum-critical-like scaling and an
emergent O(4) symmetry, implying that the transition could
be close to a DQCP (possibly as an avoided criticality).
Thus, the DQCP is still the best theory to account for these
anomalous features in the critical region, even though it
may eventually break down at the longest scales. Note that
the J-Q model or loop model studied in Monte Carlo
simulations [22,23] are designed differently from the
original Shastry-Sutherland model to avoid the sign

problem. Given that the first- or second-order nature of
the transition can be tuned by model parameters [24–27]
and is, therefore, a model-dependent property, the fate of
the PVBS-Néel transition in the Shastry-Sutherland model
remains to be fully resolved yet.
The goal of this work is to investigate the PVBS-Néel

transition in the Shastry-Sutherland model Eq. (1) in more
detail using both the field theory and the density matrix
renormalization group (DMRG) approach and to identify
the unique signatures of a DQCP that can be probed by
inelastic neutron scattering (INS) or resonant inelastic x-ray
scattering (RIXS) experiments. We use the infinite DMRG
technique to overcome the sign problem. Our numerical
simulation indicates (i) that the transition between PVBS
and Néel phases appears continuous up to the largest
available system size (an infinite cylinder with a circum-
ference of ten lattice sites), although we cannot rule out the
possibility of a weakly first-order transition due to our
limited system size. (ii) We also observe the asymptotic
degeneracy between spin-triplet and spin-singlet excita-
tions over a large length scale, demonstrating an approxi-
mate emergent O(4) symmetry which rotates among the
Néel and PVBS order parameters. Our theoretical analysis
further suggests that (iii) in the Shastry-Sutherland
lattice, in contrast to previous realizations of the DQCP, a
dangerously irrelevant operator is absent which has con-
sequences for numerics and that (iv) critical spinon
continua appear at the extinction points of lattice diffraction
peaks [cf. Fig. 1(b)] in both the magnon and phonon
channels at a low temperature around the DQCP. The
universal critical behaviors of these continua are examined
as well, which could guide the experimental study of the
candidate DQCP in the SrCu2ðBO3Þ2 material.
The rest of the paper is organized as follows. In Sec. II,

we perform an infinite DMRG simulation on the Shastry-
Sutherland spin model and discuss the nature of the phase
transition between Néel and VBS phases based on corre-
lation length spectra. In Sec. III, we analyze symmetry
quantum numbers of a monopole operator whose prolifer-
ation induces the transition to the VBS phase. By inves-
tigating the transformation property of the monopole, we
show that the single-monopole term is suppressed while the
double-monopole term can appear in the action describing
theNéel order in the Shastry-Sutherland lattice.We compare
the differences among various microscopic models—easy
plane, rectangular, and Shastry-Sutherland—whose pos-
sible emergent symmetry is all O(4). One distinct feature
of the Shastry-Sutherland lattice is the presence of the
relevant anisotropy operator that breaks the fourfold lattice
rotation symmetry, which stabilizes theVBS order and gives
rise to a fast-growing spectral gap in the spin-0 channel as the
system enters the VBS phase. In Sec. V, we propose the
spectral signatures of a DQCP in the Shastry-Sutherland
model, including the SO(4) conserved current fluctuation in
themagnon spectrum and theVBS fluctuation in the phonon

(a)

(c)

(b)

FIG. 1. (a) The Shastry-Sutherland lattice of copper sites (small
circles) in SrCu2ðBO3Þ2, on which the spins reside. The spins are
coupled across nearest-neighbor bonds (J1, in blue) and dimer
bonds (J2, in red). Each unit cell contains four sites, as shaded in
yellow. The glide-reflection (Gx and Gy) and the diagonal-
reflection (σxy and σxȳ) symmetries are indicated on the lattice.
(b) Diffraction peaks from copper sites. The darker dot indicates a
higher intensity. The extinction points are marked out by red
circles. The first Brillouin zone is shaded in yellow, correspond-
ing to the unit cell in (a). Special momentum points Γ, X, Y, and
M are defined as labeled. (c) The phase diagram of the spin model
Eq. (1). The Néel antiferromagnetic and DVBS phases are
separated by the intermediate PVBS phase upon tuning the
J1=J2 ratio. The critical points are determined in Table I based on
our IDMRG result. The transition between PVBS and Néel
phases is likely to be a DQCP (or weakly first-order proximate to
a DQCP).
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spectrum. Both of these features appear at the extinction
point of the Shastry-Sutherland lattice, which is detectable at
a low energy without being overwhelmed by the elastic
scattering signals. We conclude our discussion in Sec. VII.

II. NUMERICAL STUDY

In this section, we study the model in Eq. (1) using the
infinite density matrix renormalization group (IDMRG)
method [28,29]. We wrap the 2D system onto a cylinder
which is infinite along the x direction but compact along the
y direction, with a finite circumference L. In the simulation,
spin-1=2’s are mapped into the hard-core bosons with
density hni ¼ 1=2 per site; an antiferromagnetic spin
interaction would then be translated into hopping and
density-density interaction terms for bosons. As the boson
number is conserved in the simulation, we have an explicit
Uð1Þz symmetry which allows us to extract correlation
functions for an operator with a specific Uð1Þz quantum
number. During the simulation, we fix the value of J2 ¼ 1
and tune the value of J1 across the phase transition between
the PVBS and Néel order phases. Since the unit cell of the
Shastry-Sutherland lattice contains 2 × 2 square unit cells,
the IDMRG unit cell becomes a 2 × ð2mÞ slice of the
infinite cylinder, where the circumference of the cylin-
der L ¼ 2m.
In the IDMRG simulation, we have two limiting factors

to describe the exact two-dimensional state: the circum-
ference length L and the bond dimension χ. Because of
limited computational capacity, it is difficult to conclu-
sively identify whether the phase transition is continuous or
weakly first order in the DMRG simulation. Still, we can
extract useful information of the ground state by simulating
the model with increasing values of L and χ. For the
discussion on bond dimension scaling, see Appendix D. In
the DMRG simulation, we measure the (i) energy, (ii) pla-
quette order parameter, and (iii) correlation length spectra.

A. Detection of the PVBS phase

Although the matrix product state description of the state
is exact in the infinite bond dimension limit, for a finite
bond dimension, the cylindrical geometry of the IDMRG
simulation provides some bias to the preferred entangle-
ment structure for the ground state. As a result, in the PVBS
phase, one of two symmetry-broken phases is automatically
chosen and the order parameter does not vanish in the
IDMRG simulation. To characterize the PVBS phase, we
define the plaquette order parameter as follows [see Eqs. (5)
and (6) in Sec. III for a more rigorous definition]:

ImhMi ∼
X
i

ð−ÞxhSi · Siþx̂i − ð−ÞyhSi · Siþŷi: ð2Þ

In the PVBS phase, the dimer strengths hSi · Sji on each
bond hiji can be visualized in Fig. 2, which clearly
demonstrates the pattern of the PVBS ordering around

empty (square) plaquettes. Indeed, we measure that
ImhMi ≠ 0 and RehMi ¼ 0 in the paramagnetic regime
as expected for the PVBS phase (see Fig. 4).
Although the plaquette order parameter ImhMi is a

useful indicator, it is not precise because (i) the system size
does not reach the thermodynamic limit and (ii) the
geometry of the IDMRG simulation provides some bias
toward a specific entanglement structure for the ground
state. Albeit small, it has a nonvanishing value in the Néel
phase; see Fig. 4. Thus, we use a discontinuity in the second
derivative of the energy ∂2E=∂J21 to locate the PVBS-Néel
transition point. Up to L ¼ 10, the first-order derivative of
energy is continuous across the phase transition, implying
that the transition is either a weakly first-order or second-
order transition. On the other hand, from the energy plot in
Fig. 3, the DVBS-PVBS transition point can be easily
extracted, because the DVBS state is an exact ground state
of Eq. (1) with energy per site Esite ¼ −0.375J2. As we can
see, the first-order derivative of the energy is discontinuous
here, signaling a clear first-order phase transition between
the two spin-singletDVBS andPVBSphases. ForL < 6, we
do not observe the PVBS phase. Transition points for
different system sizes are summarized in Table I.

FIG. 2. Visualization of bond strengths hSi · Sji within the
IDMRG unit cell. The x̂ direction is along the cylinder, and the ŷ
direction is around the circumference. The width of the bond
represents the value of S1 · S2. The line color is black (red) if
S1 · S2 is negative (positive). One can notice that the singlet is
formed at a plaquette.

FIG. 3. At L ¼ 10, χ ¼ 4000. (a) Energy (E) per site. The
horizontal dotted line represents the exact ground state energy of
the dimer VBS state, Esite ¼ −0.375. (b) ∂E=∂J1 per site near the
transition between plaquette VBS and Néel order. The continuous
first-order derivative is a characteristic of the continuous phase
transition. Black dashed lines denote phase boundaries among the
dimer VBS, plaquette VBS, and Néel order.
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B. Correlation length spectra, monopole
fluctuations, and emergent Oð4Þ symmetry

Here, we present a signature of the DQCP in the
correlation length spectrum data obtained from the
IDMRG simulation. A continuous phase transition is
characterized by the divergence of a correlation length,
and an equal-time correlation function exhibits the power-
law decaying behavior hOðrÞOð0Þi ∝ r−2ΔO, where ΔO is a
scaling dimension of an operator O. In particular, if there
exists an emergent symmetry, operators unified under the
emergent symmetry should share the same scaling dimen-
sion ΔO [30]. For example, at the conventional DQCP with
the emergent SO(5) symmetry, the Néel n ¼ ðnx; ny; nzÞ
and VBS v ¼ ðvx; vyÞ order parameter should have the
same power-law behavior:

hnðrÞ · nð0Þi ∼ hvðrÞ · vð0Þi ∼ 1=r1þη; ð3Þ

where η ¼ 2ΔO − 1 is the anomalous exponent defined
relative to the engineering exponent in ð2þ 1ÞD, which is
1. However, in the IDMRG simulation, the finite circum-
ference L of the cylinder and finite bond dimension χ
introduce a cutoff length scale [31], which prevents us from
observing the power-law behavior in the correlation func-
tion. Therefore, at long distances along the cylinder, the
DMRG correlation function of an operator O always
decays exponentially with certain finite correlation length
ξO in the simulation. Nevertheless, instead of trying to
compare the scaling dimension ΔO, we can determine the
emergent symmetry by comparing the correlation lengths
ξO between Néel (spin-1) and VBS (spin-0) excitations. In
Zauner et al. [32], it is found that the correlation length
spectrum is inversely proportional to the energy of the
excitations that mediate this correlation behavior. Thus, the
correlation length spectra give access to the individual
dynamics of different types of excitations.
Using the DMRG transfer matrix technique, one can

readily obtain the correlation lengths ξ along the cylinder.
Moreover, since our DMRG simulation has an explicit
Uð1Þz symmetry, extracted correlation lengths are labeled
by Sz quantum numbers. Since the microscopic model has

full SO(3) symmetry, there is an exact degeneracy among
correlation lengths with different quantum numbers. For
example, a threefold degeneracy among Sz ¼ 0;�1 implies
that this correlation length corresponds to the excitation
carrying the quantum number S ¼ 1 of the SO(3) sym-
metry. In this way, we can identify the SO(3) spin quantum
number of each operator appeared in the correlation length
spectrum.
In Fig. 4, we plot the inverse of the largest correlation

lengths for spin-singlet and -triplet operators. The spin-
singlet operator corresponds to the PVBS order parameter
(or the monopole operator M) at a low energy. The
monopole operator is gapped in both the Néel and PVBS
phases and become gapless only at the critical point.
Therefore, the divergence of the spin-singlet correlation
length can signal the onset of DQCP in the thermodynamic
limit. Indeed, we identify that the peak of the singlet
correlation length exactly coincides with the critical point
extracted from the singularity of the energy derivative
(Fig. 3). Furthermore, the correlation length ξS¼0 at the
critical point increases as the bond dimension χ increases.
Although here we present only the correlation length
spectrum at L ¼ 10 and χ ¼ 4000, we also perform
numerical simulations for different system sizes and obtain
the result that the critical point summarized in Table I
coincides with the peak of the spin-singlet correlation
length. Therefore, we can infer that the transition is
induced by the proliferation of monopoles, consistent with
DQCP physics.

TABLE I. ðJ1=J2Þc1 [ðJ1=J2Þc2] is the transition point between
the DVBS and PVBS (PVBS and Néel) phases. Transition
points are extracted from the peak of the energy derivative at
χ ¼ 4000. At L ¼ 12, the DMRG simulations do not converge
for different initial states at χ ¼ 4000, resulting in different
transition points. Thus, the critical point is determined as the
midpoint between two transition points obtained from the VBS-
like and Néel-like initial states.

L ¼ 6 L ¼ 8 L ¼ 10 L ¼ 12

ðJ1=J2Þc1 0.682 0.677 0.675 0.675
ðJ1=J2Þc2 0.693 0.728 0.762 0.77

FIG. 4. The inverse of the largest correlation length for spin-
singlet and -triplet operators as a function of J1=J2 at L ¼ 10 and
χ ¼ 4000. Here, the dashed line represents the transition point
extracted from the second-order energy derivative. The small plot
at the top right shows the plaquette order parameter (ImM)
across the transition. Deep in the VBS phase, the correlation
length of a spin-triplet operator is larger than that of a spin-singlet
operator as expected by a mean-field theory. As we approach the
critical point, we can observe that the correlation length of the
spin-singlet sector becomes larger than that of the spin-triplet
sector. This behavior agrees with what is expected from the
scenario in Fig. 8.
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Moreover, to contrast our simulation result in the
Shastry-Sutherland lattice with the conventional O(3)
Wilson-Fisher transition between an explicitly dimerized
VBS and Néel order phases [33], we perform the IDMRG
simulation for a 2D J1-J01 model with the antiferromagnetic
Heisenberg coupling J1 on nearest-neighbor bonds together
with the coupling J01 on a fixed set of dimer covering bonds
(see Appendix B), and, hence, a unique VBS pattern is
pinned by J01. Indeed, for this model, one can observe that
the correlation length of the spin-triplet sector is always
larger than the correlation length of the spin-singlet sector
across the phase transition. This difference agrees with the
picture discussed in Refs. [34,35], where the transition is
triggered by the condensation of spin-triplet excitations
(triplon) from the VBS phase. Within the mean-field
theory framework, it is shown that the energy of the
spin-triplet excitation Etriplon is smaller than the energy
of the spin-singlet excitation Esinglon throughout the whole
transition. Under the further assumption that the singlon
and triplon have the similar characteristic velocity v [32],
one expects the aforementioned ordering of correlation
lengths ξ ∼ ðv=EÞ. Thus, the inversion of the magnitude of
correlation lengths for spin-singlet and -triplet operators at
the transition signifies the unconventional feature of the
DQCP in the Shastry-Sutherland lattice. For a detailed
analysis regarding DQCP physics, see Sec. IV.
Finally, we remark that the spin-singlet correlation

length ξS¼0 and the spin-triplet correlation length ξS¼1

approach each other at the (finite size) critical point as
we increase the system size. At L ¼ 6 and χ ¼ 4000, the
ratio ξS¼1=ξS¼0jcrit ¼ 0.33, but at L ¼ 10 and χ ¼ 4000,
ξS¼1=ξS¼0jcrit ¼ 0.95. From this trend, we expect to have
ξS¼1=ξS¼0 ¼ 1 in the thermodynamic limit, which indicates
that the spin-singlet and spin-triplet excitations become
degenerate at the critical point, forming the four-component
vector representation of a larger O(4) symmetry group. Put
differently, we can observe that the crossing point of
ξS¼0 ¼ ξS¼1 in Fig. 4 approaches to the critical point as
we increase the system size, consistent with the emergent
O(4) symmetry relating Néel and VBS order parameters.

III. SYMMETRY ANALYSIS

The field theory of DQCP, the so-called “noncompact”
CP1 theory, has the following form [4,36]:

LCP1 ¼ jð∂ − iaÞzj2 þ κð∇ × aÞ2 þ � � � ; ð4Þ

where a two-component complex spinon z ¼ ðz1; z2ÞT is
coupled to U(1) gauge field a. On top of this critical theory,
one can have additional terms depending on the symmetry
of the system. The Shastry-Sutherland lattice has a p4g
space group symmetry, as shown in Fig. 1(a). The lattice
respects two glide-reflection (Gx andGy) and two diagonal-
reflection (σxy and σxȳ) symmetries as illustrated in

Fig. 1(a). The glide reflections and the (spinful) time-
reversal T symmetries can combine into composite sym-
metries T Gx and T Gy, dubbed the time-reversal glide
symmetries. Note that glide-reflection symmetry is also
broken in the Néel phase, while the time-reversal glide is
not. Therefore, relative to the Néel phase, it is proper to
think about the PVBS phases as breaking the time-reversal
glide symmetries.
To define the symmetry transformations more conven-

iently, we consider an ideal version of the Shastry-
Sutherland lattice on a regular square lattice without
distortion, as shown in Fig. 5. This version does not
change the symmetry group but allows us to label every
site by the Cartesian coordinate ðx; yÞ conveniently (where
x; y ∈ Z). The length of the nearest Cu─Cu bond is set to 1,
such that the unit cell is of the size 2 × 2 (and, hence,
the lattice constant is 2 here). With this result, we can
define the glide reflections Gx∶ðx; yÞ → ðxþ 1;−yÞ and
Gy∶ðx; yÞ → ð−x; yþ 1Þ and the diagonal reflections
σxy∶ðx; yÞ → ðy; xÞ and σxȳ∶ðx; yÞ → ð−yþ 1;−xþ 1Þ,
as well as the translations Tx∶ðx; yÞ → ðxþ 2; yÞ and
Ty∶ðx; yÞ → ðx; yþ 2Þ. Together, they generate the p4g
space group. The p4g space group also contains a 90°
rotation symmetry C4∶ðx; yÞ → ð−yþ 2; x − 1Þ with
respect to the center of the plaquette without a diago-
nal bond.
On each site i ¼ ðx; yÞ, we define the spin operator

Si ¼ ðSxi ; Syi ; Szi Þ, whose symmetry transformations are
listed in Table II (assuming the spin rotation is not locked
to the spatial rotation in lack of the spin-orbit coupling).
The time-reversal symmetry T is also included, which can
flip all spin components. The Néel order parameter n ¼
ðnx; ny; nzÞ and VBS order parameters v ¼ ðvx; vyÞ are
defined, respectively, as

FIG. 5. The ideal Shastry-Sutherland lattice, deformed from
Fig. 1(a). Each site i can be labeled by a Cartesian coordinate
ðx; yÞ. The x and y coordinates are calibrated on the top and right,
respectively. The displacement vectors x̂ ¼ ð1; 0Þ and ŷ ¼ ð0; 1Þ
are defined to connect nearest-neighbor sites. J1 and J2 couplings
are assigned to the nearest-neighbor (in blue) and dimer
(in red) bonds.
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n ∼ ð−ÞxþySi;

vx ∼ ð−Þx
�
1

4
− Si · Siþx̂

�
;

vy ∼ ð−Þy
�
1

4
− Si · Siþŷ

�
; ð5Þ

where each prefactor translates into the momentum ðπ; πÞ,
ðπ; 0Þ, and ð0; πÞ, respectively, in k space, as marked out in
Fig. 1(b), and the displacement vectors are defined to be
x̂ ¼ ð1; 0Þ and ŷ ¼ ð0; 1Þ. The VBS order parameters vx
and vy can be combined to form the following operator
given a certain gauge choice (Appendix A):

M† ¼ 1ffiffiffi
2

p ½ðvx þ vyÞ þ iðvx − vyÞ�; ð6Þ

known as the monopole operator in the literature [4,37],
which corresponds to a hedgehog monopole of the Néel
order parameter n in the spacetime. The monopole event
changes the skyrmion number of the n field configuration
by þ1, and it is equivalent to inserting 2π flux of a U(1)
gauge field a in the CP1 theory Eq. (4). The symmetry
properties of n and M† are summarized in Table II. For a
detailed derivation, see Appendix A. Apart from these
discrete symmetries, there is also an SO(3) spin-rotation
symmetry, under which n transforms as an SO(3) vector.
The expectation value of the monopole operator hMi

defined in Eq. (6) serves as a unified order parameter
for various types of VBS orders. Depending on the
phase angle of hMi, the columnar VBS (CVBS) is
described by hMi ∼�e�iπ=4, and the plaquette VBS
(PVBS) is described by hMi ∼�1 (diamond plaquette)
or hMi ∼�i (square plaquette) as illustrated in Fig. 6. On
the other hand, hMi ≠ 0 could also be interpreted as the
condensation of monopoles. So the DQCP, as a transition
from the Néel phase into the VBS phase, can be thought as
driven by the VBS ordering or, equivalently, by the
monopole condensation (starting from the Néel phase),

which can be tuned by a monopole chemical potential r in
the Lagrangian as rM†M. The transition happens as r
changes sign. The condensation of the monopole estab-
lishes the VBS order, on the one hand, and simultaneously
destroys the Néel order, on the other hand, due to a
nontrivial topological term among the Néel and VBS order
parameters, which is analyzed in detail in Refs. [4,5]. This
scenario provides a plausible description of a direct
continuous transition between the Néel and VBS phases.
However, apart from the apparent tuning parameter term

rM†M, we must also include other symmetry-allowed
(multi)monopole terms in the Lagrangian, which could
crucially influence the properties of the DQCP. On the
Shastry-Sutherland lattice, to the leading order, they take
the form of

LM ¼ rM†Mþ λ2ReM2 þ � � � : ð7Þ

Here, we adopt the shorthand notations ReO¼ðOþO†Þ=2
and ImO ¼ ðO −O†Þ=ð2iÞ for generic operator O.
Given the symmetry properties in Table II, one can see that
the single-monopole term, no matter ReM or ImM, is
forbidden by the glide-reflection symmetry Gx or Gy.
Furthermore, the imaginary part of the double-monopole
term ImM2 is forbidden by the diagonal-reflection sym-
metry σxy or σxȳ. Note that these symmetries exist in the
critical theory, as the spontaneous symmetry breakinghas not
yet occurred and the microscopic model has the symmetries.
The higher-order monopole terms (M4;M6;…) are

expected to be less relevant and are, therefore, not included
in Eq. (7) explicitly. Therefore, the double-monopole term
λ2ReM2 is the most relevant monopole perturbation
allowed on the Shastry-Sutherland lattice. Depending on
its sign, the system favors the square plaquette (or diamond
plaquette) VBS order, described by the order parameter
ImM (or ReM), if λ2 > 0 (or λ2 < 0), as demonstrated in
Fig. 6. The square and diamond PVBS orders have distinct
symmetry properties. Under the reflection symmetries σxy

FIG. 6. Two types of PVBS phases. Thick purple links encircle
the plaquette on which the spin singlet is formed. A diamond
plaquette contains the diagonal bond, while a square plaquette
does not. Each type of the PVBS order induces a corresponding
lattice distortion. The undistorted lattice is shown as the back-
ground for contrast. Depending on the sign of λ2, either diamond
plaquette or square plaquette PVBS is favored.

TABLE II. Symmetry transformation of momentum ðkx; kyÞ,
Néel order n, monopole operator M†, spin operator Si, and
fermionic spinon fi (in the sense of the PSG).

ðkx; kyÞ n M† Si fi

Gx ðkx;−kyÞ −n −M† SGxðiÞ ð−ÞyfGxðiÞ
Gy ð−kx; kyÞ −n −M† SGyðiÞ fGyðiÞ
σxy ðky; kxÞ n M SσxyðiÞ ð−ÞxyfσxyðiÞ
σxȳ ð−ky;−kxÞ n M SσxȳðiÞ ð−Þxðyþ1ÞfσxȳðiÞ

T ð−kx;−kyÞ −n M −Si Kiσ2fi
T Gx ð−kx; kyÞ n −M −SGxðiÞ ð−ÞyKiσ2fGxðiÞ
T Gy ðkx;−kyÞ n −M −SGyðiÞ Kiσ2fGyðiÞ
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and σxȳ, ImM ↦ −ImM while ReM stays invariant (see
Table II), so the square PVBS spontaneously breaks the
reflection symmetries while the diamond PVBS does not.
Additionally, square-plaquette-centered C4 rotation sym-
metry is spontaneously broken in the diamond PVBS,
while it is not in the square PVBS. Therefore, the two
different PVBS orders lead to different lattice distortions
that are symmetrywise distinguishable in the experiments
in the x-ray or neutron diffraction or NMR [13,38,39].
Previous studies [20,40] as well as our IDMRG data

show that the PVBS phase has a square plaquette order.
Thus, λ2 > 0 should be relevant to our discussion of the
PVBS-Néel transition in the Shastry-Sutherland model
Eq. (1). λ2 > 0 can be also argued based on the microscopic
Hamiltonian in Eq. (1). In the analysis of the PVBS phases,
there are two types of singlet plaquette configurations:
s-wave and d-wave types [14] represented by the following
singlet pairing configurations in a plaquette:

ð8Þ

For simplicity, consider a single plaquette with four spin-
1=2’s on the corners. For both square and diamond
plaquettes, there is an AFM coupling J1 along plaquette
sides; for the diamond plaquette, there is an additional AFM
J2 coupling across one diagonal. Then, the s-wave and d-
wave singlet configuration has the energy −2J1 þ 1=4J2
and −3=4J2, respectively, for the diamond plaquette. As the
PVBS phase exists at a parameter regime J1=J2 ∼ 0.7, an
estimation of the singlet configuration energy as listed in
Table III indicates that the s-wave pairing in the square
plaquette has the lowest energy. In the IDMRG simulation,
the wave function indeed exhibits the s-wave pairing
symmetry in the PVBS phase. A recent exact-diagonaliza-
tion study [41] on the small cluster of spins (Ns ¼ 40) also
reports that the phase next to the Néel order phase hosts a
spin-spin correlation, which contradicts to the d-wave
singlet in a diamond plaquette. Therefore, it is natural to
have λ2 > 0 in the phenomenological field theory.
At first glance, it seems that the double-monopole term

λ2 in Eq. (7) is relevant and may destroy the DQCP.
However, it is realized in Ref. [42] that r and λ2 actually
recombine into a new tuning parameter r̃ and a new relevant
perturbation λ̃2. In the case of λ2 > 0, the Lagrangian LM
in Eq. (7) can be written as

LM ¼ r̃ðImMÞ2 þ λ̃2ðReMÞ2 þ � � � ; ð9Þ

with r̃ ¼ r − λ2 and λ̃2 ¼ rþ λ2. The parameter r̃ still
drives a transition at r̃ ¼ 0 (or, equivalently, r ¼ λ2), as
shown in Fig. 7 with a modified emergent symmetry. At the
transition point, the relevant perturbation λ̃2 ¼ 2λ2 > 0
simply gaps out the diamond plaquette PVBS fluctuation
ReM from the low-energy sector, leaving the square
plaquette PVBS fluctuation ImM quantum critical. It is
further argued that the PVBS fluctuation ImM becomes
degenerate with the Néel fluctuation n at the critical point
[42], because the perturbations n4, n2ðImMÞ2;ðImMÞ4;…
that can break the symmetry that rotates Néel and PVBS are
all rank-four operators, which are expected to be irrelevant
at the critical point. Therefore, the Néel and VBS order
parameters can be combined into an O(4) vector ðn; ImMÞ,
manifesting an emergent O(4) symmetry. The remaining
topological O(4) Θ term still ensures that the development
of the PVBS order ImM will simultaneously destroy the
Néel order n, establishing a direct PVBS-Néel transition
with emergent O(4) symmetry.

IV. DANGEROUSLY IRRELEVANT
SCALING AND ITS ABSENCE

In this section, we discuss a peculiarity of the DQCP in
the Shastry-Sutherland lattice compared to the other
DQCP scenarios that have been extensively discussed
[4,5,27,36,42–45]. In the presence of the λ̃2 term in
Eq. (9), the U(1) symmetry of the monopole operator
(which acts as M → eiθM) is explicitly broken down to
Z2 (at the lattice level). This Z2 symmetry can be identified
as the glide-reflection symmetry (Gx or Gy) on the Shastry-
Sutherland lattice, which can be further broken sponta-
neously in the PVBS phase by its order parameter hImMi.
At the DQCP, this Z2 symmetry is restored and combined
with the SO(3) spin-rotation symmetry to form the larger
emergent O(4) symmetry, denoted as SOð3Þ × Z2 → Oð4Þ.
Although the Z2 symmetry is restored at the DQCP, it is
never further enlarged to the U(1) symmetry of monopole

TABLE III. Singlet configuration energy around different
plaquettes with different pairing symmetries, estimated from
J1=J2 ∼ 0.7 for the PVBS phase.

s wave d wave

Square −2J1 ∼ −1.4J2 0
Diamond −2J1 þ 0.25J2 ∼ −1.15J2 −0.75J2

FIG. 7. Phase diagram of the appearance of O(4) DQCP on
perturbing the SO(5) theory. Arrows indicate the RG flow
direction.
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conservation, because the explicit symmetry-breaking term
λ̃2 is relevant. The presence of the relevant coupling λ̃2
leads to an important difference between the DQCP on the
Shastry-Sutherland lattice with the more conventional
DQCP on the square lattice.
To expose the differences and connections, let us briefly

mention the other two lattices: the square lattice and the
rectangular lattice. Because of the different lattice sym-
metries, the allowed leading monopole terms are different,
as summarized in Table IV. They lead to different VBS
orders and different properties of the DQCP. For example,
on a rectangular lattice, the other double-monopole term
λ02ImM2 is allowed but λ2ReM2 is forbidden, which favors
the horizontal or vertical CVBS order depending on λ02 > 0

(or λ02 < 0). The DQCP on the rectangular lattice has a
similar emergent O(4) symmetry, which is carefully ana-
lyzed in Ref. [42]. However, on a square lattice, the
fourfold rotational symmetry forbids all the double-monop-
ole terms, leaving the quadruple-monopole term λ4ReM4

most relevant, which favors CVBS (or PVBS) if λ4 > 0 (or
λ4 < 0). In the absence of the double-monopole term,
the DQCP on the square lattice has an even larger
emergent symmetry SOð3Þ × Z4 → SOð5Þ. In the easy-
plane model, the lattice symmetry is that of the square
lattice, but the spin-rotation symmetry is reduced from
SO(3) to U(1). Here, the symmetry enhancement is Uð1Þ ×
Z4 → Oð4Þ [25,44].
Although the DQCP on the square lattice with the easy-

plane deformation has the same O(4) emergent symmetry
as the DQCP on the rectangular or Shastry-Sutherland
lattice, there is a crucial difference between them. On the
square lattice, the Uð1Þ → Z4 symmetry-breaking term
λ4ReM4 is dangerously irrelevant, which enhances Z4

to U(1) at the DQCP. As we move away from the DQCP
toward the VBS phase, the system exhibits two different
length scales: the spin correlation length ξspin and the VBS
domain wall width ξVBS [4,46]. The system is critical at the
length scale below ξspin, meaning that the spin correlation
decays in a power law. Beyond this length scale, however,
the system is still not fully in the VBS phase. Because the
ReM4 operator is irrelevant at the critical point, its
coupling coefficient λ4 decreases under the RG flow
initially, as in Fig. 8(a). However, once the RG flow goes

beyond the length scale of ξspin, λ4 starts to increase with
the RG flow until it becomes strong enough to break the
U(1) symmetry down to Z4 at the length scale ξVBS [47].

A careful analysis [4] shows that ξVBS ∼ ξðΔ−1Þ=2spin , where
Δ > 3 (irrelevant) is the scaling dimension of ReM4 [48].
Thus, ξVBS grows more rapidly than ξspin as we approach
the critical point.
However, on the Shastry-Sutherland lattice, there is no

symmetry enhancement from Z2 to U(1) at the DQCP,
because U(1) is already broken down to Z2 by the relevant
symmetry-breaking term λ̃2ðReMÞ2. As a result, there is no
dangerously irrelevant RG flow around the DQCP. As soon
as we move away from the critical point, Z2 anisotropy is
there to break the emergent O(4) symmetry down to the
microscopic SOð3Þ × Z2 symmetry. To better understand,
let us compare the relevant tuning term for two different
cases in the nonlinear sigma model (NLSM) description:

easy-plane square∶ ∼ rðn2x þ n2y − v2x − v2yÞ;
Shastry-Sutherland∶ ∼ r̃½n2x þ n2y þ n2z − ðImMÞ2�: ð10Þ
For the easy-plane case, r > 0 is not enough to break the
emergent U(1) down to Z4, calling for the dangerously
irrelevant scaling of λ4ReM4 term. On the other hand,
r̃ > 0 immediately introduces the negative mass for ImM
to develop its ordering, gapping out the associated

TABLE IV. Symmetry-allowed most-relevant monopole terms
(apart from rM†M) and the corresponding DQCP emergent
symmetries on different lattices.

Global symmetry LM Emergent symmetry

Square (p4m) λ4ReM4 SOð3Þ × Z4 → SOð5Þ
Easy-plane square λ4ReM4 Uð1Þ × Z4 → Oð4Þ
Rectangular (pmm) λ02ImM2 SOð3Þ × Z2 → Oð4Þ
Shastry-Sutherland (p4g) λ2ReM2 SOð3Þ × Z2 → Oð4Þ

(a) (b)

FIG. 8. (a) RG flow of the quadrupled monopole term λ4M4 in
the square lattice DQCP scenario, which is dangerously irrel-
evant. For a small deviation of the tuning parameter J1=J2 toward
the VBS phase, λ4 initially decreases under RG flow until the RG
scale reaches the spin-spin correlation length. Only after that does
λ4 begin to increase to reach the VBS fixed point. This result has
noticeable consequences for observables in a finite size numerical
simulation. (b) Schematic plot for the inverse correlation length
ξ−1 of spin-singlet and -triplet operators as a function of the
tuning parameter for the square lattice DQCP scenario with either
O(4) or SO(5) emergent symmetries. Note that ξ−1 is related to
the energy (mass gap) of the associated excitation [32]. Here, the
skyrmion corresponds to the Higgsed “photon” excitation in the
CP1 theory. In the VBS phase, this photon excitation manifests as
a spin-singlet VBS order parameter fluctuation, i.e., the VBS
domain wall thickness. Similarly, the magnon becomes a “trip-
lon” in the VBS phase. The plot assumes the simulation of the
DQCP at the finite circumference L and bond dimension χ, which
prevents ξ from diverging at the DQCP.
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fluctuation. Thus, there does not exist a separation of length
scales nor scenario expected in Fig. 8. The singlet gap (the
gap of PVBS fluctuation) should open up immediately as
we tune r̃ away from the critical point in the thermody-
namic limit.
What is the consequence of all these observations? In the

study of finite size systems, the RG flow should stop at a
certain point beyond the system size, which means that the
dangerously irrelevant scaling can significantly affect the
correlation behavior or excitation spectrum in small system
sizes, as illustrated in Fig. 8(b). Because of the dangerously
irrelevant scaling, near the DQCP toward the VBS side, the
correlation length of the VBS order parameter fluctuation
(S ¼ 0) should be larger than the correlation length of the
Néel order parameter fluctuation (S ¼ 1). However, in the
thermodynamic limit, such a behavior is not guaranteed, as
the eventual fate under the RG flow is often difficult to
understand. For example, in the mean-field treatment of the
VBS phase, it has been argued that the spin-triplet
excitation (triplon) has a lower energy than the singlet
excitation (singlon) [35]. On the other hand, in the finite
size systems, the dangerously irrelevant scaling enforces
the region with ξS¼0 > ξS¼1 in Fig. 8(b) to appear regard-
less of the eventual RG behavior in the VBS phase.
Moreover, since we consider a quasi-two-dimensional
system in the IDMRG simulation, the finite circumference
size can also affect the behavior in Fig. 8. In principle, the
Mermin-Wagner theorem prevents the spontaneous sym-
metry breaking of a continuous symmetry in dimensions
D ≥ 2 [49]. In other words, in a quasi-two-dimensional
system, the strong fluctuation of the continuous order
parameter [e.g., SO(3) spin rotation] gaps out the system
and reduces the correlation length for the associated
Goldstone bosons (e.g., magnons). As the disordering
effect is stronger for the physical SO(3) spin-rotation
symmetry than for the emergent U(1) symmetry enhanced
from Z4, we again expect the parameter region of ξS¼0 >
ξS¼1 to appear near the DQCP.
By contrast, in the Shastry-Sutherland model, the rel-

evant Z2 perturbation can always gap out the monopole
fluctuation away from the critical point. To confirm this
statement, we perform the IDMRG simulation on the spin-
1=2 J1-J2 model at the same circumference size L ¼ 10
and compare the correlation length spectra between two
models. In Fig. 9(a), we observe that ξS¼0, the correlation
length of a S ¼ 0 local excitation, is always larger than ξS¼1

in the entire VBS phase on the square lattice. However, in
Fig. 9(b), ξS¼0 is larger than ξS¼1 only at the transition point
and immediately becomes smaller than ξS¼1 as we tune the
system away from the critical point towards the VBS phase,
which is one of the nontrivial predictions from the presence
of relevant anisotropy operator at a finite-system size
simulation. In the Néel ordered phase, these two models
exhibit very similar correlation length spectra. For more
details, see Appendix B.

Our numerical result for the square J1-J2 model aligns
with the recent work [50] on the finite-DMRG simulation
which calculates first several excited states with different
spin quantum numbers. If we replace the excitation energy
in Ref. [50] with ξ−1, we obtain the same crossing behavior.
This result can be justified by the fact that, when a local
excitation has a mass gap m, the correlation function
mediated by the local excitation decays as ∼e−mr, and
thus m ∝ ξ−1. Therefore, our theoretical scenario explains
why a local [51] spin-singlet excitation in Ref. [50] has
lower energy than a spin-triplet excitation around the
critical point. It also elucidates the reason why the previous
DMRG results of the J1-J2 model on the square lattice
[14,52–56] are unable to identify the nature of the VBS
phase without applying a pinning field. Because all
previous numerics are also performed in the similar system
size, they are in the regime where the VBS order parameter

(a)

(b)

FIG. 9. The correlation length spectrum for (a) the J1-J2 model
in the spin-1=2 square lattice (χ ¼ 2000) and (b) the Shastry-
Sutherland model (χ ¼ 4000). The correlation length spectrum
coincides with the excitation level-crossing spectrum in Fig. 2 of
Ref. [50] (after switching J2=J1 to J1=J2). For the value of J1=J2
smaller than the range shown in the figure, we get the collinear
striped AFM order (DVBS) for the square (Shastry-Sutherland)
lattice. The level-crossing behaviors for both models are similar
in the Néel ordered side.
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fluctuations are severe, disallowing one to confirm whether
it is a plaquette or columnar VBS. Therefore, we conclude
that the absence or presence of an irrelevant operator is
essential to understand physical observables in any finite
size system.
In summary, we note that previously the two promising

scenarios to realize DQCP with spin 1=2 was either the
SO(3) symmetric or easy-plane deformations, both with
fourfold degenerate VBS orders. Here, however, we have
the twofold degenerate VBS order. Nevertheless, as dis-
cussed in Ref. [42], the twofold monopole with SO(3)
symmetry is equivalent to the easy-plane deformation, if an
enlarged SO(5) symmetry is assumed in the absence of
these perturbations. Furthermore, we remark that the
scaling behavior of the dangerously irrelevant operator
enables us to understand multiple observations made in
previous numerical simulations which are absent in the
Shastry-Sutherland model here.

V. SPECTRAL SIGNATURES OF DQCP

A hallmark of the DQCP is the emergence of deconfined
spinons at the critical point, which entails distinct features
in both the magnon and phonon excitation spectra that can
be probed in INS or RIXS experiments. To better appreciate
the predicted spectral features at a low temperature around
the PVBS-Néel transition, we need to first understand the
background elastic scattering signal of SrCu2ðBO3Þ2 in its
high-temperature paramagnetic phase without any sym-
metry breaking. We focus on the scattering of neutrons or
photons off of the copper sites. As shown in Fig. 1(a), there
are four copper sites in each unit cell, coordinated at
rA¼ð1þδ;1þδÞ=2, rB¼ð1−δ;3þδÞ=2, rC¼ð3þδ;1−δÞ=
2, and rD ¼ ð3 − δ; 3 − δÞ=2, respectively, with the dis-
tortion parameter given by δ ¼ 0.544 according to
Ref. [16]. In the high-temperature paramagnetic phase,
an elastic scattering experiment reveals lattice diffraction
peaks at a set of momenta Q ¼ πðH;KÞ (H;K ∈ Z;
note that the lattice constant is 2 in our convention)
with the amplitude given by SðQÞ¼R

d2rρðrÞeiQ·r ≃P
a¼A;B;C;De

iQ·ra , where ρðrÞ can represent either the
electron density from Cu orbitals (which scatters x-ray
photons) or the density of Cu nuclear (which scatters
neutrons). The corresponding intensity jSðQÞj2 is plotted
in Fig. 1(b). Notably, there are extinction points in
the diffraction pattern, protected by the glide-reflection
symmetry. Note that the system at the DQCP has the
glide-reflection symmetries Gx and Gy, although both
the Néel and PVBS phases do not [57]. The glide refle-
ctions Gx and Gy act as lattice translations by a half
lattice constant followed by the reflections about the trans-
lation directions, as illustrated in Fig. 1(a). The fact that
the density distribution ρðrÞ at equilibrium respects all
lattice symmetries (including Gx and Gy) implies that

ρðx;yÞ¼ ρðxþ1;−yÞ¼ ρð−x;yþ1Þ. They impose the fol-
lowing constraints on the scattering amplitude:

SðQx;QyÞ ¼ eiQxSðQx;−QyÞ ¼ eiQySð−Qx;QyÞ; ð11Þ

which implies the extinction of diffraction peaks at Q ∈
πð2Zþ 1; 0Þ or πð0; 2Zþ 1Þ, as marked out in Fig. 1(b). In
general, ρðrÞ can describe the spatial pattern of any scatterers
that interact with the probing particle (e.g., x ray or
neutrons). Equation (11) holds under the assumption that
the scatterer field ρðrÞ is even (symmetric) under glide-
reflection symmetry. This constraint can be generalized to
other types of scatterers includingmagnetic fluctuations at a
finite frequency. For example, the destruction of the scatter-
ing amplitude at these extinction points could extend to
finite-frequency inelastic scattering, as long as no scatterer
at that energy scale breaks the glide-reflection symmetry.
However, as we lower the temperature and approach the
PVBS-Néel transition, certain glide-reflection-breaking
excitations (meaning that the scatterer is odd under the glide
reflection)may emerge at a low energy as part of the quantum
critical fluctuation. Indeed, we show that the emergent SO(4)
conserved current fluctuation and thePVBSorder fluctuation
are examples of glide-reflection-breaking scatterers, which
become critical at the DQCP and “light up” the extinction
points. They provide unique signatures of the DQCP that are
also relatively easy to resolve in experiments, as there are no
background scattering signals at the extinction points.
The proposed spectral signatures at the PVBS-Néel

transition are most convenient to analyze using a fermionic
spinon theory for theDQCP,which is shown to be equivalent
(dual) to the conventional CP1 theory [58–61]. In the
fermionic spinon theory, the spin operator Si ¼ 1

2
f†i σfi is

fractionalized into fermionic spinons fi¼ðfi↑;fi↓Þ⊺, which
are then placed in the π-flux state [62–65] described by the
following mean-field Hamiltonian:

HMF ¼ −
X
hiji

tijðf†i fj þ H:c:Þ

þ g
X
½ijkl�

ðf†i fj þ H:c:Þðf†kfk − f†l flÞ þ � � � ; ð12Þ

where hiji runs over all the nearest-neighbor bonds and
½ijkl� runs over all the shaded diamond plaquettes depicted
in Fig. 10(a). The spinon hopping amplitude tij takes tij ¼
−t on the bonds highlighted in red in Fig. 10(a) and tij ¼ t on
the rest of the bonds, such that the spinon sees π flux
threading through each plaquette. The phenomenological
parameter t ∼ J1 sets the energy scale of the spinon, which is
expected to be of the same order as the spin interaction
strength J1. The π-flux state model Eq. (12) was originally
proposed as an example of algebraic spin liquids [62–65]
(including the DQCP as a special case). It was recently
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confirmed via quantum Monte Carlo (QMC) simulations
[59–61] that the π-flux state actually provides a pretty good
description of the spin excitation spectrum at the DQCP.
The π-flux state mean-field ansatz determines a projec-

tive symmetry group (PSG) [66] that describes how the
spinon should transform under the space group symmetry,
as concluded in the last column of Table II. It is found that
the spinon hopping along the dimer bonds is forbidden by
the σxy; σxȳ symmetry, which is not broken at the DQCP.
Therefore, the effect of J2 can enter the Hamiltonian only
as a four-fermion interaction to the leading order, given by
the g term in Eq. (12). The g term describes the spinon
interaction around each diamond plaquette ½ijkl� where the
site indices i, j, k, l are arranged according to Fig. 10(b). It
turns out that the interaction g is directly related to the
λ2ReM2 term given that the monopole operator M† ∼
ðvx þ vyÞ þ iðvx − xyÞ can be written in terms of VBS
order parameters vx and vy, which are further related to
fermionic spinons via vx ∼ ð−Þxf†iþx̂fi þ H:c: and
vy ∼ ð−Þxþyf†iþŷfi þ H:c:, respectively, such that the inter-
action can be written as gvxvy ∼ gReM2. Therefore, g > 0

corresponds to λ2 > 0, which favors the square plaquette
VBS order ImM.
Let us ignore the interaction g for a moment. By

diagonalizing the spinon-hopping Hamiltonian, we find

the spinon dispersion ϵk ¼ �2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 kx þ cos2 ky

q
, which

gives rise to four Dirac fermions (or, equivalently, eight
Majorana fermions) at momentum ðπ=2; π=2Þ. Note that
the distortion parameter δ does not affect the spinon band
structure. Naively, the spinon mean-field theory has an
emergent SO(8) symmetry rotating among the eight low-
energy Majorana fermions. However, a SU(2) gauge
structure must be introduced with the fractionalization,
which reduces the emergent symmetry to SO(5). The
interaction term g plays an important role to further break
the SO(5) symmetry explicitly to O(4), matching the
emergent symmetry observed in the DMRG simulation.
Based on the fermionic spinon mean-field ground state,

the spin excitation spectrum Sðω; qÞ is calculated in
Refs. [59–61] and is reproduced in Fig. 11(a) for

illustration, where the high-symmetry points Γ, X, and
M are defined in Fig. 1(b). The lower edge of the spinon
continuum is given by ωminðqÞ ¼ minkjϵkþq − ϵkj, which
reads

ωminðqÞ ¼ 2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 qx þ sin2 qy

q
; ð13Þ

as shown in Fig. 11(a), which provides us a way to estimate
the mean-field parameter t from the experimentally mea-
sured spin excitation spectrum, by fitting this lower edge.
This result is rather robust, as its shape is unaffected by the
distortion parameter δ.
Remarkably, a gapless continuum appears on top

of the extinction point X (as well as Y by σxy symmetry)
as seen in Fig. 11(a). As previously analyzed in Eq. (11),
the spin excitation at the X point must be odd under the
glide-reflection symmetry Gx. This symmetry constraint
enforces that the gapless continuum should correspond to
the emergent SO(4) conserved current fluctuation Jy ¼
n∂yImM − ImM∂yn, which involves both the Néel n and
PVBS ImM order parameters and is thoroughly studied in
Refs. [60,63,68]. Since n, ∂y, and ImM are all odd under

(a) (b)

(c) (d)

FIG. 11. (a) Spin excitation spectrum (dynamical structural
factor) Smagnonðω; qÞ at the DQCP. A darker color indicates a
higher intensity. The dashed line traces out the lower edge of the
continuum which is described by Eq. (13). (b) The frequency
dependence of the spectral intensity at the extinction point X. At
the low-frequency limit, the spectral intensity grows with
frequency linearly, which manifests the conserved current asso-
ciated to the emergent O(4) symmetry. (c) Schematic illustration
of the phonon spectrum Sphononðω; qÞ. The bare phonon
dispersion is inferred from Ref. [67]. The VBS-phonon coupling
leads to a continuum in the phonon spectrum. (d) The frequency
dependence of the phonon spectral intensity at the extinction
point X. The intensity falls off in a power law with the frequency,
whose exponent should be the same as that of the spin fluctuation
at M point.

(a) (b)

FIG. 10. (a) The π-flux model of fermionic spinons. The spinon
hopping on the thick red bond gets a minus sign, such that each
plaquette has a π flux. Additional spinon interaction terms are
applied to blue shaded diamonds. (b) The arrangement of the site
indices ½ijkl� around each shaded diamond.
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the glide reflection Gx (that preserves the extinction point
X), the current operator Jy is also odd under Gx. Therefore,
Eq. (11) does not hold anymore, such that the fluctuation of
Jy can appear at the extinction point X as a spinon
continuum in the magnon channel (as Jy carries spin 1).
On the other hand, fluctuations like nImM are not allowed
to appear at the X point in the spin excitation spectrum,
because the bound state nImM is even under glide
reflection [cf. Eq. (11)]. The Jy continuum becomes gapless
only if both the Néel and PVBS fluctuations are gapless,
which happens only at the DQCP. Protected by the
emergent O(4), the conserved current operator must have
a scaling dimension exactly pinned at 2, which indicates
that the magnon spectral weight at the extinction point X
must increase with the frequency linearly (at below the
energy scale of J1):

Smagnonðω; q ¼ XÞ ∝ ω; ð14Þ

as shown in Fig. 11(b). We propose this feature as a
hallmark of the spin fluctuation at the PVBS-Néel tran-
sition in SrCu2ðBO3Þ2. Confirmation of this linear fre-
quency growth of the spectral weight will provide direct
evidence for the emergent O(4) symmetry at the DQCP.
Apart from the features in the spin excitation (magnon)

spectrum, the DQCP also introduces new features to the
phonon spectrum, due to the PVBS-phonon coupling. The
PVBS order has a linear coupling to the lattice displace-
ment, as its representation under the lattice symmetry group
matches with that of strain fields:

LVBS-phonon ∼ vxux þ vyuy; ð15Þ

where ux (or uy) is the lattice displacement in the x (or y)
direction with a momentum ðπ; 0Þ [or ð0; πÞ]. It is crucial
that ux and uy here are not acoustic phonon modes of a
continuum theory around momentum (0,0); otherwise, they
can enter the field theory only in the form of derivatives
∂iuj. The coupling is allowed by lattice symmetry and is
evident from the PVBS-induced lattice distortion as dem-
onstrated in Fig. 6(a). This result leads to a hybridization
between phonon and PVBS fluctuations. As the PVBS
fluctuation becomes critical (gapless) at the DQCP, the
quantum critical fluctuation also appears in the phonon
spectrum due to the hybridization effect, as illustrated in
Fig. 11(c) (see Appendix C for a detailed analysis). As the
PVBS order carries the momentum ðπ; 0Þ and ð0; πÞ, the
phonon continuum also gets softened at these momenta,
which happen to be the extinction points X and Y of the
lattice diffraction pattern. Note that the PVBS fluctuation is
odd under glide reflection; therefore, a new phonon
continuum is allowed to emerge at the extinction points
with the spectral weight diverging at a low frequency
following a power law:

Sphononðω; q ¼ XÞ ∝ ω−2þη: ð16Þ

The anomalous dimension η should match that of the PVBS
order parameter at the DQCP, which, by the emergent O(4)
symmetry, is also the same η of the Néel order parameter.
Based on the QMC simulations in Refs. [25,69], η is
estimated to be η ¼ 0.13–0.3. The observation of such
critical phonon fluctuations at the extinction points with a
power-law divergent spectral weight as shown in Fig. 11(d)
will be another direct evidence of DQCP.
In conclusion, extinction points are protected by the

glide-reflection symmetry, but both the conserved current
and the PVBS order parameter break the glide reflection.
Their critical fluctuations are, therefore, allowed to appear
at the extinction point. It is rather a nice property that there
will be no background signals to form lattice diffraction,
which makes these spectral signatures of DQCP more
easily resolved in experiments. Our analysis indicates that
the conserved current fluctuation (which carries spin 1)
should appear in the magnon spectrum and the PVBS
fluctuation (which carries spin 0) should appear in the
phonon spectrum. The observation of these critical fluctu-
ations in the scattering experiment will be strong evidence
for the potential realization of DQCP in SrCu2ðBO3Þ2.

VI. EFFECTS OF INTERLAYER COUPLING

So far, we have discussed the DQCP physics assuming
that the system is two dimensional. However, the material
realization of Eq. (1), SrCu2ðBO3Þ2, has a three-dimen-
sional structure which is a stack of Shastry-Sutherland
lattices with a relative shift given by the lattice vector (1,1)
between neighboring layers. Each layer is separated by the
layer of oxygen, but, due to the superexchange term
mediated by the oxygen, there is a small interlayer
antiferromagnetic interaction J3 ∼ 0.1J2 [70] between the
spin-1=2’s located at the crossed dimers in Fig. 12. Since
the stacking structure preserves Gx;y and σxy;xȳ symmetries,
the previous monopole analysis still holds for each two-
dimensional layer. Here, we would like to better understand
the effect of the three-dimensional interlayer coupling to
the DQCP physics.
To analyze, we first consider coupling layers of spin

systems at the conventional DQCP point with the emergent
SO(5) symmetry [other than the O(4) case in the previous
discussion]. Here, each layer is described by the following
NLSM model in Euclidean spacetime [64,71]:

SðlÞ
DQCP ¼

Z
d3x

1

2g
ð∂μΦðlÞÞ2 þ 2πiΓWZW½ΦðlÞ�; ð17Þ

where ΦðlÞ ¼ ðnx; ny; nz; ImM;ReMÞ is the order param-
eter of the lth layer and ΓWZW½ΦðlÞ� is a Wess-Zumino-
Witten (WZW) term at level k ¼ 1. With the interlayer
coupling, the total action is given by the following general
form [72]:
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S ¼
X
l

SðlÞ
DQCP −

X
l

Z
d3xgabΦðlÞ

a Φðlþ1Þ
b ; ð18Þ

where the interlayer coupling coefficients gab can be
arranged into a matrix g. Given that the scaling dimension
of Φ is estimated to be around ΔΦ ≃ 0.6 in the literature
[73–82], the interlayer coupling is expected to be relevant
(as 2ΔΦ < 3), locking the order parameters across different
layers. Then, the coefficient matrix g becomes important,
since the sign of its determinant det g crucially affects how
the topological (WZW) term from each layer is added up
(cf. Ref. [72]). More precisely, if the sign of det g is positive
(negative), the WZW terms are added up in a uniform
(staggered) manner. The reason is that we can always
redefine ΦðlÞ in alternate layers to make g positive definite,
but the price to pay is that the WZW term changes sign
alternatively if the original det g is negative. Note that the
procedure requires the topological term to be invariant
under the change of origin (translation symmetric), i.e.,
Tx;y∶ΓWZW½Φ� ↦ ΓWZW½Φ�. Otherwise, the addition or
subtraction of topological terms across layers are not well
defined due to the arbitrariness of the choice of origin
across the layers for the locked order parameter.
For example, consider coupling the two-dimensional

square lattice J −Q models [83] into a 3D cubic lattice
with an AFM spin-spin interaction along vertical bonds.
Each layer putatively realizes the DQCP physics with

Φ ¼ ðn; vx; vyÞ describing Néel and CVBS order param-
eters. Under the AFM interlayer coupling, the coupling
matrix g has the sign structure of gaa ¼ ð−;−;−;þ;þÞ,
which is because the vertical AFM coupling prefers
nðlÞ ¼ −nðlþ1Þ while the vertical plaquette ring exchange

[84] favors vðlÞx;y ¼ vðlþ1Þ
x;y . In this case, det g < 0, so the

WZW terms in neighboring layers tend to cancel each
other. However, the cancellation is not exact, as the Φ field
still admits a (smooth) fluctuation over layers, which results
in a residual topological term, namely, a topological Θ
term. Staggering a WZW term at level k gives a Θ term at
Θ ¼ πk. Now the problem of the coupled DQCPs boils
down to understanding the fate of the SO(5) NLSM with
Θ ¼ π in ð3þ 1ÞD. There are some hints from the
fermionic parton analysis. One can consider fractionalizing
the Φ vector to the bilinear form of a fermionic parton field
ψ following Φa ∼ ψ̄iγ5Γaψ , such that the ψ fermion is in
the SO(5) spinor representation [or the Sp(2) fundamental
representation]. The emergent gauge structure is SU(2),
which points to the SU(2) quantum chromodynamics
(QCD) model in ð3þ 1ÞD with Sp(2) flavor symmetry:

L ¼ ψ̄ðγμDμ þmþ iγ5ΦaΓaÞψ : ð19Þ

Integrating out the fermion and gauge fluctuation is
expected to reproduce the SO(5) NLSM with Θ ¼
πð1þ sgnmÞ, such that Θ ¼ π is realized at m ¼ 0.
However, the number of Dirac fermion flavors (Nf ¼ 2)
is not enough to avoid a chiral symmetry breaking in 3D.
Therefore, under the interlayer coupling, it is likely that the
SO(5) DQCP flows to a discontinuous transition point
induced by the quantum fluctuation. Considering that the
O(4) DQCP from easy-plane anisotropy or rectangular
deformation is descended from the SO(5) DQCP [42],
breaking SO(5) down to O(4) makes the situation worse.
In a similar way, one can analyze the three-dimensional

stacking of the Shastry-Sutherland lattice. If we allow the
possibility of the diamond PVBS phases, the order param-
eter is written as Φ ¼ ðn;ReM; ImMÞ, where ReM
(ImM) represents the square (diamond) PVBS order
parameter. Note that now each layer is shifted by a (1,1)
vector (see Fig. 5) relative to the layer below, and the
interlayer AFM coupling is given by Fig. 12(a) instead of
the direct vertical coupling. In Fig. 12(b), we show two
identical layers of Néel ordered pattern relatively shifted by
(1,1). If we focus on the four spins surrounding the
diagonal bond crossing, we find that the two spins from
the upper layer and the two spins from the lower layer are
aligned oppositely, which is favored by the AFM interlayer
spin exchange J3. So the interlayer coupling prefers to
lock the Néel order parameter in the same direction across
the layer as nðlÞ ¼ nðlþ1Þ. In Fig. 12(c), we show two
identical diamond PVBS patterns displaced from each
other. This configuration can gain the effective interlayer
ring exchange energy induced by the J3 coupling, which

(a) (b)

(c) (d)

FIG. 12. (a) Three-dimensional interlayer AFM coupling J3
among spins located at the cross between upper and lower
diagonal bonds, mediated by the interpenetrating oxygen atom.
The other interlayer couplings are negligible. Preferred stacking
of (b) the Néel ordered phase with nðlÞ ¼ nðlþ1Þ (red and blue dots
for opposite spins), and (c) the diamond PVBS phase with
ReMðlÞ ¼ ReMðlþ1Þ and (d) square PVBS phase with ImMðlÞ ¼
−ImMðlþ1Þ (thick purple bonds mark singlet plaquettes). For the
(c) and (d) cases, energetically favorable stacking can be deduced
by the interlayer dimer resonance.
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resonates the nearby dimers across the layer. Thus, we
conclude that ReMðlÞ ¼ ReMðlþ1Þ is more favorable. In
Fig. 12(d), we show two opposite square PVBS patterns
displaced from each other. This configuration also gains
interlayer ring exchange energy by resonating the dimers
lying on top of each other. But this configuration requires
the square PVBS order parameter to be opposite between
neighboring layers as ImMðlÞ ¼ −ImMðlþ1Þ. In conclu-
sion, the interlayer coupling prefers ðnðlÞ;ReMðlÞ;
ImMðlÞÞ ¼ ðnðlþ1Þ;ReMðlþ1Þ;−ImMðlþ1ÞÞ. Here, instead
of using ðvx; vyÞ, we use ðReM; ImMÞ to parametrize the
VBS order parameter, which is a basis change with a
positive determinant. In this basis, the interlayer coupling
matrix g takes the sign structure of gaa ¼ ðþ;þ;þ;þ;−Þ.
As a result, we again have det g < 0, which implies that
SO(5) DQCP flows to the first-order transition point in
3D. Since our O(4) scenario is considered to be a perturbed
SO(5) DQCP (see Fig. 7), it is likely that the O(4) DQCP
also flows to the first-order transition point.
If det g happens to be positive, the leading-order effect is

that the WZW terms add up together, as the interlayer
coupling g tends to lock the order parametersΦðlÞ across the
layers. Admittedly, the locking effect becomes weaker at a
longer distance (along the perpendicular direction of layers),
but we can still analyze the problem by first grouping
the neighboring layers to a renormalized layer and then
considering the residual coupling between renormalized
layers. Across neighboring layers, the order parameters are
expected to bind together, such that the renormalized model
can be viewed as a NLSMwith aWZW term at large level k.
The intuition from the ð0þ 1ÞD O(3) WZW term is that the
large level limit corresponds to the large spin limit, where the
quantum fluctuation of the order parameter is suppressed.
Coupling spin 1=2 into a spin chain ferromagnetically in
Sx;y;z channels results in the ferromagnetic ground state with
giant spin and classical spin wave excitations. In this limit,
the low-energy physics can be captured within Landau-
Ginzberg (LG) theory. Further adding different easy-axis
anisotropies to the ferromagnetic spin chain drives first-
order transitions between different Ising ordered phases
according to the LG theory. We conjecture that, in a higher
dimension, a similar effect will render each renormalized
layer into a classical magnet, which should be described
within the Landau-Ginzberg paradigm, such that the DQCP
is not available. So in the presence of interlayer coupling, the
Néel andVBSphaseswill likely be separated by a first-order
transition or intermediate coexisting phases. Thus, our
analysis shows that, in both det g > 0 and det g < 0 cases,
the interlayer coupling ultimately destabilizes the DQCP
and drives it, for example, to a first-order transition.
However, our analysis also indicates that the det g < 0 case,
corresponding to the real material, has stronger quantum
fluctuations, potentially leading to a weaker first-order
transition or a smaller region of coexisting order parameters
than the det g > 0 case.

One additional remark is that, while the interlayer Néel
order coupling enters directly from the J3 term, the
interlayer VBS coupling arises from the higher-order
perturbation (resonance) of the J3 term. As a result, the
critical point is shifted to expand the Néel order phase. This
shift is consistent with the phase diagram studied in
Ref. [40], where the interlayer coupling drives a system
into the AFM order and shrinks down the VBS region.

VII. PREDICTIONS FOR EXPERIMENT

Before discussing experimental consequences of the
DQCP,wemake a few remarks on the nature of the plaquette
VBS phase. In Sec. III, we discuss two different possibilities
for the PVBS phases (see Fig. 6): the square and diamond
PVBS. While the square PVBS breaks the reflection
symmetries σxy and σxȳ, the diamond PVBS breaks the
empty-plaquette-centered C4 rotation symmetry; see Fig. 5.
As a result, when the system is at the PVBS phase, magnetic
excitations initially degenerate under thep4g symmetry split
differently, depending on whether the plaquette is formed at
a square or diamond. While our IDMRG simulation of the
Shastry-Sutherlandmodel points to the square PVBS phase,
in the recent experiments on SrCu2ðBO3Þ2 using INS [13]
and NMR [38,39], the magnetic excitations in the PVBS
phase seem to break theC4 rotation symmetry, indicating the
diamond PVBS phase. This discrepancy implies that the
effective spin model for the real material could deviate from
the Shastry-Sutherland model studied here. For example,
three-dimensional interlayer coupling may induce some
effective further-neighbor couplings beyond the Shastry-
Sutherland model. Therefore, the type of PVBS phase to be
stabilized at a low energy is model dependent. Nevertheless,
this discrepancy does not affect to the DQCP scenario and
the emergent O(4) symmetry, because it corresponds only to
a different sign of λ2 in Eq. (7).
As discussed earlier, the DQCP naturally realizes a

quantum spin liquid, a long-sought-after state of quantum
magnets. Furthermore, it realizes a particularly exotic
variety—a critical spin liquid—with algebraically decaying
correlations arising from the gapless emergent d.o.f.
Moreover, an experimental realization of the DQCP would
be a crucial manifestation of the many-body Berry phase
effect that intertwines different order parameters. A dra-
matic experimental consequence of the DQCP is the
emergent symmetry and resultant spectroscopic signatures
expected from INS or RIXS. In particular, the model for
SrCu2ðBO3Þ2 studied here exhibits the O(4) emergent
symmetry with two promising spectroscopic signatures
at the X point in the Brillouin zone, summarized as the
following.

(i) Magnon (S ¼ 1) channel.—This channel gives
the information about the critical fluctuation of the
emergent O(4) conserved current. As a result, the
spectral intensity increases linearly with the fre-
quency, S ∼ ω. If the emergent symmetry did not
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exist, there should not exist a low-energy spectral
weight at this momentum. The deviation from the
linear relation gives us a measure of how accurate
the emergent symmetry is.

(ii) Phonon (S ¼ 0) channel.—This channel gives the
information about the PVBS order parameter fluc-
tuation. For a given anomalous dimension ηVBS of
the PVBS order parameter, the spectral intensity
diverges with the frequency, S ∼ ½1=ðω2−ηVBSÞ�. The
DQCP scenario implies that the VBS order param-
eter is fractionalized, resulting in a nonzero ηVBS.

Moreover, the emergent symmetry implies that ηVBS is
equal to the anomalous dimension of the Néel order
parameter fluctuation, ηNéel. However, the Néel order
parameter fluctuation is located at the M point, which
has a pronounced Bragg peak in addition. In principle, the
Bragg peak corresponds to the spin-0 channel, and it must
be possible to extract ηNéel and compare the ηNéel with ηVBS
to tell whether the emergent O(4) symmetry exits. In the
earlier work [70], it is estimated from the low-T magnetic
susceptibility and heat capacity data that J1 ≈ 4.7 meV,
J2 ≈ 7.3 meV, and J3 ≈ 0.7 meV. Moreover, the Debye
frequency of the acoustic phonon branch is measured to be
ωD ≈ 10 meV in Ref. [67]. Therefore, for experiments to
confirm the theoretical predictions, it is required to have an
energy resolution smaller than MeV.
According to the present numerical simulation, the phase

transition between the PVBS and Néel order can be a
second-order or weakly first-order transition. The result
does not contradict recent numerical work with a similar
phase diagram where a first-order transition behavior is
observed, because these models [22,23] are different from
the microscopic Hamiltonian in Eq. (1), which is more
likely to capture the couplings in the real material. Since the
nature of the phase transition may be tunable, it is possible
that the experiments on SrCu2ðBO3Þ2 may realize the
transition that is either second order or weakly first order
with a large correlation length.
Would all these predictions become meaningless if the

transition is actually weakly first order? In fact, even if
the two-dimensional systemhosts theDQCP,we argue in the
previous section that the interlayer coupling might drive the
system into a first-order transition point in three dimensions.
Indeed, at the weakly first-order transition point, the system
has a finite excitation gap, and experimental spectroscopic
data at zero temperature deviate from Fig. 11 due to the
absence of a gapless critical fluctuation. However, if we
examine the system within the length scale smaller than
the (large) correlation length ξ, the system still exhibits the
DQCP physics. In other words, if we examine the system
only above the energy scale set by the correlation length
ω > ωgap ∼ 1=ξ, we observe the predicted spectral intensity
trends in Fig. 11. It is our hope that future experiments will
be able to use these results to clarify the physics behind the
interesting properties of SrCu2ðBO3Þ2.

VIII. CONCLUSIONS

We studied a two-dimensional S ¼ 1=2 model which
captures key features of the Shastry-Sutherland material
SrCu2ðBO3Þ2. We obtained the phase diagram using
numerical IDMRG simulations and observed a potentially
continuous transition between a plaquette VBS state with
twofold degeneracy and a Néel ordered phase. The tran-
sition, studied using both numerical and field theoretical
techniques, is proposed to be a deconfined quantum critical
point, and we discussed its special features including the
lack of a dangerously irrelevant scaling and an emergent
O(4) symmetry. Concrete predictions are made for future
experiments in SrCu2ðBO3Þ2, where a pressure-tuned tran-
sition betweenNéel order and a putative plaquette VBS state
has already been reported [13]. The predicted experimental
signatures include the form of spectral intensity of spin-
singlet and spin-triplet excitations at extinction points,
which should be accessible in future resonant x-ray and
neutron scattering experiments. These can provide a smok-
ing gun signature of the deconfined criticality and emergent
O(4) symmetry. Complications arising from the coupling
between layers in the third dimensionof the bulkmaterial are
briefly discussed, although further work in this direction is
needed. We hope this study will trigger future experimental
investigation of this quantum critical point in an interesting
material and, more generally, provide a road map for the
experimental study of deconfined quantum criticality.
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APPENDIX A: MONOPOLE TRANSFORMATION

In this section, we calculate how the monopole operator
transforms under the symmetry of the Shastry-Sutherland
lattice. To do this calculation, we think of the Shastry-
Sutherland lattice as the lattice being deformed from the
square lattice with spin 1=2 per site. Starting from the 2þ
1D antiferromagnetic ordered phase (Néel) of the square
lattice, one can derive the action in terms of local Néel order
parameter nðrnÞ in a path integral formalism:
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S ¼ 1

2g

Z
dτd2r

��∂n
∂τ

�
2

þ c2ð∇rnÞ2
�
þ SB; ðA1Þ

where n ∼ ηrS is a Néel order parameter and ηr ¼ ð−1Þrxþry

is a factor required for an alternating spin direction. In
addition to the continuum action of a classical Oð3Þ
nonlinear σ model, there exists a Berry phase contribution
due to the quantum nature of spin dynamics, which
manifestly has the lattice origin [85,86]. Let ωðnrÞ be a
solid angle swept by a local Néel vector located at r
throughout the imaginary time evolution from 0 to β, with
respect to the reference direction n0 [see Fig. 13(b)]. Then,
SB ¼ iS

P
r ηrωðnrÞ, where S is the spin of an each site.

For any spatial slice, one can define the skyrmion
number QðτÞ ¼ ½1=ð4πÞ� R n̂ · ð∂xn̂ × ∂yn̂Þjτ, which is a
topological invariant. Then, a monopole creation operator
is defined as a topological defect at the spacetime point
which changes QðτÞ by þ1 across it. By the further duality
mapping, this monopole in the NLσM is mapped into the
monopole of the CP1 theory. As the center of the monopole
cannot have a finite spin direction, the monopole is located
at a dual lattice. When we have a monopole event in the
spacetime, it must give a branch-cut structure on the image
of ωðrÞ, because ωðrÞ must change by 4π around the
monopole location in the space. More intuitively, when a
monopole residing on the dual lattice encircles a single site,

the imaginary time trajectories of all spins except the one
encircled by the monopole oscillate just back and forth,
while the trajectory for the encircled one entirely winds its
ω by 4π upon the completion of encircling as in Fig. 13(b).
Thus, one can view this problem as a monopole hopping
around the dual 2D lattice in which each site in the original
lattice gives a 4πSηr flux through the plaquettes of the dual
lattice. (The monopole is a charged object under this “flux”
emanated from a spin S.) The associated phase factor is
independent of the exact imaginary time location of the
monopole event. Thus, for the S ¼ 1=2 case, one can fix the
system into a certain gauge and view it as if the �π=2
Aharonov-Bohm phase factor gets accumulated for each
hopping process for monopoles.
The monopole transformation rule is summarized in

Table V. Rsite
π=2 is a site- (spin-) centered rotation. Note that it

is important to fix the convention for the rotation center,
because translation symmetry is projective. Here, we
choose a rotation to be defined with respect to the black
spin in Fig. 13(a). Rplaq

π=2 is a plaquette-centered rotation,
which is defined with respect to the center of four spins in
Fig. 13(a). Under the unit translations Tx;y, time reversal T ,

and plaquette-centered rotation Rplaq
π=2 , the Néel order

changes its sign. It means that the flux pattern is reversed
under such transformations; thus, we need to transform a
monopole into an antimonopole to compensate for the
change. For reflections σx;y, although n does not flip, the
definition of the skyrmion number tells us that we need to
change the sign for the number of monopoles. Thus, a
monopole transforms into an antimonopole again. After
figuring out whether a monopole transforms into a monop-
ole or antimonopole, we need to multiply it by an additional
phase factor αg to account for the Berry phase effect.
Assume the topological term SB is absent momentarily,

which is how the CP1 theory in Eq. (4) is derived. This
assumption is a usual practice, because, unlike the first term
inside the parentheses in Fig. (A1), the second term, SB,
cannot be straightforwardly extended to the continuum field
theory description. Under the absence of SB, the monopole
insertion operatorM† just makes a global adjustment of the
Néel order configuration to increase the skyrmion number
by one, without any additional phase factor.
However, we know from the existence of SB in the lattice

description that the Berry phase effect is important. In order
to take into account the Berry phase effect, we need to
examine how the monopole transforms under each sym-
metry action. Under the active transformation where the
coordinate system remains the same, we have

g∶M†
r ↦ αg ·g½M†�gðrÞ; g½M†� ¼M† or M; ðA2Þ

where the action of g on M† is determined by the
previous argument on whether the monopole transforms

(a) (b)

(c)

FIG. 13. (a) The monopole operator inserted in the Euclidean
spacetime. White arrows represent spin directions. The imaginary
time trajectory of each spin is represented by a colored line.
White arrows in the black trajectory show how the direction of the
spin changes along the imaginary time when the monopole is
inserted. (b) The solid angle ωðnrÞ sweeps through the imaginary
time with respect to the reference vector n0. (c) The dual lattice
where a monopole operator resides. Here, plaquette centers
correspond to the spin sites. The lattice spin acts as an alternating
flux pattern ð−1Þrxþry4πS for monopoles. The hopping amplitude
along each black arrow gives a phase factor of eiπS ¼ i in our
S ¼ 1=2 case.
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into the monopole or antimonopole upon the symmetry
transformation.
To determine αg, we need to fix a gauge first. Fixing a

gauge is important, because a monopole is always created in
a pair with an antimonopole. Thus, the monopole event
always has a reference point (antimonopole) connected by
the branch cut. The Berry phase factor is independent of the
way we draw the branch cut, because going around a single
spin-lattice site gives a 2π phase. Let us fix the reference
gauge such that the monopole created at ð0̄; 0̄Þ gives a Berry
phase β. Then, for a generic coordinate r, inserting a
monopole gives the Berry phase factor ηðrÞβ, where
ηðrÞ ¼ 1, i, −1, or−i depending on whether the coordinates
ðrx; ryÞ are (even, even), (odd, even), (odd, odd), or (even,
odd) [85]. This process is shown explicitly in Fig. 13(c), as
moving the monopole along the arrow gives an additional
phase factor i. Inserting an antimonopole at r gives a phase
factor η�ðrÞβ�, since it gives an exactly opposite contribution
to the Berry phase term by having ω ↦ −ω. Now, by fixing
β ¼ 1, the insertion of the monopole and antimonopole at
each dual lattice site simply gives a phase ηðrÞ and η�ðrÞ.
To illustrate the further procedure, let us consider two

examples, Rsite
π=2 and Tx. Under Rsite

π=2, a monopole remains a
monopole, but its location changes as r ↦ Rsite

π=2r. By
calculating the relative phase factor between the monopole
created at r and Rsite

π=2r, we obtain its transformation rule in
the continuum description:

ηðRsite
π=2rÞβ

ηðrÞβ ¼ i ⇒ M† ↦ iM†: ðA3Þ

In the case of Tx, a monopole transforms into an
antimonopole under the symmetry action. At the same
time, its location changes as r ↦ rþ x̂. Following a similar
procedure, we obtain the following rule:

η�ðrþ x̂Þβ�
ηðrÞβ ¼ −i ⇒ M† ↦ −iM: ðA4Þ

Following a similar analysis, we can obtain αg for all
symmetry transformations summarized in Table V. In the
case of time-reversal symmetry, we do not need an
extra phase factor, because time reversal already complex
conjugates the phase factor of a monopole operator,
which matches with the phase factor given by the anti-
monopole at the same site. Moreover, any monopole
condensation amplitude would be time-reversal symmetric,
because T ∶hMi ↦ hM†i� ¼ hMi.
So far, we assume β ¼ 1. However, a different choice of

β can be made, which affects the transformation rule for the
symmetries that flips a monopole to an antimonopole. In
fact, we can show that this rule is related to the identi-
fication rule between monopole M† and the VBS order
parameters vx and vy. For β ¼ 1, we get the relation Eq. (6);
for example, Tx∶M† ↦ −iM implies that the Tx-invariant
monopole condensation corresponds to the condition that

ReMþ ImM ¼ 0. However, if β ¼ β ¼ eiπ=4, we get
Tx∶M† ↦ −M, implying that the Tx-invariant condition
is ReM ¼ 0. In such a case, we can deduce
that M† ∼ vx þ ivy.
Once we fix the gauge choice and determine how the

monopole transforms under the square lattice symmetries
(p4m), how the monopole transforms under the Shastry-
Sutherland lattice symmetries (p4g) can be deduced easily,
because the Shastry-Sutherland lattice symmetries can be
expressed in terms of the square lattice symmetries if we
take the Shastry-Sutherland lattice in Fig. 5 as deformed
from the smaller square lattice. The result is summarized in
Table VI.

APPENDIX B: COMPARISON WITH A DMRG
SIMULATION RESULT OF THE J1-J2
MODEL IN THE SQUARE LATTICE

In this section, we present our analysis on the square
lattice with spin 1=2. Using the IDMRG simulation, we
study these models on an infinite cylinder with a circum-
ference size up to L ¼ 10 lattice sites. Here, we focus
on the correlation length spectra. The simulation is

TABLE V. Transformation of the monopole operator M and
Néel vector n in the field theory of the nonlinear sigma model in
the Néel order phase.

Symmetries Transformations

Tx M† ↦ −iM n ↦ −n
Ty M† ↦ iM n ↦ −n
Rsite
π=4 M† ↦ iM† n ↦ n

Rplaq
π=4

M† ↦ −M n ↦ −n

σx M† ↦ iM n ↦ n
σy M† ↦ −iM n ↦ n
T M† ↦ M n ↦ −n

TABLE VI. The table shows the correspondence between the
symmetries of the Shastry-Sutherland lattice (p4g) and square
lattice (p4m). Bold symbols are for symmetries of the Shastry-
Sutherland lattice.

Gp4g Gp4m Action

Tx T2
x M† ↦ M† n ↦ n

Ty T2
y M† ↦ M† n ↦ n

σxy Rπ=2σx M† ↦ M n ↦ n
σxȳ TxTyRπ=2σy M† ↦ M n ↦ n
gx Txσx M† ↦ −M† n ↦ −n
gy Tyσy M† ↦ −M† n ↦ −n
Rπ=4 Rplaq

π=4
M† ↦ −M n ↦ −n

T T M† ↦ M n ↦ −n
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explicitly Uð1Þz symmetric, and we can plot the correlation
spectra for each Uð1Þz quantum number, Sz. Since the
following models are SO(3) symmetric in the microscopic
Hamiltonian, there must exist some degeneracy between
different Sz sectors, which can be interpreted as the
spectrum for a higher spin.
First, let us consider the case where the square lattice

symmetry is broken. The following model realizes the
phase transition between Néel order and dimerized phase:

H ¼ J1
X

hi;ji∈blue
Si · Sj þ J01

X
hi;ji∈red

Si · Sj; ðB1Þ

where red and blue bonds are shown in Fig. 14(a). Here, the
dimerized phase does not break any symmetry, because the
square lattice symmetry is already broken in the model.
Therefore, the transition should be described by the
Landau-Ginzburg theory. Indeed, it is known from the
quantum Monte Carlo simulation [33] that the system
realizes the O(3) Wilson-Fisher critical point at
J1=J01 ¼ 0.523. In the IDMRG simulation, we also observe
that the Néel order parameter develops at J1=J01 ∼ 0.52.
At the transition, a single monopole event is not sup-
pressed, because different configurations for a single
monopole event cannot exactly cancel each other due to
the absence of symmetries. As a result, the gauge fluc-
tuation (VBS order parameter fluctuation) becomes con-
fining, and the CP1 theory is no longer valid. Instead, the
critical theory is described by the classical NLsM with O(3)
Néel vector. The correlation spectra in Fig. 14(c) shows that

the spin-triplet correlation length is the largest across the
phase transition, while the spin-singlet correlation length is
much smaller than that. This behavior is consistent with the
critical theory described by the classical NLsM.
Next, we study the J1-J2 Heisenberg model with a

square lattice symmetry. The model is defined by the
following Hamiltonian:

H ¼ J1
X
hi;ji

Si · Sj þ J2
X
⟪i;j⟫

Si · Sj; ðB2Þ

where Si is a spin-1=2 operator, J1 is the nearest-neighbor
AFM coupling, and J2 is the next-nearest-neighbor AFM
coupling; see Fig. 14(b). When J2 ¼ 0 (J1 ¼ 0), the model
is known to realize the Néel ordered (conventional AFM
stripe) phase. For the intermediate value of J1=J2, the
system is frustrated and known to realize the disordered
phase.
In accordance with the recent infinite projected

entangled pair states study [87], we obtained the Néel,
CVBS, and conventional stripe phases as we increase
J2=J1. However, in order to obtain the VBS order, we
have to apply some bias (pinning field). Under the absence
of the bias, the system looks totally symmetric, implying
the existence of the symmetric superposition of symmetry-
broken states, namely, a cat state. The cat state can be
preferred over the symmetry-broken phase if the circum-
ference size is comparable to the length scale associated
with the fluctuations, which is the size of the monopole in
this case.
Before getting into the discussion of the correlation

length spectra, we want to elaborate on some simulation
details. In our IDMRG simulation, the IDMRG unit cell
consists of two columns of lattices along the circum-
ference, as otherwise translational symmetry-broken
phases (AFM order or VBS order) cannot develop.
The price to pay is that kx ¼ 0 and kx ¼ π momenta
become indistinguishable. (In our simulation, ky cannot
be measured.) However, at the critical point where the
explicit symmetry-breaking order has not developed yet,
we can use a single column to distinguish kx ¼ 0 and
kx ¼ π momenta. Indeed, in the IDMRG simulation of
the single-column unit cell, we observe that the largest
correlation length for S ¼ 1 spectra carries momentum
kx ¼ π in the single-column simulation, which is con-
sistent with the momentum ðπ; πÞ of the gapless magnon
in Néel order. For the S ¼ 0 case, we obtain that the
lowest one carries kx ¼ 0, while the second-lowest one
carries kx ¼ π, which runs almost parallel to the lowest
one. They correspond to the Z4 VBS order parameter
fluctuations (spin singlet) at ð0; πÞ and ðπ; 0Þ, but the
degeneracy is lifted due to the IDMRG geometry which
breaks the C4-rotation lattice symmetry.
Surprisingly, in this model, we obtain the correlation

length spectra that exactly agrees with the level crossing

(a) (b)

(c) (d)

FIG. 14. (a) Square lattice J1-J01 model with a dimer coupling
J01. J

0
1 explicitly breaks the square lattice symmetry. (b) Square

lattice J1-J2 model. (c),(d) Correlation length spectra for the
model in (a),(b).
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behavior of the excitation spectrum in the finite DMRG
algorithm (Fig. 2 in Ref. [50]). Our result is consistent with
Ref. [32], which discusses the agreement between the
correlation length spectrum and local excitation spectrum
in the DMRG simulation. Moreover, we want to comment
on the argument in Ref. [50]. In this previous work, it is
argued that the small region where ξS¼1 > ξS¼0 > ξS¼2

corresponds to the gapless spin liquid phase [50]. However,
this reasoning is inconsistent with the IDMRG simulation
result of the Shastry-Sutherland lattice, because this region
is clearly a symmetry-broken phase with a nonzero Néel
order parameter from the numerics. Thus, we can con-
jecture that such a region shrinks into a critical “point”
rather than remains as an extended phase of Dirac spin
liquid in both the J1-J2 square lattice model and the
Shastry-Sutherland model. Indeed, if we perform a sin-
gle-column IDMRG simulation for the J1-J2 model, the
simulation does not converge well for the J1=J2 > 2.0,
which means that the hypothesized gapless spin liquid
phase is, in fact, more like the AFM phase where the
double-column IDMRG unit cell is required.
Finally, we remark on the evidence that supports

our discussion in Sec. IV. In the previous finite DMRG
works on this model [52], the plaquette VBS appeared
instead of the columnar VBS. In fact, it is found in
Ref. [87] that these two states have almost the same
energy (ΔE=E < 0.1%). This result again implies that the
dangerously irrelevant operator M4, which is responsible
for the VBS ordering, has not flowed large enough to
condense the monopole to a certain direction. This
implication can be supported by Fig. 9(a), where the
correlation length for the spin-singlet operator is smaller
than the correlation length of the spin-triplet operator
throughout the whole intermediate regime between the
Néel and conventional AFM stripe order.

APPENDIX C: VBS-PHONON COUPLING
AND PHONON SPECTRUM

The square PVBS order breaks the glide-reflection
symmetries Gx and Gy and the diagonal-reflection sym-
metries σxy and σxȳ. Because of the lattice symmetry
breaking, the PVBS order should induce lattice distortion
as shown in Fig. 6. Therefore, the PVBS fluctuation must
couple to the lattice vibration mode, i.e., the phonon mode.
Here, we would like to determine the specific form of the
PVBS-phonon coupling.
We focus on the copper lattice in the following dis-

cussion. Although the lattice also contains other atoms and
the phonon spectrum can be complicated, we choose to
work on the symmetry level to demonstrate the universal
consequences of the PVBS fluctuation on the phonon
spectrum without diving into the details. For this purpose,
we first specify the coordinate of copper sites in each unit
cell. As shown in Fig. 15(a), there are four copper sites in
each unit cell. At equilibrium, they locate at

rA ¼ ð1þ δ; 1þ δÞ=2;
rB ¼ ð1 − δ; 3þ δÞ=2;
rC ¼ ð3þ δ; 1 − δÞ=2;
rD ¼ ð3 − δ; 1 − δÞ=2; ðC1Þ

where 0 ≤ δ < 1 parametrize the deformation of the
Shastry-Sutherland lattice from the square lattice.
According to Ref. [16], the lattice constant is 8.995 Å,
the shortest Cu─Cu bond is 2.905 Å, and the second-
shortest Cu─Cu bond is 5.132 Å. This result implies that, in
unit of the lattice constant, we have

AD ¼ 1þ δ

2
≈
2.905 Å

8.995 Å
;

AB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p

2
≈
5.132 Å

8.995 Å
: ðC2Þ

The optimal solution is δ ≈ 0.544. Using this deformation
parameter, we can write down equilibrium positions of
copper atoms throughout the lattice.
Our strategy to figure out the PVBS-phonon coupling is

to first investigate the pattern of lattice distortion induced
by the PVBS order. Because the PVBS order does not
enlarge the four-copper unit cell, its induced lattice dis-
tortion is also identical among unit cells. Therefore, the
distortion can be described by four displacement vectors
uA, uB, uC, and uD, translating each sublattice separately as

ri → r0i ¼ ri þ ui ði ¼ A; B;C;DÞ: ðC3Þ

The energy cost associated with the distortion can be
modeled by summing up the bond energies

Ebond½ui� ¼
k1
2

X
ij∈nn

½ðr0i − r0jÞ2 − ðri − rjÞ2�2

þ k2
2

X
ij∈dimer

½ðr0i − r0jÞ2 − ðri − rjÞ2�2; ðC4Þ

(a) (b)

FIG. 15. (a) A, B, C, and D label four copper sites in each unit
cell (marked out in dashed lines). k1 and k2 are the stiffnesses of
the two types of bonds (nearest neighbor and dimer). X and Y
label the two types of plaquettes. (b) Schematic illustration of the
phonon spectrum. A continuum emerges at the X point due to the
VBS-phonon coupling.

SIGNATURES OF A DECONFINED PHASE TRANSITION ON … PHYS. REV. X 9, 041037 (2019)

041037-19



where ui dependence is implicit in r0i ¼ ri þ ui. The energy
increases whenever a bond is stretched or compressed.
The shape of the potential in Eq. (C4) captures this physics
when the distortion ui is small. The two stiffness coef-
ficients k1 and k2 are expected to be different, in general. Of
course, in the realistic material, Sr, B, and O atoms are all
involved and the bond energy model is more complicated.
However, the toy model Eq. (C4) respects all the symmetry
properties and provides the stiffness to the copper lattice,
which can be used to analyze the PVBS-induced lattice
distortion. Finally, we note that the energy model Eq. (C4)
is written with respect to a single unit cell with a periodic
boundary condition (i.e., on a torus geometry), so for those
bonds across the unit cell, their bond length must be
correctly treated by considering the periodic boundary
condition.
Upon introducing the PVBS order, we add an additional

term to the energy model:

E½ui� ¼ Ebond½ui� þ EVBS½ui�;
EVBS½ui� ¼ ImM

X
p

ð−Þp
X
i∈p

ðr0i − RpÞ2; ðC5Þ

where p denotes the square plaquettes and i ∈ p denotes
the four corner sites around the plaquette p. Rp coordinates
the plaquette center:

Rp ¼
� ð1; 0Þ p ∈ X;

ð0; 1Þ p ∈ Y:
ðC6Þ

The staggering factor ð−Þp is þ1 for X-type plaquette
(yellow) and −1 for Y-type plaquette (green) as shown in
Fig. 15(a). ImM ¼ vy − vx denotes the square PVBS order
parameter. The physical meaning of EVBS is that the PVBS
order contracts one type of square plaquette and expands
the other type, exerting forces on copper atoms that point
toward or away from the plaquette center.
Given the full energy model in Eq. (C5), we can expand

E½ui� to the quadratic order of ui. The linear term is
proportional to the PVBS order parameter ImM, as ImM
is the force that distorts the lattice. The quadratic term
determines how the lattice responds to the distortion force
in the linear response regime. We find that, independent of
the choice of δ and k2, the response is always given by

uA ¼ ImM
4k1

ð−1; 1Þ;

uB ¼ ImM
4k1

ð−1;−1Þ;

uC ¼ ImM
4k1

ð1; 1Þ;

uD ¼ ImM
4k1

ð1;−1Þ: ðC7Þ

Under the Fourier transformation to the momentum space

uðqÞ ¼
X
i

uieiq·ri ; ðC8Þ

the solution in Eq. (C7) corresponds to

uxðπ; 0Þ ∝ −ImM; uyð0; πÞ ∝ ImM: ðC9Þ

This calculation indicates that the square PVBS order leads
to a lattice distortion that corresponds to the simultaneous
condensation of phonon modes ux at momentum ðπ; 0Þ and
uy at momentum ð0; πÞ. Given that ImM ¼ vy − vx, we
conclude that there must be a linear coupling between the
lattice displacement and the VBS order parameter in the
form of

LVBS-phonon ¼ κðvxux þ vyuyÞ; ðC10Þ

in order to produce the linear response in Eq. (C9). The
coupling in Eq. (C10) can be further justified by symmetry
arguments. Table VII shows the momentum quantum
number and the symmetry transformation of the VBS order
parameter v and finite-momentum phonon mode u. One can
see v and u have identical symmetry properties, and, hence,
a linear coupling as in Eq. (C10) is allowed.
Given the VBS-phonon coupling, we can investigate the

effect of low-energy VBS fluctuation on the phonon
spectrum near the DQCP. We first write down the field
theory action describing both d.o.f.:

S½u;v� ¼ 1

2

X
q

ðω2−Ω2
qÞuð−qÞ ·uðqÞ

−
1

2

X
q

G−1
VBSðqÞvð−qÞ ·vðqÞþ

X
q

κqvð−qÞ ·uðqÞ;

ðC11Þ

where q ¼ ðω; qÞ represents the energy-momentum vector.
Ωq describes the phonon dispersion relation. GVBS is the
correlation function of the VBS critical fluctuation, whose
low-energy behavior is given by

TABLE VII. Momentum and symmetry transformations of the
VBS order parameter v and finite-momentum phonon mode u.

vx vy ux uy

q ðπ; 0Þ ð0; πÞ ðπ; 0Þ ð0; πÞ
Gx −vx −vy −ux −uy
Gy −vx −vy −ux −uy
σxy vy vx uy ux
σxȳ vy vx uy ux
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GVBSðω; qÞ ¼
1

½ðq − QÞ2 − ω2�1−η=2 ; ðC12Þ

where η is the anomalous exponent of the O(4) vector at the
O(4) DQCP. Based on the previous numerical measure-
ments [25,69], η is estimated to be η ¼ 0.13–0.3. Q ¼
ðπ; 0Þ or ð0; πÞ denotes the momentum point where the
VBS fluctuation gets softened. The VBS-phonon coupling
κq is expected to bemomentumdependent, because theVBS
order parameter couples only to the high-energy phonon
around X and Y points but not the acoustic phonon around
the Γ point. By the acoustic phonon around the Γ point, we
mean the low-energy part of the phonon, i.e., the segment of
the acoustic branch around the gapless point, which usually
appears in the field theory description of phonons. Given
these setup, we can integrate out the VBS fluctuation and
obtain the dressed propagator of the phonon:

Dðω; qÞ ¼ 1

Ω2
q − ω2 − κ2qGVBSðω; qÞ

: ðC13Þ

Then, the phonon spectral function can be obtained from

Sðω; qÞ ¼ 2ImDðωþ i0þ; qÞ: ðC14Þ

The phonon dispersion Ωq is unknown to us, as we do not
have the full model of the lattice vibration. For demonstra-
tion purposes, we can use the following toy model:

Ω2
q ¼ sin2ðqx=2Þ þ sin2ðqy=2Þ; ðC15Þ

which captures the gapless acoustic phonon at the Γ point
and gapped phonons at X and Y points [see Fig. 1(b)].
We also take the anomalous exponent η ¼ 0.13 and use
κq ¼ κ0Ωq with κ0 ¼ 0.05 so that

lim
q→ð0;πÞ;ðπ;0Þ

κq ¼ κ0; lim
q→ð0;0Þ

κq ¼ 0: ðC16Þ

With these, we show the phonon spectrum calculated from
Eq. (C14) in Fig. 15(b). The prominent feature is a V-shape
continuum at the X point (as well as the Y point) in the
Brillouin zone. This continuum in the phonon spectrum
represents the critical fluctuation of the VBS order param-
eter at the DQCP. Although the spectral weight is expected
to be weak, since the X point is an extinction point, it is
still feasible to collect spectral signals of this continuum.
In particular, the frequency dependence of the spectral
weight at the X point is predicted to follow

Sðω; q ¼ XÞ ∝ ω−2þη; ðC17Þ

which can be checked experimentally. It will be meaningful
to compare the measured η with the large-scale quantum
Monte Carlo simulation result.

APPENDIX D: DETAILED NUMERICAL DATA

In this Appendix, we discuss the evolution of the
IDMRG simulations results as we increase the bond
dimension χ for system sizes L ¼ 8 and L ¼ 10. Since
the accuracy of the IDMRG simulation is determined by the
bond dimension, a reliable analysis requires one to examine
the results as a function of the bond dimension. Here, the
IDMRG simulation results of the Shastry-Sutherland lattice
model in Eq. (1) at L ¼ 10 for a range of bond dimensions
are presented in Fig. 16. Although the truncation error ϵtrun
is very large (>10−4) at the low bond dimensions, as we
increase the bond dimension up to χ ¼ 4000, ϵtrun goes
below 10−5 and the IDMRG results become sensible.

FIG. 16. The IDMRG simulation results with ΔJ1 ¼ 0.002 at
L ¼ 10, shown for a range of the IDMRG bond dimension χ.
Bond dimension scalings of the (a) energy per site E, (b) energy
derivative per site ∂E=∂J1 (data for χ ¼ 500, 1000 are not shown
here, as these data points behave irregularly and cover the other
data points, which can happen at a low bond dimension, for
which the IDMRG simulation does not converge properly),
(c) truncation error p, (d) correlation length of spin-singlet
operator ξS¼0, and (e) PVBS order parameters. Here, (c)–(e)
share the same labels for different bond dimensions. Note that the
correlation length is plotted, not the inverse as in Fig. 4. In (f), we
plot PVBS order parameters as functions of truncation errors for a
range of the tuning parameter J1. The blue dotted line is a linear
fitting for the three data points at χ ¼ 2000, 3000, 4000.
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Figure 16(b) shows the first derivative of energy, whose
change of the slope corresponds to the transition between
the PVBS and Néel ordered phases. As the bond dimension
increases, the transition point shifts leftward, implying that
the parameter regime for the PVBS phase shrinks. The
behavior aligns with the intuition that the gapped PVBS
phase would be favored over the gapless Néel ordered
phase for a low-entanglement MPS state. Accordingly, the
peak of the spin-singlet correlation length which coincides
with the phase transition point also shifts leftward,
presented in Fig. 16(d). At the same time, the peak of the
spin-singlet correlation length becomes larger and more
pronounced as the bond dimension increases, signaling the
continuous or weakly first-order phase transition.
Although the peak location of the spin-singlet correlation

length changes with the bond dimension, a further indica-
tion of the phase boundary can be obtained from the order
parameter plotted versus the truncation error [88,89]. In
principle, the ground state is fully symmetric, and the local
order parameter cannot be nonzero. However, in the
IDMRG simulation, the numerical process favors a min-
imally entangled state, giving rise to a nonzero local order
parameter in a spontaneous symmetry-breaking phase at
finite bond dimensions, which can even happen when the
system is outside but close to the spontaneous symmetry-
breaking phase, meaning that one needs to plot the order
parameter as a function of the truncation error in order to
see whether a nonzero order parameter is truly physical. In
Fig. 16(f), we plot the PVBS order parameter defined in
Eq. (5) as a function of the truncation error and extrapolate
them. We observe that the extrapolated order parameter
disappears at J1 ¼ 0.76, which agrees well with the peak
location J1 ¼ 0.762 of the spin-singlet correlation length at
χ ¼ 4000 with L ¼ 10. As mentioned earlier, this extrapo-
lation method benefits a lot if a wider range of bond
dimensions is available. However, at χ ¼ 4000, each data
point already takes about 50 h of simulation times for 12
multithreads with 80 GB RAM, and both the time and
RAM scale roughly as χ2. Therefore, a significantly higher
bond dimension is currently inaccessible at our capacity.
Finally, we remark on the scaling of the result for

different system sizes. In Fig. 17, we plot the IDMRG
simulation results at L ¼ 8 for a range of MPS bond
dimensions as in Fig. 16. Note that the truncation error is an
order of magnitude smaller than the results at L ¼ 10.
Moreover, the value of J1 where the PVBS order parameter
disappears is much smaller for the smaller system size L.
However, this result does not imply that the Néel ordered
phase develops for J1 > 0.726, as we can see from
the correlation length plot in Fig. 18. In Fig. 18(a), while
the peak of the spin-singlet correlation length implies that
the peak corresponds to the phase transition point for the
PVBS phase, the spin-triplet correlation length remains
almost constant, which implies that the Néel order does not
develop, since the Néel order gives rise to the increase of

the spin-triplet correlation length originated from the
gapless magnon excitation. On the other hand, at
L ¼ 10, we observe that the peak of the spin-singlet
correlation length is immediately followed by the rise of

FIG. 17. The IDMRG simulation results with ΔJ1 ¼ 0.002
(0.001 for χ ¼ 4000) at L ¼ 8, shown for a range of MPS bond
dimension χ. Different observables are labeled as in Fig. 16.
Here, again (c)–(e) share the same labels for different bond
dimensions. Note that the PVBS order parameter vanishes at
J1 ¼ 0.726, which is smaller than the value for L ¼ 10.

FIG. 18. Comparison between the L ¼ 8 and L ¼ 10 results
at χ ¼ 4000 for the spin-singlet and -triplet correlation lengths.
For L ¼ 8, the peak of the ξS¼0 is located at J1 ¼ 0.727, while for
L ¼ 10 the peak is located at J1 ¼ 0.762. Unlike the result at
L ¼ 10, the spin-triplet correlation length at L ¼ 8 does not grow
much after the peak.
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the spin-triplet correlation length which signals the onset of
the Néel ordered phase. L ¼ 6 behavior is similar to that of
L ¼ 8, and the signature of the Néel ordered phase, such as
the staggering magnetization or the rise of the spin-triplet
correlation length, is not observed near the PVBS critical
point. This behavior is related to the discussion in the main
text. For a quasi-one-dimensional system with a finite-size
circumference size, the spontaneous symmetry breaking of
the continuous group is suppressed due to the disordering
effect. As a result, the disappearance of the PVBS ordering
is not immediately followed by the Néel ordering for a
finite circumference system.
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