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Inside the cell, proteins fold and perform complex functions through global structural rearrangements.
For proper function, they need to be at the brink of instability to be susceptible to small environmental
fluctuations yet stable enough to maintain structural integrity. These apparently conflicting properties are
exhibited by systems near a critical point, where distinct phases merge. This concept goes beyond previous
studies that propose proteins have a well-defined folded and unfolded phase boundary in the pressure-
temperature plane. Here, by modeling the protein phosphoglycerate kinase (PGK) on the temperature (T),
pressure (P), and crowding volume-fraction (ϕ) phase diagram, we demonstrate a critical transition where
phases merge, and PGK exhibits large structural fluctuations. Above the critical temperature (Tc), the
difference between the intermediate and unfolded phases disappears. When ϕ increases, the Tc moves to a
lower T. With experiments mapping the T-P-ϕ space, we verify the calculations and reveal a critical point
at 305 K and 170 MPa that moves to a lower T as ϕ increases. Crowding shifts PGK closer to a critical line
in its natural parameter space, where large conformational changes can occur without costly free-energy
barriers. Specific structures are proposed for each phase based on the simulation.

DOI: 10.1103/PhysRevX.9.041035 Subject Areas: Biological Physics, Soft Matter,
Statistical Physics

I. INTRODUCTION

Complex processes in nature often arise at a transition
between order and disorder [1–4]. In proteins, this com-
plexity arises from an almost perfect compensation of
entropy by enthalpy; molecular interactions that create their
structural integrity are on the same scale as thermal
fluctuations from the environment. The resulting marginal
stability of proteins suggests that they could behave like
fluids near a critical point [5]. That is, when subject to small

perturbations, their structures fluctuate considerably with-
out overcoming a large activation barrier.
The concept of first-order and critical phase transitions

does not strictly apply to nano-objects such as proteins;
nevertheless, it is a useful one to classify folding transi-
tions. For example, the folding of some small model
proteins is described as an abrupt, cooperative transition
between their folded and unfolded phases (the below-
critical point scenario) or for other proteins as a gradual
barrierless “downhill” transition (the above-critical point
scenario) [6]. Even though critical behavior of proteins has
been previously suggested [7–9], a critical point where one
of these abrupt transitions simply disappears at Tc and Pc
has not been demonstrated. In larger proteins, such as
phosphoglycerate kinase (PGK) (Ref. [10], Sec. S1), there
is the added complexity that different parts or “domains” of
such a large protein are more likely to undergo separate
order-disorder events [11], delicately poised between
folded and partially unfolded structures, to carry out their
functions [12].
Proteins must fold and function while crowded by

surrounding macromolecules [13], which perturb their
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structure at physiological conditions in the cell. In living
cells, the volume exclusion from macromolecules [14],
which places shape and size (or covolume) [15,16]
constraints on the conformational space [Fig. 1(a)], com-
plicates protein folding and dynamics [17]. How the
competing properties of a protein arise—being both stable
yet dynamically sensitive to its environment—is virtually
unknown. Herein, we show that the crowded environment
provides a unique solution by placing PGK closer to a
critical regime.
We use pressure P, temperature T, and the crowder-

excluded volume fraction ϕ to map PGK’s folding energy
landscape [12,18] and its critical regime on the T-P-ϕ phase
diagram. Temperature can induce heat unfolding by favor-
ing states of high conformational entropy or cold denaturing
by favoring reduced solvent entropy when hydrating core
amino acids in the protein [19,20]. Since folded proteins
contain heterogeneously distributed small, dry cavities due
to imperfect packing of their quasifractal topology [21–23],
high pressure also induces unfolding by introducing water
molecules (as small granular particles) into the cavities in
protein structures. This process reduces the overall solvent-
accessible volume of the unfolded protein [24]. In the
presence of high crowding (large excluded volume fraction
ϕ), compact desolvated (crystal) states are favored over less
compact solvated (unfolded) states [12].
To investigate the opposing influence of macromolecular

volume exclusion and solvation water on protein confor-
mation, we utilize a minimalist protein model (see
Appendix A and Ref. [10], Sec. S2.2) that incorporates
the free-energy cost of expelling awater molecule between a
pair of amino-acid residues in a contact termed the des-
olvation potential [Fig. 1(b)] [25]. This potential has
a barrier that separates two minima, which represent a
native contact and a water-mediated contact. As pressure
increases, the desolvation barrier increases, and the
free-energy gap between the two minima tilts to favor the

water-mediated contact, which leads to an unfolding of a
protein, which captures the main feature of pressure dena-
turation. Despite the model’s simplicity, without all the
detailed chemistry in a residue [26], this desolvation model
predicts a foldingmechanismbased onwater expulsion from
the hydrophobic core, which is observed by all-atomistic
molecular dynamics [27] and validated by experiments in
which the volume or polarity of amino acids is changed by
mutation [28]. We previously employed a similar model
without a desolvation potential to investigate compact
conformations of PGK induced by macromolecular crowd-
ing [12]. Now, by studying the competition of temperature,
pressure, and crowding on the energy landscape, we observe
that a costly barrier between two specific phases disappears,
along a critical line on top of the isochore surface. As such,
the current investigation demonstrates a richer ensemble of
PGK states (Sec. II A) than our previous study [12].
To test our computational model experimentally, we

observe by fluorescence the structural transitions of PGK
and construct the experimental T-P-ϕ phase diagram
(Sec. II B). These experiments verify our prediction of
the existence of a critical point and that Tc moves to a lower
temperature T as the crowding volume fraction ϕ increases.
Using scaling arguments from polymer physics, we derive a
critical line TcðϕÞ and present a unified phase diagram
(Sec. II C) to investigate the underlying physical origin of
such a transition. We also discuss the consequence of the
existence of criticality in PGK’s phase diagram and the
possible relation to its function. Even though the observed
critical point is most relevant to physiological conditions
for extremophile organisms [30], its influence may extend
over a broader range of the phase diagram. The current
investigation adds complexity to the typical “structure-
function” relation for proteins to include the novel role of
the environment in this relationship and contributes toward
developing universal thermodynamic principles of protein
folding in living cells.

FIG. 1. PGK surrounded by crowders and the desolvation potential between residues. (a) A snapshot from the coarse-grained
molecular simulation of PGK’s spherical compact state (SPH) surrounded by crowders (gray) at the volume fraction of 40%. The N and
C domain and hinge are in red, blue, and yellow, respectively. (b) The pressure-dependent desolvation potential at σ3P=ϵ0 ¼ 4.6, 6.6,
and 9.2 (ϵ0=σ3 ≈ 76 MPa) contains a desolvation barrier with a width (jr0 − r00j) the size of a water molecule (blue). This barrier
incorporates the entropic cost of expelling a solvent molecule between two residues (gold). The Lennard-Jones potential is plotted in
light gray for comparison.
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II. RESULTS AND DISCUSSION

A. Computational T-P-ϕ phase diagram of PGK

We investigate the conformations of PGK, a large, 415-
amino-acid, two-domain protein (see Ref. [10], Sec. S1, for
more information on PGK), in an environment containing
Ficoll 70, which acts as a crowding agent to mimic cell-like
excluded volume. As it is known to be inert to proteins and
behaves as a semirigid sphere [31,32], Ficoll 70 is
computationally modeled as a hard sphere. From prior
Förster resonance energy transfer (FRET) experiments and
molecular simulations, we observe several PGK conforma-
tions that denote a phase diagram in the ϕ-T plane [12]. It
includes four states: C (crystal structure), CC (collapsed
crystal), SPH (spherically compact state), and U (unfolded
structures). In the C state, there is a linker that separates the
N-terminal and C-terminal domains, resembling an open
“pacman.” The CC state is a closed pacman. The SPH state

involves a twisting of one of the domains with respect to the
other and becomes more spherical than the CC state. A
complete description of the structures of these states is in
Supplemental Material [10], Sec. S3.
By changing hydrostatic pressure P and the volume

fraction of crowders ϕ at several temperatures T, we
identify two new states on the ϕ-P isothermal phase plane
(Fig. 2): I (folding intermediate) and SU (swollen compact
unfolded structure). The criteria to define the six distinctive
conformations are in Table S3.1 [10]. The I state is an
ensemble of structures containing one folded domain
(C terminus) and one unfolded domain (N terminus),
indicating it to be the least stable domain on its own.
SU is completely denatured but exhibits many water-
mediated contacts [Fig. 2(b)]. Thus, the SU state is
structurally more compact than the U state.
The microscopic mechanism of the pressure-induced

unfolding of PGK depends on T and ϕ. Figure 2 shows

FIG. 2. Solvation and crowding give rise to an intricate phase diagram of PGK. (a),(c) Schematics of PGK’s behavior in the crowding
volume-fraction-pressure (ϕ-P) phase plane and (b),(d) corresponding free energy with respect to the overlap χ and crowding volume
fraction ϕ at the folding pressure at low (a),(b) and high (c),(d) temperatures. Solid lines represent the division between distinct
configurational phases that are separated by a free-energy barrier from simulations at ϕ ¼ 0, 0.2, and 0.4 and pressures from σ3P=ϵ0 ¼
103 to 13 (ϵ0=σ3 ≈ 76 MPa). The dashed line (a) represents a continuous transition along ϕ, and red dots (a),(b) represent an
approximate position of the critical points. The orange arrow (b) marks the peak of the barrier that diminishes until it disappears after the
critical point. Collapsed crystal, spherical, and swollen unfolded states are indistinguishable in terms of free energy. These
configurations are reconstructed from coarse-grained models to all-atomistic protein models for illustration purposes using SCAAL
(side chain-Cα to all-atom method) [29]. The N and C domains and hinge are in red, blue, and yellow, respectively. A cyan sphere is
inserted in between residues to show water-mediated contacts.
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the P-ϕ phase plane at low T in Fig. 2(a) and high T in
Fig. 2(c). At sufficiently low T and ϕ ¼ 0 (no crowders),
the unfolding of PGK is a multistate transition between
crystal state C [Figs. 2(a) and 2(b)] and unfolded state U via
an intermediate state I. We capture the folding process
using the overlap parameter χ:

χ ≡ 1 −
1

N2 − 5N þ 6

XN−3

i¼1

XN
j¼iþ3

Θð1.2r0ij − rijÞ; ð1Þ

where N is the number of residues (= 415), Θ is the
Heaviside step function, rij is the distance between the
residues i and j for a given conformation, and r0ij is that
corresponding distance in the crystal structure. It character-
izes similarity to the crystal structure, C state. χ ranges from
0 to 1, where 0 represents the C state. In Fig. 2(b), at ϕ ¼ 0,
the hχi of the I state, χI , approximately equals 0.35, and the
hχi of the U state, χU, approximately equals 0.9. The state I
is a consequence of the heterogeneous distribution of
cavities, which causes uneven pressure denaturation as
the N domain unfolds, but the C domain remains intact.
Since the total cavity volume of the N-terminal domain
(approximately equal to 171 Å3) is about a third larger than
that of the C-terminal domain (approximately equal to
132 Å3), the former is more vulnerable to high pressure.
Moreover, two antiparallel β strands m and n of the N-
terminal domain are totally exposed to the solvent (see
Ref. [10], Sec. S5 and Fig. S1.1). Under high pressure, they
act as a channel for water to fill the N-terminal domain’s
cavities.
At sufficiently high ϕ and low T [Fig. 2(a), above the red

critical point], there is only a single transition due to pressure
between a crystal state and several compact states (SPH, CC,
and SU) without the I state. The transition from C to SPH or
CC states involves domain rearrangement where the linker
“cracks” [11] and forms a disordered hinge. Furthermore,
high pressure competing with crowding gives rise to a
compact unfolded conformation where up to half of the
contacts become swollen with water that forms a “wet
interface” (SU). As the limited void formed by the density
fluctuations of crowders inhibits extended conformations
[33], the U state is unfavored due to macromolecular
crowding [29]. The protein needs only to reduce its volume
slightly as it expels water molecules out of this wet core to
return to the SPH or CC states from the SU state. Effectively,
no barriers exist between the SPH, CC, and SU states, which
are located in the same region of the phase diagram [see
Figs. 2(a) and 2(b) at χ ¼ 0.4 to 0.8 and Fig. S5.2 [10] ].
These data support the hypothesis that protein dynamics is
governed by the solvent motion [34], whereby water inside
the protein “lubricates” the transitions between conforma-
tions without significant free-energy costs [25].
Similarly, at high T [in Figs. 2(c) and 2(d)] ranging

from low to high ϕ, PGK also undergoes a single

pressure-denaturation transition, but it is between the C
and U states. Because of the increase in T, the U state is
entropically more favorable than all other states. As such,
the U state’s entropy considerably compensates the C
state’s energy, causing an increase in the free-energy barrier
between χ ¼ 0 (C state) and 0.8–0.9 (U state) in Fig. 2(d).
From these P-ϕ slices at various T, our model predicts

that crowding causes the folding of PGK a two-state
transition, whereas the lack of crowding produces a multi-
state transition below a critical temperature Tc. Therefore,
PGK undergoes a critical transition by either of two
directions on the T-P-ϕ phase space. One direction is by
increasing ϕ at low T and sufficiently high P surpassing a
critical volume fraction ϕc, as shown in Fig. 2(a) at the red
critical point. This transition is seen clearly by the dimin-
ishing of the free-energy barrier in Fig. 2(b) pointed out by
an orange arrow. The difference between the hχi’s of the
I and U phases also disappears approaching ϕc; i.e.,

lim
ϕ→ϕ−

c

½χUðϕÞ − χIðϕÞ� ¼ 0; ð2Þ

where ϕc is between 0.2 and 0.4. The second way is by
increasing T at low ϕ and sufficiently high P surpassing a
critical temperature Tc. When ϕ ¼ 0, the free-energy
barrier observed in Fig. 2(b) by an orange arrow must
diminish in order for the multistate free energy to become
two state, resembling the high-T free energy shown in
Fig. 2(d). This result also means

lim
T→T−

c

½χUðTÞ − χIðTÞ� ¼ 0: ð3Þ

Thus, these two directions that cause a critical transition
indicate that Tc is a line on T-P-ϕ phase space and the value
decreases as ϕ increases.

B. Experimental T-P-ϕ phase diagram of PGK

To validate the computed phase diagram, we measure the
P-T phase diagram of PGK at various Ficoll 70 crowder
concentrations to obtain the full P-T-ϕ information
experimentally (Fig. 3). Whereas one cannot expect the
exact temperatures and pressures to agree, identical topol-
ogies between the computational and experimental phase
diagrams validate the general conclusions from simula-
tions. As the mean fluorescence wavelength of tryptophan
is sensitive to water exposure, changes in the states
of PGK are detected by tryptophan fluorescence as the
protein unfolds. The emission spectrum from tryptophan is
strongly dependent on its (local) environment. Of the two
states (excited and ground) that contribute to the emission,
the excited state is highly perturbed by hydrogen bonding
and the overall polarity of the solvent. The excited state of
tryptophan has a dipole moment that differs from that of the
ground state, and photoexcitation causes a rapid shift in the
dipole moment, which then causes the surrounding water
molecules to reorganize in order to stabilize the excited
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tryptophan [35,36]. When the tryptophan is in a nonpolar
environment, buried within the core of the protein (as it is
when the protein is folded), there is less stabilization of the
excited state. When the polar side chain of tryptophan is
exposed to a polar solvent such as water, solvent rear-
rangement lowers the energy of the excited state, thus
resulting in a redshift (Stokes shift) of the emission.
Thus, the mean fluorescence wavelength increases upon
unfolding of the protein due to the increase in exposure to
water. Tryptophan fluorescence is also affected by a
number of other factors including interactions with the
charged side chains, though in our experience the polar
solvent exposure is the major reason for the redshift upon
unfolding [35,37]. We scan T from 283 to 318 K at constant
P, and P from 0 to 250 MPa at constant T, using 0, 25, 50,
100, 150, and 200 mg=ml of Ficoll 70 concentrations
(ϕ ¼ 0 to approximately 0.56) to cover the complete phase
diagram. Each transition produces a sigmoidal step in the
plot of mean tryptophan fluorescence wavelength λm vs P
(Fig. S2.1 [10]).
In the absence of the crowder and at sufficiently low T

[Fig. 3(a), blue trace], there are two steps in λm as a func-
tion of P, signifying two separate transitions among three
states. These steps are straightforwardly revealed by plot-
ting ∂λm=∂P and identifying peaks [see Figs. 3(a) and
S2.1 [10]). We assign the first peak to the C-to-I transition
and the second to the I-to-U transition. At sufficiently
high T, at ≥303 K and P ≈ 170 MPa, one of the peaks
disappears [Fig. 3(c), blue trace], leaving only one tran-
sition between two states. We assign it to a direct transition

from C to U, as shown in Fig. 2(c), corresponding to a
critical point at Tc ¼ 306� 3 K. When the crowder is
added, Tc moves to a lower temperature until the apparent
three-state transition is no longer observed at 200 mg=ml
Ficoll 70 [Figs. 3(a) and 3(c), red traces]. We assign it to
the transition between C and SU/SPH/CC as shown in
Fig. 2(a). Accurate transition midpoints (Tm, Pm, and ϕm)
are obtained from each trace by fitting to sigmoidal two- or
three-state models [solid curves in Figs. 3(a)
and 3(c); see Appendix B; all data traces are shown in
Ref. [10], Sec. S4). Singular value decomposition analysis
(Ref. [10], Sec. S4) also strongly supports the conclusions
obtained from analyzing λm.
We construct P-T planes of the phase diagram at all

crowder concentrations as follows: First, the transition
midpoints are plotted on P-T slices at constant ϕ as shown
in Fig. 3(b). These points correspond to a zero free-energy
difference (ΔG ¼ 0) for the first-order transition, where
concentrations of C and I, I and U, or C and U (depending
on the location on the phase diagram) are equal. Then, the
transitions are fitted to Hawley’s elliptical P-T phase curve
for proteins [38]:

ΔGðT; PÞ ¼ 1

2
ΔβðP − P0Þ2 þ ΔαðT − T0ÞðP − P0Þ

− ΔCP

�
T

�
ln

T
T0

− 1

�
þ T0

�

þ ΔV0ðP − P0Þ − ΔS0ðT − T0Þ þ ΔG0; ð4Þ

FIG. 3. Experimental T-P-ϕ phase diagram of PGK (full data in Ref. [10]). (a) The derivative of the mean tryptophan fluorescence
wavelength vs the pressure of PGK at 282 K calculated from fluorescence spectra. Two of six Ficoll 70 concentrations are shown. The
markers show the data points, and the solid line shows a cubic spline interpolation. The blue curve (0 mg=ml Ficoll 70) has two peaks as
the pressure increases, signifying two transitions; the magenta curve (200 mg=ml Ficoll 70) has only one peak point, signifying only one
transition when pressure is applied. The dashed lines point from transition midpoints to the corresponding point in the phase diagram.
(b) P-T phase diagrams at several ϕ obtained by fitting the fluorescence data to obtain the inflection points of λmðPÞ (peaks in the
derivative ∂λm=∂P). Three of six Ficoll 70 concentrations are shown. Circles represent midpoint pressures measured at 282, 288, 296,
303, 309, and 317 K in absence of Ficoll 70 (0 mg=ml), asterisks represent transitions for the middle Ficoll 70 concentration
(100 mg=ml), and triangles represent transitions for the highest Ficoll 70 concentration (200 mg=ml). At high T, or upon increasing the
Ficoll 70 concentration, the second (higher P) transition disappears, mapping out a critical point that moves to a lower Tc at a higher
Ficoll 70 concentration. Solid elliptical curves going through the circles are fits to Eq. (4) representing the ΔG ¼ 0 curves.
(c) Equivalent data as in (a) at 317 K. Note that the second (higher P) transition is never present at high T.
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at each value of ϕ (fits for all ϕ and parameter definitions in
Ref. [10], Sec. S4). Here Δβ, Δα, ΔCP, ΔV0, and ΔS0
signify changes in the compressibility, thermal expansion
coefficient, heat capacity, volume, and entropy, respec-
tively. The resulting experimental phase diagram in
Fig. 3(b) agrees with the computational data: (i) Both
exhibit two pressure transitions at low T, (ii) one at high T,
and (iii) a shift from two to three transitions at a value of Tc
that decreases with increased crowding.
The simulation predicts that, in the state I, the N terminus

would be unfolded and the C terminus folded. We truncate
the protein to the N-terminal domain and indeed find it to
be unfolded with a long tryptophan fluorescence wave-
length and no cooperative transition (Fig. S4.4 [10]).
Moreover, the C-terminal domain of PGK is stable by
itself [39]. Combined, these two observations strongly
support the computational assignment of the I state with
the N-terminal domain primarily unfolded and the
C-terminal domain mostly folded. Therefore, our exper-
imental data and simulations are in agreement as evidenced
by the disappearance of the difference between two phases
at high T or high ϕ as well as the general structural features
of the I state formed at low crowding.

C. Unified T-P-ϕ phase diagram of PGK

The three-dimensional (3D) T-P-ϕ phase diagram in
Fig. 4(c) presents a unified picture of the computational
and experimental results. This 3D phase diagram includes
two surfaces: The blue surface represents the phase
boundary bordering the C phase, and the red surface
represents I-U coexistence surfaces (the calculations of the
surfaces can be found in Appendix C and Ref. [10],
Sec. S6). The projection of this 3D coexistence surface
onto a 2D ϕ-P plane in Fig. 4(a) shows a low- and high-T
slice similar to that found computationally in Fig. 2. When
projected on the P-T plane in Fig. 4(b), it shows a low-ϕ
and high-ϕ slice as found experimentally in Fig. 3. As the
temperature increases, the second transition surface ter-
minates at a critical line [bold red line on the red I-U
coexistence surface in Fig. 4(c)]. As the crowding volume
fraction increases, the critical point on each P-T slice
shifts toward lower temperatures. Thus, from the experi-
ment, above ϕ ¼ ϕc ≈ 0.5 or T ¼ T0

c ≈ 306 K, the pres-
sure-induced folding transition contains only two apparent
phases, whereas at low ϕ and T, PGK exhibits apparent
three-state folding.
To quantitate the unified 3D phase diagram, we modify

Hawley’s theory [Eq. (4)] by incorporating the free-energy
change due to crowding ΔGcrowdðϕÞ, using a first-order
approximation to Minton’s theory [16], to construct the first
transition surface [blue surface in Fig. 4(c)]. Just as
the curves in Fig. 3 correspond to a zero free-energy
change, this surface representsΔGðT; P;ϕÞ ¼ ΔGðT; PÞþ
ΔGcrowdðϕÞ ¼ 0, where

ΔGcrowdðϕÞ ¼ g

�
ϕ

1 − ϕ

�
þOðϕ2Þ: ð5Þ

The constant g takes into account the covolume change of
the protein, demonstrating that the covolume and crowding
are thermodynamic conjugates.
As for the critical line on the second transition surface [in

red in Fig. 4(c)], we use scaling arguments to derive the
equation for the critical line:

P−Pc ¼ a1½T−TcðϕÞ�þa2½T−TcðϕÞ�2þOðΔT3Þ; ð6Þ

by treating the protein’s U-to-I transition similar to in the
coil-globule transition of the theory [40,41]. Here,

TcðϕÞ ¼ T0
c

�
1 −

ϕ

ϕc

�
γ

; ð7Þ

where T0
c is the critical temperature without crowding,

ϕc is the critical crowding volume fraction, Pc

FIG. 4. T-P-ϕ phase diagram of PGK from the theory mapped
onto the experimental data. (a) PGK’s ϕ-P phase plane at high
(magenta) and low (black) T. Dotted lines represent the division
between distinct configurational phases. The red dot signifies a
critical point. (b) Slices of the P-T phase diagram observed
experimentally at no Ficoll 70 (black curve) and 100 mg=ml
Ficoll 70 (cyan curve). Note that I-U coexistence curve terminates
at the critical point (in red dots) and shifts Tc to a lower
temperature in the presence of Ficoll 70. Solid elliptical curves
going through the circles are the fits representing the ΔG ¼ 0
curves. (c) A T-P-ϕ phase diagram of PGK. The blue surface is
the coexistence surface bordering the C phase (C-I, C-U, or
C-SPH/CC/SPH depending on T and ϕ), and the red surface is the
I-U coexistence surface. The dashed magenta and black lines are
the ϕ-P cross section from Fig. 4(a), and the solid black and cyan
lines are the P-T cross section from Fig. 4(b). The bold, red line
bordering the red surface is the critical line.
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(approximately equal to 170 MPa) is the critical pressure
taken from our experiment at T0

c, and a1 ¼ ðdP=dTÞjT¼T0
c

and a2 ¼ ðd2P=dT2ÞjT¼T0
c
. From the fitting to experi-

mental critical points at all slices of ϕ, we find γ ¼
0.40� 0.01, which is the predicted scaling exponent of a
polymer collapse due to crowders, γ ¼ 2=5 [42,43] (see
Appendix C and Ref. [10], Sec. S6). From this phase
diagram, we can see that the protein moves through a
diverse phase space, suggesting different folding mech-
anisms that depend on how the phase diagram is traced
out [44,45].

D. Consequences of criticality

In Fig. 5, we explore the impact of P and ϕ on the
folding of PGK. The consequences of the critical regime
are revealed by the ensemble distributions of the cavity
volume (conjugate variable of P) and covolume (conjugate
variable of osmotic pressure, which is related to ϕ) [15,16]
from our simulations (also see Fig. S5.1 [10]). In the
critical regime, small perturbations in crowding ϕ, P, or T
significantly affect the system.
We investigate the response of the conformational

distribution of structures close to the critical region
by comparing the cavity volume fluctuations (δV2 ¼
hV2i − hVi2) (or, proportionally, the compressibility)
and structural fluctuations (δχ2 ¼ hχ2i − hχi2) in the
presence and absence of a crowding agent. PGK has
larger δV [Fig. 5(a)] at ϕ ¼ 0.4 with a peak at 6.6ϵ0=σ3

(ϵ0=σ3 ≈ 76 MPa) than that of ϕ ¼ 0. We suspect that the
critical regime is between ϕ ¼ 0.2 and 0.4 and between
pressures 4.6ϵ0=σ3 and 6.6ϵ0=σ3 at a temperature of
0.97ϵ0=kBT in the computational model, which qualita-
tively agrees with the experiment. Even though δχ is large
in the presence of crowders, structures lie in a narrow
range of covolumes, making them indistinguishable to
macromolecular crowding effects if the shape can be
neglected to the zeroth order [Fig. 5(b)]. A sample of
the diverse structures with similar cavity volumes and
covolumes is shown in Fig. 5(c).
Not only does crowding shift the population of

structures to more compact states such as CC or SPH
(Fig. 2 and Ref. [12]), where the two ligand-binding sites
(for ADP and 1,3-DPG) come into close proximity of
each other, but it also increases the structural fluctuations
of the compact states by bringing PGK closer to the
critical regime, as shown in Fig. 5. Both of these
properties would be likely to facilitate enzymatic activity.
This conjecture is corroborated by previous FRET experi-
ments that show an increase in PGK’s enzymatic activity
as the Ficoll 70 concentration increases at 293 K and
ambient P [12]. Together, these data suggest that criti-
cality contributes to the enzymatic function of a protein.

III. CONCLUSION

In summary, we have shown direct evidence of equilib-
rium critical-like behavior on the T-P-ϕ phase diagram of a

FIG. 5. Cavity volume and structural fluctuations near the critical regime. (a) Cavity volume fluctuations δV2 ¼ hV2i − hVi2 (or
proportionally compressibility) of PGK at kBT=ϵ0 ¼ 0.97 and σ3P=ϵ0 ¼ 4.6, 6.6, and 9.2 with (orange line) and without (blue line)
crowding (ϵ0=σ3 ≈ 76 MPa). (b) Overlap fluctuations δχ2 ¼ hχ2i − hχi2 as a function of the covolume at pressure σ3P=ϵ0 ¼ 6.6.
(c) Conformations from the ensemble in the presence of crowding at kBT=ϵ0 ¼ 0.97 and σ3P=ϵ0 ¼ 6.6 with covolumes approximately
equal to 1.1 × 105 Å3 and cavities approximately equal to 200 Å3. The leftmost conformation is a crystal state. The following structures
from left to right have a χ ¼ 0.31, 0.38, and 0.48. The N and C domains and hinge are in red, blue, and yellow, respectively. Covolumes
are shown as translucent surfaces surrounding the protein, and cavity surfaces are shown in green.
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protein by computational simulations, by fluorescence
spectroscopy, and by a theoretical argument based on
polymer physics. Despite the simplicity of the computa-
tional and theoretical model, all three different approaches
agree with one another, validating the trends on the T-P-ϕ
phase diagram and the presence of the critical regime.
Above the critical line in Fig. 4(c) (by increasing T, ϕ, or
both at Pc ≈ 170 MPa), the difference between the I and U
phases disappears. This effect is due to the loss of the free-
energy barrier between the two phases [orange arrow in
Fig. 2(b)] and is reaffirmed by the high-pressure fluores-
cence measurements (Fig. 3).
What is the origin of the critical behavior in proteins?

The answer to this question relies on weaving two concepts
together. First, proteins are biopolymers that often undergo
an abrupt or first-order-like transition to a compacted
folded state from an expanded unfolded state or coil at a
folding temperature TF. Second, the coil-globule transition
seen in other polymers is a continuous transition at a
specific temperature called the θ temperature, Tθ [40,41].
Therefore, the first-order transition in protein folding must
be occurring near the collapse transition (TF ≈ Tθ), mean-
ing it normally is tricritical [7]. In the current system, the
pressure perturbation may cause TF ≠ Tθ, separating the
continuous and first-order transitions. When going from a
continuous to a first-order transition, there are signatures of
passing through a critical point [46,47]. Moreover, when ϕ
is high (ϕ > ϕc), the protein is already collapsed even
when it is unfolded. Our theoretical model in Eq. (7) and
Appendix C (also Ref. [10], Sec. S6) captures this
postulation of the basis of criticality in proteins.
Furthermore, our computational and experimental results

are in accord with the capillarity picture of folding [48],
which posits a wetting interface between folded and
unfolded parts of a protein, giving rise to a diverse phase
space. Strong macromolecular crowding, which drives
conformational changes to favor compact states, roughens
that wetting interface, allowing cavities to spread through-
out the conformation of the protein, with two major
consequences. A roughened interface reduces activation
barriers for folding, driving multistate transitions toward
apparent two-state transitions. It also creates a critical state
where heterogeneous conformations coexist, as the front of
wetting interface moves across the protein.
We conclude that large structural fluctuations (Fig. 5)

and the merging of protein phases are consequences of
being close to a critical point [Fig. 4(c)]. At such a point,
the barrier separating states vanishes (here, between I
and U). Critical behavior has been proposed for protein
folding at the onset of downhill folding [8], but its
manifestation has been challenging to demonstrate computa-
tionally and experimentally [49]. Macromolecular crowding
shifts the critical point to a lower temperature [Eq. (7)],
indicating that such criticality could be physiologically
important [3,4]. While the critical point at 305 K and

170 MPa lies in a region of the phase diagram most relevant
to piezophiles (high-pressure-thriving organisms), the effects
of criticality extend to lower pressures for several reasons.
First, since critical fluctuations remain fairly large and decay
with a heavy tail (or power law) when moving away from the
critical point [50], the mere existence of the critical point has
far-reaching consequences across a wide range of T, P, and
ϕ. Furthermore, this effect is even more pronounced for
nanoscale objects like individual proteins, because their
phase transitions are broadened by finite-size effects. For
example, a 50 MPa pressure change and a 10 K temperature
change are roughly equivalent to a tiny approximately
10 kJ=mol free-energy change [51]. The volume of
unfolding and entropy of unfolding for proteins are quite
small. Thus, critical points may indirectly affect the boun-
daries and structural fluctuations of nearby phases, which
could be advantageous for processes (e.g., enzyme catalysis)
dependent on accessing a wide range of conformations with
smaller activation barriers for functional purposes inside the
cell. Note, though, that the majority of organisms on Earth
by population size (15% by biomass) are extremophilic
bacteria and archaea living at high pressure and/or boiling
conditions [30,52].
Further work is needed to provide stronger evidence for

the universality of critical behavior in proteins. Because of
their complexity, proteins are not like other conventional
condensed matter systems, and conventional tools, such as
finite-size scaling [53] or renormalization group theory
[54], are not clearly applicable, although recent efforts are
making strides with these methods to tame similarly
complex systems [55,56]. One may extend our analysis
to other proteins using an example of universality as
inspiration, such as Guggenheim’s plot of the law of
corresponding states [57]. In principle, proteins may obey
such a law. By measuring the critical points on T-P-ϕ space
(using a crowder that is a semirigid or hard sphere, such as
Ficoll 70) for different proteins and scaling T and an order
parameter (such as density) correctly, the binodal lines
should collapse into a single, universal curve. However,
there are several complications to consider: (i) The scaling
of T and the order parameter may not be as simple due to
finite-size corrections [58], (ii) Tc or ϕc may equal 0 (say,
for intrinsically disordered proteins [59]) or be infinite (say,
for rigid scaffold proteins), (iii) the barrier between the two
phases that disappears under the critical transition may not
necessarily be between the I and U phases, and (iv) the
universality classes of proteins may depend on their
functions. The current investigation is a starting point
toward developing universal principles of protein folding
relevant to the environmental perturbations inside living
cells and is an inspiration to create new tools to understand
critical phenomena in these complex systems.
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APPENDIX A: SIMULATION MODEL

Our simulations use a structure-based model, which is a
minimalist protein model (“beads on a chain”) that incor-
porates experimentally derived structural information [60],
to investigate the mechanism of protein folding dynamics
optimally. The emergence of structure and function from a
protein sequence makes the modeling of proteins from first
principles (ab initio models) computationally and theoreti-
cally prohibitive. Therefore, experimentally derived struc-
tural information is needed (even in models termed “all
atom,” which refine ab initio force field parameters to fit
experimentally known structures) to capture key features in
protein folding and dynamics [61]. A structure-based

model is often utilized as the “ideal gas” of protein folding
for the investigation of a wide range of folding mechanisms
[2,62]. This model renders an energy landscape [63] with
minimal frustration and contains a dominant basin of
attraction, corresponding to an experimentally determined
configuration [64]. As such, the model carries the bonus of
being computationally inexpensive, enabling long-time-
scale simulations to be obtained for a large protein and
macromolecular crowding system. Long-timescale simu-
lations are also crucial for high-pressure unfolding, since
pressure unfolds proteins at an order of magnitude (or
more) slower than heat unfolding; therefore, structure-
based, minimalist-model simulations provide statistically
significant results. Lastly, structure-based models tend to
capture unfolded protein scaling laws better than all-atom
models [65], which are necessary to characterize the
various noncrystal states of PGK correctly.
Similar to adding specific complexity to the ideal gas

model to study specific phenomena, we add the desolvation
barrier [25] to the native interactions that account for the
free-energy cost to expel a water molecule in the first
hydration shell between two hydrophobic residues [66].
This approach allows us to study pressure unfolding,
leading to the appearance of a partially folded intermediate.
The use of this model has been validated in other systems
[28]. The total system is described by the Hamiltonian
Htot ≡Hp þHpc þHc, which accounts for the interaction
within the protein (Hp), between the protein and crowders
(Hpc), and between crowders (Hc). The Hamiltonian of this
structure-based protein model, Hp, is as follows:

HpðΓ;Γ0Þ ¼
X
i<j

Krðrij − r0ijÞ2δj;iþ1 þ
X

i∈ angles

Kθðθi − θ0i Þ2 þ
X

i∈dihedrals

Kϕ

�
f1− cos ½ϕi −ϕ0

i �g þ
1

2
f1− cos ½3ðϕi −ϕ0

i Þ�g
�

þ
X

i;j∈native

Uðrij; ϵ;ϵ00Þ þ
X

i;j∉native

ϵ0

�
σ

rij

�
12

; ðA1Þ

where Γ is a configuration of the set r, θ, ϕ. The rij
term is the distance between ith and jth residues, θ
is the angle between three consecutive beads, and ϕ
is the dihedral angle defined over four sequential
residues. δ is the Kronecker delta function. Γ0 ¼
ffr0g; fθ0g; fϕ0gg is obtained from the crystal structure
configuration. Lastly, Uðrij; ϵ; ϵ00Þ is the desolvation
potential in Fig. 1(b) (or Fig. S2.2 [10]), which contains
a P-dependent contact well energy (ϵ) and barrier height
energy (ϵ00) as

ϵðPÞ ¼ ϵ0 − ξ1P; ðA2aÞ

ϵ00ðPÞ ¼ ϵ000 þ ξ2P; ðA2bÞ

where ϵ0 is the solvent-averaged energy and ϵ000 is the
barrier height at ambient P. The constants ξ1 and ξ2 are
taken from Ref. [66].
Crowders are modeled as hard spheres with

Hamiltonians Hpc and Hc with the following form:

HpcðrijÞ ¼
XN
i

Xnc
j

ϵ0

�
σij
rij

�
; ðA3aÞ

HcðrijÞ ¼
Xnc
i<j

ϵ0

�
σij
rij

�
; ðA3bÞ

where N and nc are the number of residues (¼415) and
crowders, respectively; σij ¼ 0.5ðσi þ σjÞ is the distance
between any two particles in direct contact.
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The complete descriptions of a structure-based protein
model, desolvation potential, and simulations of PGK
in a periodic cubic box of Ficoll 70 are provided in
Supplemental Material [10]. All simulations are performed
using GROMACS2016.3 molecular dynamics software [67].

APPENDIX B: HIGH-PRESSURE
FLUORESCENCE EXPERIMENT METHODS

Fluorescence experiments are carried out at high pres-
sure using a high-pressure cell (ISS High-Pressure Cell
System) on a fluorimeter (JASCO FP8300). A computer-
ized high-pressure generator (Pressure BioSciences Inc.
HUB440) is used to pressurize the fluorescence cell.
We use a rectangular quartz cuvette with a path length
of 6 mm, and deionized water is used as the pressurizing
fluid. The pressure is raised from 0.1 to 250MPa at a rate of
10 MPa=min and held at intervals of 10 MPa for a 5 min
wait time to allow sample equilibration. Fluorescence
spectra from 300 to 450 nm are acquired in the middle
of the wait time, and an in-built proportional-integral-
derivative feedback loop is used to obtain accurate
pressures (within 5 bars of target pressure). The temper-
ature is controlled using an external water-circulating bath.
To construct a complete T-P-ϕ phase diagram, fluores-
cence measurements are done at six different Ficoll 70
concentrations (½Ficoll 70� ¼ 0, 25, 50, 100, 150, and
200 mg=ml), each at six different temperatures T ranging
from 282 to 317 K (9 °C to 44 °C). Equilibrium traces of
mean fluorescence wavelength vs pressure [e.g., Fig. 3(a)]
are fit to a two-state or three-state thermodynamic model
(see Supplemental Material [10]), depending on whether
the derivative (Fig. S1.2 [10]) of the titration curve
identifies one or two transitions (an inflection point in
the fluorescence vs P trace at given T and [Ficoll 70]
produces a peak in the derivative). The fitted transition
midpoints (Pm, Tm, ϕm) are then plotted in a phase diagram
[e.g., Fig. 3(b)] and fitted to Eq. (4). See Ref. [10] for
complete data and fitting parameters.

APPENDIX C: CONSTRUCTION
OF THE PHASE DIAGRAM

We derive the critical line [Eqs. (6) and (7); red line
in Fig. 4(c)] on the T-P-ϕ phase diagram using argu-
ments based on the coil-globule transition [40,41] of
a polymer. Beginning with a Landau-Ginsberg free
energy [68], F ¼ −rðT;ϕÞΨ2 þ uΨ4 þ F0 to describe
the critical transition, where Ψ is the order parameter,
which is a scaled and shifted Rg (radius of gyration) so
that Ψ ¼ −Ψ0 for the I state and Ψ ¼ þΨ0 for the U
state. Since pressure is involved only with the first-order
transitions, it can be ignored for now. At the critical tem-
perature, the barrier between the I and U states vanishes,
meaning r ¼ 0; therefore, a reasonable function is
rðT;ϕÞ ¼ −r0½T − TcðϕÞ�, where the critical temperature

Tc is a function of ϕ and r0 is a positive constant. To
find the ϕ dependence of Tc, we used the scaling
relationship

RgðϕÞ2
Rgð0Þ2

∼ ð1 − c0ϕÞγ; ðC1Þ

which relates Rg at a given ϕ to Rg without crowders
for the collapse of a coil-to-globule transition [42]. The
scaling exponent γ is shown to be 2=5 in Refs. [42,43].
Since the collapse of the polymer, or in the current
case the protein, is dependent on ϕ, and since Ψ2 ∼
RgðϕÞ2=Rgð0Þ2, the critical temperature TcðϕÞ causing the
free-energy barrier between I and U to disappear must
also scale as Eq. (C1), giving Eq. (7) (see Ref. [10],
Sec. S6, for more details). We fit Eq. (7) to the
experimental critical point values at all Ficoll 70 con-
centrations to find γ and ϕc (or 1=c0). We fit Eq. (6) to
experimental values of the I-to-U transition surface to
find the Taylor expansion coefficients.
Lastly, we modify Hawley’s equation [38] to fit the

C-to-I (or U, depending on T and ϕ) transition surface
[in blue in Fig. 4(c)] by adding a ϕ-dependent ΔGcrowdðϕÞ
term to Eq. (4), making the 3D free-energy change
ΔGðT; P;ϕÞ ¼ ΔGðT; PÞ þ ΔGcrowdðϕÞ. This term is sim-
ilar to Minton’s theory [16], which treats the folded and
unfolded proteins as effective hard spheres and employs the
scaled particle theory to estimate the change in folding free
energy as the difference between the insertion free energy
for the folded and the unfolded states. Equation (5) adds
one more fitting parameter, g, to the total free-energy
change compared to Eq. (4).
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