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Laser-cooled atoms that are trapped and optically interfaced with light in nanophotonic waveguides are a
powerful platform for fundamental research in quantum optics as well as for applications in quantum
communication and quantum-information processing. Ever since the first realization of such a hybrid
quantum-nanophotonic system about a decade ago, heating rates of the atomic motion observed in various
experimental settings have typically been exceeding those in comparable free-space optical microtraps by
about 3 orders of magnitude. This excessive heating is a roadblock for the implementation of certain
protocols and devices. Still, its origin has so far remained elusive and, at the typical atom-surface
separations of less than an optical wavelength encountered in nanophotonic traps, numerous effects may
potentially contribute to atom heating. Here, we theoretically describe the effect of mechanical vibrations of
waveguides on guided light fields and provide a general theory of particle-phonon interaction in
nanophotonic traps. We test our theory by applying it to the case of laser-cooled cesium atoms in
nanofiber-based two-color optical traps. We find excellent quantitative agreement between the predicted
heating rates and experimentally measured values. Our theory predicts that, in this setting, the dominant
heating process stems from the optomechanical coupling of the optically trapped atoms to the continuum of
thermally occupied flexural mechanical modes of the waveguide structure. Surprisingly, the effect of the
high-Q mechanical resonances which have previously been observed in this system can be neglected, even
if they coincide with the trap frequencies. Beyond unraveling the long-standing riddle of excessive heating
in nanofiber-based atom traps, we also study the dependence of the heating rates on the relevant system
parameters and find a strong R−5=2 scaling with the inverse waveguide radius. Our findings allow us to
propose several strategies for minimizing the heating which also provide guidelines for the design of next-
generation nanophotonic cold-atom systems. Finally, given that the predicted heating rate is proportional to
the mass of the trapped particle, our findings are also highly relevant for optomechanics experiments with
dielectric nanoparticles that are optically trapped close to nanophotonic waveguides.
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I. INTRODUCTION

Small particles, such as laser-cooled atoms or dielectric
nanospheres, are nowadays routinely trapped at submicron
distances from solids. Structures currently investigated
include photonic crystal waveguides [1–3], optical nano-
fibers [4–9], single carbon-nanotubes [10,11], dielectric
membranes [12], and even macroscopic prisms [13,14].
The opportunities in research and application for systems
combining atoms and solids are numerous, including the

search for novel fundamental forces [15–19], the imple-
mentation of quantum metrology and sensing using col-
lective atomic state entanglement [20], and integrated
quantum memories for photons guided in nanoscale wave-
guides [21–23]. A rich toolbox is already available for the
cooling, trapping, positioning, and probing of atoms and
nanoparticles. However, not all techniques commonly used
in free-space traps for manipulating trapped particles are
compatible with the presence of solid structures in their
immediate proximity: Control laser beams, for instance,
may be reflected or scattered in undesired ways. Moreover,
additional effects such as van der Waals forces or coupling
of the atoms or particles to thermal excitations in the solid
have to be considered.
Full control at the quantum level over the internal as well

as external degrees of freedom (d.o.f.) of individual atoms
coupled to a nanophotonic structure was achieved only
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recently [24]. A key challenge in this context is the heating
of the atomic motion observed in these systems [25,26],
which can reach rates of several hundred motional quanta
per second—about 3 orders of magnitude larger than in
comparable free-space optical traps. Large cooling rates
realized, for example, by ultrastrong spin-motion coupling
[27,28], are required to overcome the heating and prepare
atoms close to their motional ground state. In essence, the
observed storage times of atoms in nanophotonic traps
have fallen short of expectations, both for trapped cesium
[2,5–7,9] and rubidium [8] atoms, ever since the first
implementation of a nanofiber-based trap for laser-cooled
atoms [4]. The origin of the strong heating and the
corresponding low lifetimes has so far remained elusive.
There is a range of conceivable causes, such as Raman
scattering of the trapping light fields in the waveguide
material [29], Brillouin scattering [30,31], or Johnson-
Nyquist noise [32]. However, estimates of their effect,
provided as Supplemental Material [33], demonstrate that
these mechanisms fail to explain heating rates observed in
experiments. Additionally, tapered optical fibers, as used
for realizing nanofiber-based cold-atom traps, exhibit
thermally driven high-Q torsional mechanical resonances
which have been considered as a likely candidate for
explaining the large heating in these systems [34]. In
contrast, optical traps that are based on the evanescent
field above a prism surface seem to feature small heating
rates which are compatible, for instance, with Bose-
Einstein condensation of cesium atoms [35]. Indeed, even
at room temperature, one does not expect thermally excited
phonon modes of the macroscopic prism to contribute to
the heating of the trapped atoms [36].
Here, we identify thermally populated flexural phononic

modes of the nanoscopic waveguide as the dominant
contributor to the large heating rates observed in nano-
fiber-based cold-atom traps. We give a concise description
of the effect of mechanical modes on light guided in optical
waveguides and provide a general theory of the resulting
atom-phonon interaction in nanophotonic traps. Based on
this formalism, we perform a case study for the cesium two-
color nanofiber-based trap described in Refs. [4,25,26].
Relying on independently measured system properties, we
predict heating rates in excellent quantitative agreement
with experimental observations. Surprisingly, the effect of
the high-Q torsional mechanical resonances that have
previously been observed in this system [34] can be
neglected, even if they coincide with the trap frequencies.
We then use our model to numerically and analytically infer
the scaling of the heating rates with system parameters such
as the mechanical properties of the fiber, its temperature, or
the trap frequencies. This systematic analysis allows us to
outline strategies for minimizing the heating, thereby
suggesting a solution to a long-standing problem of nano-
fiber-based cold-atom systems. While we formulate our
theory in terms of atoms near nanofibers, it is indeed

applicable to any kind of polarizable object trapped by
conservative forces due to the light field surrounding a
photonic structure. Building on the agreement obtained in
the case study, our quantitative formalism might therefore
be used for the faithful description of other nanophotonic
cold-atom systems and, more generally, optomechanical
systems with small particles, such as dielectric nanospheres
[3,37–43], trapped in close vicinity to hot solid bodies.
This article is structured as follows: In Sec. II, we

provide a general quantum theory describing atoms trapped
in the optical near field of a vibrating photonic structure. In
particular, we derive the general form of the atom-phonon
interaction and discuss the resulting heating rates of the
atomic motion. Section III: is dedicated to a case study of
heating rates expected in a nanofiber-based two-color trap
for laser-cooled atoms. In the Appendix A, we review the
concept of photonic eigenmodes and summarize the modes
of a nanofiber, while Appendix B recapitulates the resulting
forces acting on trapped atoms. In Appendix C, we review
quantized linear elastodynamics and summarize the pho-
nonic eigenmodes of a nanofiber. In Appendix D, we
supply details on how to calculate the atom-phonon
coupling constants based on the framework presented in
Appendixes A–C. The parameters of the experimental
setup considered in the case study are listed in Appendix E.

II. ATOMS TRAPPED NEAR VIBRATING
PHOTONIC STRUCTURES

Micro- and nanophotonic traps rely on the optical near
fields surrounding a photonic structure to spatially confine
laser-cooled atoms in high vacuum. The optical fields are
detuned from resonances of the atom such that they do not
drive transitions between its internal (electronic) states.
Confinement is achieved through gradients in the electric
field that result in optical forces acting on the atom,
analogous to free-space optical dipole traps [44]. In contrast
to free-space setups, a dielectric photonic structure is used
to pattern laser light in a way that creates local minima
suitable for trapping atoms in the optical potential [45].
The light can either be guided by the structure such that
atoms interact with the evanescent fields surrounding
it [4,5,46–52], or scattered by the structure [1,2,53,54];
see Appendix A. In either case, a fraction of the light is
absorbed, which can lead to a bulk temperature of the
dielectric of several hundred kelvins due to the weak
thermal coupling to its environment [55]. In consequence,
mechanical modes of the photonic structure are thermally
excited. These mechanical modes (phonons) are in turn
coupled to the external (motional) state of trapped atoms
through the optical forces and other forces acting between
the atoms and the structure.
An individual atom trapped in the optical near field

surrounding a mechanically vibrating photonic structure
suspended in high vacuum can be modeled by the
Hamiltonian
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Ĥ ¼ Ĥat þ Ĥphn þ Ĥat-phn: ð1Þ

The first term describes the dynamics of the trapped atom in
the absence of phonons. Atoms are trapped at a distance
of a few hundred nanometers from the surface of the
structure because the near fields decay on a scale given
by the optical wavelength. At such distances, corrections
V̂ad to the optical potential V̂opt due to surface effects
like dispersion forces become relevant [49,56]. Optical
forces and dispersion forces are additive to first order [57];
hence, the total potential experienced by the atom is
V̂0 ≡ V̂opt þ V̂ad. While the potential in general couples
all atomic d.o.f. [24,28], we focus on scenarios without
coupling of electronic and motional states and assume that
the atom does not change its internal state. In this case
V̂0 ¼ V0ðr̂Þ; that is, the center of mass of the atom is
subject to a potential V0 which depends on the internal state
of the atom (see Appendix B). Approximating the potential
as harmonic for an atom close to its trapped motional
ground state yields the atom Hamiltonian

Ĥat ≡
X
i

ℏωiâ
†
i âi; ð2Þ

where i labels the three orthogonal symmetry axes of the
potential in harmonic approximation, ωi are the trap
frequencies, ℏ is the reduced Planck constant, and âi
and â†i are ladder operators for the harmonic motion of
the trapped atom.
The second term Ĥphn in Eq. (1) describes the free

evolution of the phonon field of the photonic structure.
Vibrations at frequencies relevant to atom traps can be
modeled by linear elasticity theory because the correspond-
ing phonon wavelengths are sufficiently large not to resolve
the microscopic structure of the solid. Linear elasticity
theory describes the dynamics of elastic deformations
of a continuous body around its equilibrium configuration
[58–60]. The deformations are described by the displace-
ment field u, a real-valued vector field which indicates
magnitude and direction of the displacement of each point
of the body from equilibrium at a given time. A quantum
formulation of linear elasticity theory can be obtained
through canonical quantization based on phononic eigenm-
odes; see Appendix C. The eigenmodes can be labeled by a
suitable multi-index γ which may contain both discrete and
continuous indices. In terms of ladder operators b̂γ and b̂†γ
of the phonon field, the resulting phonon Hamiltonian is

Ĥphn ≡
X
γ

ℏωγb̂
†
γ b̂γ; ð3Þ

where the sum symbolizes an integral in the case of the
continuous index components.

The last term Ĥat-phn in the Hamiltonian Eq. (1) describes
the coupling between the atomic motion and the phonon
field. In order to obtain explicit expressions for the atom-
phonon coupling, it is necessary to know how the potential
experienced by the atom is changed by vibrations. Here, we
give an overview of how this dependence can be modeled,
while further details as well as explicit expressions for the
resulting coupling constants in the case of a nanofiber-
based atom trap are provided in Appendix D. The coupling
arises both because vibrations displace the photonic struc-
ture relative to the atom and because they change the
electromagnetic properties of the structure in two ways
[61]: First, vibrations deform the surface of the structure, as
determined by the displacement field u. Second, they
locally change the refractive index and introduce birefrin-
gence (photoelastic effect), as determined by the strain
tensor S. The strain tensor describes deformations of the
solid and has components Sij ≡ ð∂iuj þ ∂juiÞ=2, where ∂i

indicates a spatial derivative. Both effects modify the
photonic eigenmodes and hence the optical trapping fields.
The optical fields and surface forces adapt to changes
caused by vibrations on a timescale that is fast compared to
the motion of the trapped atom. We can therefore treat the
total potential as a functional V½u; S�ðrÞ which, in the
absence of vibrations, reduces to the potential V½0; 0�ðrÞ≡
V0ðrÞ included in Ĥat.
Thermal vibrations only weakly modify the atom trap.

In consequence, it is justified to expand the potential to
linear order around u ¼ 0 and S ¼ 0, and approximate
V½u; S� ≃ V0 þDVð0;0Þ½u; S�. The first-order term is the
functional derivative of V½u0; S0� evaluated at ðu0; S0Þ ¼
ð0; 0Þ and in direction ðu; SÞ; see Ref. [62]. This term
approximates phonon-induced variations of the potential
and acts as the atom-phonon interaction Hamiltonian

Ĥat-phn ≡DVð0;0Þ½û; Ŝ�ðr̂Þ: ð4Þ

Truncating the expansion at linear order corresponds to
assuming that the atom interacts only with single phonons
at a time. Since the potential depends on both displacement
and strain, there are two contributions to the interaction
Hamiltonian, a displacement coupling (dp) due to the direct
dependence of the potential on u and a strain coupling (st)
due to the dependence on S:

Ĥat-phn ¼ δuVð0;0Þ½û� þ δSVð0;0Þ½Ŝ�; ð5Þ

Here, δ is the partial functional derivative [62]. The
interaction Hamiltonian is linear in û and Ŝ because
the functional derivative is linear. By expanding displace-
ment and strain in terms of phononic eigenmodes, the
Hamiltonian can thus be expressed in terms of a position-
dependent, complex-valued coupling function gγðrÞ for
each phonon mode γ,
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Ĥat-phn ¼
X
γ

½gγðr̂Þb̂γ þ H:c:�; ð6Þ

where gγðrÞ ¼ gdpγ ðrÞ þ gstγ ðrÞ. The coupling function

gdpγ ðrÞ derives from displacement coupling and gstγ ðrÞ from
strain coupling.
Furthermore, we approximate the phonon-induced forces

acting on a trapped atom as linear in the atom position by
expanding Eq. (4) to first order around the trap minimum
r0. The interaction Hamiltonian then takes the form [65]

Ĥat-phn ≃
X
iγ

ℏðâi þ â†i Þðgγib̂γ þ g�γib̂
†
γÞ; ð7Þ

where the coupling constants are

gγi ≡ Δxi

ℏ
∂igγðr0Þ: ð8Þ

The length Δxi ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2MωiÞ

p
is the zero-point motion of

the atom of mass M in the trap. The coupling constants
quantify the interaction of each phonon mode γ with the
motion of the atom in direction i. Analogous to the
coupling function, there are contributions from both dis-
placement and strain coupling gγi ¼ gdpγi þ gstγi.
The variation of the optical potential caused by dis-

placement can in general be modeled by perturbatively
calculating the new photonic eigenmodes in the presence of
shifted boundaries of the nanostructure [66]. The displace-
ment has two effects: First, it shifts the photonic structure,
together with the electromagnetic fields surrounding it,
relative to the trapped atom. Second, it deforms the surface
of the structure, leading to new photonic eigenmodes and
thereby also deforming the electromagnetic fields. The first
effect scales with the ratio between the displacement of the
surface and the size of the atom trap (the extent of the wave
function of the atom). The second effect, on the other hand,
scales with the ratio between the displacement and the
dimensions of the structure. Since the trap is typically at
least 1 order of magnitude smaller than the photonic
structure (see Sec. III), we neglect the second effect and
assume that both optical and surface potential are displaced
as a whole together with the fiber surface [67]. This model
is particularly useful for structures such as nanofibers
which have a simple geometrical shape and highly sym-
metric mechanical modes. The resulting displacement
coupling functions gdpγ ðrÞ for a nanofiber-based atom trap
in particular are given in Appendix D.
Strain leads to changes in the optical potential through

the photoelastic effect, which can be modeled by a strain-
dependent permittivity tensor ϵ̄½S� [34,68,69]. The modi-
fied permittivity is then in general neither homogeneous
nor isotropic and results in modified electric fields Ē
surrounding the fiber and thus in a modified optical

potential Vopt½Ē�. In consequence, the total potential
V½u; S� depends on strain. We neglect the influence of
strain on the surface forces because they arise from the
interaction of the atom with charges in a thin slice at the
surface of the fiber and are largely independent of changes
in the interior of the fiber [56]. The strain coupling function
gstγ ðrÞ can then be obtained by perturbatively calculating the
new photonic eigenmodes in the presence of a modified
permittivity; see Appendix D.
Having obtained the Hamiltonian of the coupled atom-

phonon system, we can now describe the resulting evolu-
tion of the atomic motion. The cold atom can absorb kinetic
energy from the thermally excited phonon field of the
photonic structure (heating of the atomic motion). Provided
that the atom-phonon coupling is weak compared to the
trap frequencies and the coherence time of phonon exci-
tations, the phonon field can be adiabatically eliminated.
The effective evolution of the density matrix μ̂ðtÞ describ-
ing the motional state of the atom is then governed by a
master equation [70,71]; see Appendix D. Heating of the
atom is reflected in the increase of the expected number of
motional quanta niðtÞ≡ tr½μ̂ðtÞâ†i âi� along a spatial direc-
tion i. The population grows linearly with heating rate Γth

i
for sufficiently short times

niðtÞ ≃ Γth
i t; ð9Þ

assuming that the atom is in the motional ground state
at t ¼ 0.
The phononic eigenmodes supported by the photonic

structure can feature both discrete and continuous fre-
quency spectra. Discrete spectra are observed for phonon
modes with a spacing in frequency that is larger than their
damping rates. In contrast, if a set of modes has frequency
spacings much smaller than their damping rates (e.g.,
because the mechanical excitation is efficiently transmitted
from the structure to its suspension), the discrete mechani-
cal resonances are no longer discernible, and the spectrum
is effectively continuous. Hence, we distinguish the con-
tribution Γd

i of discrete mechanical resonances from the
contribution Γc

i of a continuum of phonon modes:

Γth
i ¼ Γc

i þ Γd
i : ð10Þ

For continuous phonon modes, Fermi’s golden rule can
be employed to calculate the heating rate Γc

i [70]:

Γc
i ¼ 2πn̄i

X
γi

ργi jgγiij2: ð11Þ

The sum runs over the discrete set of continuous phonon
modes γi that are resonant with the trap ωγi ¼ ωi. The
thermal occupation of the resonant phonon modes is
n̄i ≡ 1=½expðℏωi=kBTÞ − 1�, where T is the temperature
of the photonic structure and kB is the Boltzmann
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constant [72]. The phonon density of states is given by the
inverse slope of the phonon dispersion relation (band
structure) ργ ≡ jdωγ=dpj−1, where p is the propagation
constant along the fiber; see Appendix C.
The discrete resonances have finite lifetimes correspond-

ing to decay rates κγ due to internal losses and nonzero
coupling to the suspension. Adiabatic elimination of these
discrete mechanical modes in general leads to the heating
rate Γd

i given in Eq. (D40) in Appendix D [73,74]. There
are two limiting cases that are of interest in Sec. III: In the
case where the atom trap frequency is smaller than the
lowest-frequency phonon mode γ1, ωi < ωγ1 and detuned
from resonance κγ1 ≪ jωi − ωγ1 j, the ground-state heating
rate of the atom is

Γd
i ≃ 2n̄κγ1 jgγ1ij2

ω2
i þ ω2

γ1

ðω2
i − ω2

γ1Þ2
: ð12Þ

In the case where the atom trap is resonant with a single-
phonon mode γ, κγ ≫ jωi − ωγj, the rate is

Γd
i ≃

4n̄jgγij2
κγ

; ð13Þ

where we assume n̄ ≫ 1.
The theory of atom-phonon interaction outlined in this

section applies to any optical atom trap that relies on a
photonic structure to shape light fields. The explicit
calculation of atom-phonon coupling constants requires
modeling of the dependence of the potential that the atom
experiences on the displacement and the strain caused by
the mechanical eigenmodes of the structure. Once the
mechanical modes and corresponding atom-phonon cou-
pling constants of a particular structure are known,
Eqs. (11)–(13), or more generally, Eq. (D4), can be used
to predict the phonon-induced heating of the atomic
motion. In the next section, we apply this theory to explain
heating rates observed in nanofiber-based atom traps.

III. CASE STUDY OF A NANOFIBER-BASED TRAP

Let us now use the framework sketched in Sec. II to
study the phonon-induced heating rates of the atomic
motion in a nanofiber-based two-color atom trap. In
particular, we consider a cesium atom trapped in the
evanescent optical field surrounding a silica nanofiber
[47,49]. The nanofiber is formed by the waist of an optical
fiber which has been heated and pulled [75]. There have
been several experimental realizations of this nanophotonic
atom trap configuration [4,5,7–9,24,26,76]. We calculate
atom heating rates for the setup described in Ref. [26],
where a measured heating rate of Γth

φ ¼ 340ð10Þ Hz in the
azimuthal direction was reported. In order to explicitly
calculate the phonon-induced heating rates, it is necessary
to know the mechanical eigenmodes of the nanofiber close

to resonancewith the trap frequencies and to obtain the atom-
phonon coupling constants. The latter calculation requires
knowledge of the trap potential as well as the photonic
eigenmodes of the nanofiber. Appendix A summarizes the
photonic eigenmodes of a nanofiber, and Appendix B pro-
vides details on the resulting trapping potential. Appendix C
summarizes the phononic eigenmodes. In Appendix D, we
derive the resulting atom-phonon coupling constants for a
nanofiber-based trap. The parameters of the particular setup
considered in this section are listed in Appendix E.
Trapping of atoms is achieved by means of two lasers,

one red and the other blue detuned with respect to the D
lines of cesium. The lasers are guided as photonic HE11

spatial modes in the nanofiber region; see Appendix A.
Figure 4 in Appendix D shows the resulting trapping
potential. The red-detuned laser is coupled into the fiber
at both ends, leading to a standing wave that confines the
atoms in the axial direction and creates a one-dimensional
optical lattice. The laser beams are linearly polarized when
coupled into the fiber, which leads to quasilinearly polar-
ized fields with intensity maxima at opposite poles of the
fiber cross section in the nanofiber region [77]. The
corresponding electric field profiles are listed in
Appendix E. The red- and blue-detuned field have orthogo-
nal polarizations to obtain stronger azimuthal confinement
[4]. There is an offset magnetic field oriented perpendicular
to the fiber axis (z axis) along zB ¼ cosðϕÞex þ sinðϕÞey,
with ϕ ¼ 66°. Atoms are initially prepared in the Zeeman
substate F ¼ 4, MF ¼ −4 of the hyperfine structure,
where the offset magnetic field provides the quantization
axis. The magnetic field causes a slight azimuthal shift of
the trap sites. Nonetheless, the symmetry axes of the
potential at the trap minimum are to a good approximation
aligned with the radial, azimuthal, and axial unit vectors of
a cylindrical coordinate system whose z axis coincides
with the nanofiber axis. We can therefore use i ∈ fr;φ; zg
for the atom trap directions in the atom Hamiltonian
Eq. (2). The resulting frequencies of the atom trap
are ðωr;ωφ;ωzÞ ¼ 2π × ð123; 71.8; 193Þ kHz.
An infinitely long nanofiber supports three phonon

bands which do not have a cutoff at low frequencies: the
torsional T01 band, longitudinal L01 band, and flexural F11
band; see Appendix C. Figure 6 shows the displacement of
the nanofiber caused by phonon modes on each of these
bands. The torsional band is linear and the longitudinal
band asymptotically linear for low frequencies, with speeds
of sound ct and ch introduced in Appendix C, respectively.
The flexural band has a quadratic asymptote. The
dispersion relations describing these bands as functions
of the propagation constant p are

ωT ¼ ctjpj; ωL ≃ chjpj; ωF ≃
chR
2

p2: ð14Þ

Here, R is the radius of the nanofiber. These three funda-
mental bands are the only candidates for phonon-induced
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heating of the atomic motion since all other bands have
frequencies much larger than the trap frequencies.
In experiments, the optical nanofibers used for atom

trapping are typically realized as the waist of a tapered
optical fiber [4]. The mechanical eigenmodes of this
system—including the nanofiber, the tapers, and the
surrounding macroscopic fiber—can be calculated either
analytically or using finite-element methods [78]. Since the
fiber is finite in length, the eigenmodes are standing waves
and the spectrum consists of discrete mechanical resonan-
ces. The system can in general support the same kinds of
excitations as an infinite cylinder: torsional, longitudinal,
and flexural. For some modes, the tapers act as reflectors
and strongly localize them in the nanofiber region. Others
are transmitted through the tapers and are delocalized over
the entire fiber [78]. In practice, all modes are damped.
Dissipation occurs, among others, due to clamping losses
[79], friction with the background gas [34], material losses
[80], and surface losses [81]. Depending on the magnitude
of the damping κ of each mode compared to the free
spectral range (FSR), the actual spectrum ranges from
discrete (FSR ≫ κ) to continuous (FSR ≪ κ). In the case of
a discrete spectrum, standing waves of finite lifetime 1=κ
are a useful description of the mechanical dynamics of the
fiber. In the limit of a continuous spectrum, the idealized
eigenmodes of the system are no longer faithful represen-
tations, since the phonons interact too strongly with other
d.o.f. and are dissipated before they can form standing
waves. Instead, it is more useful to represent the phonons as
propagating modes of an infinite structure which interact
with the atom once and then never return (analogous to an
atom interacting with fiber-guided or free-space photons).
Some of the damping mechanisms can be modeled theo-
retically [80,81]. However, more reliable results are
obtained by measuring damping rates for the particular
fiber in use. We perform measurements of the mechanical
modes of the particular nanofiber setup considered here
[26] similar to Refs. [78,82]. While torsional resonances
are clearly visible, there is no indication of resonantly
enhanced longitudinal or flexural nanofiber modes.

The mode of lowest frequency is at ωT ¼ 2π×258 kHz
with a wavelength of 14.6 mm and a decay rate of κ ¼
2π × 48ð1Þ Hz. The torsional modes can be modeled
faithfully by imposing hard boundary conditions on an
elastic cylinder; see Ref. [78] andAppendixC. The resulting
spectrum is a discrete subset of the T01 band of an infinite
cylinder. In keeping with the absence of discrete resonances
corresponding to longitudinal and flexural modes, wemodel
these modes as the propagating modes of an infinite
cylinder, with a continuous dispersion relation given by
the longitudinal and flexural bands Eq. (14). The form of the
longitudinal and flexural mechanical bands and the corre-
sponding eigenmodes are then determined by the elastic
mechanical properties of silica and the fiber radius alone.
The wavelengths of the modes resonant with the azimuthal
trap frequency, for instance, are 80.0 mm for the L01 mode
and 0.251 mm for the F11 mode.
The theory derived in Sec. II allows us to calculate atom

heating rates based on these physical parameters. The only
parameter not provided by Ref. [26] is the fiber temperature
T. We choose the temperature such that the azimuthal
heating rate Γth

φ observed in Ref. [26] is reproduced.
Agreement with the measurement in Ref. [26] is achieved
for T ¼ 805 K, which agrees well with the temperature of
T ¼ 850ð150Þ Kmeasured independently in Ref. [55] for a
similar nanofiber at the given transmitted laser power.
Heating in the azimuthal direction is dominantly caused by
resonant flexural F11 modes. To our knowledge, this is the
first time that a theoretical prediction of the atom heating
rate based on measured parameters and in quantitative
agreement with measured heating rates has been obtained.
We are then able to calculate the phonon-induced heating
rates of the atomic motion in the radial, azimuthal, and axial
direction accounting for both displacement and strain
coupling. The predicted atom-phonon coupling constants
are listed in Table I and the resulting heating rates in
Table II.
The predicted heating rate for the radial d.o.f. is a

magnitude similar to the rate for the azimuthal d.o.f.
The calculated radial heating rate is Γth

r ¼ 446 Hz, which

TABLE I. Atom-phonon coupling constants. Listed are the contributions of displacement (dp) and strain (st) coupling to the coupling
constants. The displacement coupling constants gdpγi are calculated according to Eq. (D6). The strain coupling constants gstγi are obtained
from Eq. (8) with the coupling functions listed in Table XVI in Appendix D. Coupling to modes on the continuous L01 and F11 bands is
independent of the position of the trap site along the fiber axis. In contrast, the strain coupling constants to the discrete T01 modes depend
on the position since the torsional modes form standing waves, see Appendix C. Listed here are the maximal coupling constants; for
radial motion, the coupling is maximal at the end of the nanofiber (z ¼ 0, L), while it is maximal at the center of the nanofiber (z ¼ L=2)
for the azimuthal and axial motion.

T01 L01 F11

Trap jgdpγi j=2π ðHzÞ jgstγij=2π ðHzÞ jgdpγi j=2π ðHz ffiffiffiffi
m

p Þ jgstγij=2π ðHz ffiffiffiffi
m

p Þ jgdpγi j=2π ðHz ffiffiffiffi
m

p Þ jgstγij=2π ðHz ffiffiffiffi
m

p Þ
r 0 5.47 × 10−8 3.08 × 10−9 1.56 × 10−8 3.93 × 10−4 2.18 × 10−8

φ 0 7.81 × 10−4 0 7.76 × 10−11 2.28 × 10−4 2.99 × 10−10

z 0 2.19 × 10−12 0 1.05 × 10−4 0 1.13 × 10−10

DANIEL HÜMMER et al. PHYS. REV. X 9, 041034 (2019)

041034-6



agrees with the heating rate assumed in Ref. [25] to explain
measured T 0

2 decoherence rates for nanofiber-trapped
atoms. Heating along the radial axis, like heating in the
azimuthal direction, is dominated by coupling to the
resonant flexural F11 modes. The coupling constants in
Table I reveal that the coupling is due to displacement of the
fiber surface, while coupling due to strain is lower by
several orders of magnitude. A priori, both longitudinal L01

and flexural F11 modes couple to the radial motion by
displacement. However, the flexural modes lead to much
higher heating rates for two reasons: First, flexural modes
displace the fiber surface by a factor of jwr

F=w
r
Lj ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=ð2ρÞp
=ðωrνRÞ ≃ 105 more than the longitudinal

modes, which leads to larger displacement coupling con-
stants. Here, wr

F and wr
L are the radial components of the

displacement eigenmode for the flexural and longitudinal
modes, respectively. The quantity E is Young’s modulus
and ν is the Poisson ratio; together, they describe the elastic
properties of the nanofiber. The quantity ρ is the mass
density of the nanofiber and ωr the radial trap frequency.
The second reason is that the density of states of the
flexural modes is larger than the one of longitudinal modes
by a factor of ρFr=ρL ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch=ð2ωrRÞ

p
≃ 100, and the

heating rates are enhanced accordingly; see Eq. (11).
Heating in the axial direction is predicted to be pre-

dominantly due to strain coupling to the resonant longi-
tudinal L01 mode, with a rate much smaller than the heating
rates in the radial and azimuthal direction. To the best of our
knowledge, the heating rate in the axial direction has not
been measured so far.
One might expect heating by near-resonant torsional

modes to be dominant because they are tightly confined to
the nanofiber region, leading to Purcell enhancement of the

coupling strength [72]. The strain induced by torsional
modes causes a tilt of the quasilinear polarization of the
light fields (see Fig. 7 in Appendix D), which leads to
coupling to the azimuthal motion of the atom in particular.
In the present case, the contribution of torsionalmodes to the
heating is negligible due to the large detuning between the
torsionalmode and trap frequencies compared to the phonon
decay rate. However, we can use Eq. (13) with the coupling
constants given in Table I to obtain an estimate of the heating
rates expected in case the torsional modes are resonant (e.g.,
in case the nanofiber is longer). In this worst-case scenario,
the predicted contribution to the heating rate in the azimuthal
direction is Γd

φ ¼ 17.8 Hz, while heating in the other trap
directions is still below 10−4 Hzdespite the Purcell enhance-
ment. For the hypothetical case inwhich the torsionalmodes
are not reflected at the ends of the nanofiber, our model
predicts even lower heating rates. Hence, torsional modes
are not a relevant source of heating in Ref. [26], even if they
are resonant with the trap frequencies.
In summary, the atom heating in the radial and azimuthal

direction observed in experiments is well explained by the
displacement coupling to the continuous F11 band alone. In
this case, Eq. (11) simplifies to the single equation

Γth
i ≃

1

2
ffiffiffi
2

p
π

kB
ℏ
TM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωi

R5
ffiffiffiffiffiffiffiffi
Eρ3

p
s

; i ∈ fr;φg; ð15Þ

where we use that ℏωi ≪ kBT, such that the thermal
occupation of the phonon modes is n̄i ≃ kBT=ℏωi. This
simple formula agrees exceedingly well with calculations
considering all phonon modes and both displacement and
strain coupling. Figure 1 shows the dependence of the
predicted heating rates in the radial and azimuthal direction

(a) (b)

FIG. 1. Atom heating rate in the radial and azimuthal direction calculated using Eq. (15) as function of (a) the nanofiber radius, (b) the
temperature of the nanofiber, and (c) the power of the blue-detuned trapping laser. The difference between Eq. (15) and the full theory
Eq. (10) is not discernible at the given scales. In (a) and (b), all other parameters, in particular, the trap frequencies, are unchanged. In (c),
the ratio between the power of the red- and blue-detuned laser is kept constant, Pb=Pr ¼ 14.24. The relation between the total laser
power and temperature is modeled as TðPÞ ¼ m0 þm1Pþm2P2, with m0 ¼ 400 K, m1 ¼ 24 K=mW, m2 ¼ −0.062 K=mW2 based
on the measurements in Ref. [55] for a nanofiber of radius R ¼ 250 nm and length L ¼ 5 mm. The temperature then varies from
T ¼ 427 to 2298 K over the shown range of laser power. The trap frequencies simultaneously increase from ðωr;ωφÞ ¼ 2π ×
ð29.1; 23.9Þ kHz to 2π × ð291; 168Þ kHz. The remaining parameters are specified in Appendix E.
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on individual parameters, keeping the remaining parame-
ters unchanged. Most pronounced is the scaling with the
nanofiber radius as Γth

i ∝ R−5=2; see Fig. 1(a). The strong
dependence on the radius is mostly due to the increased
mechanical stability of larger nanofibers, which leads to
smaller vibrational amplitudes [see Eq. (C34)], in addition
to a lower density of states. In contrast, the dependence on
the fiber temperature is linear [see Fig. 1(b)] since the
thermal occupation of the resonant phonon modes increases
linearly with the temperature. A comparison of Figs. 1(a)
and 1(b) shows that increasing the nanofiber radius by
150 nm to R ¼ 400 nm at constant temperature has an
effect comparable to cooling the fiber down to room
temperature if all other parameters of the setup can be
kept unchanged. Figure 1(c) shows the dependence on the
power of the blue-detuned laser, where the ratio of the
power of the red- and blue-detuned lasers is kept constant.
The temperature of the nanofiber increases with increased
laser power since there is more absorption in the fiber [55];
see caption for details. Moreover, higher intensities lead to
a tighter confinement of the atoms. The observed increase
of the heating rate when raising the laser power is therefore
caused by an increase of both the fiber temperature and the
trap frequencies. While Young’s modulus E also slightly
changes with T [83], the influence of this effect on the
heating rate is negligible due to the weak depend-
ence, Γth

i ∝ E−1=4.
Let us now discuss ways to reduce the atom heating

caused by coupling to the continuous F11 band. Lowering
the overall fiber temperature in order to reduce the heating
rates is difficult even in cryogenic environments because
thermal coupling of the fiber to its surroundings is very
weak [55]. However, based on the above analysis, different
strategies to minimize the heating rates are conceivable.

First of all, the fiber radius should be chosen as large as
possible while maintaining the optical properties required
for atom trapping. A second approach is to design the
nanofiber such that it supports discrete, well-resolved
resonances of flexural modes. While precise predictions
of phonon linewidths are difficult, it may be possible to
optimize the taper at both ends of the nanofiber and ensure
that flexural modes are reflected and confined to z ∈ ½0; L�
with narrow linewidths, while the transmission of light is
not reduced [79]. Such a resonator of length L for the
flexural modes would effectively break the F11 band into a
discrete set of frequencies ωm and allow us to detune the
atom trap from resonance with these mechanical modes.
The flexural eigenmodes are then standing waves (see
Appendix C) with frequency spectrum

ωm ≡m2
π2R
2L2

ffiffiffiffi
E
ρ

s
; m ∈ N: ð16Þ

The heating rate in the radial and azimuthal direction due to
these flexural resonator modes then depends on the position
z0 of the atom along the fiber axis; see Appendix D.
Figure 2 shows the dependence of the heating rate on the
resonator length and trap frequency. Three regimes are
clearly distinguishable: First, the trap is resonant with a
flexural phonon mode. Second, the trap is off resonant and
lies below the fundamental resonator frequency. Third, the
trap is off resonant and lies above the fundamental
resonator frequency. Assuming high thermal occupation
of the phonon modes n̄m ≫ 1, simplified expressions for
the heating rate can be obtained for each regime. If the trap
frequency is below the fundamental phonon frequency but
still much larger than the corresponding decay rate

(a) (b)

FIG. 2. Atom heating rate in the radial direction due to flexural resonator modes as a function of (a) the resonator length and (b) the
trap frequency. In both cases, an exemplary decay rate of κ ¼ 2π × 1.2 Hz is assumed for all resonator modes. The bold yellow line
corresponds to the heating rate experienced by an atom trapped at the center of the resonator z0 ¼ L=2 calculated according to
Eq. (D41). The thin blue line represents a position-independent upper bound obtained by pretending that the atom sits at an antinode of
each phonon mode simultaneously: In consequence, no resonance between the atom and resonator is masked by a vanishing position-
dependent coupling rate. This approach is useful, since in experiments an entire ensemble of atoms is trapped at various positions along
the fiber. The dashed red lines show the approximations Eqs. (17)–(19). Panel (a) assumes a trap frequency of ωr ¼ 2π × 123 kHz and
panel (b) assumes a resonator length of L ¼ 600 μm.
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κ1 ≪ ωi < ω1, as well as far detuned jωi − ω1j ≫ κ1,
heating is dominated by off-resonant interaction with the
fundamental phonon mode alone. In this case, the heating
rate can be approximated as

Γth
i ≃ Γnres

i< sin2ðπz0=LÞ;

Γnres
i< ≡ 16

π9
kB
ℏ
TMρκ1ω

3
i L

7

E2R6
: ð17Þ

If the trap has a frequency larger than the fundamental
resonator frequency ωi ≫ ω1 while still being off resonant
jωi − ωmj ≫ κm, heating is mainly due to the low-
frequency phonon modes below the trap frequency.
Assuming in addition that the phonon decay rate is the
same for all relevant modes κm ≃ κ, an upper bound for the
heating rate can be obtained:

Γth
i ≲ Γnres

i> ≡ 2

45π

kB
ℏ
TMκωiL3

ER4
: ð18Þ

Here, we replace the sine in the coupling constant with 1 for
all modes, pretending the atom is located at an antinode of
all modes simultaneously as a worst-case estimate. This
approximation is useful because in experiments many
atoms at different sites along the fiber axis are trapped
at the same time.
If the trapped atom is resonant with a flexural phonon

mode m, jωi − ωmj ≪ κm, and the contributions of the off-
resonant modes can be neglected, the heating rate is

Γth
i ≃ Γres

i sin2ðpmz0Þ;

Γres
i ≡ 2

π

kB
ℏ

TMωi

LρκmR2
: ð19Þ

The limiting expressions Eqs. (17)–(19) are shown as
dashed black lines in Fig. 2. Note that the dependence
on the decay rate and resonator length is inverted for off-
resonant heating [Eqs. (17) and (18)] compared to resonant
heating [Eq. (19)]. This inversion is expected, since large
phonon linewidths κm assist off-resonant coupling, while
small linewidths lead to a larger resonant enhancement.
Small resonator lengths L lead to higher coupling constants
(Purcell enhancement), which increases resonant heating
due to a single mode. In contrast, large resonator lengths
result in a higher number of low-frequency modes and
hence overcompensate the decrease in coupling strength
and increase the heating due to off-resonant interaction.
In Fig. 2, we exemplarily assume a decay rate of κm ¼

2π × 1.2 Hz for all relevant flexural modes. This corre-
sponds to a quality factor of ωr=κm ¼ 105 at the frequency
of the radial trap. Quality factors of this magnitude have
been achieved for silica microspikes by optimization of the
shape of the taper [79]. Figure 2(a) shows that a decrease of
the radial heating rate below the value expected without a
resonator for flexural modes (see Table II) is predicted for

resonator lengths L≲ 3 mm. A length of L ¼ 50 μm to the
very left of Fig. 2(a) can still be achieved for nanofibers,
and the calculated heating rate due to flexural phonon
modes with the given decay rate is then as low as 0.1 mHz.
Figure 2(b) assumes a resonator length of L ¼ 600 μm,
achieving heating rates of around 1 Hz and shows the
dependence on the trap frequency. The spacing between
resonances is on the order of 2π × 50 kHz, which would
indeed render it possible to detune the radial and azimuthal
trap from resonance.
These findings suggest that it may be possible to

significantly reduce the heating rate of atomic motion in
nanofiber-based traps by 2 orders of magnitude or more
through optimization of the phononic properties of the
fiber. Moreover, the scaling of the heating rate with the
mass of the trapped particles as Γth

i ∝ M is highly relevant
for optomechanical experiments. Setups with levitated
nanoparticles, for instance, may feature comparable trap
frequencies for particles that are orders of magnitude
heavier than a single atom [3,12]. In order to stably trap
heavier particles using nanophotonic structures and suc-
cessfully cool their motion, it is imperative to carefully
manage vibrations of the structure, for instance, by improv-
ing the mechanical stability or by tuning mechanical modes
out of resonance with the particle motion.

IV. CONCLUSION

In this article, we formulate a general theoretical frame-
work for calculating the effect of phonons on guided optical
modes and the resulting heating of atoms in nanophotonic
traps. Our results are applicable to nanophotonic cold-atom
systems [45] and can readily be extended to the heating of
dielectric nanoparticles trapped close to surfaces [3,12]. In
a case study for the example of cold cesium atoms in a two-
color nanofiber-based optical trap, we predict heating rates
of the atomic center-of-mass motion which are in excellent
agreement with independently measured values [25,26]. In
this system, the dominant contribution to heating stems
from thermally occupied flexural modes of the nanofiber.
We find that the heating rate scales with the fiber radius as

TABLE II. Atom heating rates. Listed are the contributions of
the relevant phonon modes T01, L01, and F11 to the heating rate
Γth
i of a trapped atom in direction i ∈ fr;φ; zg calculated

according to Eqs. (11) and (12). Contributions below 10−4 HZ
are indicated by “≪.” The rates are independent of the position of
the trap site along the fiber. The fiber temperature is assumed to
be T ¼ 805 K, and the remaining parameters are specified in
Appendix E.

Trap T01 L01 F11

r ≪ ≪ 446 Hz
φ ≪ ≪ 340 Hz
z ≪ 8.36 × 10−2 Hz ≪
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R−5=2. As a general design rule, this implies that structures
of larger lateral dimensions are preferable regarding heat-
ing, albeit at the expense of smaller mode confinement and,
hence, potentially lower atom-photon coupling strength.
Given the fact that the heating rate is directly proportional
to the temperature of the nanophotonic structure, reducing
the absorption losses of the guided trapping light fields is
advisable [84]. Moreover, heating is expected to decrease
for smaller trap frequencies Γ ∝

ffiffiffiffi
ω

p
. In general, our case

study shows that careful design of the phononic properties
of the nanophotonic system and, in particular, of its
mechanical resonances is an effective strategy for reducing
the heating. Finally, by providing a coherent theoretical
framework in a single source, our work is instrumental in
calculating, understanding, and managing heating in a
plethora of nanophotonic traps.
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APPENDIX A: PHOTONIC EIGENMODES

The potential experienced by an atom in a nanophotonic
trap crucially depends the optical fields surrounding
the photonic structure. The dynamics of optical fields in the
presence of nonabsorbing matter is well described by the
macroscopic Maxwell equations. In conjunction with linear
response theory, they allow us to model materials using the
relative permittivity and permeability tensors ϵ and μ,
respectively [85]. In this article, we consider dielectric
materials that are not magnetizable (μ ¼ 1). Motion and
vibration of the dielectric can be modeled as a change of ϵ
over time, provided this change happens on a timescale
long compared to the frequency of electromagnetic radi-
ation in the optical regime. With this in mind, we choose a
description of the optical fields in terms of photonic
eigenmodes [86], which lends itself well to a perturbative
treatment of the effect of a modified permittivity on the
optical fields [87] as we discuss in Appendix D.
After reviewing photonic eigenmodes in general, we

describe the eigenmode structure of a nanofiber approxi-
mated as a homogeneous step-profile circular optical
waveguide [87–89].

1. Photonic eigenmode equation

Consider a dielectric body in three dimensions. The body
may be inhomogeneous and anisotropic, so its relative
permittivity ϵ is a position-dependent tensor of second

order. We assume that the permittivity is independent of
frequency in the relevant interval, real-valued, symmetric,
and positive definite. In the vacuum outside the body,
ϵ ¼ 1. We are interested in the dynamics of the electro-
magnetic fields E and B surrounding and permeating the
dielectric. We express the electromagnetic fields through
potentials and follow Ref. [90] in choosing the Coulomb
gauge for the vector potential A,

∇ · ½ϵðrÞAðr; tÞ� ¼ 0: ðA1Þ

Here, the juxtaposition of tensor and vector (or, more
generally, of two tensors) indicates the maximal contraction
ðϵAÞi ¼ P

j ϵ
ijAj. In the absence of free charges, the

electromagnetic fields can be represented solely through
the vector potential E ¼ _A and B ¼ ∇ × A. The macro-
scopic Maxwell equations reduce to

1

c2
ϵðrÞÄðr; tÞ ¼ DAðr; tÞ; ðA2Þ

where D≡ −∇ × ½∇ × ·� is the double curl operator, each
dot represents a time derivative _A ¼ ∂tA, and c is the
vacuum light speed. In order to find solutions, one solves
Eq. (A2) outside and inside the body separately and then
uses continuity conditions to match the solutions at the
interface: The magnetic field B as well as the electric field
component E × n orthogonal to the surface normal n
are continuous across the surface. Normal to the surface,
ðϵEÞ · n is continuous instead. Equation (A2), together
with the continuity conditions and the requirement that
solutions be square integrable to ensure finite electromag-
netic energy, has a unique solution given suitable initial
conditions [85].
The above problem can be further reduced to an

eigenvalue problem [86,90,91], which is useful for describ-
ing phonon-induced perturbations of optical fields in
Appendix D. To this end, consider the generalized eigen-
value equation for photonic eigenmodes aη,

DaηðrÞ ¼ −
ω2
η

c2
ϵðrÞaηðrÞ; ðA3Þ

with the additional transversality constraint Eq. (A1). The
eigenmodes are labeled by a suitable multi-index η which
may contain both discrete and continuous indices. They
span a subspace characterized by Eq. (A1) of the space of
square-integrable functions [90]. The eigenvalues ω2

η=c2

are real and positive, since ð−DÞ acting on that space is a
self-adjoint, positive semidefinite operator, and ϵ is a
positive definite operator [86]. For the same reason,
different eigenmodes are orthogonal with respect to the
measure ϵðrÞdr, and we assume that they are normalized
according to
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Z
a�ηðrÞ · ½ϵðrÞaη0 ðrÞ�dr ¼ δηη0 : ðA4Þ

For discrete indices, δ is the Kronecker symbol, while it is
the δ distribution for continuous indices.
Any solution to Maxwell’s equations can then be

expanded in terms of eigenmodes of well-defined frequen-
cies [92]

Aðr; tÞ ¼
X
η

1

ωηϵ0
½αηe−iωηtaηðrÞ þ c:c:�; ðA5Þ

where the coefficients αη ∈ C are obtained from the initial
conditions. We define the modal fields of the electric and
magnetic field as

eηðrÞ≡ i
ϵ0
aηðrÞ; bηðrÞ≡ 1

ωηϵ0
∇ × aηðrÞ ðA6Þ

for convenience, such that

Eðr; tÞ ¼
X
η

½αηeηðrÞe−iωηt þ c:c:�;

Bðr; tÞ ¼
X
η

½αηbηðrÞe−iωηt þ c:c:�: ðA7Þ

The problem of solving Maxwell’s equations in the
presence of a dielectric body has therefore been reduced to
finding the photonic eigenmodes aη of that body. Although
it is sufficient to treat the optical fields classically for our
purpose, note that such a description is also suitable for
canonical quantization of the electromagnetic field in the
presence of lossless media [90,91].

2. Photonic fiber eigenmodes

We now consider an optical nanofiber in vacuum
modeled as a cylinder of radius R, infinite length, and
homogeneous and isotropic permittivity ϵ ¼ ϵ1. As the
eigenmodes of such a fiber and their spectrum are well
known [87–89,93], we limit the discussion to their salient
properties and list explicit expressions for the electric and
magnetic modal fields as well as their dispersion relations.
We choose cylindrical coordinates ðr;φ; zÞ, with

x ¼ r cosφ, y ¼ r sinφ, and the z axis coinciding with
the fiber axis. We do not solve the generalized eigenvalue
equation (A3) directly in order to obtain the eigenmodes of
the vector potential. Instead, we remain on the level of
electric and magnetic fields and solve the macroscopic
Maxwell equations for constant permittivity ϵ in the
spectral domain,

∇ · eðrÞ ¼ 0; ∇ · bðrÞ ¼ 0;

∇ × bðrÞ ¼ −i
ω

v2
eðrÞ; ∇ × eðrÞ ¼ iωbðrÞ: ðA8Þ

Here, v≡ c=
ffiffiffi
ϵ

p
inside the fiber, and v is replaced with c

outside the fiber. Equation (A8) can be solved invacuumand
in the dielectric separately. Both sets of solutions are then
matched on the fiber surface according to the continuity
conditions given above to find the modal fields eη and bη.
The eigenmodes aη can be obtained by inverting Eq. (A6).
The first step is to solve Eq. (A8) in the presence of an

infinite isotropic medium of arbitrary homogeneous rela-
tive permittivity ϵ > 0 (including vacuum ϵ ¼ 1 and
dielectric ϵ > 1). The solution space is spanned by electric
and magnetic fields of the form

eðrÞ ¼ EðrÞ
2π

eiðmφþkzÞ;

bðrÞ ¼ BðrÞ
2π

eiðmφþkzÞ: ðA9Þ

The propagation constant k ∈ R labels continuous exci-
tations along the fiber axis, and the azimuthal order m ∈ Z
discrete excitations in the azimuthal direction. The radial
partial waves E and B depend on the magnitude of the
frequencyω compared to the light lineωv ≡ vjkj (v ¼ c for
ϵ ¼ 1) as well as other quantities defined in Table III. The
radial partial waves are given in Table IV.
In the second step, a first set of solutions e, b inside the

fiber (with permittivity ϵ > 1, light speed v≡ c=
ffiffiffi
ϵ

p
, and

dielectric radial constant a defined in Table III) is matched
to a second set ẽ, b̃ of solutions outside the fiber (with
ϵ ¼ 1, light speed c, and vacuum radial constant b defined
in Table III). The continuity conditions require ϵer ¼ ẽr on
the fiber surface, while the magnetic field and the remain-
ing two components of the electric field need to be
continuous. These conditions lead to electric and magnetic
modal fields eη, bη together with frequency equations
governing their eigenfrequency ωη. Mode quadruplets

TABLE III. Definitions of the radial constants a and b, as well
as the dimensionless quantities appearing in the photon modal
fields. The definitions are given in terms of the azimuthal orderm,
propagation constant k, frequency ω, radial position r, fiber
radius R, and the light speed c in vacuum and v≡ c=

ffiffiffi
ε

p
in the

fiber, respectively.

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=v2 − k2

p
ã ¼ −ia

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − k2

p
b̃ ¼ −ib

ωv ¼ vjkj ωc ¼ cjkj
α ¼ aR α̃ ¼ ãR

β ¼ bR β̃ ¼ b̃R
κ ¼ kR x ¼ r=R
w ¼ ωR=c η ¼ JmðαÞ=Kmðβ̃Þ
γ ¼ κwðε − 1ÞJmðαÞKmðβ̃Þ

× fαβ̃½αJmðαÞK0
mðβ̃Þ þ β̃J0mðαÞKmðβ̃Þ�g−1

σk ¼ k=jkj σm ¼ m=jmj
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ð�m;�kÞ are degenerate in frequency ωη. Let us adopt the
notation that solutions inside the fiber have radial partial
waves with amplitudes A, B, C, D (see Table IV), and
solutions outside the fiber have primed amplitudes A0, B0,
C0, D0. At most, two of these eight amplitudes are not fixed
by the continuity conditions and the requirement that the
modal fields be bounded, corresponding to one or two
independent mode families.
The eigenmodes have markedly different properties

depending on how their eigenfrequency ωη compares to
the vacuum light line ωc ≡ cjkj and the dielectric light line
ωv ≡ vjkj. We distinguish three cases: Modes with frequen-
cies above the vacuum light line are radiative modes, and
modes with frequencies between the vacuum and dielectric

light line are fiber-guided modes. Modes on the vacuum
light line are weakly guided (they decay polynomially away
from the fiber surface). On the dielectric light line and
below ωv ≥ ωη, no modes can exist [93].
Radiative modes are distinguished by ωη > ωc. The

modal fields eη, bη have radial partial waves given by case
(1) in Table IV both inside and outside the fiber, with
amplitudes listed in Table V. There are two independent
amplitudes, which implies two mode families can be
distinguished. In defining these mode families, special
care has to be taken to ensure they are orthogonal according
to Eq. (A4); see Ref. [93] for details. Radiative modes are
not confined to the fiber but permeate all of space. In
consequence, their excitation spectrum in radial direction is

TABLE IV. Radial partial waves of the solutions Eq. (A9) to Maxwell’s equations using cylindrical coordinates in the spectral domain.
Inside the fiber, ω0 ¼ ωv. In vacuum outside the fiber, ω0 ¼ ωc, and ϵ ¼ 1 such that α is replaced with β. The quantities A, B, C,D ∈ C
are amplitudes. The radial dependence is given by Bessel functions Jm, Ym above the light line, by modified Bessel functions Im, Km
below the light line, and by polynomials and the natural logarithm ln on the light line. The prime indicates the first derivative
J0mðxÞ ¼ ∂xJmðxÞ. All other quantities used are defined in Table III.

Case Solution

(1) ω > ω0 m ∈ Z Er ¼ iα−2fκα½AJ0mðαxÞ þ BY 0
mðαxÞ� þ imw½CJmðαxÞ þDYmðαxÞ�=xg

Eφ ¼ iα−2fimκ½AJmðαxÞ þ BYmðαxÞ�=x − wα½CJ0mðαxÞ þDY 0
mðαxÞ�g

Ez ¼ AJmðαxÞ þ BYmðαxÞ
Br ¼ iα−2fκα½CJ0mðαxÞ þDY 0

mðαxÞ� − imϵw½AJmðαxÞ þ BYmðαxÞ�=xg=c
Bφ ¼ iα−2fimκ½CJmðαxÞ þDYmðαxÞ�=xþ ϵwα½AJ0mðαxÞ þ BY 0

mðαxÞ�g=c
Bz ¼ ½CJmðαxÞ þDYmðαxÞ�=c

(2a) ω ¼ ω0 m ¼ 0 Er ¼ Ax−1 þ Bx
Eφ ¼ iðCx−1 þDxÞ
Ez ¼ 2iκ−1B
Br ¼ −σkiðCx−1 þDxÞ ffiffiffi

ϵ
p

=c
Bφ ¼ σkðAx−1 þ BxÞ ffiffiffi

ϵ
p

=c
Bz ¼ σk2κ

−1D
ffiffiffi
ϵ

p
=c

(2b) ω ¼ ω0 jmj ¼ 1 Er ¼ Ax−2 þ Bx2 þ CþD lnðxÞ
Eφ ¼ σmi½−Ax−2 − Bx2 þ CþD lnðxÞ�
Ez ¼ iκ−1ðDx−1 þ 4BxÞ
Br ¼ σkσmi½ðAþD=κ2Þx−2 þ Bx2 − ðC − 4B=κ2Þ −D lnðxÞ� ffiffiffi

ϵ
p

=c
Bφ ¼ σk½ðAþD=κ2Þx−2 þ Bx2 þ ðC − 4B=κ2Þ þD lnðxÞ� ffiffiffi

ϵ
p

=c
Bz ¼ σkσmκ

−1ðDx−1 − 4BxÞ ffiffiffi
ϵ

p
=c

(2c) ω ¼ ω0 jmj ¼ 2 Er ¼ Ax−jmj−1 þ Bx−jmjþ1 þ Cxjmj−1 þDxjmjþ1

Eφ ¼ σmið−Ax−jmj−1 þ Bx−jmjþ1 þ Cxjmj−1 −Dxjmjþ1Þ
Ez ¼ −2iκ−1½ðjmj − 1ÞBx−jmj − ðjmj þ 1ÞDxjmj�
Br ¼ σkσmif½A − 2jmjðjmj − 1ÞB=κ2�x−jmj−1 − Bx−jmjþ1

− ½C − 2jmjðjmj þ 1ÞD=κ2�xjmj−1þDxjmjþ1g ffiffiffi
ϵ

p
=c

Bφ ¼ σkf½A − 2jmjðjmj − 1ÞB=κ2�x−jmj−1 þ Bx−jmjþ1

þ ½C − 2jmjðjmj þ 1ÞD=κ2�xjmj−1þDxjmjþ1g ffiffiffi
ϵ

p
=c

Bz ¼ −σkσm2κ−1½ðjmj − 1ÞBx−jmj þ ðjmj þ 1ÞDxjmj� ffiffiffi
ϵ

p
=c

(3) ω < ω0 m ∈ Z Er ¼ −iα̃−2fκα̃½AI0mðα̃xÞ þ BK0
mðα̃xÞ� þ imw½CImðα̃xÞ þDKmðα̃xÞ�=xg

Eφ ¼ −iα̃−2fimκ½AImðα̃xÞ þ BKmðα̃xÞ�=x − wα̃½CI0mðα̃xÞ þDK0
mðα̃xÞ�g

Ez ¼ AImðα̃xÞ þ BKmðα̃xÞ
Br ¼ −iã−2fκα̃½CI0mðα̃xÞ þDK0

mðα̃xÞ� − imεw½AImðãxÞ þ BKmðα̃xÞ�=xg=c
Bφ ¼ −iα̃−2fimκ½CImðα̃xÞ þDKmðα̃xÞ�=xþ ϵwα̃½AI0mðα̃xÞ þ BK0

mðα̃xÞ�g=c
Bz ¼ ½CImðα̃xÞ þDKmðα̃xÞ�=c
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continuous; that is, for each ðm; kÞ any eigenfrequency
ωη > ωc is admissible, and a continuous index is required
to label them. A possible choice is the radial constant a,
which is real valued and positive for radiative modes. The
dispersion relation of radiative modes is hence,

ωη ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p
; ðA10Þ

and they form a continuum above the vacuum light line in
the ðk;ωÞ plane, as shown in Fig. 3.
Guided modes are characterized by ωc > ωη > ωv. The

radial partial waves of their modal fields are listed explicitly
in Table VI and the corresponding frequency equations in
Table VII. Guided modes can propagate inside the fiber but
decay exponentially far outside the fiber. For guided modes
with azimuthal order m ¼ 0, either the electric field or the
magnetic field may be transverse, while the other acquires
longitudinal components. Hence, guided modes with m ¼
0 fall into two mode families: transverse-electric (TE)
modes characterized by bzη ¼ 0 and transverse-magnetic
(TM) modes characterized by ezη ¼ 0. Only a discrete set of

frequencies is admissible for each ðf;m; kÞ because the
fields are radially confined. These frequencies correspond
to the roots of the frequency equations listed in Table VII.
The frequencies ωηðkÞ form discrete bands in the ðk;ωÞ
plane; see Fig. 3(a). The bands can be labeled by a band
index n ∈ N starting from n ¼ 1 for the band of lowest
frequency and increasing in frequency with n. The modal
fields of the TE and TM modes have the following
symmetries with respect to the propagation constant:

erð−kÞ ¼ −erðkÞ; brð−kÞ ¼ −brðkÞ;
eφð−kÞ ¼ eφðkÞ; bφð−kÞ ¼ bφðkÞ;
ezð−kÞ ¼ ezðkÞ; bzð−kÞ ¼ bzðkÞ; ðA11Þ

where we drop all constant mode indices.
For higher azimuthal excitations jmj ≥ 1, both electric

and magnetic field have longitudinal components, and there
is only a single hybrid mode family. The resulting bands
shown in Figs. 3(b) and 3(c) derive from the frequency
equation

TABLE V. Radiative modes: The radial partial waves of modal fields Eq. (A9) are given by case (1) in Table IV both inside and outside
the fiber, with amplitudes listed in this table. Unprimed amplitudes apply inside the fiber, primed amplitudes outside the fiber. The
amplitudes A, C ∈ C are independent, and B ¼ D ¼ 0. We define N ≡ YmðβÞJ0mðβÞ − Y 0

mðβÞJmðβÞ. All other quantities are defined in
Table III.

A0 ¼ fA½βϵYmðβÞJ0mðαÞ=α − Ym
0ðβÞJmðαÞ� þ iCmκðβ2=α2 − 1ÞYmðβÞJmðαÞ=βwg=N

B0 ¼ ½AfJmðαÞN − JmðβÞ½βϵYmðβÞJ0mðαÞ=α − Y 0
mðβÞJmðαÞ�g=YmðβÞ − iCmκðβ2=α2 − 1ÞJmðβÞJmðαÞ=βw�=N

C0 ¼ f−iAmκðβ2=α2 − 1ÞYmðβÞJmðαÞ=βwþ C½βYmðβÞJ0mðαÞ=α − Y 0
mðβÞJmðαÞ�g=N

D0 ¼ ½iAmκðβ2=α2 − 1ÞJmðβÞJmðαÞ=βwþ CfJmðαÞN − JmðβÞ½βYmðβÞJ0mðαÞ=α − Y 0
mðβÞJmðαÞ�g=YmðβÞ�=N

(a) (b) (c)

FIG. 3. Band structures of nanofiber photon modes with azimuthal order m ¼ 0 in panel (a), m ¼ �1 in panel (b), and m ¼ �2 in
panel (c). The radius R and the relative permittivity ϵ are specified in Appendix E. The hatched area corresponds to radiative modes
delimited by the vacuum light line. The dashed line delineates the dielectric light line. The cutoff frequencies, where guided bands cross
over into the radiative continuum, are indicated by solid points. The modes populated in the case study in Sec. III are indicated by circles:
Their frequencies ωr, ωb lie below all cutoff frequencies, so only modes on the fundamental HE11 band can be populated.
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½αJmðαÞK0
mðβ̃Þ þ β̃Kmðβ̃ÞJ0mðαÞ�

× ½αJmðαÞK0
mðβ̃Þ þ ϵβ̃Kmðβ̃ÞJ0mðαÞ�

¼
�
m
κw

αβ̃
ðϵ − 1ÞJmðαÞKmðβ̃Þ

�
2

; ðA12Þ

with parameters defined in Table III. There are, however,
two subclasses of modes called HE and EH distinguished by
the asymptotes of their bands as jkj → ∞. Each band of HE
(EH) modes asymptotically approaches a root of the Bessel
function of the first kind Jm−1ðaRÞ (Jmþ1ðaRÞ), and the
electric (magnetic) field has a longitudinal component of
significant magnitude compared to its transverse compo-
nents [87,89]. As the propagation constant k is the only
continuous index for guided modes, the orthonormality
condition Eq. (A4) in conjunctionwith Eq. (A6) reduces to a
normalization condition for the electric radial partial waves:Z

∞

0

rjEηðrÞj2ϵðrÞdr ¼
1

ϵ20
: ðA13Þ

The modal fields of the HE and EH modes have the
following symmetries with respect to the azimuthal order
m and propagation constant k:

erσmðσ0kÞ¼σmσ0ermðkÞ; brσmðσ0kÞ¼σmþ1brmðkÞ;
eφσmðσ0kÞ¼σmþ1σ0eφmðkÞ; bφσmðσ0kÞ¼σmbφmðkÞ;
ezσmðσ0kÞ¼σmezmðkÞ; bzσmðσ0kÞ¼σmþ1σ0bzmðkÞ; ðA14Þ

where σ, σ0 ¼ �1.
Weakly guided modes with frequencies on the vacuum

light line ωc ¼ ωη appear where bands of guided modes
cross over into the radiative continuum. Inside the fiber, the
radial partial waves of the modal fields are given by case
(1) listed in Table IV (since ωη > ωv). Outside the fiber,
they are given by case (2) with ϵ ¼ 1, and therefore,
replacing α with β; see Table III. The corresponding
amplitudes are listed in Table VIII. The modal fields decay
polynomially outside the fiber as a limiting case between
oscillatory behavior and exponential decay. The frequency
equations on the vacuum light line listed in Table VII
mark the cutoff frequencies below which a band of guided
modes ceases to exist. The cutoff frequencies are indicated
by solid dots in Fig. 3.
In summary, guided modes can be labeled by mode

indices

TABLE VI. Guided modes: Radial partial waves of the modal fields Eq. (A9) both inside the fiber and in the vacuum surrounding the
fiber. The quantities A, B ∈ C are amplitudes. The TE0n modes are characterized by A ¼ 0, and the TM0n modes by B ¼ 0. The HEjmjn
and EHjmjn modes have the same modal fields but distinct frequencies; see Table VII. The remaining amplitude is determined from the
normalization condition Eq. (A13). All other quantities are defined in Table III.

Band Fiber (x < 1) Vacuum (x > 1)

TE0n, TM0n Er
η ¼ −iκα−1BJ1ðαxÞ Er

η ¼ iηκβ̃−1BK1ðβ̃xÞ
Eφ
η ¼ −wα−1AJ1ðαxÞ Eφ

η ¼ ηwβ̃−1AK1ðβ̃xÞ
Ez
η ¼ BJ0ðαxÞ Ez

η ¼ ηBK0ðβ̃xÞ
Br
η ¼ κα−1AJ1ðαxÞ=c Br

η ¼ −ηκβ̃−1AK1ðβ̃xÞ=c
Bφ
η ¼ −iϵwα−1BJ1ðαxÞ=c Bφ

η ¼ iηwβ̃−1BK1ðβ̃xÞ=c
Bz
η ¼ iAJ0ðαxÞ=c Bz

η ¼ iηAK0ðβ̃xÞ=c
HEjmjn, EHjmjn Er

η ¼ iα−2A½καJ0mðαxÞ −m2wγJmðαxÞ=x� Er
η ¼ −iηβ̃−2A½κβ̃K0

mðβ̃xÞ −m2wγKmðβ̃xÞ=x�
Eφ
η ¼ mα−2A½wγαJ0mðαxÞ − κJmðαxÞ=x� Eφ

η ¼ −mηβ̃−2A½wγβ̃K0
mðβ̃xÞ − κKmðβ̃xÞ=x�

Ez
η ¼ AJmðαxÞ Ez

η ¼ ηAKmðβ̃xÞ
Br
η ¼ −mα−2A½κγαJ0mðαxÞ − εwJmðαxÞ=x�=c Br

η ¼ mηβ̃−2A½κγβ̃K0
mðβ̃xÞ − wKmðβ̃xÞ=x�=c

Bφ
η ¼ iα−2A½εwαJ0mðαxÞ −m2κγJmðαxÞ=x�=c Bφ

η ¼ −iηβ̃−2A½wβ̃K0
mðβ̃xÞ −m2κγKmðβ̃xÞ=x�=c

Bz
η ¼ imγAJmðαxÞ=c Bz

η ¼ imηγAKmðβ̃xÞ=c

TABLE VII. Guided modes: Frequency equations and cutoff frequencies in terms of the quantities defined in Table III. The roots of
these equation form discrete bands in the ðk;ωÞ plane as shown in Fig. 3.

Band Frequency equation Cutoff frequency

TE0n αJ0ðαÞK1ðβ̃Þ þ β̃K0ðβ̃ÞJ1ðαÞ ¼ 0 J0ðαÞ ¼ 0

TM0n αJ0ðαÞK1ðβ̃Þ þ εβ̃K0ðβ̃ÞJ1ðαÞ ¼ 0 J0ðαÞ ¼ 0

HEjmjn Odd roots of Eq. (A12) ½jmjðjmj − 1Þ − α2=ðεþ 1Þ�JmðαÞ þ ðjmj − 1ÞαJm0ðαÞ ¼ 0

EHjmjn Even roots of Eq. (A12) JmðαÞ ¼ 0
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m ∈ Z; f ∈ fTE;TMgm¼0 or fHE;EHgm≠0;

k ∈ R; n ∈ N: ðA15Þ

It is customary to name guided bands as fjmjn. At m ¼ 0,
there are then TE0n and TM0n bands, and at jmj ≥ 1 there
are HEjmjn and EHjmjn bands. For a given azimuthal order
m, the HE and EH bands alternate, with the HEjmj1 band of
lowest frequencies; see Figs. 3(b) and 3(c). At sufficiently
low frequencies, only the HE11 band is guided, while all
other bands merge into the radiative continuum (single-
mode regime); compare Fig. 3(b) to Figs. 3(a) and 3(c).
These low-frequency HE11 modes are used as trapping
fields in nanofiber-based cold-atom traps.

APPENDIX B: ATOM TRAP AND
MOTIONAL STATES

In the first part of this Appendix, we summarize how to
obtain the optical and surface potentials experienced by an
atom trapped close to a photonic structure. In the second
part, we discuss under which conditions the potential can
be approximated as harmonic in the case of a nanofiber-
based atom trap.

1. Trapping potential

The internal and external dynamics of an atom
trapped close to a photonic structure is governed by the
Hamiltonian

Ĥat ¼ Ĥint þ
p̂2

2M
þ V̂opt þ V̂ad ðB1Þ

in the absence of vibrations of the structure. Here, Ĥint
describes the internal state of the atom, p̂ is the momentum
operator of its center of mass, and the remaining terms are
introduced in Sec. II. The internal hyperfine-structure states
of the atom can be labeled by the eigenvalues of a suitable
set of commuting operators, for instance, jλi≡ jnSLJIFi,
where n is the principal quantum number, S is the electron
spin, L is the electron orbital angular momentum, J is the
total electronic angular momentum, I the nuclear spin,
and F the resulting total atom angular momentum [94].
The optical trapping fields are detuned from resonance with
the atom, such that they do not excite the atom from the
electronic ground state. Instead, both light and surface
effects lead to a slight mixing (dressing) of the internal
eigenstates jλi of the atom [70]. The new, dressed eigen-
states have energies shifted by an amount typically much
smaller than the splitting between hyperfine-structure levels
of different F. The dressed eigenstates are therefore very
similar to the bare eigenstates jλi and can be labeled using
the same quantum numbers. Gradients in the light intensity
then lead to position-dependent light shifts, which act as an
optical potential for the center of mass and thus allow
trapping of the atom [44]. Both optical and surface
potentials depend on the internal state jλi of the atom
because the electric polarizability of the atom is state
dependent [56,94]. Moreover, the atom-light interaction
can couple internal and motional states [24,28].
We focus on scenarios without coupling of internal and

motional states, such that the potential operators V̂opt and V̂ad
are block diagonal in the dressed hyperfine-structure levels:
V̂opt þ V̂ad ¼

P
λ½Vopt;λðr̂Þ þ Vad;λðr̂Þ�jλihλj. The motion of

the atom in the trap is thus governed by the Hamiltonian

Ĥat ¼
p̂2

2M
þ V0ðr̂Þ ðB2Þ

in each subspace of the Hilbert spacewith fixed internal state
jλi. Energies aremeasured relative to the energy hλjĤintjλi of
the internal state, and V0 ≡ Vopt;λ þ Vad;λ is the total state-
dependent potential. In two-color traps in particular, two
monochromatic light fields are used, tuned in opposite
directions away from the resonance frequency of the atom
[49]. The red-detuned field attracts the atom toward the
surface of the nanophotonic structure. The repulsive blue-
detuned field has a shorter decay length and dominates closer
to the surface, keeping the atom at a distance. If the two light
fields are sufficiently far detuned, interference between them
is negligible, and the optical potential is the sum of the

TABLE VIII. Weakly guided modes: The modal fields Eq. (A9)
have radial partial waves given by case (1) in Table IV inside the
fiber and by case (2) outside the fiber, with nonzero amplitudes
listed in this table. Unprimed amplitudes apply inside the fiber,
primed amplitudes outside the fiber. Amplitudes that are not
listed vanish. All other quantities are defined in Table III.

Band Amplitudes

TE0n C ∈ C
C0 ¼ σkCκα−1J1ðαÞ

TM0n A ∈ C
A0 ¼ −iAϵκα−1J1ðαÞ

Band Amplitudes

HE1n C ∈ C
A0 ¼ σkCmκα−1J0mðαÞ=2
C0 ¼ −σkCmκα−1J0mðαÞ=2

EH1n A ∈ C
A0 ¼ iAϵκα−2J0mðαÞ=2
C0 ¼ iAϵκα−2J0mðαÞ=2

Band Amplitudes

HEjmjn A ∈ C
jmj ≥ 2 C ¼ −iAσmσk

A0 ¼ iAðϵ − 1ÞκJmðαÞ=2ðϵþ 1Þðjmj − 1Þ
B0 ¼ iAκJmðαÞ=2ðjmj − 1Þ

EHjmjn C ∈ C
jmj ≥ 2 A ¼ −iσmσkC=ε

A0 ¼ σmσpCκα−1J0mðαÞ
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individual contributions Vr
opt and Vb

opt of the red- and blue-
detuned field, respectively. The total state-dependent poten-
tial is then

V0 ≡ Vr
opt þ Vb

opt þ Vad; ðB3Þ

where we drop the index λ from notation. Figure 4 shows an
example of how these three contributions combine to a three-
dimensional trapping potential close to an optical nanofiber.
The optical potential Vopt created by each monochro-

matic light field Eðr; tÞ ¼ E0ðrÞe−iωt þ c:c. of frequency ω
can be expressed in terms of a scalar, vector, and tensor
light shift [94],

Vopt ¼ Vs þ Vv þ Vt: ðB4Þ

We assume that there is a homogeneous magnetic offset
field Bext ¼ BextzB applied along the unit vector zB, which
induces Zeeman splitting of the hyperfine structure. The
internal dressed eigenstates of the atom are then the
Zeeman substates jλi ¼ jξFMFi, provided the magnetic
field is sufficiently strong to avoid mixing of the Zeeman
substates by their relative light shifts. Here, jξi ¼ jnSLJIi
is the fine-structure state, and MF is the magnetic quantum
number of the total atom angular momentum with respect
to the quantization axis zB. The scalar light shift is

VsðrÞ ¼ −αsjE0ðrÞj2; ðB5Þ

with a scalar polarizability αs that depends only on its fine-
structure state jξi. The vector light shift is [94]

VvðrÞ ¼ −
αv
2i

MF

F
½E�

0ðrÞ × E0ðrÞ� · zB: ðB6Þ

The vector polarizability αv of the hyperfine-structure
Zeeman substate jλi can be obtained from the vector
polarizability α̃v of the fine-structure state jξi:

αv ¼
FðF þ 1Þ þ JðJ þ 1Þ − IðI þ 1Þ

ðF þ 1Þ2J α̃v: ðB7Þ

The tensor light shift is

VtðrÞ ¼ −3αt
3M2

F − FðF þ 1Þ
2Fð2F − 1Þ

�
jEzB

0 ðrÞj2 − 1

3

�
; ðB8Þ

where EzB
0 ¼ E0 · zB, and the hyperfine-structure tensor

polarizability αt is related to the fine-structure tensor
polarizability α̃t by

αt ¼ ð−1ÞðJþIþFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðJ þ 1Þð2J þ 1Þð2J þ 3Þ

2Jð2J − 1Þ

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fð2F − 1Þð2F þ 1Þ
3ðF þ 1Þð2F þ 3Þ

s �
F 2 F

J I J

�
α̃t: ðB9Þ

Here, f·g is the Wigner 6j symbol. The fine-structure
polarizabilities α̃s ¼ αs, α̃v, and α̃t can be calculated from
experimental data [94].
At atom-surface separations realized in nanophotonic

traps, surface effects are limited to dispersion forces [95].
The dispersion force between solids and atoms strongly
depends on both geometry and material. Its effect can be
modeled by the nonretarded Casimir-Polder potential for a
two-level atom in the ground state located in the vicinity
of a dielectric object [56]. In the case of a nanofiber-
based trap, it is sufficient to model the fiber as a dielectric
half-space [49,77], although the potential for an atom close
to a dielectric cylinder can in principle be calculated
analytically [49,98–100]. The potential is then

(a) (b) (c)

FIG. 4. Total potential experienced by the atom, with a trap minimum r0 indicated by the cross. Panel (a) shows the different
contributions to the total potential V0. Panels (b) and (c) show the total potential in a cross section and longitudinal section of the fiber,
respectively. All positive values of the potential in (b) and (c) are shown as black. The parameters used for this plot are listed in
Appendix E.
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VadðrÞ ¼ −Cðr − RÞ−3: ðB10Þ

The parameter C > 0 can either be obtained experimentally
[101] or calculated from the electromagnetic properties of
the material [56,98,102,103].

2. Harmonic trap approximation

A quadratic atom-phonon interaction Hamiltonian [104]
can be obtained by approximating the trapping potential
as harmonic for atoms close in energy to the motional
ground state. In the case of a nanofiber-trapped atom in
particular, we choose cylindrical coordinates to describe the
motion of the trapped atom. The Hamiltonian Ĥat describ-
ing the motion of the atom in the trap in the absence of
vibrations is then

Ĥat ¼
ðp̂rÞ2
2M

−
ℏ2

8Mr̂2
þ ðp̂φÞ2

2Mr̂2
þ ðp̂zÞ2

2M
þ V0ðr̂Þ; ðB11Þ

where r̂ ¼ ðr̂; φ̂; ẑÞ is the position operator of the atom, and
ðp̂r; p̂φ; p̂zÞ are the components of the momentum operator.
We expand the potential to second order around the local
trap minimum r0. The corresponding motional frequencies
of the atom with respect to the coordinates ðxr; xφ; xzÞ≡
ðr; r0φ; zÞ are

ωi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
xiVðr0Þ
M

s
; ωij ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂xi∂xjVðr0Þ
M

r
; ðB12Þ

where i; j ∈ fr;φ; zg. The cross-derivatives of the
potential may be nonzero, since the symmetry axes of
the potential are in general not aligned with the coordinate
axes (for instance, when the magnetic offset field breaks the
cylindrical symmetry of the setup). The Hamiltonian
Eq. (B11) then describes harmonic motion of the atom
in each direction around the trap minimum, provided
ωij ¼ 0 and given that the trap is far from the fiber axis
compared to its size:ωr≫ℏ=ð2Mr20Þ andωφ≫ℏ=ð4πMr20Þ.
Introducing ladder operators âi and â†i , the position
operators x̂i can then be expressed as

x̂i ¼ Δxiðâi þ â†i Þ þ xi0; ðB13Þ

where xi0 is the position of the trap minimum, and
ðΔxr;Δxφ;ΔxzÞ≡ ðΔr; r0Δφ;ΔzÞ is the zero-point
motion of the atom in the trap as defined in Sec. II. If
ωij ≠ 0, there is additional cross-coupling between the
motional modes of the atom, with coupling constants
gij ¼ ω2

ij=4
ffiffiffiffiffiffiffiffiffiffi
ωiωj

p . The atom Hamiltonian is then in
general

Ĥat¼
X
i

ℏωi

�
â†i âiþ

1

2

�
þ
X
i;j≠i

ℏgijðâiþ â†i Þðâjþ â†jÞ;

ðB14Þ

where we measure energies relative to the depth of the
trapping potential V0 ¼ Vðr0Þ. The Hamiltonian can
always be diagonalized [105], and hence simplifies to
Eq. (2) after dropping the constant zero-point energy.

APPENDIX C: PHONONIC EIGENMODES

Vibrations of the photonic structure in a nanophotonic
cold-atom trap alter the optical fields surrounding the
structure. This variation leads to an interaction of the
vibrations and the trapped atoms, as we discuss in detail
in Appendix D. Vibrations at frequencies relevant to
nanophotonic traps can be modeled by linear elasticity
theory, because the corresponding phonon wavelengths are
sufficiently large not to resolve the microscopic structure of
the solid. Linear elasticity theory describes the dynamics of
elastic deformations of a continuous body around its
equilibrium state [58–60]. The deformations are described
by the displacement field u, a real-valued vector field
defined on the domain of the body. The displacement field
indicates the magnitude and direction of the displacement
of each point of the body from equilibrium at any
given time.
Our objective is to provide a quantum description of the

vibrations (in terms of a phonon field) and of the atom-
phonon interaction. In this Appendix, we review how a
quantum formulation of linear elasticity can be obtained
through canonical quantization based on the concept of
phononic eigenmodes. Subsequently, we discuss the pho-
nonic eigenmodes of a nanofiber.

1. Quantum elastodynamics

Consider an elastic body in three dimensions. Within the
framework of linear elasticity, its mechanical properties are
described by the mass density ρ and the elasticity tensor C,
both of which are in general position dependent. The
elasticity tensor is of fourth order, with symmetries Cijkl ¼
Cjikl ¼ Cijlk ¼ Cklij [60]. In the case of a homogeneous
elastic body, ρ and C are constant. If the body is isotropic,
the elasticity tensor has the form [58,60]

Cijkl ¼ μ½δikδjl þ δilδjk� þ λδijδkl: ðC1Þ

The two coefficients λ and μ are called Lamé parameters.
The mechanical properties of a homogeneous and isotropic
body are thus described by three real numbers: ρ, λ, and μ.
The density ρ and Lamé’s second parameter μ are positive,
while Lamé’s first parameter λ may be negative [60]. An
alternative, widespread parametrization uses Young’s
modulus E and the Poisson ratio ν:
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λ ¼ νE
ð1þ νÞð1 − 2νÞ ; μ ¼ E

2ð1þ νÞ : ðC2Þ

The modulus is positive, as is the Poisson ratio for most
materials [60].
The dynamics of the displacement field is governed by

the equation of motion [58–60]

ρü ¼ Du; ðC3Þ

where we define the differential operator D that acts on a
vector field as ½Du�i ≡P

jkl ∂jCijkl∂kul. It is common to
introduce the strain tensor S describing deformations of the
solid and the stress tensor T, which characterizes the forces
needed to affect this strain:

Sij ≡ 1

2
ð∂iuj þ ∂juiÞ;

Tij ≡X
kl

CijklSkl: ðC4Þ

Note that both strain and stress tensor are symmetric, Sij ¼
Sji and Tij ¼ Tji. It is necessary to specify boundary
conditions in order to obtain a unique solution given initial
conditions [60]. For a body that is not subject to external
forces, these boundary conditions are of Neumann type and
state that on the surface of the body, the stress vanishes in
direction n normal to the surface: Tn ¼ 0.
We are interested in quantizing the vibrations of a force-

free, homogeneous, and isotropic elastic body. We start
from the Lagrange density L ¼ ρ _u2=2 −

P
ij S

ijTij=2,
which yields the correct equations of motion. The canonical
conjugate momentum is then π ¼ ρ _u, and the resulting
classical Hamilton functional can be expressed as

H ¼ 1

2

Z
B

�
π2

ρ
− u ·Du

�
dr; ðC5Þ

where B is the volume of the body [106].
To proceed, we introduce phononic eigenmodes wγ with

eigenfrequencies ωγ as solutions of the eigenvalue equation

DwγðrÞ ¼ −ρω2
γwγðrÞ ðC6Þ

together with the boundary conditions for a force-free body.
The eigenmodes are labeled using a multi-index γ which
may contain both discrete and continuous indices. Since
ð−DÞ is self-adjoint [107], eigenmode solutions form an
orthogonal basis for the space of admissible displacement
fields and can be normalized according toZ

B
w�
γðrÞ · wγ0 ðrÞdr ¼ δγγ0 : ðC7Þ

Any solution to the equation of motion (C3) can then be
expressed as a linear combination of eigenmodes,

uðr; tÞ ¼
X
γ

1

ρωγ
½βγe−iωγtwγðrÞ þ c:c:�; ðC8Þ

with coefficients βγ ∈ C determined by the initial
conditions.
Canonical quantization amounts to turning every

eigenmode into a bosonic mode with ladder operators
b̂γ and b̂†γ that satisfy canonical commutation relations,
½b̂γ; b̂†γ0 � ¼ δγγ0 . The displacement field and its conjugate
momentum are promoted to field operators with mode
expansions

ûðrÞ ¼
X
γ

Uγ½b̂γwγðrÞ þ H:c:�;

π̂ðrÞ ¼ −i
X
γ

Πγ½b̂γwγðrÞ − H:c:�: ðC9Þ

Here, Uγ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ρωγ

p
and Πγ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏρωγ=2
p

are the mode
densities. The Hamiltonian takes the form

Ĥphn ¼
X
γ

ℏωγb̂
†
γ b̂γ; ðC10Þ

where we set the energy of the ground state to zero. Since
strain plays an important role in the atom-phonon inter-
action discussed in Appendix D, we introduce the tensorial
strain modal fields sγ with components

sijγ ≡ 1

2
½∂iw

j
γ þ ∂jwi

γ�; ðC11Þ

such that the strain operator can be expressed as

ŜðrÞ ¼
X
γ

Uγ½b̂γsγðrÞ þ H:c:�: ðC12Þ

2. Phononic fiber eigenmodes

We now consider vibrations of a nanofiber modeled as a
homogeneous and isotropic cylinder of radius R and of
infinite length along the z axis. In the following, we
summarize the resulting phononic eigenmodes and fre-
quency equations. Details on the derivation can be found in
Refs. [58,59,108,109].
Solving the eigenvalue equation (C6) in cylindrical

coordinates leads to phononic eigenmodes and correspond-
ing strain modal fields of the form

wγðrÞ ¼
WγðrÞ
2π

eiðjφþpzÞ;

sγðrÞ ¼
SγðrÞ
2π

eiðjφþpzÞ; ðC13Þ

in close analogy to the photon modes Eq. (A9). Here,
p ∈ R is the propagation constant and j ∈ Z the azimuthal
order. Mode quadruplets ð�j;�pÞ are degenerate in
eigenfrequency ωγ. Since phonon modes are radially
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confined by the finite fiber radius, there is only a discrete
set of frequencies ωγ admissible for each ðj; pÞ, analogous
to the case of guided photonic fiber modes. The eigen-
frequencies ωγðpÞ form discrete bands in the ðp;ωÞ plane;
see Fig. 5. We can therefore count radial excitations using a
discrete band index n ∈ N starting from n ¼ 1 for the band
of lowest frequency and increasing in frequency with n.
Since the propagation constant is the only continuous mode
index, the orthonormality relation Eq. (C7) reduces to a
normalization condition for the radial partial waves:Z

R

0

rjWγðrÞj2dr ¼ 1: ðC14Þ

Elastodynamics, unlike electrodynamics, allows for
longitudinal in addition to transverse polarizations even
in the absence of surfaces. In the nanofiber, the presence of
a surface forces these excitations to hybridize, forming
eigenmodes that can have both transverse and longitudinal
contributions. Transverse waves propagate with the trans-
verse sound velocity ct, while longitudinal waves propagate
with the longitudinal sound velocity cl, which is typically
larger than the transverse sound velocity:

ct ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2ρð1þ νÞ

s
;

cl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðν − 1Þ
ρðνþ 2ν2 − 1Þ

s
: ðC15Þ

The radial partial waves Wγ have three contributions,

WγðrÞ ¼ AWaðrÞ þ BWbðrÞ þ CWcðrÞ; ðC16Þ

where A, B, C ∈ C are amplitudes. The components of the
three vectorial termsWa,Wb, andWc can be expressed in
terms of quantities defined in Table IX and are listed in
Table X. The form of the eigenmodes depends on the
magnitude of the eigenfrequency ωγ compared to the
longitudinal sound line ωl ≡ cljpj and the transverse sound
line ωt ≡ ctjpj. We assume that cl > ct in the following
discussion, as is the case for most materials. If this is not the
case, the radial partial waves of eigenmodes are different
from the ones given in this Appendix.
The eigenmodes have to meet the boundary conditions

discussed above to ensure a stress-free surface. In terms of
the stress modal field

(a) (b) (c) (d)

FIG. 5. Band structures of nanofiber phonon modes with different azimuthal order j, for radius R and mechanical properties specified
in Appendix E. Panel (a) shows torsional bands, panel (b) longitudinal bands, and panel (c) flexural bands of azimuthal order m ¼ �1
and m ¼ �2, respectively. The solid black line delineates the longitudinal sound line, the dashed line the transverse sound line [which
coincides with the lowest band in Fig. 5(a)]. Solid dots mark intersections of phonon bands with either sound line.

TABLE IX. Definitions of the longitudinal and the transverse
sound velocity cl and ct, as well as the radial constants a and b,
and the dimensionless quantities appearing in the phonon modal
fields. The definitions are given in terms of the density ρ, Young's
modulus E, Poisson ration ν, fiber radius R, azimuthal order j,
propagation constant p, and radial position r.

ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=2ρð1þ νÞp

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðν − 1Þ=ρðνþ 2ν2 − 1Þ

p
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2t − p2

p
ã ¼ −ia

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2l − p2

p
b̃ ¼ −ib

ωt ¼ ctjpj ωl ¼ cljpj
α ¼ aR α̃ ¼ ãR
β ¼ bR β̃ ¼ b̃R
ϖ ¼ pR x ¼ r=R
η ¼ J1ðβÞ=J1ðαÞ η̃ ¼ I1ðβ̃Þ=J1ðαÞ
η̆ ¼ I1ðβ̃Þ=I1ðα̃Þ

σp ¼ p=jpj σj ¼ j=jjj
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tklγ ðrÞ≡
X
mn

Cklmnsmn
γ ðrÞ ðC17Þ

defined here using the strain modal field Eq. (C11), the
boundary conditions are tγn ¼ 0 at r ¼ R. For the nano-
fiber, the exterior surface normal vector is n ¼ er. The
stress modal field can be decomposed into partial waves

tγðrÞ ¼
T γðrÞ
2π

eiðjφþipzÞ; ðC18Þ

and the radial partial waves of the relevant components
brought into the form

T rr
γ ðrÞ ¼ −

2μR
r2

½AMraðrÞ þ BMrbðrÞ þ CMrcðrÞ�;

T φr
γ ðrÞ ¼ i

μR
r2

½AMφaðrÞ þ BMφbðrÞ þ CMφcðrÞ�;

T zr
γ ðrÞ ¼ i

μR
r2

½AMzaðrÞ þ BMzbðrÞ þ CMzcðrÞ�: ðC19Þ

The nine componentsMkl, k ¼ r, φ, z, l ¼ a, b, c evaluated
on the fiber surface r ¼ R are listed in Table XI. Let M be
the matrix with coefficients Mklðr ¼ RÞ. The boundary
conditions can then be written as

M

0
B@

A

B

C

1
CA ¼ 0 ðC20Þ

and yield relations between the three amplitudes A, B, C.
For each mode family, one independent amplitude remains,
which can subsequently be determined from the normali-
zation condition Eq. (C14). The trivial solution A ¼ B ¼
C ¼ 0 corresponds to zero displacement and is of no
interest to us. The boundary conditions Eq. (C20) can be
met with nontrivial amplitudes if and only if

detM ¼ 0: ðC21Þ
This relation is the frequency equation for the eigenmodes, as
it constrains the admissible eigenfrequencies ωγ for a given
propagation constant p and azimuthal order j. It is therefore
an implicit equation for the dispersion relation ωγðpÞ.
We distinguish the cases j ¼ 0 and jjj ≥ 1. For azimu-

thal order j ¼ 0, Mrc ¼ Mφa ¼ Mzc ¼ 0, and the fre-
quency equation (C21) factorizes,

Mφc det

�
Mra Mrb

Mza Mzb

�
¼ 0; ðC22Þ

TABLE X. Fiber eigenmodes: Terms in the radial partial wave
Wγ of the displacement eigenmode in Eq. (C16). The radial
dependence is given by Bessel functions Jj and modified Bessel
functions Ij of the first kind. The prime indicates the first
derivative J0jðxÞ ¼ ∂xJjðxÞ. All remaining quantities are defined
in Table IX.

Eigenmode component

Term Case k ¼ r k ¼ φ k ¼ z

Wka ωγ > ωl βJj0ðβxÞ ijJjðβxÞ=x iϖJjðβxÞ
ωγ ¼ ωl jjjxjjj−1 ijxjjj−1 iϖxjjj
ωγ < ωl β̃I0jðβ̃xÞ ijIjðβ̃xÞ=x iϖIjðβ̃xÞ

Wkb ωγ > ωt ϖJjþ1ðαxÞ −iϖJjþ1ðαxÞ iαJjðαxÞ
ωγ ¼ ωt ϖxjjjþ1 −σjiϖxjjjþ1 2iðjjj þ 1Þxjjj
ωγ < ωt ϖIjþ1ðα̃xÞ −iϖIjþ1ðα̃xÞ iα̃Ijðα̃xÞ

Wkc ωγ > ωt jJjðαxÞ=x iαJj0ðαxÞ 0
ωγ ¼ ωt ϖxjjj−1 σjiϖxjjj−1 0
ωγ < ωt jIjðα̃xÞ=x iα̃Ij0ðα̃xÞ 0

TABLE XI. Fiber eigenmodes: Terms in the radial partial wave T γ of the stress modal field in Eq. (C19). The terms are evaluated on
the fiber surface (r ¼ R) and correspond to the matrix elements ofM in the boundary condition Eq. (C20) and frequency equation (C21).
All remaining quantities are defined in Table IX.

Component

Term Case k ¼ r k ¼ φ k ¼ z

Mka ωγ > ωl > ωt ½ðα2−ϖ2Þ=2− ðj2− jÞ�JjðβÞ−βJjþ1ðβÞ 2ðj2 − jÞJjðβÞ − 2jβJjþ1ðβÞ 2jϖIjðβ̃Þ þ 2ϖβ̃Ijþ1ðβ̃Þ
ωγ ¼ ωl > ωt ½ðα2 −ϖ2Þ=2 − ðj2 − jjjÞ� 2jðjjj − 1Þ 2jjjϖ
ωl > ωγ > ωt ½ðα2−ϖ2Þ=2− ðj2− jÞ�Ijðβ̃Þþ β̃Ijþ1ðβ̃Þ 2ðj2 − jÞIjðβ̃Þ þ 2jβ̃Ijþ1ðβ̃Þ 2jϖIjðβ̃Þ þ 2ϖβ̃Ijþ1ðβ̃Þ
ωl > ωγ ¼ ωt ½−ϖ2=2 − ðj2 − jÞ�Ijðβ̃Þ þ β̃Ijþ1ðβ̃Þ 2ðj2 − jÞIjðβ̃Þ þ 2jβ̃Ijþ1ðβ̃Þ 2jϖIjðβ̃Þ þ 2ϖβ̃Ijþ1ðβ̃Þ
ωl > ωt > ωγ ½−ðα̃2þϖ2Þ=2−ðj2−jÞ�Ijðβ̃Þþβ̃Ijþ1ðβ̃Þ 2ðj2 − jÞIjðβ̃Þ þ 2jβ̃Ijþ1ðβ̃Þ 2jϖIjðβ̃Þ þ 2ϖβ̃Ijþ1ðβ̃Þ

Mkb ωγ > ωt −ϖαJjðαÞ þ ðjþ 1ÞϖJjþ1ðαÞ −ϖαJjðαÞ þ 2ðjþ 1ÞϖJjþ1ðαÞ jαJjðαÞ þ ðϖ2 − α2ÞJjþ1ðαÞ
ωγ ¼ ωt −ðjjj þ 1Þϖ 0 2ðj2 þ jjjÞ þϖ2

ωγ < ωt −ϖα̃Ijðα̃Þ þ ðjþ 1ÞϖIjþ1ðα̃Þ −ϖα̃Ijðα̃Þ þ 2ðjþ 1ÞϖIjþ1ðα̃Þ jα̃Ijðα̃Þ þ ðϖ2 þ α̃2ÞIjþ1ðα̃Þ
Mkc ωγ > ωt ðj − j2ÞJjðαÞ þ jαJjþ1ðαÞ ½2ðj2 − jÞ − α2�JjðαÞ þ 2αJjþ1ðαÞ jϖJjðαÞ

ωγ ¼ ωt −ð1 − δj0Þðjjj − 1Þϖ 2ð1 − δj0Þðj − σjÞϖ ð1 − δj0Þϖ2

ωγ < ωt ðj − j2ÞIjðα̃Þ − jα̃Ijþ1ðα̃Þ ½2ðj2 − jÞ þ α̃2�Ijðα̃Þ − 2α̃Ijþ1ðα̃Þ jϖIjðα̃Þ
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giving rise to two independent mode families: torsional (T)
modes withMφc ¼ 0 and longitudinal (L) modes for which
the determinant in Eq. (C22) vanishes. For higher azimu-
thal excitations jjj ≥ 1, this is not the case, and there is only
one family of flexural (F) modes.
Torsional modes can exist only above and on the

transverse sound line ωt; see Fig. 5(a). Longitudinal and
flexural modes, on the other hand, are hybrids of longi-
tudinal and transverse waves, and exhibit different behavior
depending on the magnitude of their frequency ωγ com-
pared to the transverse sound line ωt and the longitudinal
sound line ωl. In case the frequency lies above the
longitudinal sound line ωγ > ωl > ωt, both transverse
and longitudinal excitations can propagate in the bulk of
the cylinder, and the eigenmode shows oscillatory behavior
in r. We refer to these modes as bulk modes. In case the

frequency lies between the two sound lines ωl > ωγ > ωt,
we call the modes mixed modes: Only the transverse
contributions to the eigenmodes oscillate in r, while the
longitudinal contributions decay as modified Bessel func-
tions of first kind In away from the surface towards the
center of the cylinder. Surface modes are characterized by
ωl > ωt > ωγ . Neither transverse nor longitudinal excita-
tions can propagate in the bulk of the fiber, and eigenmodes
are confined to the fiber surface. Such modes are often
called surface acoustic waves [58,110]. On each sound line,
the respective contributions to the eigenmodes are poly-
nomial in r.
Torsional modes are characterized by j ¼ 0 and the

frequency equation Mφc ¼ 0. They have zero longi-
tudinal and radial displacement wr

γ ¼ wz
γ ¼ 0, and are

therefore purely transverse excitations; see Fig. 6(a). The

(a)

(d) (e)

(b) (c)

FIG. 6. Mechanical nanofiber eigenmodes on the three fundamental bands. Panels (a)–(c) show a cross section of the
nanofiber, panels (d) and (e) a longitudinal section. The arrows correspond to the displacement field of a single mode with arbitrary
amplitude βγ; see Eq. (C8). The color gradients show density variations ∇ · u displayed at rþ uðrÞ to simultaneously indicate the
displacement of the fiber section. Darker areas are of higher density than lighter areas. Displacements in the vector plot are exaggerated
by a factor of 2 compared to the density plot. The mechanical properties of the fiber are given in Appendix E. All three phonon modes
have frequency ω ¼ 2π × 123 kHz resonant with the radial atom trap; see Sec. III. The wavelengths λ ¼ 2π=p are much larger than
the nanofiber radius and vary between modes. The longitudinal sections therefore do not preserve the aspect ratio of the fiber: The z axis
is compressed by a factor of λ=R ≃ 4 × 105 relative to the x axis for the L mode in (d) and by λ=R ≃ 2 × 103 for the F mode in
(e), while both components of the displacement field are drawn to the same scale. The T01 mode in (a) leads only to azimuthal
displacement and does not induce density variations. The L01 has a dominant longitudinal component resulting in density waves along
the fiber axis; see (d). Its radial component causes breathing of the fiber radius and is smaller by a factor ch=ðωRνÞ ≃ 1.8 × 105. The
radial component in (b) is exaggerated by a corresponding factor compared to the axial component in (d) in order to be visible. The F11
mode displaces the entire fiber cross section orthogonal to the fiber axis in a circular motion; see (c). The density variations in (c) and
(e) result from longitudinal displacement that is smaller than the transverse displacement visible in the vector plot by a factor
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch=ð2ωRÞ

p
≃ 120.
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radial partial waves of the eigenmode and the frequency
equations are listed in Table XII. The roots of the
frequency equation form bands T0n in the ðp;ωÞ plane
plotted in Fig. 5(a).
On the transverse sound line (ωγ ¼ ωt), the frequency

equation is always satisfied, while it has no solution below
the transverse sound line (ωγ < ωt). The fundamental (i.e.,
lowest frequency) torsional band T01 thus coincides with
the transverse sound line. The radial partial wave of the
strain modal field on the T01 band has two nonzero
components:

Sφz
γ ðrÞ ¼ Szφ

γ ðrÞ ¼ i
2

C
R
ϖx; ðC23Þ

see Table IX for definitions of the symbols.
Longitudinal modes are characterized by j ¼ 0 and the

frequency equation

det
�
Mra Mrb

Mza Mzb

�
¼ 0: ðC24Þ

They have zero azimuthal displacement wφ
γ ¼ 0 and are

indeed largely longitudinal excitations similar to sound
waves, but they do have a small nonzero radial component;
see Figs. 6(b) and 6(d). Longitudinal modes exist in the
bulk, mixed, and surface mode sector, and cross both
sound lines. The radial partial wave of the displacement
field is given explicitly in Table XIII for all five cases.
These expressions hold as long as Mφc ≠ 0 (i.e., provided
the mode is not located at a crossing with a torsional band).
Otherwise, the eigenmode can be obtained from the
general expressions in Table X by solving the boundary
conditions Eq. (C20). The frequency equations obtained
from Eq. (C24) are listed in Table XIV and are known as
Pochhammer equations. The roots of the Pochhammer
equations form bands L0n in the ðp;ωÞ plane, as shown in
Fig. 5(b).
The fundamental longitudinal band L01 lies in the mixed-

mode sector in the low-frequency limit. In this case, the
radial partial wave of the strain modal field has components

Srr
γ ðrÞ ¼ −β̃2

A
R

�
2ϖ2η̃

ϖ2 − α2
α

β̃
J01ðαxÞ − I01ðβ̃xÞ

�
;

Sφφ
γ ðrÞ ¼ −β̃

A
R

�
2ϖ2η̃

ϖ2 − α2
J1ðαxÞ

x
−
I1ðβ̃xÞ

x

�
;

Szz
γ ðrÞ ¼ ϖ2

A
R

�
2αβ̃ η̃

ϖ2 − α2
J0ðαxÞ − I0ðβ̃xÞ

�
;

Srz
γ ðrÞ ¼ −iβ̃ϖ

A
R
½η̃J1ðαxÞ − I1ðβ̃xÞ�; ðC25Þ

TABLE XII. Torsional (T) fiber eigenmodes: Nonzero compo-
nent of the displacement eigenmode and frequency equations.
The amplitude C ∈ C is fixed by the normalization condition
Eq. (C14). All quantities are defined in Table IX.

Case Eigenmode component Frequency equation

ωγ > ωt Wφ
γ ðrÞ ¼ CJ1ðαxÞ J2ðαÞ ¼ 0

ωγ ¼ ωt Wφ
γ ðrÞ ¼ Cx ωγðpÞ ¼ ctjpj

TABLE XIII. Longitudinal (L) fiber eigenmodes: Nonzero components of the radial partial wave of the displacement eigenmode. The
amplitude A ∈ C can be obtained from the normalization condition (C14), all other quantities are defined in Table IX. These expressions
are valid as long as Mφc ≠ 0, that is, away from intersections with torsional bands. Otherwise, the displacement eigenmode can be
obtained from the general expressions in Table X in conjunction with Eq. (C20).

Eigenmode component

Case k ¼ r k ¼ z

ωγ > ωl > ωt βA½2ϖ2ηJ1ðαxÞ=ðϖ2 − α2Þ − J1ðβxÞ� iϖA½2αβηJ0ðαxÞ=ðϖ2 − α2Þ þ J0ðβxÞ�
ωγ ¼ ωl > ωt Aðα2 −ϖ2ÞJ1ðαxÞ=½2αJ0ðαÞ� iϖAf1þ ðα2 −ϖ2ÞJ0ðαxÞ=½2ϖ2J0ðαÞ�g
ωl > ωγ > ωt β̃A½−2ϖ2η̃=ðϖ2 − α2ÞJ1ðαxÞ þ I1ðβ̃xÞ� iϖA½−2αβ̃ η̃ =ðϖ2 − α2ÞJ0ðαxÞ þ I0ðβ̃xÞ�
ωl > ωγ ¼ ωt β̃A½I1ðβ̃xÞ − 2I1ðβ̃Þx� iA½ϖI0ðβ̃xÞ − 4β̃I1ðβ̃Þ=ϖ�
ωl > ωt > ωγ β̃A½−2ϖ2η̆I1ðα̃xÞ=ðϖ2 þ α̃2Þ þ I1ðβ̃xÞ� iϖA−2α̃ β̃ η̆ I0ðα̃xÞ=ðϖ2 þ α̃2Þ þ I0ðβ̃xÞ

TABLE XIV. Longitudinal (L) fiber eigenmodes: Frequency equations. All quantities are defined in Table IX.

Case Frequency equation

ωγ > ωl > ωt 0 ¼ 2βðα2 þϖ2ÞJ1ðαÞJ1ðβÞ − ðα2 −ϖ2Þ2J1ðαÞJ0ðβÞ − 4αβϖ2J0ðαÞJ1ðβÞ
ωγ ¼ ωl > ωt 0 ¼ J1ðαÞ
ωl > ωγ > ωt 0 ¼ −2β̃ðα2 þϖ2ÞJ1ðαÞI1ðβ̃Þ − ðα2 −ϖ2Þ2J1ðαÞI0ðβ̃Þ þ 4αβ̃ϖ2J0ðαÞI1ðβ̃Þ
ωl > ωγ ¼ ωt 0 ¼ ϖ2I0ðβ̃Þ − 6β̃I1ðβ̃Þ
ωl > ωt > ωγ 0 ¼ 2β̃ðα̃2 −ϖ2ÞI1ðα̃ÞI1ðβ̃Þ − ðα̃2 þϖ2Þ2I1ðα̃ÞI0ðβ̃Þ þ 4α̃ β̃ ϖ2I0ðα̃ÞI1ðβ̃Þ
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while the remaining independent components vanish. Refer
to Table IX for definitions of the symbols.
Flexural modes appear for azimuthal orders jjj ≥ 0. In

this case, the frequency equation (C21) does not in general
factorize. There is then only one family of flexural modes,
with a displacement field specified in Eqs. (C13) and
(C16), as well as Table X. A flexural mode with azimuthal
order jjj ¼ 1 is shown in Figs. 6(c) and 6(e). The boundary
conditions Eq. (C20) enable us to relate two of the three
amplitudes A, B, C to the third one. For instance,

B ¼ MrcMφa −MraMφc

MrbMφc −MrcMφb A;

C ¼ MraMφb −MrbMφa

MrbMφc −MrcMφb A; ðC26Þ

and the remaining amplitude A is fixed by the normaliza-
tion condition Eq. (C14) [111].
The roots of the frequency equation detM ¼ 0 with

matrix components listed in Table XI form bands Fjjjn in the
ðp;ωÞ plane. In Figs. 5(c) and 5(d), the F1n and F2n bands
are shown. The fundamental flexural band F01 lies in the
surface mode sector. The radial partial waves of the strain
modal field in this case are listed in Table XV.
In summary, we can label the phononic eigenmodes of a

fiber with indices

j ∈ Z; f ∈ fL;Tgj¼0 or fFgj≠0;
p ∈ R; n ∈ N: ðC27Þ

Following the conventions used for photonic fiber eigenm-
odes, we label the different phonon bands by their
mode indices as fjjjn. At azimuthal order j ¼ 0, there
are then T0n and L0n bands shown in Figs. 5(a) and 5(b). At
azimuthal order jjj ≥ 1, there are Fjjjn bands plotted in
Figs. 5(c) and 5(d) for jjj ¼ 1, 2.
Figure 5 shows that there are three fundamental bands

without a finite minimum frequency: L01, T01, and F11.
Nanofiber-based cold-atom traps have trap frequencies on
the order of 100 kHz [5,9,24,76] as we discuss in Sec. III,
so only modes on the fundamental bands can resonantly
couple to the atoms for typical parameters of the nanofiber.

The fundamental bands are therefore of special importance
in this article, and we provide approximate expressions for
the dispersion relations and displacement fields in the low-
frequency limit. The band T01 [see Fig. 5(a)] lies on the
transverse sound line and is thus given by the dispersion
relation

ωTðpÞ ¼ ctjpj: ðC28Þ
The only nonzero component of the displacement eigen-
mode normalized according to Eq. (C14) is

Wφ
γ ðrÞ ¼ 2

R2
r: ðC29Þ

The displacement induced by a T01 mode is shown in
Fig. 6(a). The band L01 [see Fig. 5(b)] lies in the mixed-
mode sector for low frequencies. The exact dispersion
relation is the solution to the transcendental Pochhammer
equation given in Table XIV. It has the linear asymptote

ωLðpÞ ≃ chjpj; ðC30Þ
with an effective hybrid speed of sound

ch ≡
ffiffiffiffi
E
ρ

s
: ðC31Þ

The components of the normalized radial partial waves
approximated to linear order in pr ≪ 1 for wavelengths
much larger than the fiber radius are

Wr
γðrÞ ≃

ffiffiffi
2

p
νp
R

r;

Wz
γðrÞ ≃ i

ffiffiffi
2

p

R
; ðC32Þ

while the azimuthal component vanishes. An L01 mode is
plotted in Figs. 6(b) and 6(d). The band F11 [see Fig. 5(c)]
lies in the surface mode sector. It derives from the
frequency equation (C21). Close to the origin, the band
has a quadratic asymptote:

ωFðpÞ ≃
chR
2

p2: ðC33Þ

TABLE XV. Fiber eigenmodes: Components of the radial partial wave Sγ of the strain modal field for the surface mode sector ω < ωt.
The amplitudes A, B, C are determined by the boundary conditions Eq. (C20) and the normalization condition Eq. (C14). All remaining
quantities are defined in Table IX.

Srr
γ ¼ fBϖα̃Ijðα̃xÞ þ Cjðj − 1ÞIjðα̃xÞ=x2 − ½Bðjþ 1Þϖ − Cjα̃�Ijþ1ðα̃xÞ=xþ Aβ̃2Ijðβ̃xÞ þ Ajðj − 1ÞIjðβ̃xÞ=x2−Aβ̃Ijþ1ðβ̃xÞ=xg=R

Sφφ
γ ¼ f−Cjðj − 1ÞIjðα̃xÞ=x2 þ ½Bðjþ 1Þϖ − Cjα̃�Ijþ1ðα̃xÞ=x − Ajðj − 1ÞIjðβ̃xÞ=x2 þ Aβ̃Ijþ1ðβ̃xÞ=xg=R
Szz
γ ¼ ½−Bϖα̃Ijðα̃xÞ − Aϖ2Ijðβ̃xÞ�=R

Srφ
γ ¼f−iðBϖα̃−Cα̃2ÞIjðα̃xÞ=2þ iCjðj−1ÞIjðα̃xÞ=x2þ i½Bðjþ1Þϖ−Cα̃�Ijþ1ðα̃xÞ=xþ iAjðj−1ÞIjðβ̃xÞ=x2þiAjβ̃Ijþ1ðβ̃xÞ=xg=R

Srz
γ ¼ ½ijðBα̃þ CϖÞIjðα̃xÞ=2xþ iBðα̃2 þϖ2ÞIjþ1ðα̃xÞ=2þ ijAϖIjðβ̃xÞ=xþ iAϖβ̃Ijþ1ðβ̃xÞ�=R

Sφz
γ ¼ ½−jðBα̃þ CϖÞIjðα̃xÞ=2xþ ðBϖ2 − Cϖα̃ÞIjþ1ðα̃xÞ=2 − AjϖIjðβ̃xÞ=x�=R
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The density of states therefore diverges as p → 0, which
leads to a strong coupling between F11 modes and trapped
atoms, as we discuss in Sec. III. The normalized radial
partial waves are

Wr
γðrÞ ≃

1

R
;

Wφ
γ ðrÞ ≃ ij

R
;

Wz
γðrÞ ≃ −

ip
R
r ðC34Þ

to linear order in pr. Figures 6(c) and 6(e) show the
displacement caused by an F11 mode.
As we discuss in Sec. III, there is experimental evidence

that low-frequency T01 modes are reflected at the tapered
ends of the nanofiber, resulting in standing waves confined
to the nanofiber region and discrete mechanical resonance
frequencies. Likewise, we are interested in F11 modes
confined to the nanofiber as a way of reducing the atom
heating. In order to obtain the corresponding phononic
eigenmodes, it is in principle necessary to account for the
two tapers that connect the nanofiber region to the regular
macroscopic glass fiber and to solve the phononic eigen-
mode equation for this more complex geometry [34,79].
Here, we approximate the desired behavior by imposing
periodic boundary conditions on the eigenmodes of an
infinite cylinder and require the displacement to vanish at
the beginning (z ¼ 0) and the end of the nanofiber (z ¼ L).
This condition can be met for all three fundamental modes
when approximating the radial partial waves Eqs. (C32) and
(C34) to constant order inpr, which is a good approximation
for a nanofiber; compare Fig. 6. The resulting eigenmodes
and corresponding strain modal fields are then of the form

wγðrÞ ¼
WγðrÞffiffiffiffiffiffi

πL
p sinðpmzÞeijφ;

sγðrÞ ¼
SγðrÞffiffiffiffiffiffi
πL

p cosðpmzÞeijφ ðC35Þ

instead of Eq. (C13), where L is the length of the nanofiber.
Torsional resonances in particular appear at ωm ¼ mπct=L.
The propagation constant can take only the discrete values

pm ¼ mπ=L; m ∈ N; ðC36Þ

which form a subset of each fundamental band. The
normalization condition Eq. (C14) for the radial partial
waves is unchanged.

APPENDIX D: ATOM-PHONON INTERACTION

There are two mechanisms that lead to atom-phonon
interaction, as we discuss in Sec. II of this article: dp and st.
In consequence, the coupling functions gγðrÞ appearing in
the interaction Hamiltonian Eq. (6), as well as the coupling

constants gγi appearing in the linear-force interaction
Hamiltonian Eq. (7) have two contributions:

gγðrÞ ¼ gdpγ ðrÞ þ gstγ ðrÞ;
gγi ¼ gdpγi þ gstγi: ðD1Þ

In Appendixes D 1 and D 2, we model the dependence of
the potential V experienced by the atom on displacement
u and strain S in the case of a two-color nanofiber-based
atom trap. This model then enables us to derive explicit
expressions for the coupling functions and the atom-
phonon coupling constants. Appendix D 3 provides addi-
tional details on how to calculate phonon-induced atom
heating rates once the coupling constants are known.

1. Displacement coupling

Only modes on the three fundamental phonon bands T01,
L01, and F11 of the nanofiber introduced in Appendix C 2
have frequencies comparable to those of an atom moving in
a nanofiber-based trap and will therefore interact signifi-
cantly with the atom. Modes on the longitudinal L01 band
and on the flexural F11 band lead to a displacement of the
surface at first order in u. Modes on the torsional T01 band
[Fig. 6(a)] lead to a change of the fiber radius of second
order because u is orthogonal to the surface normal. In
consequence, only the longitudinal and flexural modes will
interact with the atom through displacement coupling in the
linearized Hamiltonian Eq. (5).
The L01 modes [Fig. 6(b)] lead to a z-dependent

modulation of the fiber radius by the radial displacement
on the fiber surface urðr ¼ R; zÞ, without displacing the
fiber axis. The change in radius has two effects: First, it
shifts the surface of the fiber together with the electro-
magnetic fields surrounding it relative to the trapped atom.
Second, it leads to new photonic eigenmodes and therefore
deforms the electromagnetic fields. As we discuss in
Sec. II, we neglect the second effect and assume that both
optical and surface potentials are shifted radially by
urðR; zÞer without being deformed.
The F11 modes [Fig. 6(c)] displace the entire fiber cross

section in the plane orthogonal to the fiber axis by
urðR;φ; zÞer þ uφðR;φ; zÞeφ without changing the fiber
radius. Since the wavelengths of the relevant vibrations are
much larger than the optical wavelengths, the fiber appears
approximately unchanged on length scales relevant for the
photon modes. We can therefore again neglect deforma-
tions of the photon eigenmodes and model the effect of the
flexural mode as a displacement of the entire potential
along with the fiber cross section.
The effect of the fundamental modes is thus to shift the

potential at position r by a vector ΔuðrÞ that depends on
the phonon field on the fiber surface. The direct depend-
ence of the potential on the displacement can then be
modeled as [67]
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V½u; S�ðrÞ≡ V½0; S�½r − ΔuðrÞ�: ðD2Þ

The entire potential is shifted due to displacement of the
fiber surface in addition to any changes to the potential that
arise from the strain S caused by displacement inside the
fiber. This model allows us to evaluate the displacement
coupling term in Eq. (5): The functional derivative reduces
to conventional partial derivatives of the unperturbed
potential V0 and

δuVð0;0Þ½û�ðr̂Þ ¼ −Δûðr̂Þ ·∇V0ðr̂Þ: ðD3Þ

By expanding the displacement field in terms of the fiber
eigenmodes [see Eq. (C9)], the shifts due to the funda-
mental phonon modes can be summarized as

ΔûðrÞ≡X
γ

Uγf½wr
γðR;φ;zÞerþδfFw

φ
γ ðR;φ;zÞeφ�b̂γþH:c:g:

ðD4Þ

Here, Uγ is the displacement mode density and wγ the
phonon eigenmodes Eq. (C13). The Kronecker symbol δfF
selects the flexural mode family f ¼ F. This equation holds
for all three fundamental bands since wrðrÞ ¼ wφðrÞ ¼ 0
for torsional modes. The resulting displacement coupling
function in Eqs. (6) and (D1) is

gdpγ ðrÞ¼−Uγ

�
wr
γðR;φ;zÞ∂rV0ðrÞþδfFw

φ
γ ðR;φ;zÞ∂φ

r
V0ðrÞ

�
:

ðD5Þ

The corresponding displacement coupling constants
for nanofiber-trapped atoms obtained from Eqs. (8) and
(D5) are

gdpγr ¼ −
ωr

2

�
Uγwr

0

Δr
þ δfF

�
ωrφ

ωr

�
2 Uγw

φ
0

Δr

�
;

gdpγφ ¼ −
ωφ

2

�
δfF

Uγw
φ
0

r0Δφ
þ
�
ωrφ

ωφ

�
2 Uγwr

0

r0Δφ

�
;

gdpγz ¼ −
ωz

2

��
ωrz

ωz

�
2 Uγwr

0

Δz
þ δfF

�
ωφz

ωz

�
2 Uγw

φ
0

Δz

�
; ðD6Þ

where

wr
0 ≡ wr

γðR;φ0; z0Þ; wφ
0 ≡ wφ

γ ðR;φ0; z0Þ ðD7Þ

are the displacement modal fields evaluated on the fiber
surface. Note that the model predicts only coupling
between phonons and the axial motion of the atom if
ωφz ≠ 0 or ωφz ≠ 0, that is, if the potential has symmetries
misaligned with the cylindrical coordinate axes.
We can derive explicit expressions for the displacement

coupling constants by using the approximate expressions

for the displacement field of modes on the fundamental
phonon bands L01 and F11 given in Appendix C 2. In case
the cross-couplings ωij are negligible, the coupling con-
stant of the radial atomic motion to an L01 phonon mode
Eq. (32) of frequency ωγ is

jgdpLrj≡ ν

2πch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω3

rωγ

2ρ

s
; ðD8Þ

and there is no coupling to the azimuthal and axial motion
gdpLφ ¼ gdpLz ¼ 0. The coupling constant of the radial and
azimuthal motion to an F11 phonon mode Eq. (C34) is

jgdpFij ¼
1

4πR

ffiffiffiffiffiffiffiffiffiffi
Mω3

i

ρωγ

s
; i ∈ fr;φg; ðD9Þ

and there is no coupling to the axial motion gdpFz ¼ 0.
The model Eq. (D2) relies on the simple geometrical

shape of the nanofiber and the symmetries of its funda-
mental mechanical modes. Nanophotonic structures that
have more complex geometries in general require a more
careful analysis of the change of optical and dispersion
potentials. The variation of the optical potential, for
instance, can be modeled more generally by perturbatively
calculating the new photonic eigenmodes in the presence of
shifted boundaries of the nanostructure [66]. We choose a
similar approach in the next section to obtain the perturbed
eigenmodes in the presence of a modified permittivity but
unchanged boundaries.

2. Strain coupling

All three fundamental phonon bands T01, L01, and F11 of
the nanofiber induce strain in the fiber. In order to evaluate
the strain coupling term δVð0;0Þ½S� in Eq. (5), we model how
each phonon mode changes the potential through the strain
it causes. We neglect the influence of strain on the surface
forces δSVadð0;0Þ½S� ¼ 0, as we discuss in Sec. II. The strain
dependence then arises only from changes of the red- and
blue-detuned optical potentials. A nonzero strain changes
the electromagnetic properties of the fiber due to the
photoelastic effect, which we model through a strain-
dependent permittivity tensor ϵ̄½S� [34,68,69,78]. A modi-
fied permittivity leads to new photonic eigenmodes and
electric modal fields ēη½ϵ̄�, and therefore, to modified
electric fields Ē0½fēηg� surrounding the fiber. In conse-
quence, the optical potential Vr

opt½Ēr
0� þ Vb

opt½Ēb
0� created by

the red- and blue-detuned light field is changed, and the
potential V½u; S� ultimately depends on strain.
The photoelastic effect can be quantified by a tensor P of

fourth rank called the photoelastic tensor, which phenom-
enologically describes how the optical properties of a
material change under strain [68]:
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ðϵ̄−1Þij½S� ¼
�
ðϵ−1Þij þ

X
kl

PijklSkl
�
; ðD10Þ

where the exponent ð−1Þ indicates the inverse tensor. The
photoelastic tensor has symmetries Pijkl ¼ Pjikl ¼ Pijlk

and therefore possesses at most 36 independent compo-
nents [68]. We use a compact index notation to group the
first pair of indices ij≡ ðNÞ and the second pair of indices
kl≡ ðMÞ according to 11≡ ð1Þ, 22≡ ð2Þ, 33≡ ð3Þ,
12; 21≡ ð4Þ, 13; 31≡ ð5Þ, and 23; 32≡ ð6Þ. The indepen-
dent components can then be arranged in a 6 × 6 matrix
ðPÞ, where N corresponds to the row and M to the column
number. For materials like silica that exhibit a homo-
geneous and isotropic photoelastic effect, the components
of the photoelasticity tensor P in both Cartesian and
cylindrical coordinates are [112]

ðPÞ ¼

0
BBBBBBBBBB@

P1 P2 P2 0 0 0

P2 P1 P2 0 0 0

P2 P2 P1 0 0 0

0 0 0 P3 0 0

0 0 0 0 P3 0

0 0 0 0 0 P3

1
CCCCCCCCCCA
; ðD11Þ

where P1, P2 ∈ R and P3 ¼ ðP1 − P2Þ=2.
We are interested in the strain-induced variation Δϵ≡

ϵ̄½S� − ϵ of the permittivity tensor. To linear order in the
strain,

Δϵij ≃ ðDϵ̄ijÞ0½S� ¼ −ϵ2
X
kl

PijklSkl ðD12Þ

for a medium that is isotropic while unperturbed ϵ ¼ ϵ1.
The new photonic eigenmodes ā½ϵ̄� in the presence of a

modified permittivity ϵ̄ are solutions to the photonic
eigenmode equation

Dāη ¼ −d̄ηϵ̄āη: ðD13Þ

Compare Eq. (A3), where d̄η ¼ ω̄2
η=c2 and ω̄η are the

frequencies of the perturbed eigenmodes. We are interested
in the new eigenmodes āη and eigenvalues d̄η in the
presence of a perturbation Δϵ of the permittivity tensor.
To this end, we perturbatively expand both eigenmodes and
eigenvalues in orders n of Δϵ, analogous to time-indepen-
dent perturbation theory in quantum mechanics [113]:

d̄η ≡ dη þ Δdη; Δdη ≡
X
n

dðnÞη ; ðD14Þ

āη ≡ caη þ Δaη; Δaη ≡
X
n

aðnÞη : ðD15Þ

The normalization constant c ∈ C is found by normalizing
the perturbed eigenmode āη. This expansion, in conjunction
with Eq. (D13) and the orthogonality relation Eq. (A4),
leads to the relations

Δdη ¼ −dη
ðaηjΔϵāηÞ

ðaηjðϵþ ΔϵÞāηÞ
ðD16Þ

and

Δaη ¼
X
η0≠η

ϵ−1

dη0 − dη
½dηðaη0 jϵΔϵāηÞ

þ Δdηðaη0 jϵðϵþ ΔϵÞāηÞ�aη0 ðD17Þ

for the corrections to eigenvalues and eigenmodes. The
bracket indicates the L2 scalar product,

ðAjbÞ ¼
Z

A� · bdr: ðD18Þ

Equation (D17) holds provided the perturbed
eigenmode āη does not overlap with modes aη0 degenerate
with the unperturbed mode aη, that is, dη0 ¼ dη only if
ðaη0 jϵΔϵāηÞ ¼ 0 ¼ ðaη0 jϵðϵþ ΔϵÞāηÞ. The corrections Δdη
and Δaη can be obtained order by order in Δϵ. The first-
order correction to the eigenvalue is

dð1Þη ¼ −dη
ðaηjΔϵaηÞ
ðaηjϵaηÞ

; ðD19Þ

which reduces to the known formula for first-order
corrections of the eigenfrequency in case of isotropic
permittivities ϵ, ϵ̄ [86]. The first-order correction to the
eigenmode is

að1Þη ¼
X
η0≠η

ϵ−1

dη0 − dη
½dηðaη0 jϵΔϵaηÞ − dð1Þη ðaη0 jϵ2aηÞ�aη0 ;

ðD20Þ

where we use that c ¼ 1þOðΔϵÞ [113].
In the case study in Sec. III of this article, we are

concerned with the case ϵ ¼ ϵ1. The first-order correction
to the eigenvalue then simplifies to

dð1Þη ¼ −dη

R
a�η · ðΔϵaηÞdrR
a�η · aηdr

: ðD21Þ

Moreover, one can show that the first-order shift is zero for
perturbations of the permittivity caused by nanofiber
phonons of propagation constant p ≠ 0, so
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að1Þη ¼
X
η0≠η

aη0
dη

dη0 − dη

Z
a�η0 · ðΔϵaηÞdr: ðD22Þ

Consider, for example, a mode on the HE11 band of a fiber;
see Fig. 3(b). Fiber phonon modes with azimuthal order
j ¼ 0 lead to the population of photon modes on the same
band, at slightly different propagation constants k. Phonon
modes with azimuthal order j ¼ �1, on the other hand, can
populate modes on the TE01, TM01, and HE21 bands shown
Figs. 3(a) and 3(c). We neglect coupling to radiative modes
(leading to phonon-induced transmission losses), since
radiative fields are extended, with low amplitudes, and
interact only very weakly with the atom.
Having obtained the first-order correction to the photonic

eigenmodes, we can now approximate variation Δeη of the
electric modal field due to the modified permittivity. Using

Eq. (A6), Δeη ≃ iðDāηÞϵ½Δϵ�=ϵ0 ¼ iað1Þη =ϵ0 to linear order
in the permittivity. The variation of the electric modal field
is thus,

Δeη ≃
X
η0≠η

eη0
ω2
η

ω2
η0 − ω2

η

Z
aη0 · ðΔϵaηÞdr ðD23Þ

for nanofiber eigenmodes.
The light coupled into the fiber determines the frequen-

cies at which photonic modes are populated. Since there are
no frequency shifts of the eigenmodes at first order in Δϵ,
we can assume that the amplitude αη of each photonic mode
remains unchanged, while its spatial form ēη is periodically
modified by the vibrations. The modified complex field
profile of a monochromatic light field is therefore,

Ē0½fēηg� ≃
X
η

αηēη: ðD24Þ

To linear order in the modal fields, the variation of the field
profile ΔE0 ≡ Ē0 − E0 is

ΔE0 ≃
X
η

ðδēηĒ0Þeη ½fΔeηg� ¼
X
η

αηΔeη: ðD25Þ

The changed electric fields lead to a changed optical
potential Vr

opt½Ēr
0� þ Vb

opt½Ēb
0�. We can now use the chain

rule to express the strain coupling term in the interaction
Hamiltonian Eq. (5) through the derivative of the optical
potential with respect to the electric fields [114]:

δSVð0;0Þ½S� ¼ ðDVr
optÞEr

0
½ΔEr

0� þ ðDVb
optÞEb

0
½ΔEb

0�: ðD26Þ

Each optical potential is the sum of scalar, vector, and
tensor light shift; see Eq. (B4). Thus,

δSVð0;0Þ½S� ¼
X
j

ðDVr
jÞEr

0
½ΔEr

0� þ ðDVb
j ÞEb

0
½ΔEb

0�; ðD27Þ

where j ∈ fs; v; tg for the scalar, vector, and tensor
contributions given in Eqs. (B5), (B6), and (B8). The
functional derivatives of the light shifts reduce to conven-
tional derivatives. For each of the two colors, the derivative
of the scalar light shift is

ðDVsÞE0
½ΔE0� ¼ −αs½E�

0ðrÞ · ΔE0ðrÞ þ c:c:�; ðD28Þ

the derivative of the vector light shift

ðDVvÞE0
½ΔE0� ¼−

αv
2i
MF

F
½E�

0ðrÞ×ΔE0ðrÞ− c:c:� · zB;
ðD29Þ

and the derivative of the tensor light shift

ðDVtÞE0
½ΔE0� ¼ −3αt

3M2
F − FðF þ 1Þ
2Fð2F − 1Þ

× ½E�zB
0 ðrÞΔEzB

0 ðrÞ þ c:c:�: ðD30Þ

Finally, the strain coupling functions gstγ ðrÞ are obtained
by making the dependence on strain explicit in Eqs. (D28)–
(D30) and by expanding the strain operator Eq. (C12) in
terms of the strain modal fields sγ of a nanofiber. The strain
coupling function then has contributions from the three
light shifts j ∈ fs; v; tg for both light colors fr; bg:

gstγ ðrÞ ¼
X
j

½grjγ ðrÞ þ gbjγ ðrÞ�: ðD31Þ

The contributions of the three light shifts to the coupling
functions are listed in Table XVI for a monochromatic light
field. Note that the difference between running waves
Eq. (C13) and standing waves Eq. (C35) leads to different
coupling functions for discrete modes on the T01 band on
one hand and modes on the continuous L01 and F11 bands
on the other hand. The corresponding strain coupling
constants gstγi are obtained using the definition Eq. (8).
To conclude the derivation of the strain coupling, let us

illustrate the strain-induced change of the potential due to
the photoelastic effect. To first order, the change is given by
the strain coupling term δSVð0;0Þ½Ŝ�ðrÞ. We consider the
nanofiber to undergo macroscopic vibrations described by
the multimode coherent state jβi with amplitudes βγ ¼
jβγjeiϕγ ∈ C for each mode. The expectation value of the
change caused by strain is then

hβ;tjδSVð0;0Þ½Ŝ�ðrÞjβ;ti
¼2

X
γ

jβγj½cosðωγt−ϕγÞRegstγ ðrÞ−sinðωγt−ϕγÞImgstγ ðrÞ�:

ðD32Þ

The coupling function gstγ ðrÞ therefore describes the
change to the potential V due to a phonon mode γ. We
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plot V0ðrÞ þ 2βγRegstγ ðrÞ in Fig. 7 as an example of how
strain due to a single torsional mode γ perturbs the
potential. The torsional mode qualitatively leads to rotation
of the potential around the fiber axis, which results in a
coupling between the torsional mode and the atom motion
in the azimuthal and radial direction.

3. Atom heating

Let us consider an atom trapped in the optical near field
of a nanofiber of temperature T. We assume that the atom is
in the motional pure quantum ground state μ̂0 of the
harmonic trap at time t ¼ 0. At the same time, the phonon
field of the fiber is in the thermal quantum state σ̂th ≡
expð−Ĥphn=kBTÞ=tr½expð−Ĥphn=kBTÞ� [72]. Over time, the
atom acquires energy by absorbing phonons from the
fiber, reflected in the increase of the expected number of
motional quanta (population) niðtÞ≡ tr½ρ̂ðtÞâ†i âi� along the
spatial direction i ∈ fr;φ; zg. Here, ρ̂ðtÞ is the state
operator of the coupled atom-phonon system at times t,
and tr is the trace. The population is initially zero. The
evolution of ρ̂ðtÞ from the initial state ρ̂0 ¼ μ̂0 ⊗ σ̂th is
governed by the full Hamiltonian Eq. (1). Provided the
atom-phonon coupling is weak gγi ≪ ωi;ωγ , the popula-
tion grows linearly for sufficiently short times t > 0, with
the phonon-induced ground-state heating rate Γth

i in trap

TABLE XVI. Atom-phonon coupling functions due to strain in a nanofiber-based atom trap. The coupling functions correspond to
scalar, vector, and tensor light shift induced by a single monochromatic light field of frequency ω0 and complex field profile E0. All
symbols are defined in Appendixes A, C, and D. In particular, the photon mode indices are η ¼ ðm; f; k; nÞ as defined in Eq. (A15), and
the phonon mode indices γ ¼ ðj; f; p; nÞ as defined in Eq. (C27). The index η designates an unperturbed eigenmode, while the primed
index η0 labels modes perturbatively populated due to strain.

Continuous phonon modes: f ¼ L, F

gsγðrÞ ¼ −αs½E�
0ðrÞ · ΔE−

γ ðrÞ þ E0ðrÞ · ΔEþ�
γ ðrÞ�

gvγ ðrÞ ¼ −ðαv=2iÞðMF=FÞ½E�
0ðrÞ × ΔE−

γ ðrÞ − E0ðrÞ × ΔEþ�
γ ðrÞ� · zB

gtγðrÞ ¼ −3αtf½3M2
F − FðF − 1Þ�=½2Fð2F þ 1Þ�g½E�zB

0 ðrÞΔE−zB
γ ðrÞ þ EzB

0 ðrÞΔEþ�zB
γ ðrÞ�

ΔE�
γ ðrÞ ¼ −

P
ηf0n0αηA

�
η0γηeη0 ðrÞjm0¼m�j

k0¼k�p

A−
η0γη ¼ ½ω2

0=ðω2
η0 − ω2

0Þ�½Uγ=ð2πÞ�ϵ2
R
R
0 ½ra�η0 ðrÞPSγðrÞaηðrÞ�dr

Aþ
η0γη ¼ ½ω2

0=ðω2
η0 − ω2

0Þ�½Uγ=ð2πÞ�ϵ2
R
R
0 ½ra�η0 ðrÞPS�

γ ðrÞaηðrÞ�dr
Discrete phonon modes: f ¼ T

gsγðrÞ ¼ −2αsRe½E�
0ðrÞ · ΔEγðrÞ�

gvγ ðrÞ ¼ −αvðMF=FÞIm½E�
0ðrÞ × ΔEγðrÞ� · zB

gtγðrÞ ¼ −6αtf½3M2
F − FðF − 1Þ�=½2Fð2F þ 1Þ�gRe½E�zB

0 ðrÞΔEzB
γ ðrÞ�

ΔEγðrÞ ¼ 1
2
½ΔE−

γ ðrÞ þ ΔEþ
γ ðrÞ�

ΔE�
γ ðrÞ ¼ −

P
ηf0n0αηAη0γηeη0 ðrÞjm0¼m�j

k0¼k�p

Aη0γη ¼ ½ω2
0=ðω2

η0 − ω2
0Þ�½Uγ=ð

ffiffiffiffiffiffi
πL

p Þ�ϵ2 R R
0 ½ra�η0 ðrÞPSγðrÞaηðrÞ�dr

a�η0PSγaη ¼ arηar�η0 ½P1Srr
γ þ P2ðSφφ

γ þ Szz
γ Þ� þ aφηa

φ�
η0 ½P1S

φφ
γ þ P2ðSrr

γ þ Szz
γ Þ� þ azηa

z�
η0 ½P1Szz

γ þ P2ðSrr
γ þ Sφφ

γ Þ�
þ ðarηaφ�η0 þ aφηar�η0 ÞðP1 − P2ÞSrφ

γ þ ðarηaz�η0 þ azηar�η0 ÞðP1 − P2ÞSrz
γ þ ðaφηaz�η0 þ azηa

φ�
η0 ÞðP1 − P2ÞSφz

γ

FIG. 7. Potential V0ðrÞ þ 2βγRegstγ ðrÞ perturbed by strain due
to the single, coherently excited torsional mode γ of a nanofiber.
The potential is evaluated at the trap minimum z0 close to the
center of the nanofiber. The mode γ is the discrete torsional mode
closest to resonance with the atom trap in the azimuthal direction;
see Appendix E for the parameters. The amplitude βγ of the
coherent excitation is exaggerated to an unphysical value such
that the effect is visible at the given scales. It is apparent that the
torsional mode couples to the atomic motion both in the radial
and azimuthal direction. However, the contribution to the atom
heating rate turns out to be negligible; see Sec. III.
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direction i. As we discuss in Sec. II, we distinguish the
contributions of continuous phonon bands and discrete
mechanical resonances to the atom heating rate,

Γth
i ¼ Γc

i þ Γd
i : ðD33Þ

Fermi’s golden rule Eq. (11) can be used to calculate the
contribution of the continuous phonon bands. For a nano-
fiber, there are only two continuous phonon bands resonant
with the trapped atom: the longitudinal L01 band and the
flexural F11 band. In consequence,

Γc
i ¼ ΓLi þ ΓFi: ðD34Þ

The L01 band has dispersion relation ωγ ¼ chjpj in the low-
frequency limit [see Eq. (30)], resulting in a constant density
of state ρL ≡ 1=ch. There are two resonant longitudinal
modes γσz at each trap frequency ωi, with propagation
constants p ¼ σzωi=ch and σz ¼ �. The contribution of
longitudinal phonon modes to the ground-state heating
rate is thus,

ΓLi ¼
2πn̄i
ch

X
σz

jgγσz ij2: ðD35Þ

The F11 band has dispersion relation ωγ ¼ chRp2=2 in the
low-frequency limit [see Eq. (C33)], resulting in the density
of states ρFi ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωichR

p
. There are four resonant flexural

modes propagating in direction σz ¼ � and of σφ ¼ �
circular polarization. The corresponding azimuthal order is
j ¼ σφσz, and the propagation constant p ¼ σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωi=chR

p
.

The ground-state heating rate due to the fundamental
flexural phonon modes then simplifies to

ΓFi ¼
2πn̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωichR

p
X
σφ;σz

jgγσφσz ij2: ðD36Þ

The contribution of each mode γi on the continuous phonon
bands to the heating rate Eq. (11) is proportional to the
density of states ργi . Since the F11 band is asymptotically
quadratic [see Fig. 5(c)], the density of states of the flexural
modes diverges as ωi → 0. This dependence is reflected by
ΓFi ∝ 1=

ffiffiffiffiffi
ωi

p
in Eq. (D36). On the other hand, the density

of states of the longitudinal modes is constant because the
L01 has a linear asymptote in the low-frequency limit; see
Fig. 5(b). The effect of flexural modes is therefore enhanced
in comparison with longitudinal modes for atom-trap
frequencies ωi that are small compared to the frequency
scale of the phonon bands. Moreover, the contribution of
strain coupling is negligible for flexural modes. Using the
displacement coupling constants Eq. (D9) in Eq. (D36)
yields the formula Eq. (15) for the atom heating rate due to
flexural modes, which is sufficient to explain heating rates
observed in experiments; see Sec. III.

The discrete torsional modes are not reflected perfectly at
the end of the nanofiber and therefore have a finite lifetime
corresponding to decay rates κγ . This behavior can be
modeled by including dissipation in the dynamics of the
phonon field. The evolution of the density matrix ρ̂ of
the coupled atom-phonon system is then governed by the
master equation [71]

d
dt
ρ̂ðtÞ¼ 1

iℏ
½Ĥ; ρ̂�þ

X
γ

κγðn̄γ þ1ÞDb̂γ
ðρ̂Þþ

X
γ

κγn̄γDb̂†γ
ðρ̂Þ

ðD37Þ

with dissipator

Dâðρ̂Þ≡ â ρ̂ â† −
1

2
fâ†â; ρ̂g: ðD38Þ

Here, the sum runs over all discrete phonon modes γ, ½·; ·�
indicates the commutator, and f·; ·g the anticommutator.
This model captures the essential features of the discrete
phonon modes: The steady state of the phonon modes in the
absence of atom-phonon interaction is a thermal state σ̂th
with thermal phonon occupation n̄γ for each mode [71].
Furthermore, if a phonon mode initially has occupation n0γ ,
it decays with rate κγ back to the thermal phonon occu-
pation nγðtÞ ¼ n̄γ þ ðn0γ − n̄γÞe−κγt. We are interested in the
effective dynamics of the atom density operator μ̂ under
the assumption that the phonons remain in a thermal state.
The total density operator is then ρ̂ðtÞ ≃ μ̂ðtÞ ⊗ σ̂th.
Adiabatic elimination of the phonon d.o.f. in the limit of
weak coupling compared to the phonon decay rates and
atom and phonon frequencies κγ , ωγ , ωi ≫ gγi yields the
master equation

d
dt

μ̂ðtÞ ¼ 1

iℏ
½Ĥat; μ̂� þ

X
i

Γ−
i Dâiðμ̂Þ þ

X
i

Γþ
i Dâ†i

ðμ̂Þ

ðD39Þ

for the motion of the atom [73,74]. Here, Ĥat contains a
small Lamb shift of the trap frequencies that is not relevant
to our discussion. The phonon-induced decay (−) and
heating (þ) rates are

Γ�
i ≡ 2

X
γ

jgγij2½n̄γG∓
γi þ ðn̄γ þ 1ÞG�

γi�;

G�
γi ≡ 2κγ

κ2γ þ 4ðωi � ωγÞ2
: ðD40Þ

If the atom is initially in the motional ground state
and there is no cross-coupling between the motional
directions (gij ¼ 0), the population of its motion in direc-
tion i evolves as niðtÞ ¼ n∞i ð1 − e−ΓtÞ, with Γ≡ Γ−

i − Γþ
i

and n∞i ≡ Γþ
i =Γ. At times t ≪ Γ, the population grows
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linearly, with ground-state heating rate Γd
i ¼ Γþ

i . The total
phonon-induced heating rate Γth

i of the atomic motion along
direction i is then obtained according to Eq. (10) by
summing Γd

i with the contribution Γc
i of the continuous

modes in Eq. (D34).
One approach to reducing the atom heating rate is to

optimize the nanofiber such that flexural modes are also
reflected at the ends; see Sec. III. The flexural eigenmodes
then become standing waves Eq. (35) with frequency
spectrum ωm, m ∈ N given in Eq. (16), and decay rates
κm. If the spacing between resonator frequencies is suffi-
ciently large, the trap frequencies ωi can be detuned from
resonance with the flexural modes jωi − ωmj ≫ κm. The
spacing of phonon frequencies close to the trap frequency is
approximately 2

ffiffiffiffiffiffiffiffiffiffi
ωiω1

p þ ω1, where ω1 is the fundamental
frequency of the resonator defined in Eq. (16); the shorter
the resonator and the larger the fiber radius, the easier it is
to detune the trap from resonance. Provided the coupling
rates gmi between phonon mode m and atomic motion in
direction i ∈ fr;φg are smaller than phonon decay rates κm
and atom and phonon frequencies gmi ≪ κm;ωm;ωi, the
effective dynamics of the atom is described by a master
equation of the form Eq. (D39). The heating rate in the
radial and azimuthal direction due to the flexural resonator
modes of an atom at position z0 is then

Γth
i ≃ 4

X
m∈N

jgmiðz0Þj2½n̄mG−
mi þ ðn̄m þ 1ÞGþ

miÞ�; ðD41Þ

with a position-dependent displacement coupling constant

gmiðzÞ ¼ −
ωi

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
πLρ

ωi

ωm

s
sinðpmzÞ ðD42Þ

and G�
mi as defined in Eq. (D40). The atom heating rate due

to flexural resonances Eq. (D41) can be explicitly evaluated
in different limiting cases, yielding the heating rates
Eqs. (17)–(19) that we discuss in Sec. III.

APPENDIX E: CASE STUDY PARAMETERS

In nanofiber-based two-color atom traps, different com-
binations of linearly and circularly polarized trapping light
fields are commonly used, both as propagating or standing
waves [77]. In Appendix E 1, we summarize the corre-
sponding shapes of the electric field required for the atom
heating case study in Sec. III. In Appendix E 2, we provide
a listing of the parameters used in the case study based
on Ref. [26].

1. Monochromatic guided fields

For each frequency ω on the HEjmjn and EHjmjn bands,
there are four degenerate eigenmodes propagating in the
positive (σz ¼ 1) or negative (σz ¼ −1) direction along the
z axis and rotating with positive (σφ ¼ 1) or negative

(σφ ¼ −1) orientation around the fiber axis. The corre-
sponding propagation constant is kσ ¼ σzk with k > 0, and
the azimuthal order mσ ¼ σzσφm with m > 0. The multi-
index σ ¼ ðσφ; σzÞ is used to distinguish the propagation
and polarization state. Superposition of these four modes
yields a monochromatic electromagnetic field

Eðr; tÞ ¼ E0ðrÞe−iωt þ c:c:;

Bðr; tÞ ¼ B0ðrÞe−iωt þ c:c:; ðE1Þ

with complex field profiles

E0ðrÞ ¼
X
σ

ασemσ
ðkσ; rÞ;

B0ðrÞ ¼
X
σ

ασbmσ
ðkσ; rÞ: ðE2Þ

Here, ασ ∈ C are amplitudes, and emσ
ðkσ; rÞ, bmσ

ðkσ; rÞ are
modal fields Eq. (A9) with radial partial waves listed in
Table VI. We drop all irrelevant mode indices, keeping mσ

and kσ. The overall magnitude of the amplitudes is related
to the power transmitted along the fiber axis ez,

P ¼
Z

2π

0

Z
∞

0

Iðr;φÞdrdφ: ðE3Þ

Here, I ¼ hSit · ez is light intensity in direction ez, and
hSit ¼ 2Re½E0ðrÞ × B�

0ðrÞ�=μ0 is the Poynting vector aver-
aged over an oscillation period. The star indicates the
complex conjugate, and μ0 is the vacuum permeability.
A light field rotating with orientation σφ around the fiber

axis and propagating in direction σzez is realized by the
amplitudes

ασ0 ¼ ðσφσzÞm2παeiθδσφσ0φδσzσ0z ; ðE4Þ

where α ∈ R, and θ ∈ R is the overall phase of the wave.
We include a factor of 2π and the sign ðσφσzÞm for later
convenience. The field profile and resulting electric field
are given by case (1) in Table XVII. The power transmitted
along the fiber axis can be expressed as

P¼−σz
4πα2

μ0

Z
∞

0

r½Er
mðk;rÞBφ

mðk;rÞþEφ
mðk;rÞBr

mðk;rÞ�dr

ðE5Þ

using the symmetries Eq. (A14).
A nonrotating light field propagating in direction σz

corresponds to the choice of amplitudes

ασ0 ¼ ðσ0φσzÞm2παeiðσ0φσzθφþθÞδσzσ0z ; ðE6Þ

and the resulting electric field is given by case (2) in
Table XVII. The phase θφ ∈ R determines the orientation
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of the wave in the ðx; yÞ plane. For azimuthal order jmj ¼ 1
in particular, the electric field is mainly oriented along an
axis in the ðx; yÞ plane that encloses the angle θφ with the x
axis. These waves are therefore called quasilinear polar-
ized. The transmitted power is 2P as given in Eq. (E5).
Two counterpropagating quasilinear waves create a

standing wave corresponding to the amplitudes

ασ ¼ ðσφσzÞm2παeiðσφσzθφþσzθzþθÞ: ðE7Þ

The phase θz ∈ R determines the position of nodes of the
standing wave along the fiber axis. The electric field is

given by case (3) in Table XVII. The power transmitted
along the fiber axis vanishes, but each counterpropagating
wave has again power 2P as given in Eq. (E5).

2. Physical parameters

In Table XVIII we list the parameters used in the case
study Sec. III based on the setup described in Ref. [26].
Citations are given in square brackets and references
to equations used to calculate dependent parameters in
parentheses. A star indicates that a parameter depends on
previously chosen parameters.

TABLE XVII. Electric fields of monochromatic waves of frequency ω on the HEjmjn and EHjmjn bands. The sign σz indicates the
propagation direction along the fiber axis, the sign σφ the rotation direction around the axis. The propagation constant is kσ ¼ σzk with
k > 0, the azimuthal ordermσ ¼ σφσzm withm > 0, and the amplitude α ∈ R is determined by the transmitted power. The quantities θ,
θφ, θz ∈ R are phases explained in the text. The radial partial waves Ei

mðk; rÞ are listed in Table VI.

Case Field profile Field

(1) Circular polarized running wave

Er
0 ¼ σzαEr

mðk; rÞeiðmσφþkσzþθÞ Er ¼ −σz2αIm½Er
mðk; rÞ� sinðmσφþ kσz − ωtþ θÞ

Eφ ¼ σφαE
φ
mðk; rÞeiðmσφþkσzþθÞ Eφ ¼ σφ2αE

φ
mðk; rÞ cosðmσφþ kσz − ωtþ θÞ

Ez ¼ αEz
mðk; rÞeiðmσφþkσzþθÞ Ez ¼ 2αEz

mðk; rÞ cosðmσφþ kσz − ωtþ θÞ
(2) Nonrotating running wave

Er
0 ¼ σz2αEr

mðk; rÞ cosðmφþ θφÞeiðkσzþθÞ Er ¼ −σz4αIm½Er
mðk; rÞ� cosðmφþ θφÞ sinðkσz − ωtþ θÞ

Eφ
0 ¼ σz2iαE

φ
mðk; rÞ sinðmφþ θφÞeiðkσzþθÞ Eφ ¼ −σz4αE

φ
mðk; rÞ sinðmφþ θφÞ sinðkσz − ωtþ θÞ

Ez
0 ¼ 2αEz

mðk; rÞ cosðmφþ θφÞeiðkσzþθÞ Ez ¼ 4αEz
mðk; rÞ cosðmφþ θφÞ cosðkσz − ωtþ θÞ

(3) Nonrotating standing wave

Er
0 ¼ 4iαEr

mðk; rÞ cosðmφþ θφÞ sinðkzþ θzÞeiθ Er ¼ −8αIm½Er
mðk; rÞ� cosðmφþ θφÞ sinðkzþ θzÞ cosðωtþ θÞ

Eφ
0 ¼ −4αEφ

mðk; rÞ sinðmφþ θφÞ sinðkzþ θzÞeiθ Eφ ¼ −8αEφ
mðk; rÞ sinðmφþ θφÞ sinðkzþ θzÞ cosðωtþ θÞ

Ez
0 ¼ 4αEz

mðk; rÞ cosðmφþ θφÞ cosðkzþ θzÞeiθ Ez ¼ 8αEz
mðk; rÞ cosðmφþ θφÞ cosðkzþ θzÞ cosðωtþ θÞ

TABLE XVIII. Parameters for the case study in Sec. III. A star (⋆) indicates that a parameter depends on previously chosen
parameters.

Parameter Description Source Parameter Description Source

Mechanical
R ¼ 250 nm Fiber radius [26] μ ¼ 31.2 GPa Second Lamé coefficient (C2) ⋆
E ¼ 72.6 GPa Young’s modulus [115] cl ¼ 5.94 × 103 m=s Longitudinal sound speed (C15) ⋆
ν ¼ 0.164 Poisson’s ratio [115] ct ¼ 3.76 × 103 m=s Transverse sound speed (C15) ⋆
ρ ¼ 2.20 g=cm3 Mass density [115] ch ¼ 5.74 × 103 m=s Effective sound speed (C31) ⋆
λ ¼ 15.2 GPa First Lamé coefficient (C2) ⋆
ωT=2π ¼ 258 kHz Fundamental frequency κ=2π ¼ 48.0 Hz Decay rate
Q ¼ 5380 Quality factor ⋆ L ¼ 7.29 mm Effective nanofiber length (E8) ⋆

Optical
ϵ ¼ 2.1 Relative permittivity [4,115]
λr ¼ 1064 nm Free-space wavelength [26] λb ¼ 783 nm Free-space wavelength [26]
ωr=2π ¼ 282 THz Angular frequency ⋆ ωb=2π ¼ 383 THz Angular frequency ⋆

(Table continued)
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The mechanical properties of the silica fiber are deter-
mined by the choice of material. The frequencies of the
discrete torsional modes confined to the nanofiber are
determined experimentally, as we describe in Sec. III. The
(effective) length L of the nanofiber for torsional modes is
inferred from the measured frequency ωT of the funda-
mental torsional mode using Eq. (28):

L ¼ ctπ=ωT: ðE8Þ

The optical properties of the fiber are determined by
permittivity and radius. The power of the red-detuned field
quoted below corresponds to each beam separately. The
coordinate system is chosen such that the red-detuned laser
beam is polarized along the x axis. This is reflected in the
choice of azimuthal phase shifts θφ. Moreover, the axial
phase shift θz is chosen such that there is a trapping site at
z ¼ L=2 in the middle of the fiber. The magnetic offset
field Bext is oriented perpendicular to the fiber axis, along

zB ¼ cosðϕÞex þ sinðϕÞey ðE9Þ

with ϕ ¼ 66°. The potential experienced by the atom
depends on its mass and the polarizability of its internal
hyperfine-structure state; see Appendix B. The values in
Table XVIII correspond to a 133

55 Cs atom in the ground state
62S1=2 interacting with the red-detuned (r) and blue-
detuned (b) light field. The atomic unit of polarizability

is 1 a:u: ¼ ð4πϵ0Þ4ℏ6=ðm3
ele

6Þ ¼ 1.65 × 10−41 A2 s4=kg.
The resulting atom trapping site r0 indicated in Fig. 4 is
slightly shifted away from the x axis by vector light shifts
due to the orientation of the magnetic offset field.
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