
 

Tailoring Surface Codes for Highly Biased Noise

David K. Tuckett ,1 Andrew S. Darmawan,2,3 Christopher T. Chubb,1 Sergey Bravyi,4

Stephen D. Bartlett ,1 and Steven T. Flammia1,5
1Centre for Engineered Quantum Systems, School of Physics, The University of Sydney,

Sydney, New South Wales 2006, Australia
2Yukawa Institute for Theoretical Physics (YITP), Kyoto University,

Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
3JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

4IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
5Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA

(Received 8 January 2019; revised manuscript received 21 August 2019; published 12 November 2019)

The surface code, with a simple modification, exhibits ultrahigh error-correction thresholds when the
noise is biased toward dephasing. Here, we identify features of the surface code responsible for these
ultrahigh thresholds. We provide strong evidence that the threshold error rate of the surface code tracks the
hashing bound exactly for all biases and show how to exploit these features to achieve significant
improvement in the logical failure rate. First, we consider the infinite bias limit, meaning pure dephasing.
We prove that the error threshold of the modified surface code for pure dephasing noise is 50%, i.e., that all
qubits are fully dephased, and this threshold can be achieved by a polynomial time-decoding algorithm. We
demonstrate that the subthreshold behavior of the code depends critically on the precise shape and
boundary conditions of the code. That is, for rectangular surface codes with standard rough or smooth open
boundaries, it is controlled by the parameter g ¼ gcdðj; kÞ, where j and k are dimensions of the surface
code lattice. We demonstrate a significant improvement in the logical failure rate with pure dephasing for
coprime codes that have g ¼ 1 and closely related rotated codes, which have a modified boundary. The
effect is dramatic: The same logical failure rate achievable with a square surface code and n physical qubits
can be obtained with a coprime or rotated surface code using only Oð ffiffiffi

n
p Þ physical qubits. Finally, we use

approximate maximum-likelihood decoding to demonstrate that this improvement persists for a general
Pauli noise biased toward dephasing. In particular, comparing with a square surface code, we observe a
significant improvement in the logical failure rate against biased noise using a rotated surface code with
approximately half the number of physical qubits.

DOI: 10.1103/PhysRevX.9.041031 Subject Areas: Quantum Information

I. INTRODUCTION

Quantum error-correcting codes are expected to play a
fundamental role in enabling quantum computers to operate
at a large scale in the presence of noise. The surface code
[1], an example of a topological stabilizer code [2], is one
of the most studied and promising candidates, giving
excellence performance for error correction while requiring
only check operators (stabilizers) acting on a small number
of neighboring qubits [3].
The error-correction threshold of a code family, which

denotes the physical error rate below which the logical

failure rate can be made arbitrarily small by increasing the
code size, is strongly dependent on the noise model. The
most commonly studied noise model is uniform depolari-
zation of all qubits, where independent single-qubit Pauli
X, Y, and Z errors occur at equal rates. However, in many
quantum architectures such as certain superconducting
qubits [4], quantum dots [5], and trapped ions [6], among
others, the noise is biased toward dephasing, meaning that
Z errors occur much more frequently than other errors.
Recently, it was shown that, with a simple modification,
the surface code exhibits ultrahigh thresholds with such
Z-biased noise [7], where bias is defined as the ratio of the
probability of a high-rate Z error over the probability of a
low-rate X or Y error.
In this paper, we identify and characterize the features of

the noise-tailored surface code that contribute to its ultra-
high thresholds with Z-biased noise and demonstrate a
further significant improvement in the logical failure rate.
We note that the modification of the surface code, described

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 041031 (2019)

2160-3308=19=9(4)=041031(22) 041031-1 Published by the American Physical Society

https://orcid.org/0000-0002-3776-2864
https://orcid.org/0000-0003-4387-670X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.041031&domain=pdf&date_stamp=2019-11-12
https://doi.org/10.1103/PhysRevX.9.041031
https://doi.org/10.1103/PhysRevX.9.041031
https://doi.org/10.1103/PhysRevX.9.041031
https://doi.org/10.1103/PhysRevX.9.041031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in Ref. [7], simply exchanges the roles of Z and Y operators
in stabilizer and logical operator definitions. Therefore,
results for the modified surface code with Z-biased noise
can equivalently be expressed in terms of the unmodified
surface code and Y-biased noise, where Y errors occur more
frequently than X or Z errors. In order to frame our analysis
in the context of the familiar unmodified surface code and
to simplify comparison with other codes, we consider pure
Y noise and Y-biased noise on the surface code, with X- and
Z-parity checks, throughout this paper. However, we
emphasize that our results apply equally to the modified
surface code with pure Z noise or the Z-biased noise
prevalent in many quantum architectures.
Our main numerical result is to demonstrate that the

threshold error rate of the tailored surface code saturates the
hashing bound for all biases. While the numerical results of
Ref. [7] indicate that the threshold error rate of the tailored
surface code approaches the hashing bound for a low to
moderate bias, the threshold estimates fall short for a higher
and infinite bias. Using a tensor-network decoder that
converges much more strongly with biased noise, we
significantly improve on the results of Ref. [7]. Our new
results are summarized in Fig. 1, providing strong evidence
that the hashing bound can be achieved with a tailored
surface code.
Our main analytical result is a structural theorem that

reveals a hidden concatenated form of the surface code. We
show that, in the limit of pure Y noise, the surface code can
be viewed as a classical concatenated code with two
concatenation levels. The top level contains the so-called
cycle code whose parity checks correspond to cycles in the

complete graph. The bottom level contains several copies
of the repetition code. We prove that the cycle code has an
error threshold of 50% and give an efficient decoding
algorithm that achieves this threshold. As a corollary, we
show that the threshold of the surface code with pure Y
noise is 50%, thus answering an open question posed in
Ref. [7]. The concatenated structure described above is
controlled by the parameter g ¼ gcdðj; kÞ, where j and k
are dimensions of the surface code lattice. In particular, the
top-level cycle code has length Oðg2Þ, while the bottom-
level repetition codes have lengthOðjk=g2Þ. Two important
special cases are coprime codes and square codes that have
g ¼ 1 and g ¼ j ¼ k, respectively. Informally, a coprime
surface code can be viewed as a repetition code, whereas a
square surface code can be viewed as a cycle code (in the
limit of pure Y noise). We also show that a closely related
family of surface codes called rotated codes (defined by
boundaries formed at 45° relative to the standard surface
code family) can also be seen as repetition codes against
pure Y noise. Although the repetition and the cycle codes
both have a 50% error threshold, we argue that the former
performs much better in the subthreshold regime. This
result suggests that coprime and rotated surface codes may
have an intrinsic advantage in correcting strongly biased
noise.
We present further insights into the origins of the

ultrahigh thresholds by investigating the form of logical
operators. We show that logical operators consistent with
pure Y noise are much rarer and heavier than those
consistent with pure X or Z noise, and their structure
depends strongly on the parameter g. In particular, there are
2g−1 Y-type logical operators of which the minimum
weight is ð2g − 1Þðjk=g2Þ, which compares to 2jðk−1Þ X-
type logical operators of which the minimum weight is j. In
the case of coprime codes, there is only one Y-type logical
operator, and its weight is jk. Hence, the distance of
coprime codes to pure Y noise is OðnÞ, whereas for square
codes it is Oð ffiffiffi

n
p Þ. We extend these results to rotated

surface codes. We find that rotated codes, with odd linear
dimensions, have similar features to coprime codes; in
particular, they admit only one Y-type logical operator, and
its weight is n. This result is a further improvement over
coprime codes, since rotated surface codes are, in a sense,
optimal [8]. That is, they achieve the same distance as
standard surface codes with approximately half the number
of physical qubits.
Leveraging features of the structure of rotated codes

with pure Y noise, we develop a tensor-network decoder
that achieves much more strongly converged decoding with
Y-biased noise compared with the decoder in Ref. [9] and
exact maximum-likelihood decoding in the limit of pure
Y noise.
We perform numerical simulations, using exact maxi-

mum-likelihood decoding to confirm the 50% threshold for
the surface code with pure Y noise and demonstrate a

FIG. 1. Threshold error rate pc as a function of bias η. Points
show threshold estimates for the surface code. Error bars indicate
one standard deviation relative to the fitting procedure. The point
at the smallest bias corresponds to η ¼ 0.5 or standard depola-
rizing noise. The point at infinite bias indicates the analytically
proven 50% threshold value. The gray line is the hashing bound
for the associated Pauli error channel.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-2



significant reduction in logical failure rate for coprime and
rotated codes compared to square codeswith pureY noise. In
particular, we demonstrate that the logical failure rate decays
exponentially with the distance to pure Y noise such that a
target logical failure ratemay be achievedwith quadratically
fewer physical qubits by using coprime or rotated codes
compared with standard (square) surface codes.
Finally, we demonstrate a remarkable property of surface

codes: By removing approximately half the physical qubits
from a square code to yield a rotated code with the same
odd linear dimensions, we observe a significant reduction
in the logical failure rate with biased noise. Specifically, we
perform numerical simulations, using strongly converged
approximate maximum-likelihood decoding, to demon-
strate the aforementioned significant reduction in the
logical failure rate against biased noise that is achieved
using a rotated j × j code, containing n ¼ j2 physical
qubits, compared to a square j × j code, containing n ¼
2j2 − 2jþ 1 physical qubits. Figure 2 summarizes this
result, comparing the logical failure rate as a function of
the physical error probability for a rotated 9 × 9 code
(81 qubits) and a square 9 × 9 code (145 qubits) across a
range of biases. We see that the advantage of the rotated
code over the square code is greatest in the limit of pure Y
noise (η ¼ ∞) and remains significant down to a more
modest bias, η ¼ 100 (where Y errors are 100 times more
likely than both X and Z errors). We further argue that, for a
given bias, the relative advantage of (odd) rotated codes
over square codes increases with the code size, until low-
rate errors become the dominant source of logical failure
and high-rate errors are effectively suppressed, motivating
the search for efficient near-optimal biased-noise decoders
for rotated codes.
Note that this performance with biased noise is not

shared by all topological codes; in stark contrast, the

triangular 6.6.6 color code [10] exhibits a decrease in
the threshold with bias; see the Appendix A.
The paper is structured as follows. Section II provides

some definitions used throughout the paper. Our main
analytical results for surface codes with pure Y noise are in
Sec. III. Our numerical results for surface codes with pure Y
noise and Y-biased noise are in Secs. IVand V, respectively.
Section VI defines the tensor-network decoder used in
simulations of Y-biased noise on rotated codes. We con-
clude in Sec. VII with a discussion of our results in the
context of prior work and raise some open questions for
future work. Finally, Appendix A gives comparative results
for color codes, and Appendix B defines the exact
maximum-likelihood decoder used in simulations of pure
Y noise on square and coprime surface codes.

II. DEFINITIONS

A. Standard surface code

We consider j × k standard surface codes [1] on a square
lattice with “smooth” top and bottom boundaries and
“rough” left and right boundaries. Physical qubits are
associated with edges on the lattice. Following the usual
convention, stabilizer generators consist of X operators on
edges around vertices, Av ¼

Q
e∈v Xe, and Z operators on

edges around plaquettes, Bp ¼ Q
e∈p Ze. The stabilizer

group is, therefore, G ¼ hAv; Bpi. Up to multiplication by
an element of G, the X̄ (Z̄) logical operator consists of X (Z)
operators along the left (top) edge, such that X̄; Z̄ ∈ CðGÞnG
and XZ ¼ −ZX, where CðGÞ¼ff∈P∶fg¼gf ∀ g∈Gg
is the centralizer of G and P is the group of n-qubit
Paulis. As such, a j × k surface code encodes one logical
qubit into n ¼ 2jk − j − kþ 1 physical qubits with distance
d ¼ minðj; kÞ. Figure 3 illustrates a 4 × 5 surface code.

FIG. 2. Logical failure rates fsquare and frotated as a function of physical error probability p for small comparable square and
rotated 9 × 9 codes and the logarithm of the ratio of logical failure rates log10ðfrotated=fsquareÞ with noise biases
η ∈ f0.5; 10; 100; 1000; 10 000;∞g. Error bars indicate one standard deviation. Data points are sample means over 30 000 and
1 200 000 runs for the square and rotated codes, respectively, using approximate maximum-likelihood decoding converged to within half
a standard deviation for both codes. Dotted lines connect successive data points for a given η.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-3



B. Rotated surface code

We also consider rotated surface codes, which are
defined by drawing the boundary at 45° relative to the
standard surface code lattice [8]; see Fig. 4(a). As with
standard codes, stabilizer generators consist of X (Z)
operators on edges around vertices (plaquettes), with these
restricted to 2-qubits on the boundaries. The X̄ (Z̄) logical
operator consists of X (Z) operators along the northeast
(northwest) edge. The rotated code is usually, and equiv-
alently, depicted as in Fig. 4(b), where shaded and blank
faces correspond to X- and Z-type stabilizer generators,
respectively. As such, a rotated j × k surface code encodes
one logical qubit into n ¼ jk physical qubits with distance
d ¼ minðj; kÞ. Unless otherwise stated, we consider rotated
surface codes with j and k odd.

C. Surface code families

For standard j × k surface codes, we define the following
code families: square, where j ¼ k; gcdðj; kÞ ¼ g const;
and coprime, where g ¼ 1 (special case of g constant). In
addition, for rotated j × k surface codes, we define the
family of rotated codes with j and k odd.

D. Y-type stabilizers and logical operators

We define a Y-type stabilizer to be any operator on a
code that is in the stabilizer group G and consists only of Y

and identity single-qubit Paulis. We define a Y-type logical
operator to be any operator on a code that is in CðGÞnG and
consists only of Y and identity single-qubit Paulis. We
define X- and Z-type stabilizers and logical operators
analogously. As usual, the weight of an operator is the
number of nonidentity single-qubit Paulis applied by the
operator.

E. Y distance

We define Y distance, or distance dY to pure Y noise, of a
code as the weight of the minimum-weight Y-type logical
operator. X and Z distance are defined analogously. The
overall distance of the code is defined in the usual way and
is upper bounded by minðdX; dY; dZÞ.

F. Y-biased noise

Several conventions have previously been used to define
biased Pauli noise models [4,7,11–23]. We adapt the
approach of Ref. [7] to Y-biased noise, by considering
an independent, identically distributed Pauli noise model
defined by an array ¼ ð1 − p; pX; pY; pZÞ corresponding
to the probabilities of each single-qubit Pauli I (no error),
X, Y, and Z, respectively, such that the probability of any
error on a single qubit is p ¼ pX þ pY þ pZ. We define
bias η to be the ratio of the probability of a Y error to the
probability of a non-Y error such that η ¼ pY=ðpX þ pZÞ.
For simplicity, we restrict to the case pX ¼ pZ. With this
definition, η ¼ 1=2 corresponds to standard depolarizing
noise with pX ¼ pY ¼ pZ ¼ p=3, and the limit η → ∞
corresponds to pure Y noise, i.e., only Y errors with
probability p. We defineX- and Z-biased noise analogously.

III. FEATURES OF SURFACE CODES
WITH PURE Y NOISE

In this section, we present our analytical results for
surface codes with pure Y noise. In Secs. III A–III D, we
present results for standard surface codes, and, in Sec. III E,
we relate these results to rotated surface codes. We first
highlight the specificities of syndromes of pure Y noise.
Our main result reveals that error correction with the
standard surface code with pure Y noise is equivalent to
a concatenation of two classical codes: the repetition code
at the bottom level and the cycle code at the top level. As a
corollary, we show that the surface code with pure Y noise
has a threshold of 50%. We also highlight that, for standard
j × k surface codes with small g ¼ gcdðj; kÞ, the more
effective repetition code dominates the performance of the
code. We then give explicit formulas for the minimum
weight and count of Y-type logical operators. Finally, we
relate these results to rotated surface codes. These results
explain the origins of the ultrahigh thresholds of the surface
code with Y-biased noise, as seen in Ref. [7] and improved
in Sec. VA, as well as the lower logical failure rates seen

FIG. 3. Standard 4 × 5 surface code, with logical operators
given by a product of X along the left edge and a product of Z
along the top edge. Stabilizer generators are shown at the right.

(a) (b)

FIG. 4. (a) Rotated 5 × 5 surface code defined by drawing the
boundary at 45° relative to the surface code lattice. Logical
operators are given by a product of X along the northeast edge
and Z along the northwest edge. As with the standard code,
stabilizer generators consist of X (Z) operators on edges around
vertices (plaquettes). (b) Rotated 5 × 5 surface code as it is
usually, and equivalently, depicted, where shaded (blank) faces
corresponding to X-type (Z-type) stabilizer generators.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-4



with coprime and rotated surface codes, presented in
Secs. IVA and V B.

A. Syndromes of pure Y noise

An obvious feature of Y noise on the surface code is that
Y errors anticommute with both X- and Z-type stabilizer
generators, providing additional bits of syndrome informa-
tion. For comparison, Fig. 5 shows a sample of Y-error
configurations alongside identically placed X- and Z-error
configurations with corresponding anticommuting syn-
drome locations for each error type. In each case, we
see that Y-error strings anticommute with more syndrome
locations than X- or Z-error strings, providing the decoder
with more information about the location of errors to be
corrected.
We remark that the displacement between the X- and

Z-type stabilizer generators appears to be significant. For
example, the color 6.6.6 code has colocated X- and Z-type
stabilizer generators, so that, even if Y errors anticommute
with more stabilizer generators, the number of distinct
syndrome locations triggered by Y errors is no greater than
for X or Z errors.

B. Structure of the standard surface
code with pure Y noise

In this section, we consider standard surface codes
subject to pure Y noise. We describe a polynomial time-
decoding algorithm and prove that it achieves an error
threshold of 50%. We also derive an exponential upper
bound on the probability of logical errors in the subthresh-
old regime. Our main result is a structural theorem that
reveals a hidden concatenated structure of the surface code
and highlights the role of the parameter g ¼ gcd ðj; kÞ. The
theorem implies that an error correction with the surface
code subject to Y noise can be viewed as a concatenation of
two classical codes: the repetition code at the bottom level
and the so-called cycle code at the top level. Both codes

admit efficient decoding algorithms and have an error
threshold of 50%, although the repetition code scores
much better in terms of the logical error probability. We
show that, for a fixed number of qubits, the size of each
code can vary drastically depending on the value of g.
Loosely speaking, the error-correction workload is shared
between the two codes such that for small g the dominant
contribution comes from the more effective repetition code,
which explains the enhanced performance of coprime
surface codes (g ¼ 1) observed in the numerics.

1. Concatenated structure

Consider a Pauli error

PðyÞ≡ Yy1
1 ⊗ Yy2

2 ⊗ � � � ⊗ Yyn
n ; ð1Þ

where y ∈ f0; 1gn. As described in Sec. III A, the syn-
drome of PðyÞ is given by

AvðyÞ ¼
X

e∈v
ye and BpðyÞ ¼

X

e∈p
ye; ð2Þ

where v and p run over all vertices and all plaquettes of the
lattice and the sums are modulo two. A decoding algorithm
takes as input the error syndrome and outputs a candidate
recovery operator Pðy0Þ that agrees with the observed
syndrome. The decoding succeeds if y0 ¼ y and fails
otherwise. [More generally, the decoder needs to identify
only the equivalence class of errors that contains PðyÞ,
where the equivalence is defined modulo stabilizers of the
surface code.]
Consider a classical linear code of length n defined by

the parity checks AvðyÞ ¼ 0 and BpðyÞ ¼ 0 for all v and p.
We shall refer to this code as a Y code. As described above,
an error correction for the surface code subject to Y noise is
equivalent to an error correction for the Y code subject to
classical bit-flip errors. We now establish the structure of
the Y code. For any integer m ≥ 3, let Km be the complete
graph with m vertices and e ¼ mðm − 1Þ=2 edges.
Consider bit strings x ∈ f0; 1ge such that bits of x are
associated with edges of the graph Km. Let xi;j be the bit
associated with an edge ði; jÞ. Here, it is understood that
xi;j ¼ xj;i. Define a cycle code Cm of the order of m that
encodes m − 1 bits into e bits with parity checks

xi;j ⊕ xj;k ⊕ xi;k ¼ 0 for all 1 ≤ i < j < k ≤ m: ð3Þ

Thus, parity checks of Cm correspond to cycles (triangles)
in the graphKm. Note that Eq. (3) defines a redundant set of
parity checks. It is well known that any connected graph
with m vertices and e edges has e −mþ 1 independent
cycles. Thus, Cm has e − ðm − 1Þ independent parity
checks. The number of encoded bits is m − 1. Note that
C2 is a trivial code (it has no parity checks). Let REPðmÞ be

FIG. 5. A sample of X-, Y-, and Z-error strings, indicated by
colored circles, with corresponding anticommuting syndrome
locations, indicated by yellow stars.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-5



the repetition code that encodes one bit into m bits. We can
now describe the structure of the Y code.
Theorem 1:—Y-code structure.—The Y code is a

concatenation of the cycle code Cgþ1 at the top level and
gðgþ 1Þ=2 repetition codes at the bottom level. The latter
consists of repetition codes REPðjk=g2Þ, REPð2jk=g2Þ,
and REPð4jk=g2Þ with multiplicities 1, 2ðg − 1Þ, and
gðgþ 1Þ=2 − 2gþ 1, respectively.
An important corollary of the theorem is that a decoding

algorithm for the cycle code can be directly applied to
correcting Y errors in the surface code. Indeed, a decoder
for the Y code can be constructed in a level-by-level fashion
such that the bottom-level repetition codes are decoded first
and the top-level cycle code is decoded afterwards.
For example, Theorem 1 implies that, with pure Y noise,

a coprime (g ¼ 1) surface code is essentially a single
repetition code of a size growing linearly with n, whereas
a square surface code is equivalent to the concatenation of
bottom-level fixed-size repetition codes REP(1), REP(2),
and REP(4) and a top-level cycle code of a size growing
linearly with n, where n is the number of physical qubits in
the surface code.
Proof.—Let us first prove the theorem in the special case

of square surface codes, j ¼ k ¼ g. Let G ⊂ f0; 1gn be the
code space of the Y code. We use a particular basis set of
codewords called diagonals. The j × j lattice has jþ 1

diagonals denoted δ1; δ2;…; δjþ1 ∈ G; see Fig. 6. Given a
codeword y ∈ G, let ∂y ∈ f0; 1gj be the restriction of y
onto the top horizontal row of edges in the surface code
lattice. We claim that y is uniquely determined by ∂y.
Indeed, let H1;…; Hj be the rows of horizontal edges
(counting from the top). Let V2;…; Vj be the rows of
vertical edges (counting from the top). By definition, the
restriction of y onto H1 coincides with ∂y. Suppose the
restriction of y onto H1V2…Hp is already determined
(initially, p ¼ 1). Vertex-parity checks AvðyÞ ¼ 0 located
at the rowHp then determine the restriction of y onto Vpþ1.
Likewise, suppose the restriction of y ontoH1V2…HpVp is

already determined. Plaquette-parity checks BpðyÞ ¼ 0

located at the row Vp then determine the restriction of y
onto Hpþ1. Proceeding inductively shows that any code-
word y ∈ G is uniquely determined by ∂y.
Define bit strings

e1¼ 100…0; e2 ¼ 010…0; e3¼ 001…0; etc:

Then ∂δ1 ¼ e1, ∂δi ¼ ei−1 þ ei for 2 ≤ i ≤ j, and
∂δjþ1 ¼ ej; see Fig. 6. It follows that ∂δ1;…; ∂δj span
the binary space f0; 1gj. Accordingly, the diagonals
δ1;…; δj span the code space G and

δjþ1 ¼ δ1 ⊕ δ2 ⊕ � � � ⊕ δj:

In particular, dimðGÞ ¼ j; that is, the Y code encodes j bits
into n bits.
Let R ≅ Z2 × Z2 be a group generated by reflections of

the lattice against the diagonals δ1 and δjþ1. Note that any
diagonal δi is invariant under reflections fromR; see Fig. 6.
Suppose f is an edge of the surface code lattice. Let RðfÞ
be the orbit of f under the action of R. The above shows
that any diagonal δi is constant on orbits of R; that is,
RðfÞ ¼ RðgÞ implies that δif ¼ δig. Since the diagonals δi

span the full code space G, we conclude that any codeword
y ∈ G is constant on orbits of R; that is, RðfÞ ¼ RðgÞ
implies that yf ¼ yg. Equivalently, each orbit of R of size
m gives rise to the repetition code REPðmÞ. A simple
counting shows that R has a single orbit of size 1 (the
central vertical edge) and 2ðj − 1Þ orbits of size 2 (pairs of
qubits located on the diagonals δ1 and δjþ1), whereas all
remaining orbits have size 4, which proves the last state-
ment of the theorem (in the special case j ¼ k).
Fix a set of qubits O such that each orbit of R contains

exactly one qubit fromO. In other words,O is a set of orbit
representatives. We choose O as shown in Fig. 7. A simple
counting shows that jOj ¼ jðjþ 1Þ=2. Consider a code-
word y ∈ G and let ½y� ∈ f0; 1gjOj be a vector obtained
by restricting y onto O. We define the top-level code as a
linear subspace L ⊆ f0; 1gjOj spanned by vectors [y] with
y ∈ G. Equivalently, L is spanned by vectors ½δi� with
i ¼ 1;…; jþ 1. A direct inspection shows that each qubit
e ∈ O belongs to exactly two vectors ½δi� and ½δk� for some
i ≠ k; see Fig. 8 for an example. Thus, one can identify O
with the set of edges of the complete graph Kjþ1, whereas

FIG. 6. Diagonals δi for the 4 × 4 surface code. We consider
the symmetry group R generated by reflections of the lattice
against δ1 and δ5. Note that any diagonal δi is symmetric under
reflections from R.

FIG. 7. A set of qubits O such that each orbit of R contains
exactly one qubit from O. In this example, the group R has ten
orbits of size 1, 2, and 4.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-6



the vectors ½δi� can be identified with “vertex stabilizers” in
Kjþ1. In other words, the support of each vector ½δi�
coincides with the set of edges incident to some vertex
of Kjþ1. We conclude that parity checks of L correspond to
closed loops in Kjþ1. Thus, the top-level code coincides
with the cycle code Cjþ1.
The above proves the theorem in the special case j ¼ k.

Consider now the general case j ≠ k. Let us tile the surface
code lattice by t ¼ jk=g2 tiles of size g × g as shown in
Fig. 9. Note that each horizontal edge is fully contained in
some tile. Let us say that a vertical edge is a boundary edge
if it overlaps with the boundary of some adjacent tiles. If
one ignores the boundary edges, each tile contains a single
copy of the g × g surface code. For each tile, define the
diagonals δ1; δ2;…; δgþ1 as above. Let G be the code space
of the Y code for the full j × k lattice. Recall that any
codeword y ∈ G is fully determined by its projection ∂y
onto the top horizontal row of edges. Using this property,
one can easily verify that the code space G is spanned by
“extended diagonals” Δi such that the restriction of Δi onto
the top-left tile coincides with δi and Δi alternates between
δi and δgþ2−i in a checkerboard fashion; see Fig. 10. An
example of the extended diagonalΔ1 is shown in Fig. 9. By
definition, Δi has no support on the boundary edges, which
implies that the Y code has a weight-1 parity check for each

boundary edge. Ignoring such weight-1 checks, each
codeword Δi consists of t copies of the diagonal δi with
some copies being reflected. Considering t copies of each
codeword instead of a single copy is equivalent to replacing
the repetition codes REP(1), REP(2), and REP(4) in the
above analysis by REP(t), REP(2t), and REP(4t), respec-
tively, where t ¼ jk=g2 is the number of tiles. ▪

2. Decoding the cycle code

Here, we consider the cycle code subject to random
errors. We give a polynomial time-decoding algorithm
that achieves the error threshold of 50%. Fix some
integer m ≥ 3 and consider the cycle code Cm defined in
Sec. III B 1. Recall that Cm has length n ¼ mðm − 1Þ=2.
We consider independent and identically distributed (IID)
bit-flip errors such that each bit is flipped with probability
p ∈ ½0; 1=2Þ. Define an error bias ϵ > 0 such that

2pð1 − pÞ ¼ 1

2
− ϵ: ð4Þ

Lemma 1: Cycle code decoder.—Let e ∈ f0; 1gn be a
random IID error with a bias ϵ. There exists an algorithm
that takes as input the syndrome of e and outputs a bit string
e0 ∈ f0; 1gn such that

Prob½e0 ¼ e� ≥ 1 − 2m2 · exp ð−2ϵ2mÞ: ð5Þ

The algorithm has run time Oðm3Þ.
Proof.—Recall that the cycle code Cm is defined on the

complete graph with m vertices such that each bit of Cm is
located on some edge ði; jÞ of the graph. Let ei;j be the error
bit associated with an edge ði; jÞ. We begin by giving a
subroutine that identifies a single error bit ei;j. Without the
loss of generality, consider the edge (1,2). This edge is
contained in m − 2 triangles that give rise to syndrome bits

s3 ¼ e1;2 ⊕ e2;3 ⊕ e3;1;

s4 ¼ e1;2 ⊕ e2;4 ⊕ e4;1;

� � �
sm ¼ e1;2 ⊕ e2;m ⊕ em;1: ð6Þ

Since errors on different edges of each triangle are
independent, the conditional probability distributions of
syndromes sj for a given error bit e1;2 are

FIG. 8. Restrictions of the diagonal δi onto O define a basis set
of codewords for the top-level code.

FIG. 9. Partition of the 8 × 12 surface code into 4 × 4 tiles.
Solid red circles: The extended diagonal Δ1 alternating between
δ1 and δ5; see Fig. 6.

FIG. 10. Extended diagonal Δi.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-7



Prob½sj ¼ 1je1;2 ¼ 0� ¼ 1

2
− ϵ;

Prob½sj ¼ 0je1;2 ¼ 0� ¼ 1

2
þ ϵ;

Prob½sj ¼ 1je1;2 ¼ 1� ¼ 1

2
þ ϵ;

Prob½sj ¼ 0je1;2 ¼ 1� ¼ 1

2
− ϵ:

Furthermore, since different triangles in Eq. (6) intersect
only on the edge (1,2), we have

Prob½s3;…; smje1;2� ¼
Ym

j¼3

Prob½sjje1;2�: ð7Þ

This equation is an IID distribution ofm − 2 bits which is ϵ
biased toward e1;2. Hoeffding’s inequality gives

Prob½s3 þ � � � þ sm ≥ m=2je1;2 ¼ 0� ≤ 4 exp ð−2ϵ2mÞ

and

Prob½s3 þ � � � þ sm ≤ m=2je1;2 ¼ 1� ≤ 4 exp ð−2ϵ2mÞ:

The desired subroutine outputs e1;2 ¼ 0 if s3 þ � � � þ sm ≤
m=2 and e1;2 ¼ 1 otherwise. Clearly, the above calculations
take time OðmÞ.
The full decoding algorithm applies the above subrou-

tine independently to each edge of the graph, learning
error bits one by one. By the union bound, such an
algorithm misidentifies the error with a probability of at
most 2m2 exp ð−2ϵ2mÞ, since the complete graph Km has
mðm − 1Þ=2 edges. The overall run time of the algorithm
is Oðm3Þ. ▪
Note that the decoding algorithm of Lemma 1 can be

viewed as a single round of the standard belief propagation
algorithm, which is commonly used to decode classical
low-density parity check codes. Also recall that the cycle
code Cm has length n ∼m2=2. Thus, the probability of a
logical error in Eq. (5) decays exponentially with

ffiffiffi
n

p
[this

scaling is unavoidable, since the cycle code Cm has distance
OðmÞ]. As a consequence, the proposed decoder performs
very poorly in the small-bias regime. For example, reduc-
ing the error rate from 49% to 1% requires code length
n ≈ 1017 [here, we use Eq. (5) as a rough estimate of the
logical error probability]. In contrast, the logical error
probability of the repetition code REPðnÞ decays exponen-
tially with n.

C. Threshold of the standard surface
code with pure Y noise

The standard surface code with pure Y noise is equiv-
alent to a concatenation of two classical codes, as shown
above, and both of these classical codes have thresholds of

50%. These results lead directly to the fact that the
threshold of the surface code with pure Y noise is 50%.
Indeed, let us employ the level-by-level decoding strategy
such that the bottom-level repetition codes are decoded
first. Assume that the pure Y noise has error rate p < 1=2.
Then, the jth repetition code makes a logical error with
probability pj ≤ p < 1=2. The effective error model for
the top-level cycle code is a product of symmetric
binary channels with error rates p1;…; pm ≤ p, where
m ¼ gðgþ 1Þ=2 is the length of the cycle code. One can
easily verify that the decoder of Lemma 1 corrects such a
random error with a probability given by Eqs. (4) and (5).
Finally, Theorem 1 implies that each parity check of the
repetition or the cycle code is a linear combination (modulo
two) of the plaquette and vertex-parity checks of Eq. (2).
The coefficients in this linear combination can be found by
solving a suitable system of linear equations in time Oðn3Þ,
which enables an efficient conversion between the surface
code syndrome and the syndromes of the bottom-level and
the top-level code. To conclude, Theorem 1 and Lemma 1
have the following corollary.
Corollary 1: Y threshold.—The error-correction thresh-

old for the surface code with pure Y noise is 50%. This error
threshold can be achieved by a polynomial time-decoding
algorithm.
In Sec. III E, we show that the above corollary also

applies to rotated surface codes, with odd linear dimen-
sions. A numerical demonstration of the 50% threshold of
the surface code with pure Y noise is given in Sec. IVA.

D. Y-type logical operators of the standard surface code

The structure of standard surface codes with pure Y
noise, described in Sec. III B, also manifests itself in the
structure and, consequently, the minimumweight and count
of Y-type logical operators, i.e., logical operators consisting
only of Y and identity single-qubit Paulis. In this section,
we give explicit formulas for the minimum weight and
count of Y-type logical operators. Highlighting the cases of
coprime and square codes, aswell as comparing the formulas
to those for X- and Z-type logical operators, we remark on
how the minimum weight and count of Y-type logical
operators contribute to the performance advantage with pure
Y noise and Y-biased noise seen in Ref. [7] and Sec. VA, for
surface codes, in general, and in Secs. IVA and VB, for
coprime and rotated codes, in particular.

1. Logical operator minimum weight

We show that the minimum-weight Y-type logical oper-
ator on standard surface codes is comparatively heavy. TheX
distance dX of a code is the weight of the minimum-weight
X-type logical operator. Clearly, the minimum-weight
X-type logical operator on a j × k code is a full column
of X operators on horizontal edges, and, hence, dX ¼ j;
similarly, dZ ¼ k. It is also clear that the minimum-weight

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-8



Y-type logical operator on a square j × j code is a full
diagonal of Y operators, and, hence, dY ¼ 2j − 1. From the
proof of Theorem 1, it is apparent that, in the case of pure Y
noise, a j × k surface code can be viewed as a tiling of jk=g2

copies of a square g × g code, where g ¼ gcdðj; kÞ.
Therefore, the Y distance of a j × k surface code is given
by the following corollary.
Corollary 2: Y distance.—For a standard j × k surface

code, the weight of the minimum-weight Y-type logical
operator, and, hence, the distance of the code to pure Y
noise, is

dY ¼ ð2g − 1Þjk
g2

;

where g ¼ gcdðj; kÞ.
As shown in Sec. III E, the Y distance of the rotated j × k

surface code, with j and k odd, is dY ¼ jk. The distances to
pure noise for various surface code families are summa-
rized in Table I. We note that, for all code families, Y
distance exceeds X or Z distance, which is consistent with
the increase in the error threshold of surface codes with
biased noise seen in Ref. [7] and Sec. VA. Furthermore, we
note that the Y distance of square codes is dY ¼ Oð ffiffiffi

n
p Þ,

while that of coprime and rotated codes is dY ¼ OðnÞ,
where n is the number of physical qubits. This feature of
near-optimal and optimal Y distance contributes to the
significant improvement in the logical failure rate of
coprime and rotated codes over square codes with pure
Y noise and Y-biased noise; see Secs. IVA and V B.

2. Logical operator count

We show that Y-type logical operators on standard
surface codes are comparatively rare. The number cX of
X-type logical operators is equal to the number of ways the
logical X̄ operator can be deformed by X-type stabilizer
generators. The number of X-type stabilizer generators (i.e.,
vertices) on a j × k surface code is jðk − 1Þ, and, hence,
cX ¼ 2jðk−1Þ; similarly, cZ ¼ 2ðj−1Þk. From the proof of
Theorem 1, it is apparent that the g basis codewords of the
Y code correspond to a single logical operator and a full set
of g − 1 linearly independent Y-type stabilizers of a j × k
surface code, where g ¼ gcdðj; kÞ. Therefore, the number

of Y-type logical operators of a j × k surface code is given
by the following corollary.
Corollary 3. Y count.—For a standard j × k surface

code, the number of Y-type logical operators is

cY ¼ 2g−1;

where g ¼ gcdðj; kÞ. The number of Y-type stabilizers is
also cY .
As shown in Sec. III E, the number of Y-type logical

operators on the rotated j × k surface code, with j and k
odd, is cY ¼ 1. The counts of pure noise logical operators
for various surface code families are summarized in
Table II. We note that, for all code families, the number
of logical operators for pure Y noise is much lower than the
number for pure X or Z noise, which is consistent with the
increase in the error threshold of surface codes with biased
noise seen in Ref. [7] and Sec. VA. Furthermore, we note
that the number of Y-type logical operators for square codes
is cY ¼ Oð2 ffiffi

n
p Þ, while for coprime and rotated codes it is

cY ¼ Oð1Þ, where n is the number of physical qubits. This
feature, as an extreme example of the role of entropy in
error correction [24], contributes to the significant improve-
ment in the logical failure rate of coprime and rotated codes
over square codes with pure Y noise and Y-biased noise;
see Secs. IVA and V B.

E. Rotated surface codes

We can relate the results from the previous subsections to
rotated surface codes as depicted in Fig. 4. In particular, we
show that rotated codes, with odd linear dimensions, have
similar features to coprime codes as given by Corollaries 2
and 3; that is, such rotated codes also admit a single Y-type
logical operator of weight OðnÞ, where n is the number of
physical qubits. Equivalently, the Y distance of such rotated
codes, like coprime codes, is dY ¼ OðnÞ; notably, the
rotated code is optimal, in that it achieves dY ¼ n precisely.
Rotated surface codes with even linear dimensions do not
share these features, having distance dY ¼ Oð ffiffiffi

n
p Þ with

pure Y noise, and we do not discuss them further. We
conclude by showing that the 50% threshold of surface
codes with pure Y noise, given by Corollary 1, also applies
to (odd) rotated codes.

TABLE I. Distances to pure noise for j × k surface code
families. (dP refers to the distance to pure P noise, where
P ∈ fX; Y; Zg.)
Code family dX dY dZ

Square j 2j − 1 j
Coprime j jk k
gcdðj; kÞ ¼ g j ð2g − 1Þðjk=g2Þ k
Rotated (j, k odd) k jk j

TABLE II. Counts of pure noise logical operators for j × k
surface code families. (cP refers to the number of P-type logical
operators, where P ∈ fX; Y; Zg.)
Code family cX cY cZ

Square 2j
2−j 2j−1 2j

2−j

Coprime 2jðk−1Þ 1 2ðj−1Þk
gcdðj; kÞ ¼ g 2jðk−1Þ 2g−1 2ðj−1Þk
Rotated (j, k odd) 2ðj−1Þðkþ1Þ=2 1 2ðjþ1Þðk−1Þ=2

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-9



We consider the rotated surface code, with odd linear
dimensions, and two-qubit (four-qubit) stabilizer genera-
tors on the boundary (in the bulk), as illustrated in Fig. 4.
The following theorem shows that this version of the
surface code is nondegenerate and has a distance of
dY ¼ n against pure Y noise.
Theorem 2: Rotated code Y logical.—For a rotated

surface code, with odd linear dimensions, Y⊗n is the only
nontrivial Y-type logical operator, where n is the number of
physical qubits.
Proof.—It is clear that Y⊗n is a Y-type logical operator.

We show that it is the only nontrivial Y-type operator that
commutes with every stabilizer of the code. Let A ¼ ⊗

i
Yαi

be a Y-type operator. Consider a row of stabilizer gen-
erators (checks) and qubits that are adjacent to this row,
numbered as shown below:

In order for A to commute with check 1, we require
α1 ¼ α2. With the parity of these checks determined, we
then see that, in order for A to commute with check 2, we
need α3 ¼ α4. Continuing along the row, we see that every
pair of qubits i, j in the same column must satisfy αi ¼ αj.
The assumption that the code has odd linear dimensions
implies that each row and each column of checks includes a
weight-two check, as depicted, ensuring that the same
argument can equally be applied to every row or column of
checks. Therefore, in order for A to commute with all
checks, we require α1 ¼ αj for all j; i.e., a nontrivial Y-type
logical must act as Y on every qubit. ▪
We note that both the coprime j × k code and the (odd)

rotated j × k code are nondegenerate against pure Y noise
and have Y distance dY ¼ jk ¼ OðnÞ. However, the rotated
code is known to be the optimal layout for surface codes
in terms of minimum distance [8], and this statement is
also true in terms of Y distance. The rotated code has
dY ¼ jk¼ n, whereas the coprime code has dY¼jk¼OðnÞ
but contains n ¼ 2jk − j − kþ 1 physical qubits.
Furthermore, it is clear that the (odd) rotated code with

pure Y noise is equivalent to the repetition code and, hence,
has a threshold of 50%, in accordance with Corollary 1.

IV. PERFORMANCE OF SURFACE
CODES WITH PURE Y NOISE

In Sec. III, we present our analytical results for surface
codes with pure Y noise, highlighting features that con-
tribute to the ultrahigh threshold results with Y-biased
noise, found in Ref. [7] and improved upon in Sec. VA.
Our analytical results also indicate that coprime and (odd)

rotated codes should achieve lower logical failure rates than
square codes with pure Y noise.
Here, we present our numerical investigation into the

performance of surface codeswith pureY noise. In particular,
we present results for square, coprime, and rotated surface
code families, confirming the 50% error threshold. We also
demonstrate a significant reduction in the logical failure rate
for coprime and rotated codes compared with square codes.
Specifically, quadratically fewer physical qubitsmay be used
to achieve a target logical failure rate by using coprime or
rotated codes compared with square codes.

A. Advantage of coprime and rotated
surface codes with pure Y noise

We investigate the performance of surface codes with
pure Y noise. Besides confirming the 50% threshold for the
surface code, we demonstrate a significant reduction in the
logical failure rate for coprime and (odd) rotated surface
codes compared to square surface codes such that a target
logical failure rate may be achieved with quadratically
fewer physical qubits using coprime or rotated codes in
place of square codes. That is, we demonstrate that the
logical failure rate decays exponentially with the Y dis-
tance, but since, in accordance with Corollary 2, the Y
distance of square codes is Oð ffiffiffi

n
p Þ and that of coprime and

rotated codes is OðnÞ, the logical failure rate decays
quadratically faster with n for coprime and rotated codes,
where n is the number of physical qubits.
In Fig. 11, we plot logical failure rate f as a function of

physical failure rate p for surface codes belonging to the
following families: square, coprime, and rotated codes. For
coprime and rotated codes, we see clear evidence of an
error threshold at pc ¼ 50%, consistent with Corollary 1.
For square codes, the data are consistent with a threshold of
pc ¼ 50%, but the evidence is less definitive. Within a code
family, it is expected that smaller codes will perform worse
than larger codes below the threshold. However, comparing
the performance of smaller coprime and rotated codes to
square codes, we see a significant improvement in the
logical failure rate across the full range of physical error
probabilities. For example, the 21 × 21 rotated code, with
n ¼ 441, and the 20 × 21 coprime code, with n ¼ 800,
both clearly outperform the 21 × 21 square code, with
n ¼ 841. This result can be seen as a qualitative demon-
stration of the effect of the features of surface codes with
pure Y noise identified in Sec. III.
In Fig. 12, we plot logical failure rate f as a function of

code distance dY to pure Y noise at physical error proba-
bilities p at and below the threshold pc ¼ 50% for surface
codes belonging to the following families: square, coprime,
and rotated codes. For each code family, we see an expo-
nential decay of the logical failure rate f ∼ expð−αdYÞ,
where α is a function of ðpc − pÞ, which is consistent
with the threshold pc ¼ 50% predicted by Corollary 1.
Considering j × k surface codes, according to Corollary 2,

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-10



dY ¼ 2j − 1 for square codes, dY ¼ jk for coprime codes,
and dY ¼ j2 for rotated codes. That is, dY ¼ Oð ffiffiffi

n
p Þ for

square codes, and dY ¼ OðnÞ for coprime and rotated codes.
As a result, based on the observed exponential decay,
quadratically fewer physical qubits are required to achieve
a target logical failure rate for a given physical error rate by
using coprime or rotated codes in place of square codes.
To investigate the performance of different families of

surface codes with pure Y noise, we sample the logical
failure rate across a full range of physical error probabilities
for square, coprime, and rotated codes. For each code
family, we use an exact maximum-likelihood decoder. For
square and coprime codes, we used the Y decoder, defined
in Appendix B, to avoid the limitations of an approximate
[7] or nonoptimal (see Sec. III B) decoder. For rotated
codes, we use the tensor-network decoder, defined in
Sec. VI, which is exact for pure Y noise. We use code
sizes f5 × 5; 9 × 9; 13 × 13; 17 × 17; 21 × 21g for square
and rotated codes and f4×5;8×9;12×13;16×17;20×21g
for coprime codes and 60 000 runs per code size and

physical error probability. In our decoder implementations,
we use the Python language with the SciPy and NumPy libraries
[25,26] for fast linear algebra and the mathmp library [27]
for arbitrary-precision floating-point arithmetic.

V. PERFORMANCE OF SURFACE
CODES WITH BIASED NOISE

Our analytical results (see Sec. III) highlight features of
surface codes with pure Y noise that contribute to ultrahigh
thresholds with Y-biased noise (see Ref. [7]) and the
improvement in the logical failure rate achieved by coprime
and rotated surface codes (see Sec. IV).
Here, we present our numerical investigation into the

performance of surface codes with Y-biased noise. In
particular, we improve on the results of Ref. [7], providing
strong evidence that the threshold of the surface code tracks
the hashing bound exactly for all biases. We also demon-
strate that the improvement in the logical failure rate of
coprime and rotated codes with pure Y noise persists with

FIG. 11. Logical failure rate f as a function of physical error probability p for surface code families: square, coprime, and rotated,
subject to pure Y noise. Data points are sample means over 60 000 runs using exact maximum-likelihood decoding. Dotted lines connect
successive data points for a given code size.

FIG. 12. Exponential decay of the logical failure rate f with respect to code distance dY to pure Y noise in the regime of physical error
probability p at and below the error threshold for surface code families: square, coprime, and rotated, subject to pure Y noise. Data points
are sample means over 60 000 runs using exact maximum-likelihood decoding. Dotted lines indicate a least-squares fit to data for a
given p, and error bars indicate one standard deviation.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-11



Y-biased noise, such that a smaller coprime or rotated code
outperforms a square code for a wide range of biases.

A. Thresholds of surface codes with biased noise

In previous work [7], we show that the surface code
exhibits ultrahigh thresholds with Y-biased noise (equiv-
alently, Z-biased noise on the modified surface code of
Ref. [7]). The results of Ref. [7] indicate that the threshold
error rate of the surface code appears to follow the hashing
bound for a low to moderate bias; however, it is unclear
whether the surface code saturates the hashing bound for all
biases.
Here, we improve on the results of Ref. [7], providing

strong evidence that the threshold error rate of the surface
code saturates the hashing bound exactly for all biases.
Our results are summarized in Fig. 1, in which threshold
estimates for a range of biases are plotted along with the
hashing bound. Error bars are one standard deviation
relative to the fitting procedure. The threshold estimates
are very close to the hashing bound, and any residual
differences are likely due to finite size effects and decoder
approximation. We estimate the following thresholds:
18.8(2)%, 19.4(1)%, 22.3(1)%, 28.1(2)%, 33.9(2)%,
39.2(1)%, 42.9(2)%, and 45.4(2)%, with η ¼ 0.5 (standard
depolarizing noise), 1, 3, 10, 30, 100, 300, and 1000,
respectively. The corresponding hashing bound values are
18.9%, 19.4%, 22.2%, 27.8%, 33.5%, 39.0%, 42.8%, and
45.6%, respectively.
These thresholds are all achieved using a particular

tensor-network decoder. The tensor-network decoder of
Ref. [9], used in Ref. [7], is an approximate maximum-
likelihood decoder tuned via a parameter χ, allowing a
trade-off between accuracy and computational cost. In
Ref. [7], we use χ ¼ 48 to keep the simulations tractable,
but we find the decoder is not completely converged in the
intermediate- to high-bias regime. Here, we improve on
these results by using a tensor-network decoder, defined in
Sec. VI, that adapts the decoder of Ref. [9] to rotated codes
and achieves a much stronger convergence with biased
noise. The convergence of the decoder with bias is sum-
marized in Fig. 13, which shows an estimate of the logical
failure rate for the rotated 33 × 33 surface code near the
threshold as a function of χ for a range of biases. For each
bias, the shift in the logical failure rate, between the two
largest χ shown, is less than half a standard deviation,
assuming a binomial distribution.
Our method to numerically estimate the threshold of the

surface code with biased noise follows the general approach
taken in Ref. [7], with the key difference that we use the
tensor-network decoder adapted to rotated codes (see
Sec. VI) and choose χ such that the decoder more strongly
converges. We give a brief summary of the approach here
and refer the reader to Ref. [7] for full details. We use
rotated surface codes of sizes 21 × 21, 25 × 25, 29 × 29,
and 33 × 33. We estimate the threshold for biases η ¼ 0.5,

1, 3, 10, 30, 100, 300, and 1000, where η ¼ pY=ðpX þ pZÞ
and pX ¼ pZ (see Sec. II); we use decoder approximation
parameter χ ¼ 16, 24, 40, 48, 48, 48, 40, and 24, respec-
tively, to achieve convergence to within less than half a
standard deviation. We run 30 000 simulations per code
size and physical error probability. As in Ref. [7], we use
the critical exponent method of Ref. [28] to obtain thresh-
old estimates with jackknife resampling over the code
distances to determine error bounds.

B. Advantage of coprime and rotated
surface codes with biased noise

In Sec. IVA, we give a demonstration that coprime and
rotated surface codes outperform square surface codes with
pure Y noise in terms of the logical failure rate. It is natural
to ask if coprime and rotated codes also outperform square
codes with Y-biased noise, i.e., when X and Z errors may
also occur. We demonstrate that a significant reduction in
the logical failure rate against biased noise can be achieved
using a rotated j × j code, containing n ¼ j2 physical
qubits, compared to a square j × j code, containing
n ¼ 2j2 − 2jþ 1 physical qubits.
Our results are summarized in Fig. 2, where we compare

the rotated 9 × 9 code, containing 81 physical qubits, to the
square 9 × 9 code, containing 145 physical qubits. With
standard depolarizing noise, i.e., η ¼ 0.5, and with a low
bias, e.g., η ¼ 10 (where Y errors are 10 times more likely
than both X and Z), we see a similar performance for the
rotated and square codes. In the limit of pure Y noise, we
see the very large improvement, across the full range of
physical error probabilities, that is already demonstrated in
Sec. IVA. Most interestingly, the improvement remains
large through the intermediate-bias regime, η ¼ 100, over a
wide range of physical error probabilities, indicating that
the advantage of rotated codes over square codes persists

FIG. 13. Decoder convergence for the rotated 33 × 33 surface
code, represented by shifted logical failure rate fχ − fχmax

, as a
function of χ at a physical error probability p near the threshold
for the given bias η. Each data point corresponds to 30 000 runs
with identical errors generated across all χ for a given bias.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-12



with modest noise biases. We note that qualitatively similar
results are observed when comparing the coprime 7 × 8
code to the square 8 × 8 code (not shown here).
The advantage of rotated codes with biased noise can be

explained in terms of the features of surface codes with Y
noise identified in Sec. III. The rotated 9 × 9 code has the
same X and Z distance (dX ¼ dZ ¼ 9) as the square 9 × 9
code. However, the rotated code is much less sensitive to Y
noise, having a much larger Y distance (dY ¼ 81) than the
square code (dY ¼ 17) and having only one Y-type logical
operator (cY ¼ 1) compared to many more such operators
(cY ¼ 28 ¼ 256) on the square code. Therefore, for suffi-
cient bias, we expect rotated j × j codes to outperform
square j × j codes, despite containing approximately half
the number of physical qubits. Also, for a given bias, we
expect the relative advantage to increase with the code size,
as the Y sensitivity of the rotated code decreases faster than
the X or Z sensitivity, until low-rate errors become the
dominant source of logical failure, at which point high-rate
errors are effectively suppressed.
To compare the performance of rotated and square codes

with Y-biased noise, we sample the logical failure rate
across a full range of physical error probabilities for the
square 9 × 9 code and the rotated 9 × 9 code with noise
biases η ∈ f0.5; 10; 100; 1000; 10 000;∞g. Sample means
are taken over 30 000 and 1 200 000 runs per bias and
physical error probability for the square and rotated codes,
respectively. Since the noise is biased, we cannot use the Y
decoder (see Appendix B) for exact maximum-likelihood
decoding. Instead, we use the tensor-network decoder of
Ref. [9] for square codes and the tensor-network decoder of
Sec. VI for rotated codes, both of which approximate
maximum-likelihood decoding. Both decoders are tuned
via an approximation parameter χ, which controls the trade-
off between efficiency and convergence. As explained in
Sec. VI, the decoder adapted to rotated codes converges
much more strongly with biased noise. We choose χ ¼ 48
for the square code decoder and χ ¼ 8 for the rotated code
decoder, such that both decoders converge, at the most
challenging bias of η ¼ 100, to within less than half a
standard deviation, relative to χ þ 8, assuming a binomial
distribution. The use of relatively small codes ensures
significant logical failure rates at low physical error
probabilities and keeps computational requirements to a
reasonable level.

VI. IMPROVED TENSOR-NETWORK DECODING
OF ROTATED CODES WITH BIASED NOISE

In this section, we describe how tensor-network decod-
ing of the surface code under biased noise can be improved
using the rotated surface code layout. We show that the
rotated layout allows us to remove certain correlations
present in the tensor network used for maximum-likelihood
decoding [9], allowing efficient and optimal decoding for
pure Y noise. The removal of such correlations greatly

improves the efficiency of the decoder in the case of noise
strongly biased toward Y, but with a small probability of X
and Z errors, a situation previously shown to be challenging
using the standard layout [7]. Throughout this section, we
refer to surface codes oriented as in Fig. 4(b), where shaded
and blank faces correspond to X- and Z-type checks,
respectively.
We briefly describe the approximate maximum-likeli-

hood decoder proposed by Bravyi, Suchara, and Vargo in
Ref. [9]. Maximum-likelihood decoding for stochastic
Pauli noise chooses the correction that has the highest
probability of successfully correcting the error given an
error syndrome, accounting for all errors consistent with that
syndrome. If performed exactly, it is, by definition, optimal.
The maximum-likelihood decoding algorithm in Ref. [9]

is based on mapping coset probabilities to tensor-network
contractions. The probability of a coset for an error f is
given by

πðfGÞ ¼
X

α;β

Tðα; βÞ; ð8Þ

where Tðα; βÞ is defined as the probability of the Pauli error
f times the stabilizer gðα; βÞ ≔ Q

vðAvÞαv
Q

pðBpÞβp,
where αv, βp ∈ f0; 1g and the summation is over all bit
strings α ¼ α1; α2;…αðn−1Þ=2 and β ¼ β1; β2;…βðn−1Þ=2.
Because of the local structure of the surface code, this
summation can be expressed as the contraction of a square-
lattice tensor network. While there is some freedom in how
the tensor network for a given coset can be defined on both
the standard and rotated surface code layouts, we illustrate
how a particular definition of the tensor network on the
rotated surface code layout can result in significantly more
efficient decoding of biased noise.
A complete description of the tensor network that leads

to more efficient decoding is provided in Fig. 14. We
highlight the essential features that give rise to the
improved decoding performance. In this layout, every tensor
corresponds to a physical qubit, and a horizontal edge
between columns i and iþ 1 corresponds to a unique check
that acts nontrivially on qubits in both of these columns. We
illustrate the correspondence between checks and tensor-
network edges on a 5 × 5 rotated code in Fig. 15.
For certain structured instances of this problem, corre-

sponding to independent X or Z flips, an efficient algorithm
for contracting the network is known [9]. However, there is
no known efficient algorithm for the exact contraction of
the network in the case of general local Pauli noise.
In this case, an approximate method for evaluating the

tensor-network contraction is used [9]. In this method, the
leftmost boundary of the tensor network is treated as a
matrix product state (MPS). Columns of the tensor net-
work, which take the form of matrix product operators, are
successively applied to the MPS until there are no columns
left and the entire lattice is contracted.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-13



An approximation is used to keep this calculation
tractable. After each column is applied, the singular value
decomposition is used to reduce the size of the tensors in
the MPS, effectively keeping only the χ largest Schmidt
values for each bipartition of the chain and setting the
remainder to zero. Without such a truncation, the number of
parameters describing the tensors increases exponentially
in the number of columns applied to the MPS. The
parameter χ can be controlled independently, with larger
χ improving accuracy at an increased computational cost.
The overall run time of the algorithm is Oðnχ3Þ.
Surprisingly, on the rotated code with the tensor network

described above, there is no entanglement in the boundary
MPS for pure Y noise. In other words, the MPS decoder is
exact for χ ¼ 1, independent of the system size. This result
is in contrast to the standard layout, where χ ∼ 48 is
required for a reasonable approximation to coset proba-
bilities on a 21 × 21 system [7].
As we explain in the following section, this improvement

can be attributed to the boundary conditions of the code and
the layout of the tensor network. While exact decoding of Y
noise can also be performed using methods described in
Appendix B, the MPS decoder can be extended easily to
noise that is mostly Y noise but with nonzero probability of
X and Z errors. Our convergence results (see Sec. VA)
show that there is a substantial improvement in the
performance over the standard method when applied to
this type of noise.
We observe a similar improvement in performance using

the tensor-network decoder described in Ref. [29] when
defined on the rotated layout and with an analogous tensor-
network layout. Exact decoding is achieved with χ ¼ 4 for
pure Y noise, which is not as efficient as the improved MPS
decoder described above but substantially more efficient
than the MPS decoder on the standard layout.
We remark that, on the standard layout, changing from a

square lattice to coprime does little to improve the
performance of the MPS decoder. Since the contraction
algorithm proceeds column by column, a 21 × 21 (square)
code and a 21 × 22 (coprime) code has an identical
boundary MPS after the first 20 columns are contracted
if the same error is applied to qubits in these columns. Thus,
we expect the error resulting from the truncation of small
singular values during the contraction to be at least as bad
for the 21 × 22 code as the 21 × 21 code.

A. Boundary entanglement in MPS decoder

We show that the boundary MPS of the rotated code with
the above tensor-network layout is unentangled in the case
of infinite bias. The boundary MPS appearing in the
contraction algorithm is a (generally approximate) repre-
sentation of the “boundary state,” obtained by contracting
all indices of the network up to a given column and leaving
the right-going indices of that column uncontracted. More
precisely, we define ψðαR; βRÞ to be the contraction of the

(a) (b)

(c) (d)

FIG. 14. (a) Tensor network representing a coset probability for
a rotated code. It consists of qubit tensors (circles) and check
tensors (stars). The layout in (a) is obtained by applying the
construction of Ref. [9] to the rotated code without modification.
(b) Splitting a check tensor into multiple check tensors. This
splitting is possible because check tensors take the value one if all
indices are identical and zero otherwise. (c) A modified tensor
network representing a coset probability where a single cell is
outlined by a dashed box. This network is obtained from (a) by
splitting check tensors. (d) Final modified tensor network
obtained by contracting tensors in cells together to form merged
tensors (squares). In the discussion of the contraction of this
tensor network, we imagine rotating the network anticlockwise
by 45° and contracting from left to right. Note that this tensor
network is not isotropic: In this rotated frame, the bond
dimension is 2 for horizontal edges and is 4 for most vertical
edges (except on the boundary).

(a) (b)

FIG. 15. (a) Check coordinates are assigned to each check in
the rotated layout. (b) The tensor network is defined such that
each horizontal edge corresponds to a specific check. The α
indices correspond to X checks, and the β indices correspond to Z
checks, with the subscripts indicating the check coordinates. Each
tensor corresponds to a specific qubit. The bond dimension of
horizontal edges is 2, while the bond dimension of the vertical
edges is 4.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-14



network up to the j < L column, with the right-going
boundary indices set to αR; βR. The L-qubit boundary state
is defined as jψRi ≔ P

αR;βR ψðαR; βRÞjαR; βRi. We illus-
trate such a boundary state in Fig. 16(a). Let Qj be the
set of qubits in columns up to and including column j.
As previously described, each boundary index in αR ¼
α1;j; α3;j;…; αL−2;j and βR ¼ β0;j; β2;j;…; βL−1;j corre-
sponds to a check acting nontrivially on qubits in columns
j and jþ 1, where the check subscripts here are for odd j
(for even j, simply add 1 to every row index).
We call checks that act only nontrivially on qubits

contained in Qj bulk checks and refer to them using the
indices αB; βB, with superscript B. We refer to a specific
αR; βR as a boundary configuration and a specific αB; βB as
a bulk configuration. We define G0 ⊆ G to be the set of
stabilizer elements that act nontrivially only on Qj and
gðαB; βBÞ ∈ G0 to be the stabilizer element corresponding to
the bulk configuration αB; βB. We define hðαR; βRÞ to be the
product of boundary checks corresponding to the boundary
configuration αR; βR whose action is restricted to qubits in
Qj (so the action on qubits in column jþ 1 is ignored). The
fact that ψðαR; βRÞ is calculated by contracting all indices to
the left of column j means that all bulk configurations

αB; βB are summed over, like in Eq. (8) but restricted to
checks in the first j columns. So we can write

ψðαR; βRÞ ¼ π0ðf0G0Þ ¼
X

αB;βB
T 0ðαB; βB; αR; βRÞ; ð9Þ

where π0, f0, and T 0, respectively, correspond to versions of
π, f, and T that are restricted to Qj. Specifically, f0 is the
Pauli error f restricted to Qj, and T 0ðαB; βB; αR; βRÞ is the
probability of the Pauli error f0gðαB; βBÞhðαR; βRÞ on
qubits in Qj. We illustrate an example error f0, bulk
configuration αB; βB, and boundary configuration αR; βR

in Fig. 16. The coset probability π0 is likewise restricted to
qubits Qj, with the boundary checks fixed.
In the case of pure Y noise, the summation on the right-

hand side of Eq. (9) simplifies dramatically. In fact, for any
given choice of boundary variables αR; βR and error f0,
there is at most one choice of αB and βB such that
T 0ðαB; βB; αR; βRÞ is nonzero. So, given αR; βR and f0,
either ψðαR; βRÞ is zero or there exists a unique αB, βB such
that

ψðαR; βRÞ ¼ T 0ðαB; βB; αR; βRÞ: ð10Þ

For a given f0 andαR, βR, we say that a qubit is “satisfied” for
a given check configuration αB; βB if f0gðαB; βBÞhðαR; βRÞ
acts on every qubit as either I or Y and notX orZ. For pure Y
noise, in order forT 0ðαB; βB; αR; βRÞ to be nonzero, all qubits
inQj must be satisfied.We can solve for a bulk configuration
αB; βB that satisfies all qubits, if one exists, by fixing check
variables to satisfy qubits one at a time, starting from the
qubit adjacent to the two-qubit boundary check in column j.
There is only one bulk check adjacent to this qubit; therefore,
only one choice for the corresponding check variable will
satisfy that qubit. This fixes the first bulk check. We then
proceed down this column to fix every check variable in the
same manner. With the check configuration in column j
determined,we then solve for checks in columns j − 1, j − 2,
etc., in the sameway until all check variables are determined,
thereby solving for the bulk configuration αB; βB.
Note that, for certain f0 and αR; βR, there may be no

configuration of bulk checks that will satisfy all qubits,
which implies that the f0 and αR; βR are not compatible with
pure Y noise, i.e., ψðαR; βRÞ ¼ 0. In fact, only a few special
boundary configurations are compatible with pure Y noise.
We describe the boundary configurations αR; βR that are
compatible with a given f, starting with the case of the
trivial coset f ¼ I. We show that the allowed bulk and
boundary configurations consist of horizontal strings which
terminate at two-qubit X checks on the left code boundary,
as shown in Fig. 17. Other cosets (with f ≠ I) follow
straightforwardly from this.
We start from the left-hand side of the code and try to

find bulk configurations that satisfy all qubits. We work our

(a) (b)

FIG. 16. (a) A boundary state obtained by contracting the
network up to a given column and leaving the right-going indices
of that column uncontracted. (b) An example check and error
configuration illustrated for calculating the boundary state for the
third column j ¼ 3 of a 5 × 5 code with rotated layout. A bulk
configuration αB; βB is represented by the red dots, and a
boundary configuration αR; βR is represented by the blue dots
(where a dot on a check indicates that the check variable αi;k or
βi;k is 1). An error f0 is represented by green letters. Note that for
this calculation we consider only the action of the checks and
error on qubits in the first three columns Q3, inside the dashed
box. So the action on the boundary checks on qubits outside the
box is ignored. The quantity T 0ðαB; βB; αR; βRÞ is the probability
of the product of all dotted checks and the error f0 in the
dashed box. In the example configuration depicted above, this
product contains four X, six Y, and two Z errors, giving
T 0ðαB; βB; αR; βRÞ ¼ p4

Xp
6
Yp

2
Zp

3
I . In order to calculate the boun-

dary state, all possible configurations of bulk checks must be
summed over. In the special case of pure Y noise, where
pX ¼ pZ ¼ 0, only at most one term in this sum is nonzero
for any boundary configuration.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-15



way up the column, finding relations between checks. We
use the convention that qubit ði; kÞ refers to the qubit on the
bottom-left vertex of the check (face) with coordinates
ði; kÞ, as in Fig. 15. First, in order to satisfy qubit (1,1), we
require α1;0 ¼ β1;1. With the parity of these checks fixed, in
order to satisfy qubit (2,1), we need α1;1 ¼ 0. Then, to
satisfy qubit (3,1) we require α3;0 ¼ β3;1. Continuing up the
column, we see that αi;0 ¼ βi;1 for i odd and αi;1 ¼ 0 for i
even, and the two-qubit Z check at the end of the column
satisfies βðLþ1Þ=2;1 ¼ 0. We can then solve for checks in the
next column, finding αi;2 ¼ βi;1 for odd i, βi;2 ¼ 0 for even
i, and β2;0 ¼ 0 for the two-qubit check on the lower
boundary.
Proceeding in this manner, we can solve for all the

checks up to any given column. For the trivial coset, the
bulk and boundary configurations satisfy the following:

(i) All check variables in a given row must be take the
same value.

(ii) Check variables in rows terminated by a two-qubit X
check (odd rows) may take values 0 or 1. The
remaining checks must take the value 0.

We can easily calculate the probability of each satisfying
check configuration. First, the trivial configuration
αR; βR ¼ 0; 0 corresponding to the bulk configuration
αB; βB ¼ 0; 0, i.e., with all bulk and boundary check
variables set to 0, has probability ðpIÞjL. Flipping any
odd boundary check flips the corresponding row of checks
in the bulk and introduces 2j Y errors, changing the
probability by a factor of ðpY=pIÞ2j. The fact that the
weight introduced by flipping any row does not depend on
which other rows are flipped implies that the boundary
variables are independent and jψRi is a product state which
can be explicitly written as

jψRi ¼ j0iend ⊗
k even

j0ik ⊗
l odd

jθil; ð11Þ

where jθi ¼ p2j
I j0i þ p2j

Y j1i and j0iend corresponds to the
two-qubit Z check at the end of the column. Since the
boundary state for the trivial coset f0 ¼ I is completely
unentangled, the tensor network corresponding to this coset
can be contracted exactly with χ ¼ 1.
The case of a nontrivial coset with f0 ≠ I is analogous to

the case of a trivial coset. Starting from any satisfying bulk
and boundary configuration, we obtain all other satisfying
bulk and boundary configurations by flipping odd rows of
checks, as in the trivial coset. If we assume there exist
satisfying bulk and boundary configurations αR0; βR0 and
αB0; βB0, respectively, for a given error f0, the boundary
state can be explicitly written as

jψRi ¼ jβR0
endi ⊗

k even
jγR0

ki ⊗
l odd

jθðlÞil; ð12Þ

where jθðlÞi ¼ pNðlÞ
Y p2j−NðlÞ

I j0i þ p2j−NðlÞ
Y pNðlÞ

I j1i, NðlÞ is
the number of qubits on which Y is applied in the rows
adjacent to the lth row of checks when the boundary
variable for row l is 0 and where γR0 ¼ αR0 for odd j and
γR0 ¼ βR0 for even j, and βRend

0 corresponds to the two-qubit
check at the end of the column.
Therefore, using the tensor network layout described

above, any coset can be calculated exactly using the MPS
decoder with χ ¼ 1, which is a particular property of the
physical boundary conditions of the code. In this case
described above, starting from a vacuum (with all checks
unflipped), flipping a boundary check results in a line of
checks being flipped through the bulk, which is absorbed
by a two-qubit check on the boundary. We call such a line
of flipped check variables a “lineon”.
While we can define the tensor network analogously for

the standard surface code layout, the boundary state does
not have the same product state form. We find that the
three-qubit boundary checks result in long-range correla-
tions in the boundary state, which is because the three-qubit
checks reflect lineons rather than absorb them, as illustrated
in Fig. 18. This result means that separated pairs of
boundary checks must be flipped together. Also, when
distinct lineons travel next to each other or cross, there is a
cancellation of Y errors. The consequence of this cancel-
lation is that the probability of a particular lineon depends
on whether other lineons are present, which results in
correlations between boundary variables and entanglement
in the boundary state. The rotated layout with two-qubit
checks does not suffer from these problems. The lineons
never cross; they are always separated by a row and are
absorbed at the boundary.
To summarize this section,we show that theMPSdecoder

adapted to the rotated layout is exact with χ ¼ 1 for pure Y
noise. This result is due to the fact that many correlations in
the tensor network are eliminated in this case, making the
contraction of the tensor network much more efficient. This
decoder can also take into account finite bias (i.e., nonzero

FIG. 17. All allowed bulk and boundary configurations for Y
noise illustrated for the boundary state for the third column j ¼ 3
of a 5 × 5 code on the rotated layout for the trivial coset f0 ¼ I.
The product of the dotted checks must result in only I and Y
errors on Q3 (and no X or Z errors). Blue dots represent the
boundary configuration, while red dots represent the correspond-
ing bulk configuration. Blue dots must be connected to a two-
qubit check on the left boundary by a string of red dots. The fact
that these strings never overlap and are absorbed at the left
boundary implies that the boundary variables are uncorrelated,
and, therefore, there is no entanglement in the boundary state.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-16



pX and pZ), and the improvement in efficiency also carries
over to this case, as the numerical results of Sec. VA show.

VII. DISCUSSION

In this paper, we describe the structure of the surface
code with pure Y noise and show that this structure implies
a 50% error threshold and a significant performance
advantage in terms of the logical failure rate with coprime
and rotated codes compared to square codes. Furthermore,
we provide numerics confirming our analytical results with
pure Y noise and demonstrating the performance advantage
of rotated codes with Y-biased noise. It is important to
note that our results apply equally to pure Z noise, i.e.,
dephasing noise, and the Z-biased noise prevalent in many
quantum architectures, through the simple modification [7]
of the surface code that exchanges the roles of Z and Y
operators in stabilizer and logical operator definitions. We,
therefore, identify and characterize the features of surface
codes that contribute to their ultrahigh thresholds with
Z-biased noise and to the improvements in the logical
failure rate with coprime and rotated codes demonstrated in
this paper.
In the limit of pure Y noise, we show that the standard

surface code is equivalent to a concatenation of classical
codes: a single top-level cycle code and a number of
bottom-level repetition codes. We show that this implies the
surface code with pure Y noise has a threshold of 50% and,
for j × k surface codes with small g ¼ gcdðj; kÞ, the more
effective repetition code dominates, leading to a reduction
in the logical failure rate. In terms of logical operators, we
show that Y-type logical operators are rarer and heavier
than X- or Z-type equivalents, and coprime codes, in
particular, have only one Y-type logical operator, and its

weight is OðnÞ. We also show that rotated codes, with
odd linear dimensions, are closely related to coprime
codes, admitting a single Y-type logical operator of optimal
weight n.
We confirm, numerically, the 50% error threshold of the

surface code with pure Y noise and demonstrate that
coprime and rotated codes with pure Y noise significantly
outperform similar-sized square codes in terms of logical
failure rates such that a target logical failure rate may be
achieved with quadratically fewer physical qubits using
coprime and rotated codes. Furthermore, we demonstrate
that this advantage persists with Y-biased noise. In par-
ticular, we find that a smaller rotated code, with approx-
imately half the number of physical qubits, outperforms a
square code, over a wide range of physical error proba-
bilities, for biases as low as η ¼ 100, where Y errors are
100 times more likely that X or Z errors. We argue that, for
a given bias, the relative advantage of coprime and rotated
codes over square codes increases with the code size, until
low-rate errors become the dominant source of logical
errors and high-rate errors are effectively suppressed.
Leveraging features of the structure of rotated codes with

pure Y noise, we define a tensor-network decoder that
achieves exact maximum-likelihood decoding with pure Y
noise and converges much more strongly with Y-biased
noise than the decoder of Ref. [9], from which it is adapted.
With this decoder, we are able to improve upon the results
of Ref. [7] and provide strong evidence that the threshold
error rate of surface codes tracks the hashing bound exactly
for all biases, addressing an open question from Ref. [7].
Saturating this bound is a remarkable result for a practical
topological code limited to local stabilizers.
Although our analytical results focus on features of the

surface code with pure Y noise, it is interesting to put our
observations of the performance of surface codes with
biased noise in the context of other proposals to adapt
quantum codes to biased noise [4,11–22]. Several propos-
als have been made for constructing asymmetric quantum
codes for biased noise from classical codes [11–14] (see
Ref. [13] for an extensive list of references), but of
particular interest here are approaches that can be applied
to topological codes. A significant increase in the threshold
with biased noise has been demonstrated by concatenating
repetition codes at the bottom level with another, possibly
topological, code at the top level [4,15,16]; interestingly,
this construction mirrors the structure we find to be inherent
to the surface code. Performance improvements with biased
noise are also demonstrated by modifying the size and
shape of stabilizers in Bacon-Shor codes [17–19] and
surface and compass codes [20], by randomizing the lattice
of the toric code [21] or by concatenating a small Z-error
detection code to the surface code [22]. These approaches
are distinct from the use of coprime or rotated codes (with
the modification of Ref. [7]), which maintain the size and
locality of surface code stabilizer generators, and so they

FIG. 18. Some examples of boundary and bulk configurations
for the standard layout of the surface code with three-qubit checks
on the boundary for the trivial coset f0 ¼ I. The lineons travel in
straight lines through the four-qubit bulk checks, but the three-
qubit boundary checks have the effect of reflecting them by 90°,
such that they emerge on the right boundary on the exact opposite
side. Therefore, each boundary variable is perfectly correlated
with the boundary variable on the exact opposite side. Separate
lineons can also cross paths, resulting in a cancellation of the bulk
variables. Also, for neighboring pairs of lineons, Y on the qubits
shared between them cancel. These all result in correlations
between the boundary variables and, therefore, entanglement in
the boundary MPS.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-17



could potentially be combined to yield further performance
improvements.
Looking forward, the identified features of surface codes

and the insights behind them suggest several interesting
avenues of research. For the surface code, specifically,
different geometries may be more robust to logical errors
than coprime and rotated codes in the high-bias regime,
where a few well-placed X and Z errors can combine with
strings of Y errors to produce more common, lower-weight
logical operators. Similarly, certain geometries of surface
code used to encode multiple qubits [30] may or may not
maintain the high performance of simple surface codes with
biased noise. For topological codes, more generally, one
can ask which codes exhibit an increase in performance
with biased noise and what are the family traits of such
codes; we have seen, for example, that the standard
triangular 6.6.6 color code does not exhibit an increase
in performance. (Although this color code is equivalent, in
some sense, to a folded surface code [31], the mapping that
relates the two does not preserve the biased noise model.)
Finally, although this paper focuses on features of

surface codes with Y or Y-biased noise rather than the
issue of fault-tolerant decoding, our numerical results
motivate the search for fast fault-tolerant decoders for
the surface code with biased noise. The highly significant
question of whether the high performance of surface codes
with biased noise can be preserved in the context of fault-
tolerant quantum computing is addressed in a forthcoming
paper [32], where a fast but suboptimal decoder for tailored
surface codes achieves fault-tolerant thresholds in excess of
5% with biased noise. Investigating the optimal fault-
tolerant thresholds with biased noise and performance
well below the threshold remains an important avenue of
research.

ACKNOWLEDGMENTS

This work was supported by the Australian Research
Council (ARC) via the Centre of Excellence for Engineered
Quantum Systems (EQUS) Project No. CE170100009 and
Discovery Project No. DP170103073. S. B. acknowledges
support from the IBM Research Frontiers Institute. A. S. D.
was supported by JST, PRESTO Grant No. JPMJPR1917,
Japan. Access to high-performance computing resources
was provided by the National Computational Infrastructure
(NCI), which is supported by the Australian Government,
and by the Sydney Informatics Hub, which is funded by the
University of Sydney. Some of the numerical computation
in this work was carried out at the Yukawa Institute
Computer Facility.

APPENDIX A: COLOR-CODE THRESHOLDS
WITH BIASED NOISE

We demonstrate that the threshold of the triangular 6.6.6
color code [10] decreases when the noise is biased. This

result is in stark contrast to the surface code, which exhibits
a significant increase in the threshold with biased noise [7].
Our results are summarized in Fig. 19, in which we contrast
our results for the color code with those for the surface
code, reproduced from Sec. VA. From statistical physics
arguments, the optimal error threshold for the unmodified
surface code with pure Z noise is estimated to be 10.93(2)%
[3,33], and with depolarizing noise it is estimated to be
18.9(3)% [34]. The color code has similar error thresholds
[34,35] to the surface code with pure Z noise and
depolarizing noise. Our results for the color code, using
an approximate maximum-likelihood decoder, reveal a
decrease in the threshold with Y-biased noise: 18.7(1)%
with standard (η ¼ 0.5) depolarizing noise, 13.3(1)% with
bias η ¼ 3, 11.4(2)% with bias η ¼ 10, 10.6(2)% with bias
η ¼ 100, and 10.5(2)% in the limit of pure Y noise. In
contrast, our results for the surface code, from Sec. VA,
reveal a significant increase in the threshold with Y-biased
noise: 18.8(2)% with standard (η ¼ 0.5) depolarizing
noise, 22.3(1)% with bias η ¼ 3, 28.1(2)% with bias
η ¼ 10, 39.2(1)% with bias η ¼ 100, and the analytically
proven 50% threshold in the limit of pure Y noise; see
Sec. III C. Our decoder implementation and numerics are
described below. The features of surface codes that con-
tribute to their exceptional performance with biased noise
are discussed in the body of the paper.

1. Decoder

In order to take account of correlations between X- and
Z-type stabilizer syndromes, we implement a tensor-
network approximate maximum-likelihood decoder for

FIG. 19. Threshold error rate pc as a function of bias η. Red
inverted triangles show threshold estimates for the triangular
6.6.6 color code. For comparison, blue triangles show threshold
estimates for the surface code (reproduced from Sec. VA), with
the point at infinite bias, i.e., only Y errors, indicating the
analytically proven 50% threshold. Error bars indicate one
standard deviation relative to the fitting procedure. The gray
line is the hashing bound for the associated Pauli error channel.

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-18



triangular 6.6.6 color codes following the same principles
as the tensor-network decoder of Ref. [9] used in Ref. [7]
for surface codes.
Consider a color code with n physical qubits and m

independent stabilizer generators. Let P denote the group
of n-qubit Pauli operators, let G denote the stabilizer
group, and recall that the centralizer of G is given by
CðGÞ ¼ ff ∈ P∶fg ¼ gf ∀ g ∈ Gg. If the result of
measuring the stabilizer generators is given by syndrome
s ∈ f0; 1gm and fs ∈ P is some fixed Pauli operator
with syndrome s, then the set fsCðGÞ of all Pauli
operators with syndrome s is the disjoint union fsCðGÞ ¼
fsG ∪ fsX̄G ∪ fsȲG ∪ fsZ̄G, where X̄, Ȳ, and Z̄ are the
logical operators on the encoded qubit.
For a given syndrome s and probability distribution π on

the Pauli group, the maximum-likelihood decoder can be
implemented by constructing a candidate recovery operator
fs consistent with s and returning arg maxfπðfGÞ, where
f ∈ ffs; fsX̄; fsȲ; fsZ̄g and πðfGÞ ¼ P

g∈G πðfgÞ.
By analogy with the decoder of Ref. [9] for the surface

code, we define a tensor network whose exact contraction
yields the coset probability πðfGÞ for the color code.
Figures 20(a) and 20(b) illustrate a distance five-color
code, whereas Fig. 20(c) illustrates a tensor network with
the same layout of qubits and stabilizers. Bonds have

dimension 4. Stabilizer tensors are defined such that each
element has a value of 1 if all indices are identical and a
value of 0 otherwise. Qubit tensors are defined such that
each element has the single-qubit probability π of the
product of the restriction of f to that qubit with the Paulis
associated with bond indices where indices map to Paulis as
0 ↦ I, 1 ↦ X, 2 ↦ Y, and 3 ↦ Z. In this way, all possible
combinations of stabilizers are applied to f, and the exact
contraction of such a tensor network yields the coset
probability πðfGÞ.
The exact contraction of the tensor network is inefficient

with a run time exponential in the number of qubits n.
However, by merging neighboring qubit tensors in pairs, the
tensor network can be transformed into a square lattice [see
Fig. 20(d)] so that techniques, used in the decoder of Ref. [9],
can be applied to efficiently approximate the coset proba-
bility. The approximation is controlled by a parameter χ
which defines the maximum bond dimension retained as the
tensor network is contracted. We refer the reader to Ref. [9]
for full details of the approximate contraction algorithm. We
find that the performance of the decoder converges well for
χ ¼ 36 across all noise biases; see below.

2. Numerics

We follow the general approach taken in Ref. [7]; we
give a brief summary here and refer the reader to Ref. [7]
for full details. We use triangular 6.6.6 color codes of
distances d ¼ 7, 11, 15, and 19. We estimate the threshold
for biases η ¼ 0.5; 1; 3; 10; 30; 100; 300; 1000;∞, where
η ¼ pY=ðpX þ pZÞ and pX ¼ pZ, such that η ¼ 0.5 cor-
responds to standard depolarizing noise and η ¼ ∞ corre-
sponds to pure Y noise (see Sec. II). We approximate
maximum-likelihood decoding using the decoder,
described above, with approximation parameter χ ¼ 36.
The decoder converges well (generally better than in
Ref. [7]) across the full range of biases with the weakest
convergence in the low-bias regime; see Fig. 21. We run

(a) (b)

(c) (d)

FIG. 20. (a) Distance five triangular 6.6.6 color code with
logical operators given by a product of Z along the bottom edge
and a product of X along the left edge. (b) Color-code stabilizers.
(c) Tensor network corresponding to the coset probability of a
distance five color code; gray disks represent qubit tensors; white
stars represent stabilizer tensors; and lines represent bonds.
(d) Equivalent tensor network as a square lattice.

FIG. 21. Decoder convergence for the distance d ¼ 19 triangu-
lar 6.6.6 color code, represented by shifted logical failure rate
fχ − f36, as a function of χ at a physical error probability p near
the threshold for the given bias η. Each data point corresponds to
60 000 runs with identical errors generated across all χ for
a given bias.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-19



30 000 simulations per code distance and physical error
probability. As in Ref. [7], we use the critical exponent
method of Ref. [28] to obtain threshold estimates with
jackknife resampling over the code distances to determine
error bounds.

APPENDIX B: EXACT OPTIMAL Y DECODER

Here, we define the exact optimal decoder for pure Y
noise that we use in our numerical simulations of Sec. IVA.
As mentioned in Sec. III B, it is possible to decode Y noise
on the planar code by treating it as the concatenation of a
cycle code and repetition codes and decoding level by level.
However, while efficient, such a decoder is not necessarily
optimal. Also, as mentioned in Sec. III C, the performance
of the approximate maximum-likelihood decoder [9] used
in previous studies [7] is found to saturate with pure Y noise
when tuned for efficiency. Here, we explicitly define an
exact maximum-likelihood decoder for the surface code
with pure Y noise that is efficient for j × k surface code
families with small gcdðj; kÞ, such as coprime codes, and
tractable for moderate-sized square codes.
Consider a surface code with n physical qubits and m

independent vertex and plaquette stabilizer generators. In
the case of pure Y noise, the only possible error configu-
rations are Y-type Pauli operators, i.e., operators consisting
only of Y and identity single-qubit Paulis. Let PY denote
the group of n-qubit Y-type Pauli operators, let GY denote
the group of Y-type stabilizers, and define the centralizer
of GY as CðGYÞ¼ff∈PY∶fg¼gf ∀ g∈GYg. If the result
of measuring the vertex and plaquette stabilizer generators
is given by syndrome s ∈ f0; 1gm and fs ∈ PY is some
fixed Y-type Pauli operator with syndrome s, then the set
fsCðGYÞ of all Y-type Pauli operators with syndrome s is
the disjoint union fsCðGYÞ ¼ fsGY ∪ fsL̄GY , where L̄ is
one of the single class of logical operators possible with
pure Y noise.
For a given syndrome s and probability distribution

π on the Pauli group, the maximum-likelihood decoder
for pure Y noise can be implemented by constructing
a candidate Y-type recovery operator fs consistent with s
and returning arg maxfπðfGYÞ, where f∈ ffs;fsL̄g and
πðfGYÞ¼

P
g∈GY

πðfgÞ.
On a j × k surface code, the size of the group of Y-type

stabilizers is jGY j ¼ cY ¼ 2g−1, where g ¼ gcdðj; kÞ; see
Corollary 3. Therefore, for surface codes with small g, such
as coprime codes, the Y decoder is efficient, provided that a
candidate Y-type recovery operator fs, the group of Y-type
stabilizers GY , and logical operator L̄ can be constructed
efficiently. In the next two subsections, we describe these
constructions.

1. Constructing Y-type stabilizers and logical operators

The construction of Y-type stabilizers and logical oper-
ators for a j × k code is illustrated in Fig. 22. A minimum-
weight Y-type logical operator is constructed by applying Y

operators along a path starting at the top-left corner of the
lattice and descending diagonally to the right, reflecting at
boundaries, until another corner is encountered from within
the lattice. We construct Y-type stabilizers similarly, start-
ing at each of the next gcdðj; kÞ − 1 qubits of the top row
and reflecting until the path cycles. Together, these stabi-
lizers generate the full group of 2g−1 Y-type stabilizers and
combine with the minimum-weight logical operator to give
the 2g−1 Y-type logical operators of the j × k code.

2. Constructing candidate Y-type recovery operators

The construction of a candidate Y-type recovery oper-
ator, consistent with a given syndrome, depends on whether
the code is coprime, square, or neither.
For coprime codes, it is possible to construct an operator,

consisting only of Y and identity single-qubit Paulis, that
anticommutes with any single syndrome location. We refer
to such operators as Y-type destabilizers. Given a complete
syndrome, a candidate Y-type recovery operator is then
simply constructed by taking the product of Y-type desta-
bilizers for each syndrome location. One way to construct
Y-type destabilizers for coprime codes is illustrated in
Fig. 23. For a given syndrome location, a partial recovery
operator is constructed by applying seed Y operators along
a path starting directly below the syndrome location and
descending diagonally to the right until a boundary is
encountered; further Y operators are applied along paths
descending diagonally to the left of each of these seed Y
operators, reflecting at boundaries, until the bottom boun-
dary is encountered. The partial recovery operator then
anticommutes with the original syndrome location and

(a) (b)

(c.i) (c.ii) (c.iii)

FIG. 22. Examples of Y-type stabilizer and logical operator
construction by applying Y operators along the indicated path
until a corner is encountered or the path cycles. Minimum-weight
Y-type logical operators (a) and (b) for square 4 × 4 and coprime
3 × 4 codes, respectively, are constructed by starting at the top-
left qubit. Generators of the group of Y-type stabilizers (c) for the
square 4 × 4 code are constructed by starting at each of the next
gcdðj; kÞ − 1 ¼ 3 qubits of the top row. (For coprime codes, there
are no Y-type stabilizers other than the identity.)

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-20



residual syndrome locations on the bottom boundary. A
residual recovery operator is constructed for each residual
syndrome location by applying Y operators along a line
starting directly to the right of the syndrome location and
ascending diagonally to the right, reflecting at boundaries,
until a corner is encountered from within the lattice. The
residual recovery operators then anticommute with the
residual syndrome locations. The destabilizer for the
original syndrome location is then simply the product of
the partial and residual recovery operators.
For square codes, Y-type destabilizers do not exist, in

general, and, hence, a different approach to constructing a
candidate Y-type recovery operator must be adopted. Given
a complete syndrome for a square code, a candidate Y-type
recovery operator can be constructed by taking the product
of partial recovery operators for each syndrome location,
since the residual boundary syndrome locations cancel in
the case of square codes; see Fig. 24.
For surface codes that are neither coprime nor square, a

candidate Y-type recovery operator is constructed by
dividing the lattice into a coprime region and square
regions. Partial recovery operators are constructed for each
region, leaving residual syndrome locations only on

plaquettes between regions. Residual syndrome locations
can then be moved off the lattice using Y-type stabilizers on
the square regions.

[1] S. B. Bravyi and A. Y. Kitaev, Quantum Codes on a Lattice
with Boundary, arXiv:quant-ph/9811052.

[2] B. M. Terhal, Quantum Error Correction for Quantum
Memories, Rev. Mod. Phys. 87, 307 (2015).

[3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topo-
logical Quantum Memory, J. Math. Phys. (N.Y.) 43, 4452
(2002).

[4] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M.
Steffen, and B. M. Terhal, Fault-Tolerant Computing with
Biased-Noise Superconducting Qubits: A Case Study, New
J. Phys. 11, 013061 (2009).

[5] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, Demonstration of Entanglement
of Electrostatically Coupled Singlet-Triplet Qubits, Science
336, 202 (2012).

[6] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum Computations on a Topologically Encoded Qubit,
Science 345, 302 (2014).

[7] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh
Error Threshold for Surface Codes with Biased Noise, Phys.
Rev. Lett. 120, 050505 (2018).

[8] H. Bombin and M. A. Martin-Delgado, Optimal Resources
for Topological Two-Dimensional Stabilizer Codes:
Comparative Study, Phys. Rev. A 76, 012305 (2007).

[9] S. Bravyi, M. Suchara, and A. Vargo, Efficient Algorithms
for Maximum Likelihood Decoding in the Surface Code,
Phys. Rev. A 90, 032326 (2014).

[10] H. Bombin and M. A. Martin-Delgado, Topological
Quantum Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[11] L. Ioffe and M. Mézard, Asymmetric Quantum Error-
Correcting Codes, Phys. Rev. A 75, 032345 (2007).

[12] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler,
Asymmetric Quantum Codes: Constructions, Bounds and
Performance, Proc. R. Soc. A 465, 1645 (2009).

[13] G. G. La Guardia, On the Construction of Asymmetric
Quantum Codes, Int. J. Theor. Phys. 53, 2312 (2014).

[14] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia,
Tailored Codes for Small Quantum Memories, Phys. Rev.
Applied 8, 064004 (2017).

[15] P. Aliferis and J. Preskill, Fault-Tolerant Quantum
Computation against Biased Noise, Phys. Rev. A 78,
052331 (2008).

[16] A. M. Stephens, W. J. Munro, and K. Nemoto, High-
Threshold Topological Quantum Error Correction against
Biased Noise, Phys. Rev. A 88, 060301(R) (2013).

[17] A. M. Stephens, Z. W. E. Evans, S. J. Devitt, and L. C. L.
Hollenberg, Asymmetric Quantum Error Correction via
Code Conversion, Phys. Rev. A 77, 062335 (2008).

[18] J. Napp and J. Preskill, Optimal Bacon-Shor Codes,
Quantum Inf. Comput. 13, 0490 (2013).

[19] P. Brooks and J. Preskill, Fault-Tolerant Quantum Compu-
tation with Asymmetric Bacon-Shor Codes, Phys. Rev. A
87, 032310 (2013).

(a) (b) (c) (d)

FIG. 23. Example of Y-type destabilizer construction for a
coprime code. (a) Single syndrome location. (b) A partial
recovery operator is constructed by applying Y operators, from
below the syndrome location along a diagonal to any boundary,
then from that diagonal along perpendicular diagonals, until the
bottom boundary is encountered. (c) Residual recovery operators
are constructed by applying Y operators, from right of each
residual boundary syndrome location along a diagonal away, until
a corner is encountered. (d) The destabilizer is a product of partial
and residual recovery operators.

(a) (b.i) (b.ii) (c)

FIG. 24. Example of candidate Y-type recovery operator con-
struction for a square code using partial recovery operators.
(a) Original error and complete syndrome. (b) Partial recovery
operators with residual boundary syndrome locations. (c) The
candidate recovery operator is the product of all partial recovery
operators, since residual boundary syndrome locations cancel in
the case of square codes.

TAILORING SURFACE CODES FOR HIGHLY BIASED NOISE PHYS. REV. X 9, 041031 (2019)

041031-21

https://arXiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1253742
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1098/rspa.2008.0439
https://doi.org/10.1007/s10773-014-2031-y
https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevA.78.052331
https://doi.org/10.1103/PhysRevA.78.052331
https://doi.org/10.1103/PhysRevA.88.060301
https://doi.org/10.1103/PhysRevA.77.062335
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1103/PhysRevA.87.032310


[20] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, 2D
Compass Codes, Phys. Rev. X 9, 021041 (2019).

[21] B. Röthlisberger, J. R. Wootton, R. M. Heath, J. K. Pachos,
and D. Loss, Incoherent Dynamics in the Toric Code
Subject to Disorder, Phys. Rev. A 85, 022313 (2012).

[22] X. Xu, Q. Zhao, X. Yuan, and S. C. Benjamin, A High
Threshold Code for Modular Hardware with Asymmetric
Noise, arXiv:1812.01505.

[23] P. Webster, S. D. Bartlett, and D. Poulin, Reducing the
Overhead for Quantum Computation When Noise Is Biased,
Phys. Rev. A 92, 062309 (2015).

[24] M. E. Beverland, B. J. Brown, M. J. Kastoryano, and Q.
Marolleau, The Role of Entropy in Topological Quantum
Error Correction, J. Stat. Mech. 2019, 073404.

[25] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open Source
Scientific Tools for Python (2001), https://www.scipy.org/.

[26] T. E. Oliphant, A Guide to NumPy, Vol. 1 (2006), https://
www.numpy.org/.

[27] F. Johansson et al.,mpmath: A Python Library for Arbitrary-
Precision Floating-Point Arithmetic (version 1.0) (2017),
http://mpmath.org/.

[28] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs
Transition in a Disordered Gauge Theory and the Accuracy

Threshold for Quantum Memory, Ann. Phys. (Amsterdam)
303, 31 (2003).

[29] A. S. Darmawan and D. Poulin, Linear-Time General
Decoding Algorithm for the Surface Code, Phys. Rev. E
97, 051302(R) (2018).

[30] N. Delfosse, P. Iyer, and D. Poulin, Generalized Surface
Codes and Packing of Logical Qubits, arXiv:1606.07116.

[31] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
Color Code, New J. Phys. 17, 083026 (2015).

[32] D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J.
Brown, Fault-Tolerant Thresholds for the Surface Code
in Excess of 5% under Biased Noise, arXiv:1907.02554.

[33] F. Merz and J. T. Chalker, Two-Dimensional Random-Bond
Ising Model, Free Fermions, and the Network Model, Phys.
Rev. B 65, 054425 (2002).

[34] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber,
and M. A. Martin-Delgado, Strong Resilience of Topologi-
cal Codes to Depolarization, Phys. Rev. X 2, 021004
(2012).

[35] H. G. Katzgraber, H. Bombin, and M. A. Martin-
Delgado, Error Threshold for Color Codes and Random
Three-Body Ising Models, Phys. Rev. Lett. 103, 090501
(2009).

DAVID K. TUCKETT et al. PHYS. REV. X 9, 041031 (2019)

041031-22

https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.1103/PhysRevA.85.022313
https://arXiv.org/abs/1812.01505
https://doi.org/10.1103/PhysRevA.92.062309
https://doi.org/10.1088/1742-5468/ab25de
https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/
https://www.numpy.org/
https://www.numpy.org/
https://www.numpy.org/
https://www.numpy.org/
http://mpmath.org/
http://mpmath.org/
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevE.97.051302
https://doi.org/10.1103/PhysRevE.97.051302
https://arXiv.org/abs/1606.07116
https://doi.org/10.1088/1367-2630/17/8/083026
https://arXiv.org/abs/1907.02554
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1103/PhysRevX.2.021004
https://doi.org/10.1103/PhysRevX.2.021004
https://doi.org/10.1103/PhysRevLett.103.090501
https://doi.org/10.1103/PhysRevLett.103.090501

