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We introduce the problem of unsupervised classification of quantum data, namely, of systems whose
quantum states are unknown. We derive the optimal single-shot protocol for the binary case, where the
states in a disordered input array are of two types. Our protocol is universal and able to automatically sort
the input under minimal assumptions, yet partially preserves information contained in the states. We
quantify analytically its performance for an arbitrary size and dimension of the data. We contrast it with the
performance of its classical counterpart, which clusters data that have been sampled from two unknown
probability distributions. We find that the quantum protocol fully exploits the dimensionality of the
quantum data to achieve a much higher performance, provided the data are at least three dimensional. For
the sake of comparison, we discuss the optimal protocol when the classical and quantum states are known.
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I. INTRODUCTION

Quantum-based communication and computation tech-
nologies promise unprecedented applications and unfore-
seen speed-ups for certain classes of computational
problems. In origin, the advantages of quantum computing
are exemplary showcased through instances of problems
that are hard to solve in a classical computer, such as integer
factorization [1], unstructured search [2], discrete optimi-
zation [3,4], and simulation of many-body Hamiltonian
dynamics [5]. In recent times, the field ventures one step
further: Quantum computers are now also envisioned as
nodes in a network of quantum devices, where connections
are established via quantum channels, and data are quantum
systems that flow through the network [6,7]. The design
of future quantum networks, in turn, brings up new theo-
retical challenges, such as devising universal information-
processing protocols optimized to work with generic
quantum inputs, without the need of human intervention.
Quantum learning algorithms are by design well suited

for this class of automated tasks [8]. Generalizing classical
machine-learning ideas to operate with quantum data, some
algorithms have been devised for quantum template match-
ing [9], quantum anomaly detection [10,11], learning
unitary transformations [12] and quantum measurements

[13], and classifying quantum states [14–17]. These works
fall under the broad category of supervised learning
[18,19], where the aim is to learn an unknown conditional
probability distribution PrðyjxÞ from a number of given
samples xi and associated values or labels yi, called
training instances. The performance of a trained learning
algorithm is then evaluated by applying the learned
function over new data x0i called test instances. In the
quantum extension of supervised learning [20], the training
instances are quantum—say, copies of the quantum state
templates, or a potential anomalous state, or a number of
uses of an unknown unitary transformation. The separation
between training and testing steps is sometimes not as
sharp: In reinforcement learning, training occurs on an
instance basis via the interaction of an agent with an
environment, and the learning process itself may alter the
underlying probability distribution [21].
In contrast, unsupervised learning aims at inferring

structure in an unknown distribution PrðxÞ given random,
unlabeled samples xi. Typically, this inference is done by
grouping the samples in clusters, according to a preset
definition of similarity. Unsupervised learning is a versatile
form of learning, attractive in scenarios where appropri-
ately labeled training data are not available or too costly.
But it is also—generically—a much more challenging
problem [22,23]. To our knowledge, a quantum extension
of unsupervised learning in the sense described above is not
yet considered in the literature. In this paper, we take a first
step into this branch of quantum learning by introducing
the problem of unsupervised binary classification of quan-
tum states. We consider the following scenario: A source
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prepares quantum systems in two possible pure states
that are completely unknown; after some time, N such
systems are produced, and we ask ourselves whether there
exists a quantum device that is able to cluster them in two
groups according to their states (see Fig. 1). This scenario
represents a quantum clustering task in its simplest form,
where the single feature defining a cluster of quantum
systems is that their states are identical. While clustering
classical data under this definition of a cluster—a set of
equal data instances—yields a trivial algorithm, merely
observing such a simple feature in a finite quantum dataset
involves a nontrivial stochastic process and gives rise to a
primitive of operational relevance for quantum information.
Moreover, in some sense, our scenario actually contains a
classical binary clustering problem: If we were to measure
each quantum system separately, we would obtain a set of
N data points (the measurement outcomes). The points
would be effectively sampled from the two probability
distributions determined by the quantum states and the
choice of measurement. The task would then be to identify
which points are sampled from the same distribution.
Reciprocally, we can interpret our quantum clustering task
as a natural extension of a classical clustering problem
with completely unstructured data, where the only single
feature that identifies a cluster is that the data points
are sampled from a fixed, but arbitrary, categorical prob-
ability distribution (i.e., with no order nor metric in the
underlying space). The quantum generalization is then to
consider (noncommuting) quantum states instead of prob-
ability distributions.
We require two important features in our quantum

clustering device: (i) It has to be universal—that is, it
should be designed to take any possible pair of types
of input states—and (ii) it has to provide a classical
description of the clustering, that is, which particles belong
to each cluster. Feature (i) ensures general-purpose use and

versatility of the clustering device, in a similar spirit to
programable quantum processors [24]. Feature (ii) allows
us to assess the performance of the device purely in terms of
the accuracy of the clustering, which, in turn, facilitates the
comparison with classical clustering strategies. Also due to
(ii), we can justifiably say that the device has not only
performed the clustering task but also “learned” that the
input is (most likely) partitioned as specified by the output
description. Note that relaxing feature (ii), in principle,
opens the door to a more general class of sorting quantum
devices, where the goal could be, e.g., to minimize the
distance (under some norm) between the global output state
and the state corresponding to perfect clustering of the
input. Such devices, however, fall beyond the scope of
unsupervised learning.
Requiring the description of the clusters as a classical

outcome induces structure in the device. To generate this
information, a quantum measurement shall be performed
over all N systems with as many outcomes as possible
clusterings. Then, the systems will be sorted according to
this outcome (see Fig. 1). Depending on the context, e.g.,
on whether or not the systems will be further used after the
clustering, different figures of merit shall be considered in
the optimization of the device. In this paper, we focus on
the clustering part: Our goal is to find the quantum
measurement that maximizes the success probability of a
correct clustering.
Features (i) and (ii) allow us to formally regard quantum

clustering as a state discrimination task [25–30], albeit
with important differences with respect to the standard
setting. In quantum state discrimination [25], we want to
determine the state of a quantum system among a set of
known hypotheses (i.e., classical descriptions of quantum
states). We can phrase this problem in machine-learning
terminology as follows. We have a test state (or several
copies of it [29]), and we decide its label based on infinite
training data. In other words, we have full knowledge
about the meaning of the possible labels. Supervised
quantum learning algorithms for quantum state classifica-
tion [14–17] consider the intermediate scenario with limited
training data. In this case, no description of the states is
available. Instead, we are provided with a finite number of
copies of systems in each of the possible quantum states,
and thus we have only partial classical knowledge about the
labels. Extracting the label information from the quantum
training data then becomes a key step in the protocol.
Following this line of thought, the problem we consider in
this paper is a type of unsupervised learning, that is, one
with no training. There is no information whatsoever about
what state each label represents.
We obtain analytical expressions for the performance of

the optimal clustering protocol for arbitrary values of the
local dimension d of the systems in the cases of a finite
number of systems N and in the asymptotic limit of many
systems. We show that, in spite of the fact that the number

FIG. 1. Pictorial representation of the clustering device for an
input of eight quantum states. States of the same type have the
same color. States are clustered according to their type by
performing a suitable collective measurement, which also pro-
vides a classical description of the clustering.
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of possible clusterings grows exponentially with N, the
success probability decays only as Oð1=N2Þ. Furthermore,
we contrast these results with an optimal clustering
algorithm designed for the classical version of the task.
We observe a striking phenomenon when analyzing the
performance of the two protocols for d > 2: Whereas
increasing the local dimension has a rapid negative impact
in the success probability of the classical protocol (cluster-
ing becomes, naturally, harder), it turns out to be beneficial
for its quantum counterpart.
We also see, through a numerical analysis, that the

quantum measurement that maximizes the success proba-
bility is also optimal for a more general class of cost
functions that are more natural for clustering problems,
including the Hamming distance. In other words, this
observation provides evidence that our entire analysis does
not depend strongly on the chosen figure of merit but rather
on the structure of the problem itself.
Measuring the systems will, in principle, degrade the

information encoded in their states; hence, intuitively, there
should be a trade-off between how good a clustering is and
how much information about the original states is left in the
clusters. Remarkably, our analysis reveals that the meas-
urement that clusterizes optimally actually preserves infor-
mation regarding the type of states that form each cluster.
This feature adds to the usability of our device as a
universal quantum data sorting processor. It can be
regarded as the quantum analog of a sorting network (or
sorting memory) [31], used as a fixed network architecture
that automatically orders generic inputs coming from an
aggregated data pipeline. The details of this second step
are, however, left for a subsequent publication.
The paper is organized as follows. In Sec. II, we

formalize the problem and derive the optimal clustering
protocol and its performance. In Sec. III, we consider a
classical clustering protocol and contrast it with the optimal
one. We present the proofs of the main results of our work
and the necessary theoretical tools to derive them in Sec. IV.
We end in Sec. V discussing the features of our quantum
clustering device and other cost functions and giving an
outlook on future extensions.

II. CLUSTERING QUANTUM STATES

Let us suppose that a source prepares quantum systems
randomly in one of two pure d-dimensional states jϕ0i and
jϕ1i with equal prior probabilities. Given a sequence of N
systems produced by the source, and with no knowledge of
the states jϕ0=1i, we are required to assign labels “0” or “1”
to each of the systems. The labeling can be achieved via a
generalized quantum measurement that tries to distinguish
among all the possible global states of the N systems. Each
outcome of the measurement is then associated to a
possible label assignment, that is, to a clustering.
Consider the case of four systems. All possible cluster-

ings that we may arrange are depicted in Fig. 2 as strings of

red and blue balls. Since the individual states of the
systems are unknown, what is labeled as “red” or “blue”
is arbitrary; thus, interchanging the labels leads to an
equivalent clustering. For arbitrary N, there are 2N−1 such
clusterings. Figure 2 also illustrates a natural way to label
each clustering as ðn; σÞ. The index n counts the number
of systems in the smallest cluster. The index σ is a
permutation that brings a reference clustering, defined as
that in which the systems belonging to the smallest cluster
fall all on the right, into the desired form. To make this
labeling unambiguous, σ is chosen from a restricted set
Sn ⊂ SN , where SN stands for the permutation group of N
elements and e denotes its unity element. We see that the
optimal clustering procedure consists in measuring first the
value of n and, depending on the outcome, performing a
second measurement that identifies σ among the relevant
permutations with a fixed n.
Thus, unsupervised clustering is cast as a multihypo-

thesis discrimination problem, which can be solved for an
arbitrary number of systems N with local dimension d.
Below, we outline the derivation of our main result: the
expression of the maximum average success probability
achievable by a quantum clustering protocol. In the limit of
large N and for arbitrary d (not necessarily constant with
N), we show that this probability behaves as

Ps ∼
8ðd − 1Þ

ð2dþ NÞN : ð1Þ

(The symbol∼ stands for “asymptotically equivalent to”, as
in Ref. [32].). Naturally, Ps goes to zero with N, since the
total number of clusterings increases exponentially and it
becomes much harder to discriminate among them. What
may perhaps come as a surprise is that, despite this
exponential growth, the scaling of Ps is only of the order
of Oð1=N2Þ. (It is also interesting to see how far one can

FIG. 2. All possible clusterings of N ¼ 4 systems when each
can be in one of two possible states, depicted as blue and red. The
pair of indices ðn; σÞ identifies each clustering, where n is the size
of the smallest cluster and σ is a permutation of the reference
clusterings (those on top of each box), wherein the smallest
cluster falls on the right. The symbol e denotes the identity
permutation, and ðijÞ the transposition of systems in positions i
and j. Note that the choice of σ is not unique.
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improve this result. By letting d scale with N, e.g., by
substituting d ∼ sNγ for some s > 0, γ > 1 in Eq. (1), we
obtain the absolute maximum Ps ∼ 4=N.) Furthermore,
increasing the local dimension yields a linear improvement
in the asymptotic success probability. As we later see,
whereas the asymptotic behavior in N is not an exclusive
feature of the optimal quantum protocol—we observe the
same scaling in its classical counterpart, albeit only when
d ¼ 2—the ability to exploit extra dimensions to enhance
distinguishability is.
Let us present an outlined derivation of the optimal

quantum clustering protocol. Each input can be described
by a string of 0’s and 1’s x ¼ ðx1…xNÞ, so that the global
state of the systems entering the device is jΦxi ¼ jϕx1i ⊗
jϕx2i ⊗ � � � ⊗ jϕxN i. The clustering device can generically
be defined by a positive operator valued measure (POVM)
with elements fExg, fulfilling Ex ≥ 0 and

P
x Ex ¼ 1,

where each operator Ex is associated to the statement
“the measured global state corresponds to the string x.”
We want to find a POVM that maximizes the average
success probability Ps¼21−N

R
dϕ0dϕ1

P
xtrðjΦxihΦxjExÞ,

where we assume that each clustering is equally likely at the
input and we are averaging over all possible pairs of states
fjϕ0i; jϕ1ig and strings x. Since our goal is to design a
universal clustering protocol, the operators Ex cannot
depend on jϕ0;1i, and we can take the integral inside the
trace. The clustering problem can then be regarded as the
optimization of a POVM that distinguishes between effec-
tive density operators of the form

ρx ¼
Z

dϕ0dϕ1jΦxihΦxj: ð2Þ

It now becomes apparent that ρx ¼ ρx̄, where x̄ is the
complementary string of x (i.e., the values 0 and 1 are
exchanged).
The key that reveals the structure of the problem

and allows us to deduce the optimal clustering protocol
resides in computing the integral in Eq. (2). Averaging over
the states leaves out only the information relevant to
identify a clustering, that is, n and σ. Certainly, identifying
x≡ ðn; σÞ, we can rewrite ρx as

ρn;σ ¼ cnUσð1symn ⊗ 1symN−nÞU†
σ

¼ cn⨁
λ
1ðλÞ ⊗ Ωn;σ

fλg: ð3Þ

By applying the Schur lemma, one readily obtains the
first line, where 1symk is a projector onto the completely
symmetric subspace of k systems, cn is a normalization
factor, and Uσ is a unitary matrix representation of σ.
The second line follows from using the Schur basis (see
Sec. IVA), in which the states ρn;σ are block diagonal.
Here, λ labels the irreducible representations—irreps for
short—of the joint action of the groups SUðdÞ and SN over
the vector space ðd;CÞ⊗N and is usually identified with the

shape of Young diagrams (or partitions of N). A pair of
parentheses () [braces fg], surrounding the subscript λ, e.g.,
in Eq. (3), are used when λ refers exclusively to irreps of
SUðdÞ [SN]; we stick to this convention throughout the
paper. Note that averaging over all SUðdÞ transformations
erases the information contained in the representation
subspace (λ). It also follows from Eq. (3) and the rules
of the Clebsch-Gordan decomposition that (i) only two-row
Young diagrams (partitions of length two) show up in the
direct sum above, and (ii) the operators Ωn;σ

fλg are rank-1

projectors (see Appendix B). They carry all the information
relevant for the clustering and are understood to be zero for
irreps λ outside the support of ρn;σ .
With Eq. (3) at hand, the optimal clustering protocol can

be succinctly described as two successive measurements—
we state the result here and present an optimality proof in
Sec. IVA. The first measurement is a projection onto the
irrep subspaces λ, described by the set f1ðλÞ ⊗ 1fλgg. The
outcome of this measurement provides an estimate of n, as λ
is one to one related to the size of the clusters. More
precisely, we have from (i) that λ ¼ ðλ1; λ2Þ, where λ1 and λ2
are non-negative integers such that λ1 þ λ2 ¼ N and
λ1 ≥ λ2. Then, given the outcome λ ¼ ðλ1; λ2Þ of this first
measurement, the optimal guess turns out to be n ¼ λ2. Very
roughly speaking, the “asymmetry” in the subspace λ ¼
ðλ1; λ2Þ increases with λ2. We recall that λ ¼ ðN; 0Þ is the
fully symmetric subspace of ðd;CÞN . Naturally, ρ0;σ has
support only in this subspace, as all states in the data are of
one type. As λ2 increases from zero, more states of the
alternative type are necessary to achieve the increasing
asymmetry of λ ¼ ðλ1; λ2Þ. Hence, for a given λ2, there is
a minimum value of n for which ρn;σ can have support in the
subspace λ ¼ ðλ1; λ2Þ. This minimum n is the optimal guess.
Once we obtain a particular λ ¼ λ� as an outcome (and

guess n), a second measurement is performed over the
subspace fλ�g to produce a guess for σ. Since the states ρn;σ
are covariant under SN, the optimal measurement to guess
the permutation σ is also covariant, and its seed is the
rank-1 operator Ωn;e

fλ�g, where λ
� ¼ ðN − n; nÞ. Put together,

these two successive measurements yield a joint optimal
POVM whose elements take the form

En;σ ¼ ξnλ� ð1ðλ�Þ ⊗ Ωn;σ
fλ�gÞ; ð4Þ

where ðn; σÞ is the guess for the cluster and ξnλ� is
some coefficient that guarantees the POVM conditionP

n;σ En;σ ¼ 1.
The success probability of the optimal protocol can

be computed as Ps¼21−N
P

n;σ trðρn;σEn;σÞ (see Sec. IVA).
It reads

Ps ¼ 21−N
XbN=2c

i¼0

�
N
i

� ðd − 1ÞðN − 1 − 2iÞ2
ðN − 1þ d − iÞðiþ 1Þ2 ; ð5Þ
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from which the asymptotic limit Eq. (1) follows (see
Appendix C).
Before closing this section, we briefly discuss the case

when some information about the possible states jϕ0i and
jϕ1i is available. A clustering device that incorporates
this information into its design should succeed with a
probability higher than Eq. (5), at the cost of universality.
To explore the extent of this performance enhancement, we
study the extreme case where we have full knowledge of the
states jϕ0i and jϕ1i. We find that in the large N limit the
maximum improvement is by a factor of N. The optimal
success probability scales as

Ps ∼
4ðd − 1Þ

N
ð6Þ

(see Sec. IV B for details).

III. CLUSTERING CLASSICAL STATES

To grasp the significance of our quantum clustering
protocol, a comparison with a classical analog is called
for. First, in the place of a quantum system whose state is
either jϕ0i or jϕ1i, an input would be an instance of a
d-dimensional random variable sampled from either one
of two categorical probability distributions: P ¼ fpsgds¼1

and Q ¼ fqsgds¼1. Then, given a string of samples s ¼
ðs1…sNÞ, si ∈ f1;…; dg, the clustering task would consist
in grouping the data points si in two clusters so that all
points in a cluster have a common underlying probability
distribution.
Second, in analogy with the quantum protocol, our goal

would be to find the optimal universal (i.e., independent of
P and Q) protocol that performs this task. Here, optimality
means attaining the maximum average success probability,
where the average is over all N-length sequences x of
distributions P and Q from which the string s is sampled
and over all such distributions.
It should be emphasized that this is a very hard classical

clustering problem, with absolute minimal assumptions,
where there is no metric in the domain of the random
variables and, in consequence, no exploitable notion of
distance. Therefore, one should expect the optimal algo-
rithm to have a rather low performance and to differ
significantly from well-known algorithms for classical
unsupervised classification problems.
As a further remark, we note that a choice of prior is

required to perform the average over P and Q. We assume
that the two are uniformly distributed over the simplex on
which they are both defined. This assumption reflects our
lack of knowledge about the distributions underlying the
string of samples s.
Under all these specifications, the classical clustering

problem we just defined naturally connects with the
quantum scenario in Sec. II as follows. We can interpret
s as a string of outcomes obtained upon performing the

same projective measurement on each individual quantum
state jϕxii of our original problem. Furthermore, such local
measurements can also be interpreted as a decoherence
process affecting the pure quantum states at the input,
whereby they decay into classical probability distributions
over a fixed basis. We might think of this as the semi-
classical analog of our original problem, since quantum
resources are not fully exploited.
Let us first lay out the problem in the special case of

d ¼ 2, where the underlying distributions are Bernoulli,
and we can write P ¼ fp; 1 − pg, Q ¼ fq; 1 − qg. Given
an N-length string of samples s, our intuition tells us that
the best we can do is to assign the same underlying
probability distribution to equal values in s. So if, e.g.,
s ¼ ð00101…Þ, we guess that the underlying sequence
of distributions is x̂ ¼ ðPPQPQ…Þ [or, equivalently, the
complementary sequence x̂ ¼ ðQQPQP…Þ]. Thus, data
points are clustered according to their value 0 or 1. The
optimality of this guessing rule is a particular case of the
result for d-dimensional random variables in Appendix F.
The probability that a string of samples s, with l zeros

and N − l ones, arises from the guessed sequence x̂ is
given by

Prðsjx¼ x̂Þ¼
Z

1

0

dp
Z

1

0

dqplqN−l ¼ 1

ðlþ1ÞðN− lþ1Þ :

ð7Þ

The average success probability can then be readily
computed as Pcl

s ¼ 2
P

x;s δx;x̂ PrðxÞ PrðsjxÞ (recall that
x̂ depends on s), where PrðxÞ ¼ 2−N is the prior probability
of the sequence x, which we assume to be uniform. The
factor 2 takes into account that guessing the complementary
sequence leads to the same clustering. It is now quite
straightforward to derive the asymptotic expression of Pcl

s
for large N. In this limit, x typically has the same number
of P and Q distributions, so the guess x̂ is right if
l ¼ N=2. Then,

Pcl
s ∼ 2

1

ðN=2þ 1Þ2 ∼
8

N2
: ð8Þ

This expression coincides with the quantum asymptotic
result in Eq. (1) for d ¼ 2. As we now see, this coincidence
is, however, a particularity of Bernoulli distributions.
The derivation for d > 2 is more involved, since the

optimal guessing rule is not so obvious (see Appendix F for
details). Loosely speaking, we should still assign samples
with the same value to the same cluster. By doing so, we
obtain up to d preliminary clusters. We next merge them
into two clusters in such a way that their final sizes are as
balanced as possible. This last step, known as the partition
problem [33], is weakly NP complete. Namely, its com-
plexity is polynomial in the magnitudes of the data involved
(the size of the preliminary clusters, which depends on N)
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but nonpolynomial in the input size (the number of such
clusters, determined by d). The complexity of this last step
implies that the classical and semiclassical protocols cannot
be implemented efficiently for arbitrary d. In the asymptotic
limit of large N and for arbitrary fixed values of d, we
obtain

Pcl
s ∼

�
2

N

�
d ð2d − 2Þ!
ðd − 2Þ! : ð9Þ

There is a huge difference between this result and Eq. (1).
Whereas increasing the local dimension provides an
asymptotic linear advantage in the optimal quantum clus-
tering protocol—states become more orthogonal—it has
the opposite effect in its classical and semiclassical analogs,
as it reduces exponentially the success probability.
In the opposite regime, i.e., for d asymptotically large

and fixed values of N, the optimal classical and semi-
classical strategies provide no improvement over random
guessing, and the clustering tasks become exceedingly
hard and somewhat uninteresting. This fact follows from
observing that the guessing rule relies on grouping repeated
data values. In this regime, the typical string of samples s
has no repeated elements; thus, we are left with no
alternative but to randomly guess the right clustering of
the data and Pcl

s ∼ 21−N .
To complete the picture, we end this section by consid-

ering known classical probability distributions. Akin to the
quantum case, one expects an increase in the success
probability of clustering. An immediate consequence of
knowing the distributions P and Q is that the rule for
assigning a clustering given a string of samples s becomes
trivial. Each symbol si ∈ f1;…; dg is assigned to the most
likely distribution, that is, to P (Q) if psi > qsi (psi < qsi).
It is clear that knowing P and Q helps to better classify the
data, which becomes apparent by considering the example
of two three-dimensional distributions and the data string
s ¼ ð112Þ. If the distributions are unknown, such a
sequence leads to the guess x̂ ¼ ðPPQÞ [or, equivalently,
to x̂ ¼ ðQQPÞ]. In contrast, if P andQ are known and, e.g.,
p1 > q1 and p2 > q2, the same sequence leads to the better
guess x̂ ¼ ðPPPÞ. The advantage of knowing the distri-
bution, however, vanishes in the large N limit, and the
asymptotic performance of the optimal clustering algorithm
is shown to be given by Eq. (9). The interested reader can
find the details of the proof in Appendix G.

IV. METHODS

Here, we give the full proof of optimality of our quantum
clustering protocol and device, which leads to our main
result in Eq. (1). The proof relies on the representation
theory of the special unitary and the symmetric groups. In
particular, the Schur-Weyl duality is used to efficiently
represent the structure of the input quantum data and the
action of the device. We then leverage this structure to find

the optimal POVM and compute the minimum cost. Basic
notions of the representation theory that we use in the proof
are covered in Appendixes A and B. We close the methods
section proving Eq. (6) for the optimal success probability
of clustering known quantum states.

A. Clustering quantum states: Unknown input states

In this section, we obtain the optimal POVM for
quantum clustering and compute the minimum cost.
First, we present a formal optimality proof for an arbitrary
cost function fðx;x0Þ, which specifies the penalty for
guessing x if the input is x0. Second, we particularize to
the case of success probability, as discussed in the main
text, for which explicit expressions are obtained.

1. Generic cost functions

We say a POVM is optimal if it minimizes the average
cost

f̄ ¼
Z

dϕ0dϕ1

X
x;x̂

ηxfðx; x̂Þ Prðx̂jxÞ; ð10Þ

where ηx is the prior probability of input string x and
Prðx̂jxÞ ¼ trðjΦxihΦxjEx̂Þ is the probability of obtaining
measurement outcome (and guess) x̂ given input x; recall
that jΦxi ¼ jϕx1i ⊗ jϕx2i ⊗ … ⊗ jϕxN i, xk ¼ 0, 1, and an
average is taken over all possible pairs of states fjϕ0i; jϕ1ig;
hence, x and its complementary x̄ define the same cluster-
ing. A convenient way to identify the different clusterings is
by counting the number n, 0 ≤ n ≤ bN=2c, of zeros in x (so,
strings with more 0’s than 1’s are discarded) and giving a
unique representative σ of the equivalence class of permu-
tations that turn the reference string ð0n1n̄Þ, n̄ ¼ N − n, into
x. We denote the subset of these representatives by Sn ⊂ SN
and the number of elements in each equivalence class by bn.
A simple calculation gives us bn ¼ 2ðn!Þ2 if n ¼ n̄, and
bn ¼ n!n̄! otherwise.
As discussed in the main text, the clustering problem

above is equivalent to a multihypothesis discrimination
problem, where the hypotheses are given by

ρx ¼
Z

dϕ0dϕ1jΦxihjΦxj

¼ cnUσð1symn ⊗ 1symn̄ ÞU†
σ; ð11Þ

and we have used the Schur lemma to compute the integral.
Here, Uσ is a unitary matrix representation of the permu-
tation σ, 1symk is a projector onto the completely symmetric
subspace of k systems, and cn ¼ 1=ðDsym

n Dsym
n̄ Þ, where

Dsym
k ¼ sðk;0Þ [see Eq. (B6)] is the dimension of symmetric

subspace of k qudits.
The states (11) are block diagonal in the Schur basis,

which decouples the commuting actions of the groups
SUðdÞ and SN over product states of the form of jΦxi. More
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precisely, Schur-Weyl duality states that the representations
of the two groups acting on the common space ðd;CÞ⊗N are
each other’s commutant. Moreover, it provides a decom-
position of this space into decoupled subspaces associated
to irreps of both SUðdÞ and SN . We can then express the
states ρx, where x is specified as ðn; σÞ [x ¼ ðn; σÞ for
short], in the Schur basis as

ρn;σ ¼ cn⨁
λ
1ðλÞ ⊗ Ωn;σ

fλg: ð12Þ

In this direct sum, λ is a label attached to the irreps of
the joint action of SUðdÞ and SN and is usually identified
with a partition of N or, equivalently, a Young diagram.
As explained in the main text, a pair of parentheses
surrounding this type of label, like in (λ), means that it
refers specifically to irreps of SUðdÞ. Likewise, a pair of
braces, e.g., fλg, indicates that the label refers to irreps
of SN . In accordance with this convention, Schur-Weyl
duality implies that Ωn;σ

fλg ¼ Uλ
σΩn;e

fλgðUλ
σÞ†, where Uλ

σ is the
matrix of the irrep λ that represents σ ∈ SN and e denotes
the identity permutation (for simplicity, we omit the index e
when no confusion arises). In other words, the family
of states ρn;σ is covariant with respect to SN . One can
easily check that Ωn;σ

fλg is always a rank-1 projector (see
Appendix B). In Eq. (12), it is understood that Ωn;σ

fλg ¼ 0

outside of the range of ρn;σ .
With no loss of generality, the optimal measurement that

discriminates the states ρn;σ can be represented by a POVM
whose elements have the form shown in Eq. (12).
Moreover, we can assume it to be covariant under SN
[34]. So, such POVM elements can be written as

En;σ ¼ ⨁
λ
1ðλÞ ⊗ Uλ

σΞn
fλgðUλ

σÞ†; ð13Þ

where Ξn
fλg is some positive operator. The resolution of

the identity condition imposes constraints on them. The
condition reads

X
n;σ

En;σ ¼
X
n

1

bn

X
σ∈SN

⨁
λ
1ðλÞ ⊗ Uλ

σΞn
fλgðUλ

σÞ†

¼ ⨁
λ
1ðλÞ ⊗ 1fλg; ð14Þ

where we use the factor bn to extend the sum over Sn to the
entire group SN and apply the Schur lemma. Taking the
trace on both sides of the equation, we find the POVM
constraint to be

X
n

N!

bn
trðΞn

fλgÞ ¼ νλ ∀ λ; ð15Þ

where νλ is the dimension of 1fλg or, equivalently, the
multiplicity of the irrep λ of SUðdÞ [see Eq. (B5)].

So far, we have analyzed the structure that the sym-
metries of the problem impose on the states ρn;σ and the
measurements. We have learned that, for any choice of
operators Ξn

fλg that fulfill Eq. (15), the set of operators (13)
defines a valid POVM, but it need not be optimal. So, we
now proceed to derive optimality conditions for Ξn

fλg. Those
are provided by the Holevo-Yuen-Kennedy-Lax [35,36]
necessary and sufficient conditions for minimizing the
average cost. For our clustering problem in Eq. (10),
they read

ðWx − ΓÞEx ¼ ExðWx − ΓÞ ¼ 0; ð16Þ

Wx − Γ ≥ 0: ð17Þ

They must hold for all x, where Γ ¼ P
x WxEx ¼P

x ExWx, and Wx ¼ P
x0 fðx;x0Þηx0ρx0 . We assume that

the prior distribution ηx is flat and that the cost function
is non-negative and covariant with respect to the permu-
tation group, i.e., fðx;x0Þ ¼ fðτx; τx0Þ for all τ ∈ SN .
Then, Wτx ¼ UτWxU

†
τ , and we need only to ensure that

conditions (16) and (17) are met for reference strings, for
which x ¼ ðn; eÞ. In the Schur basis, their corresponding
operators, which we simply call Wn, and the matrix Γ take
the form, respectively,

Wn ¼ ⨁
λ
1ðλÞ ⊗ ωn

fλg; ð18Þ

Γ ¼ ⨁
λ
kλ1ðλÞ ⊗ 1fλg; ð19Þ

where we use the Schur lemma to obtain Eq. (19) and
define kλ ≡P

n N!trðωn
fλgΞ

n
fλgÞ=ðbnνλÞ. Note that Γ is a

diagonal matrix, in spite of the fact that ωn
fλg are, at this

point, arbitrary full-rank positive operators.
With Eqs. (18) and (19), the optimality conditions (16)

and (17) can be made explicit. First, we note that the
subspace (λ) is irrelevant in this calculation and that there is
an independent condition for each irrep λ. Taking into
account these considerations, Eq. (16) now reads

ωn
fλgΞ

n
fλg ¼ Ξn

fλgω
n
fλg ¼ kλΞn

fλg ∀ n; λ: ð20Þ

This equation tells us two things: (i) Since the matrices ωn
fλg

and Ξn
fλg commute, they have a common eigenbasis, and

(ii) Eq. (20) is a set of eigenvalue equations for ωn
fλg with a

common eigenvalue kλ, one equation for each eigenvector
of Ξn

fλg. Therefore, the support of Ξn
fλg is necessarily

restricted to a single eigenspace of ωn
fλg. Denoting by

ϑnλ;a, a ¼ 1; 2;…, the eigenvalues of ωn
fλg sorted in increas-

ing order, we have kλ ¼ ϑnλ;a for some a, which may depend
on λ and n, or else Ξn

fλg ¼ 0.
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The second Holevo condition (17), under the same
considerations regarding the block-diagonal structure,
leads to

ωn
fλg ≥ kλ1fλg ∀ n; λ: ð21Þ

This condition further induces more structure in the POVM.
Given λ, Eq. (21) has to hold for every value of n. In
particular, we must have minn0ϑn

0
λ;1 ≥ kλ. Therefore,

minn0ϑn
0

λ;1 ≥ ϑnλ;a for some a, or else Ξn
fλg ¼ 0. Since Ξn

fλg
cannot vanish for all n because of Eq. (15), we readily
see that

kλ¼ ϑnðλÞλ;1 ; Ξn
fλg ¼

(
ξnλΠ1ðωn

fλgÞ if n¼ nðλÞ;
0 otherwise;

ð22Þ

where nðλÞ ¼ argminnϑnλ;1, Π1ðωn
fλgÞ is a projector onto the

eigenspace of ωn
fλg (not necessarily the whole subspace)

corresponding to the minimum eigenvalue ϑnλ;1, and ξnλ is a
suitable coefficient that can be read off from Eq. (15):

ξnλ ¼
νλbn
Dn

λN!
; ð23Þ

where Dn
λ ¼ dim ½Π1ðωn

fλgÞ�, which completes the con-

struction of the optimal POVM.
For a generic cost function, we can now write down a

closed, implicit formula for the minimum average cost
achievable by any quantum clustering protocol. It reads

f̄ ¼ trΓ ¼
X
λ

sλνλϑ
nðλÞ
λ;1 ; ð24Þ

where sλ is the dimension of 1ðλÞ or, equivalently, the
multiplicity of the irrep λ of SN [see Eq. (B6)]. The only
object that remains to be specified is the function nðλÞ,
which depends ultimately on the choice of the cost
function fðx;x0Þ.

2. Success probability

Wenowmake Eq. (24) explicit by considering the success
probability Ps as a figure of merit; that is, we choose
fðx;x0Þ ¼ 1 − δx;x0 and, hence, Ps ¼ 1 − f̄. We also
assume that the source that produces the input sequence
is equally likely to prepare either state; thus, each stringx has
the same prior probability, ηx ¼ 21−N ≡ η. In this case, Wn
takes the simple form

Wn ¼ ⨁
λ
1ðλÞ ⊗ ðμλ1fλg − ηcnΩn

fλgÞ; ð25Þ

where μλ are positive coefficients and we recall that the
expression in parentheses corresponds to ωn

fλg in Eq. (18).

From this expression, one can easily derive the explicit
forms of ϑnλ;1 and nðλÞ. We just need to consider the
maximum eigenvalue of the rank-one projector Ωn

fλg, which
can be either one or zero depending on whether or not the
input state ρn;σ has support in the irrep λ space. So, among
the values of n for which ρn;σ does have support there, nðλÞ is
one that maximizes cn. Since cn is a decreasing function of n
in its allowed range (recall that n ≤ bN=2c), nðλÞ is the
smallest such value.
For the problem at hand, the irreps in the direct sum can

be labeled by Young diagrams of at most two rows or,
equivalently, by partitions of N of length at most two
(see Appendix B); hence, λ ¼ ðλ1; λ2Þ, where λ1 þ λ2 ¼ N
and λ2 runs from 0 to bN=2c. Given λ, only states ρn with
n ¼ λ2;…; bN=2c have support on the irrep λ space, as
readily follows from the Clebsch-Gordan decomposition
rules. Then,

nðλÞ ¼ λ2; ϑnðλÞλ;1 ¼ μλ − ηcnðλÞ: ð26Þ

Equation (26) gives the optimal guess for the size n of the
smallest cluster. The rule is in agreement with our intuition.
The irrep ðN; 0Þ, i.e., λ2 ¼ 0, corresponding to the fully
symmetric subspace, is naturally associated with the value
n ¼ 0, i.e., with all N systems being in the same state or
cluster; the irrep with one antisymmetrized index has
λ2 ¼ 1 and hints at a system being in a different state than
the others, i.e., at a cluster of size one, and so on.
We now have all the ingredients to compute the optimal

success probability from Eq. (24). It reads

Ps ¼ η
X
λ

cnðλÞsλνλ

¼ 1

2N−1

XbN=2c

i¼0

�
N
i

� ðd − 1ÞðN − 2iþ 1Þ2
ðdþ i − 1ÞðN − iþ 1Þ2 ; ð27Þ

where we use the relation
P

λ sλνλμλ ¼ 1 that follows from
tr
P

x ηxρx ¼ 1 and the expressions of νλ and sλ from
Eqs. (B5) and (B6) in Appendix B.

B. Clustering quantum states: Known input states

If the two possible states jϕ0i and jϕ1i are known, the
optimal clustering protocol must use this information. It is
then expected that the average performance will be much
higher than for the universal protocol. It is natural in this
context not to identify a given string x with its comple-
mentary x̄ (we stick to the notation in the main text), since
mistaking one state for the other should clearly count
as an error if the two preparations are specified. In this
case, then, clustering is equivalent to discriminating the
2N known pure states jΦxi ¼ jϕx1i ⊗ jϕx2i ⊗ � � � ⊗ jϕxN i
(hypotheses), where with no loss of generality we can write
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jϕ0=1i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ c
2

r
j0i �

ffiffiffiffiffiffiffiffiffiffiffi
1 − c
2

r
j1i ð28Þ

for a convenient choice of basis. Here, c ¼ jhϕ0jϕ1ij is the
overlap of the two states.
The Gram matrix G encapsulates all the information

needed to discriminate the states of the set. It is defined as
having elements Gx;x0 ¼ hΦxjΦx0 i. It is known that when
the diagonal elements of its square root are all equal, i.e.,
ð ffiffiffiffi

G
p Þx;x ≡ S for all x, then the square root measurement is
optimal [37,38] and the probability of successful identi-
fication reads simply Ps ¼ S2. Notice that we implicitly
assume uniformly distributed hypotheses. For the case at
hand,

Gx;x0 ¼ ðhϕx1 j ⊗ � � � ⊗ hϕxN jÞðjϕx0
1
i ⊗ � � � ⊗ jϕx0N

iÞ

¼
YN
i¼1

hϕxi jϕx0i
i ¼ ðG⊗NÞx;x0 ; ð29Þ

where

G ¼
�
1 c

c 1

�
ð30Þ

is the Gram matrix of fjϕ0i; jϕ1ig. Thus,
ffiffiffiffi
G

p ¼ ð ffiffiffi
G

p Þ⊗N ,
with

ffiffiffi
G

p
¼

0
B@

ffiffiffiffiffiffi
1þc

p þ ffiffiffiffiffiffi
1−c

p
2

ffiffiffiffiffiffi
1þc

p
−

ffiffiffiffiffiffi
1−c

p
2ffiffiffiffiffiffi

1þc
p

−
ffiffiffiffiffiffi
1−c

p
2

ffiffiffiffiffiffi
1þc

p þ ffiffiffiffiffiffi
1−c

p
2

1
CA: ð31Þ

As expected, the diagonal terms of
ffiffiffiffi
G

p
are all equal, and

the success probability is given by

PsðcÞ¼
� ffiffiffiffiffiffiffiffiffiffi

1þc
p þ ffiffiffiffiffiffiffiffiffiffi

1−c
p

2

�2N

¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−c2

p

2

�N

: ð32Þ

We call the reader’s attention to the fact that one could
attain the very same success probability by performing an
individual Helstrom measurement [25], with basis

jψ0=1i ¼
j0i � j1iffiffiffi

2
p ; ð33Þ

on each state of the input sequence and guess that the
label of that state is the outcome value. In other words,
for the problem at hand, global quantum measurements
do not provide any improvement over individual fixed
measurements.
In order to compare with the results of the main text, we

compute the average performance for a uniform distribu-
tion of states jϕ0i and jϕ1i, i.e., the average

Ps ¼
Z

dϕ0dϕ1PsðcÞ

¼
Z

1

0

dc2PsðcÞ
Z

dϕ0dϕ1δðjhϕ0jϕ1ij2 − c2Þ

¼
Z

1

0

dc2PsðcÞ
Z

dϕ1δðjh0jϕ1ij2 − c2Þ

¼
Z

1

0

dc2μðc2ÞPsðcÞ; ð34Þ

where we insert the identity 1 ¼ R
1
0 dc2δða2 − c2Þ, for

0 < a≡ jhϕ0jϕ1ij < 1, and use the invariance of the
measure dϕ under SUðdÞ transformations. The marginal
distribution is μðc2Þ¼ ðd−1Þð1−c2Þd−2 (see Appendix E).
Using this result, the asymptotic behavior of the last
integral is

Ps ∼
4ðd − 1Þ

N
: ð35Þ

As expected, knowing the two possible states in the input
string leads to a better behavior of the success probability:
It decreases only linearly in 1=N, as compared to the best
universal quantum clustering protocol, which exhibits a
quadratic decrease.
To do a fairer comparison with universal quantum

clustering, guessing the complementary string x̄ instead
of x is now counted as a success; that is, now the clusterings
are defined by the states

ρx ¼ jΦxihΦxj þ jΦx̄ihΦx̄j
2

: ð36Þ

For this variation of the problem, the optimal measurement
is still local and given by a POVM with elements

Ex ¼ jΨxihΨxj þ jΨx̄ihΨx̄j; ð37Þ

where jΨxi ¼ jψx1i ⊗ jψx2i ⊗ � � � ⊗ jψxN i and where we
recall that fjψ0i; jψ1ig is the (local) Helstrom measurement
basis in Eq. (33). Note that fExg are orthogonal projectors.
To prove the statement in the last paragraph, we show

that the Holevo-Yuen-Kennedy-Lax conditions [Eq. (16)]
hold (recall that the Gram matrix technique does not apply
to mixed states). For the success probability and assuming
equal priors, these conditions take the simpler formX

x

Exρx ¼
X
x

ρxEx ≡ Γ; ð38Þ

Γ − ρx ≥ 0 ∀ x; ð39Þ

where we drop the irrelevant factor η ¼ 21−N. Condition
(38) is trivially satisfied. To check that condition (39) also
holds, we recall the Weyl inequalities for the eigenvalues of
Hermitian n × n matrices A, B [39]:
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ϑiðAþ BÞ ≤ ϑiþjðAÞ þ ϑn−jðBÞ; ð40Þ

for j ¼ 0; 1;…; n − i, where the eigenvalues are labeled in
increasing order ϑ1 ≤ ϑ2 ≤ … ≤ ϑn. We use Eq. (40) to
write

ϑ1ðΓÞ ≤ ϑ3ðΓ − ρxÞ þ ϑ2N−2ðρxÞ ð41Þ
(note that effectively all these operators act on the 2N-
dimensional subspace spanned by fj0i; j1ig⊗N). As proved
below, Γ > 0, which implies that ϑ1ðΓÞ > 0. We note that
ρx has rank two; i.e., it has only two strictly positive
eigenvalues, so ϑ2N−2ðρxÞ ¼ 0. Then, Eq. (41) implies

ϑ3ðΓ − ρxÞ ≥ ϑ1ðΓÞ > 0: ð42Þ
Finally, notice that Γ − ρx has two null eigenvalues, with
eigenvectors jΨxi and jΨx̄i. Hence,ϑ1ðΓ−ρxÞ¼ϑ2ðΓ−ρxÞ¼
0, and it follows from Eq. (42) that condition (39) must hold.
To show the positivity of Γ, which is assumed in the

previous paragraph, we use Eqs. (28) and (33) to write

Γ ¼ 1

2

��
a1 0

0 a2

�⊗N

þ
�
b1 0

0 b2

�⊗N�
; ð43Þ

where

a1=2 ¼
1� cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2
;

b1=2 ¼
1� c −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2
: ð44Þ

Notice that a1 > b1 and a2 > jb2j. Thus, if 0 ≤ c < 1, we
have ϑk > 0 for k ¼ 1; 2;…; 2N. The special case c ¼ 1 is
degenerate. Equation (39) is trivially saturated, rendering
Ps ¼ 21−N , as it should be.
The maximum success probability can now be computed

by recalling that PsðcÞ ¼ 21−N trΓ. We obtain

PsðcÞ ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2

�N

þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2

�N

; ð45Þ

where the first term corresponds to guessing correctly all
the states in the input string, whereas the second one results
from guessing the other possible state all along the string.
One can easily check that the average over c of the second
term vanishes exponentially for large N, and we end up
with a success probability given again by Eq. (35).
Finally, we mention that one could consider a simple

unambiguous protocol [40–43] whereby each state of the
input string is identified with no error with probability
PsðcÞ ¼ 1 − c; i.e., the protocol gives an inconclusive
answer with probability 1 − Ps ¼ c. Therefore, the average
unambiguous probability of sorting the data is

Ps ¼ 2

Z
1

0

dccμðc2Þð1 − cÞN ∼
2ðd − 1Þ

N2
: ð46Þ

V. DISCUSSION

Unsupervised learning, which assumes virtually nothing
about the distributions underlying the data, is already a hard
problem [22,23]. Lifting the notion of classical data to
quantum data (i.e., states) factors in additional obstacles,
such as the impossibility to repeatedly operate with the
quantum data without degrading it. Most prominent
classical clustering algorithms heavily rely on the iterative
evaluation of a function on the input data (e.g., pairwise
distances between points in a feature vector space, as in
k-means [44]); hence, they are not equipped to deal with
degrading data and expectedly fail in our scenario. The
unsupervised quantum classification algorithm we present
is thus, by necessity, far away from its classical analogs. In
particular, since we are concerned with the optimal quan-
tum strategy, we need to consider the most general
collective measurement, which is inherently single shot:
It yields a single sample of a stochastic action, namely, a
posterior state and an outcome of a quantum measurement,
where the latter provides the description of the clustering.
The main lesson stemming from our investigation is that,
despite these limitations, clustering unknown quantum
states is a feasible task. The optimal protocol that solves
it showcases some interesting features.
It does not completely erase the information about a

given preparation of the input data after clustering.—This
result is apparent from Eq. (4), since the action of the
POVM on the subspaces (λ) is the identity. After the input
data string in the global state jΦxi is measured and outcome
λ� is obtained (recall that λ� gives us information about
the size of the clusters), information relative to the parti-
cular states jϕ0=1i remains in the subspace ðλ�Þ of the global
postmeasured state. Therefore, one could potentially use
further the posterior (clustered) states down the line as
approximations of the two classes of states, which opens
the door for our clustering device to be used as an inter-
mediate processor in a quantum network. This notwith-
standing, the amount of information that can be retrieved
after optimal clustering is currently under investigation.
It outbeats the classical and semiclassical protocols.—If

the local dimension of the quantum data is larger than two,
the dimensionality of the symmetric subspaces spanned by
the global states of the strings of data can be exploited by
means of collective measurements with a twofold effect:
enhanced distinguishability of states, resulting in improved
clustering performance (exemplified by a linear increase
in the asymptotic success probability), and information-
preserving data handling (to some extent, as discussed
above). This effect should be contrasted with the semi-
classical protocol, which essentially obliterates the infor-
mation content of the data (as a von Neumann measurement
is performed on each system) and whose success proba-
bility vanishes exponentially with the local dimension.
In addition, the optimal classical and semiclassical proto-
cols require solving an NP-complete problem, and their
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implementation is thus inefficient. In contrast, we observe
that the first part of the quantum protocol, which consists in
guessing the size of the clusters n, runs efficiently on a
quantum computer: This step involves a Schur transform
that runs in polynomial time in N and log d [45,46],
followed by a projective measurement with no computa-
tional cost. The second part, guessing the permutation σ,
requires implementing a group-covariant POVM. The
complexity of this step, and, hence, the overall computa-
tional complexity of our protocol, is still an open question
currently under investigation.
It is optimal for a range of different cost functions.—

There are various cost functions that could arguably be
better suited to quantum clustering, e.g., the Hamming
distance between the guessed and the true clusterings or,
likewise, the trace distance or the infidelity between the
corresponding effective states ρn;σ and ρn0;σ0 . They are,
however, hard to deal with analytically. The question arises
as to whether our POVM is still optimal for such cost
functions. To answer this question, we formulate an
optimality condition that can be checked numerically for
problems of a finite size (see Appendix D). Our numerics
show that the POVM remains optimal for all these
examples. This result is an indication that the optimality
of our protocol stems from the structure of the problem,
independently of the cost function.
It stands a landmark in multihypothesis state dis-

crimination.—Analytical solutions to multihypothesis
state discrimination exist only in a few specific cases
[26–28,30,38,47]. Our set of hypotheses arises arguably
from the minimal set of assumptions about a pure state
source: It produces two states randomly. Variants of this
problem with much more restrictive assumptions are
considered in Refs. [11,48,49].
Our clustering protocol departs from other notions of

quantum unsupervised machine learning that can be found
in the literature [50–53]. In these references, data coming
from a classical problem are encoded in quantum states that
are available on demand via a quantum random access
memory [54]. The goal is to surpass classical performance
in the number of required operations. In contrast, we deal
with unprocessed quantum data as input and aim at
performing a task that is genuinely quantum. This scenario
is notably harder, where known heuristics for classical
algorithms simply cannot work.
Other extensions of this work currently under inves-

tigation are clustering systems whose states can be of more
than two types, where we expect a similar two-step
measurement for the optimal protocol, and clustering of
quantum processes, where the aim is to classify instances
of unknown processes by letting them run on some input
test state of our choice (see Ref. [11] for related work on
identifying malfunctioning devices). In this last case, an
interesting application arises when considering causal
relations as the defining feature of a cluster. A clustering

algorithm then aims to identify, within a set of unknown
processes, which ones are causally connected. Identifying
causal structures has recently attracted attention among the
quantum information community [55].
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APPENDIX A: PARTITIONS

Partitions play an important role in the representation
theory of groups and are central objects in combinatorics.
Here, we collect a few definitions and results that are used
in the next appendixes, particularly in Appendix B.
A partition λ ¼ ðλ1; λ2;…; λr;…Þ is a sequence of non-

negative integers in nonincreasing order. The length of λ,
denoted lðλÞ, is the number of nonzero elements in λ. We
denote by λ⊢N a partition λ of the integer N, where
N ¼ P

i λi. A natural way of ordering partitions is by
inverse lexicographic order; i.e., given two partitions λ and
λ0, we write λ > λ0 iff the first nonzero difference λi − λ0i is
positive.
The total number of partitions of an integer N is denoted

by PN [56], and the number of partitions such that lðλÞ ≤ r

by Pð≤rÞ
N . Similarly, the number of partitions of length r is

denoted by PðrÞ
N . There exists no closed expression for any

of these numbers, but there are widely known results (some
of them by Hardy and Ramanujan are very famous [57])
concerning their asymptotic behavior for large N. The one
we later use in Appendix F is

Pð≤rÞ
N ∼

Nr−1

r!ðr − 1Þ! ; ðA1Þ

which gives the dominant contribution for large N. Note

that, from the obvious relation PðrÞ
N ¼ Pð≤rÞ

N − Pð≤r−1Þ
N , it

follows that the same asymptotic expression holds for PðrÞ
N .

Partitions are conveniently represented by Young dia-
grams. The Young diagram associated to the partition λ⊢N
is an arrangement of N empty boxes in lðλÞ rows, with λi
boxes in the ith row. This association is one to one; hence, λ
can be used to label Young diagrams as well. A Young
tableau of d entries is a Young diagram filled with integers
from 1 up to d, one in each box. There are two types of
tableaux: A standard Young tableau (SYT) of shape λ⊢N is
one where d ¼ N and such that the integers in each row
increase from left to right and from top to bottom in
each column (hence, each integer appears exactly once).
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A semistandard Young tableau (SSYT) of shape λ⊢N and
d entries, d ≥ lðλÞ, is one such that integers in each row are
nondecreasing from left to right and increasing from top to
bottom in each column.
The number of different SYTs of shape λ⊢N is given by

the hook-length formula

νλ ¼
N!Q

ði;jÞ∈λhij
; ðA2Þ

where ði; jÞ denotes the box located in the ith row and the
jth column of the Young diagram and hij is the hook length
of the box ði; jÞ, defined as the number of boxes located
beneath or to the right of that box in the Young diagram,
counting the box itself. Likewise, the number of SSYTs of
shape λ⊢N and d entries is given by the formula

sλ ¼
Δðλ1 þ d − 1; λ2 þ d − 2;…; λdÞ

Δðd − 1; d − 2;…; 0Þ ; ðA3Þ

where Δðx1; x2;…; xdÞ ¼
Q

i<jðxi − xjÞ.

APPENDIX B: IRREDUCIBLE
REPRESENTATIONS OF SUðdÞ

AND SN OVER ðd;CÞ⊗N

For the sake of convenience, we recall here some
ingredients of representation theory that we use throughout
the paper. The results described below can be found in
standard textbooks, for instance, in Refs. [58,59].

1. Some results in representation theory

Young diagrams or, equivalently, partitions λ label the
irreps of the general linear group GLðdÞ and some of its
subgroups, e.g., SUðdÞ, and also the irreps of the symmetric
group SN . The dimension of these irreps are given by sλ and
νλ, respectively [Eqs. (A2) and (A3)].
Schur-Weyl duality [59] establishes a connection

between irreps of both groups, as follows. Let us consider
the transformations R⊗N and Uσ on the N-fold tensor
product space ðd;CÞ⊗N , where R ∈ SUðdÞ and Uσ per-
mutes the N spaces ðd;CÞ of the tensor product according
to the permutation σ ∈ SN . Both R⊗N and Uσ define,
respectively, a reducible unitary representation of the
groups SUðdÞ and SN on ðd;CÞ⊗N . Moreover, they are
each other’s commutants. It follows that this reducible
representation decomposes into irreps λ, so that their joint
action can be expressed as

R⊗NUσ ¼ UσR⊗N ¼ ⨁
λ⊢N

Rλ ⊗ Uλ
σ; ðB1Þ

where Rλ and Uλ
σ are the matrices that represent R and Uσ,

respectively, on the irrep λ. To resolve any ambiguity

that may arise, we write λ in parentheses, (λ), when it refers
to the irreps of SUðdÞ or in braces, fλg, when it refers to
those of SN . Equation (B1) tells us that the dimension of
(λ), sλ, coincides with the multiplicity of fλg, and, con-
versely, the dimension of fλg, νλ, coincides with the
multiplicity of (λ).
This block-diagonal structure provides a decomposi-

tion of Hilbert space H⊗N ¼ ðd;CÞ⊗N into subspaces that
are invariant under the action of SUðdÞ and SN , as
H⊗N ¼ ⨁

λ
Hλ, and, in turn, Hλ ¼ HðλÞ ⊗ Hfλg. The basis

in which H⊗N has this form is known as the Schur basis,
and the unitary transformation that changes from the
computational to the Schur basis is called the Schur
transform.
To conclude this Appendix, let us recall the rules for

reducing the tensor product of two SUðdÞ representations
as a Clebsch-Gordan series of the form

Rλ ⊗ Rλ0 ¼ ⨁
λ00
Rλ00 ⊗ 1λ

00 ∀ R ∈ SUðdÞ; ðB2Þ

where dimð1λ00 Þ is the multiplicity of irrep λ00. The same
rules also apply to the reduction of the outer product of
representations of Sn and Sn0 into irreps of Sn00 , where
n00 ¼ nþ n0. In this case, one has

ðUλ ⊗ Uλ0 Þσ ¼ ⨁
λ00
Uλ00

σ ⊗ 1λ
00 ∀ σ ∈ Sn00 : ðB3Þ

Note the different meanings of ⊗ in the last two equations
(it is, however, standard notation). The rules are most easily
stated in terms of the Young diagrams that label the irreps.
They are as follows.
(1) In one of the diagrams that label the irreps on the

left-hand side of Eq. (B2) or (B3) (preferably the
smallest), write the symbol a in all boxes of the first
row, the symbol b in all boxes of the second row, c in
all boxes of the third one, and so on.

(2) Attach boxes with a to the second Young diagram in
all possible ways subjected to the rules that no two
a’s appear in the same column and that the resulting
arrangement of boxes is still a Young diagram.
Repeat this process with b’s, c’s, and so on.

(3) For each Young diagram obtained in step two, read
the first row of added symbols from right to left, then
the second row in the same order, and so on. The
resulting sequence of symbols, e.g., abaabc…,
must be a lattice permutation; namely, to the left
of any point in the sequence, there are not fewer a’s
than b’s, no fewer b’s than c’s, and so on. Discard all
diagrams that do not comply with this rule.

The Young diagrams λ00 that result from this procedure
specify the irreps on the right-hand side of Eqs. (B2) and
(B3). The same diagram can appear a number M of times,
in which case λ00 has multiplicity dimð1λ00 Þ ¼ M.
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2. Particularities of quantum clustering

Since the density operators [cf. Eq. (11)] and POVM
elements [cf. Eq. (13)] associated to each possible cluster-
ing emerge from the joint action of a permutation σ ∈ SN
and a group average over SUðdÞ, it is most convenient
to work in the Schur basis, where the mathematical
structure is much simpler. A further simplification specific
to quantum clustering of two types of states is that the irreps
that appear in the block-diagonal decomposition of the
states (and, hence, of the POVM elements) have at most
length 2; i.e., they are labeled by bipartitions λ ¼ ðλ1; λ2Þ
and correspond to Young diagrams of at most two rows. We
have this simplification because the ρn;σ arise from the
tensor product of two completely symmetric projectors,
1symn and 1symn̄ , of n and n̄ systems [cf. Eq. (11)]. They
project into the irrep λ ¼ ðn; 0Þ and λ0 ¼ ðn̄; 0Þ subspaces,
respectively. According to the reduction rules above, in the
Schur basis the tensor product reduces as

ðB4Þ

which proves our statement.
There is yet another simplification that emerges from

Eq. (B4). Note that all the irreps appear only once in the
reduction. That is, fixing the indices n, σ, and fλg uniquely
defines a one-dimensional subspace. Thus, the projectors
Ωn;σ

fλg are rank one.
We conclude by giving explicit expressions for the

dimensions of the irreps of SN and SUðdÞ, in Eqs. (A2)
and (A3), for partitions of the form λ ¼ ðλ1; λ2Þ. These
expressions are used to derive Eq. (27) and read

νλ ¼
N!ðλ1 − λ2 þ 1Þ
ðλ1 þ 1Þ!λ2!

; ðB5Þ

sλ ¼
λ1 − λ2 þ 1

λ1 þ 1

�
λ1 þ d − 1

d − 1

��
λ2 þ d − 2

d − 2

�
: ðB6Þ

One can check that Eqs. (B5) and (B6) are consistent
with Eq. (B4) by showing that the sum of the dimensions
of the irreps on the right-hand side agrees with the
product of the two on the left-hand side, namely, by
checking that

sðn̄;0Þsðn;0Þ ¼
Xn
i¼0

sðnþn̄−i;iÞ; ðB7Þ

νSn̄ðn̄;0Þν
Sn
ðn;0Þ

�
nþ n̄
n

�
¼

Xn
i¼0

νðnþn̄−i;iÞ; ðB8Þ

where the superscripts remind us that the dimensions on
the left-hand side refer to irreps of Sn̄, Sn. One obviously
obtains νSn̄ðn̄;0Þ ¼ νSnðn;0Þ ¼ 1, since these are the trivial rep-

resentations of either group. The binomial in Eq. (B8)
arises from the definition of outer product representation
in Eq. (B3), whereby the action of Snþn̄ is defined on
basis vectors of the form v̄i1i2…in̄ ⊗ vin̄þ1in̄þ2…in̄þn

, with

v̄i1i2…in̄ ∈ HSn̄
fλg, vi1i2…in ∈ HSn

fλ0g. There are, naturally,

ðn̄þn
n Þ ways of allocating n̄þ n indices in this expression.

APPENDIX C: ASYMPTOTICS OF Ps

We next wish to address the asymptotic behavior of the
success probability as the length N of the data string
becomes large. Various behaviors are derived, depending
on how the local dimension d scales with N.
In the large N limit, it suffices to consider even values of

N, which slightly simplifies the derivation of the asymp-
totic expressions. The success probability in Eq. (27) for
N ¼ 2m, m ∈ N, can be written as (just define a new index
as j ¼ m − i)

Ps ¼
d − 1

22m−1

Xm
j¼0

ð2jþ 1Þ2
ðmþ 1þ jÞ2ðmþ d − 1 − jÞ

�
2m

mþ j

�
:

ðC1Þ

For large m, we write j ¼ mx and use

1

22m−1

�
2m

mþ j

�
∼
2e−mx2ffiffiffiffiffiffiffi

mπ
p : ðC2Þ

We start by assuming that d scales more slowly thanN, e.g.,
d ∼ Nγ , with 0 ≤ γ < 1. In this situation, we can neglect
d in the denominator of Eq. (C1). Neglecting also other
subleading terms in inverse powers of m and using the
Euler-Maclaurin formula, we have

Ps ∼ ðd − 1Þ
Z

∞

0

dx
4x2

ð1þ xÞ2ð1 − xÞ
2e−mx2ffiffiffiffiffiffiffi

mπ
p ; ðC3Þ

which we can further approximate by substituting 0 for x in
the denominator, as the Gaussian factor peaks at x ¼ 0 asm
becomes larger, so

Ps ∼ 4ðd − 1Þ
Z

∞

0

dxx
2xe−mx2ffiffiffiffiffiffiffi

mπ
p

¼ −4ðd − 1Þ
Z

∞

0

dxx
d
dx

e−mx2

m
ffiffiffiffiffiffiffi
mπ

p : ðC4Þ
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We integrate by parts to obtain

Ps ∼
2ðd − 1Þ

m

Z
∞

0

dx
2e−mx2ffiffiffiffiffiffiffi

mπ
p ¼ 2ðd − 1Þ

m2
: ðC5Þ

Hence, provided that d scales more slowly than N, the
probability of success vanishes asymptotically as N−2, or,
more precisely, as

Ps ∼
8ðd − 1Þ

N2
: ðC6Þ

Let us next assume that d scales faster than N, e.g., as
d ∼ Nγ , with γ > 1. In this case, d is the leading contri-
bution in the second factor in the denominator of Eq. (C1).
Accordingly, we have

Ps ∼ ðd − 1Þm
Z

∞

0

dx
4x2

ð1þ xÞ2d
2e−mx2ffiffiffiffiffiffiffi

mπ
p

∼ 4m
Z

∞

0

dxx
2xe−mx2ffiffiffiffiffiffiffi

mπ
p ¼ 2

m
; ðC7Þ

and the asymptotic expression becomes

Ps ∼
4

N
; ðC8Þ

independently of d.
Finally, let us assume that d scales exactly as N and write

d ¼ sN, s > 0. The success probability can be cast as

Ps ∼ ðd − 1Þ
Z

∞

0

dx
4x2

ð1þ xÞ2ð1þ 2s − xÞ
2e−mx2ffiffiffiffiffiffiffi

mπ
p : ðC9Þ

Proceeding as above, we obtain

Ps ∼
2ðd − 1Þ

ð2sþ 1Þm2
: ðC10Þ

Thus,

Ps ∼
8s

ð2sþ 1ÞN : ðC11Þ

The three expressions, Eqs. (C6), (C8), and (C11), can be
combined into a single one as

Ps ∼
8ðd − 1Þ

ð2dþ NÞN : ðC12Þ

APPENDIX D: OPTIMAL POVM FOR
GENERAL COST FUNCTIONS

This Appendix deals with the optimization of quantum
clustering assuming other cost functions. We introduce a
sufficient condition under which the type of POVM we use

to maximize the success probability (Sec. IVA) is also
optimal for a given generic cost function. We conjecture
that the condition holds under reasonable assumptions. We
discuss numerical results for the cases of Hamming dis-
tance, trace distance, and infidelity.
Recall that Eq. (13) together with Eq. (22) defines the

optimal POVM for a generic cost function that preserves
covariance under SN. However, this form is implicit and,
thus, not very practical. Particularizing to the success
probability, we manage to specify the function nðλÞ ¼ λ2
[cf. Eq. (26)] and the operators Ξn

fλg ¼ Ωn
fλgδn;λ2 . In

summary, the POVM is specified solely in terms of the
effective states ρn;σ (hypotheses).
Here, we conjecture that the choice Ξn

fλg ¼ Ωn
fλgδn;nðλÞ is

still optimal for a large class of cost functions fðx;x0Þ,
albeit with varying guessing rules nðλÞ. If the conjecture
holds, given fðx;x0Þ, one has only to compute nðλÞ ¼
argminnϑnλ;1 to obtain the optimal POVM. The minimum
average cost can then be computed via Eq. (24). We now
formulate this conjecture precisely as a testable mathemati-
cal condition.
For any cost function (distance) such that fðx;x0Þ ≥ 0

and fðx;x0Þ ¼ 0 iff x ¼ x0, we can always find some
constant t > 0 such that

tfðx;x0Þ ≥ δ̄x;x0 ≡ 1 − δx;x0 ∀ x;x0: ðD1Þ

We can then rescale the cost function f ↦ t−1f and assume
with no loss of generality that fðx;x0Þ ≥ δ̄x;x0 . We have

Wx ¼ W̄x þ Δx; ðD2Þ

where we use the definition of Wx after Eq. (16) and
similarly define W̄x for the minimal cost δ̄x;x0 . As in
Sec. IVA, it suffices to consider x ¼ ðn; eÞ. Then,

Δx ¼
X
x0

ηx0 ½fðx;x0Þ − δ̄x;x0 �ρx0 ≥ 0: ðD3Þ

Using the same notation as in Eq. (18), Eq. (D3) is
equivalent to

ωn
fλg − ω̄n

fλg ≥ 0: ðD4Þ

We now recall the meaning of Eqs. (20) and (21): The
operators Ξn

fλg must be projectors onto the eigenspace of the
minimal eigenvalue of ωn

fλg. Then, according to Eq. (22),
the choice Ξn

fλg ¼ Ωn
fλgδn;nðλÞ is also optimal for arbitrary

cost functions if it holds that

suppðΩn
fλgÞ ¼ V1ðω̄n

fλgÞ⊂
?
V1ðωn

fλgÞ; ðD5Þ

where V1ðXÞ is the eigenspace of the minimal eigenvalue of
X and the equality follows from Eq. (25).
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Our conjecture is that Eq. (D5) holds true for the class of
“reasonable” cost functions considered in this paper,
namely, for those that are non-negative and covariant
and satisfy the distance property stated before Eq. (D1).
We check its validity for problems of size up to N ¼ 8,
local dimension d ¼ 2, and uniform prior probabilities
for the following cost functions: Hamming distance
hðx;x0Þ ¼ minfjx − x0j; jx − x̄0jg (xi ¼ 0, 1), trace dis-
tance Tðx;x0Þ ¼ jjρx − ρx0 jj1, and infidelity Iðx;x0Þ ¼ 1−
tr2½ð ffiffiffiffiffi

ρx
p

ρx0
ffiffiffiffiffi
ρx

p Þ1=2�.
The above examples induce a much richer structure in

the problem at hand. To illustrate this added complexity, in
Fig. 3 we show a heat map of the Hamming distances
hðx;x0Þ between all pairs of clusterings for N ¼ 8. The
figure shows that the largest values of hðx;x0Þ can occur for
two clusterings with equal cluster size n and that hðx;x0Þ is
extremely dependent on the pair of permutations σ; σ0. As a
result, the guessing rule nðλÞ is completely different
from the one that maximizes the probability of success
Ps. In particular, irreps λ are no longer in one-to-one

correspondence with optimal guesses for n. In Table I, we
show values of nðλÞ for our four cost functions and
N ¼ 4;…; 8. In contrast to the case of the success
probability (the cost function δ̄x;x0 ), we note that in some
cases it is actually optimal to map several irreps to the same
guess while never guessing certain cluster sizes.
Performing the Schur transform is computationally

inefficient on a classical computer (In contrast, as men-
tioned in the main text, there exist efficient quantum
circuits able to implement the Schur transform in a
quantum computer. A circuit based on the Clebsch-
Gordan transform achieves polynomial time in N and d
[45]. Recently, an alternative method based on the repre-
sentation theory of the symmetric group was shown to
reduce the dimension scaling to polyðlog dÞ [46].), which
sets a limit on the size of the data one can test—in our case
it is N ¼ 8. However, it is worth mentioning that this
difficulty might actually be overcome. The fundamental
objects needed for testing Eq. (D5) are the operators Ωn

fλg.
Their computation does, in principle, not require the full
Schur transform, as they can be expressed in terms of
generalized Racah coefficients, which give a direct relation
between Schur bases arising from different coupling
schemes of the tensor product space. It is indeed possible
to calculate generalized Racah coefficients directly without
going through a Clebsch-Gordan transform [60], and,
should this method be implemented, clustering problems
of larger sizes might be tested. However, an extensive
numerical analysis is not the aim of this paper.

APPENDIX E: PRIOR DISTRIBUTIONS

In the interest of making this paper self-contained, in this
Appendix we include the derivation of some results about
the prior distributions used in the paper.
Let Sd ¼ fps ≥ 0jPd

s¼1 ps ¼ 1g denote the standard
(d − 1)-dimensional (probability) simplex. Every categorical
distribution (CD) P ¼ fpsgds¼1 is a point in Sd. The flat
distribution of CDs is the volume element divided by the
volumeofSd, the latter denoted byVd. Choosing coordinates
p1;…; pd−1, the flat distribution is

Q
d−1
s¼1 dps=Vd ≡ dP.

Let us compute the moments of the flat distribution; as a
by-product, we obtain Vd. We have

FIG. 3. Heat map of the Hamming distances hðx;x0Þ between
clusterings for N ¼ 8. The clusterings are grouped by the size of
the smallest cluster n ¼ 0, 1, 2, 3, 4. Each group contains all
nontrivial permutations σ for a given n. A brighter color means a
smaller Hamming distance.

TABLE I. Values of nðλÞ, i.e., of the optimal guess for the size of the smallest cluster, where λ ¼ ðλ1; λ2Þ are the relevant irreps, for data
sizes N ¼ 4, 5, 6, 7, 8, and cost functions δ̄ðx;x0Þ (corresponding to the success probability), Hamming distance hðx;x0Þ, trace distance
Tðx;x0Þ, and infidelity Iðx;x0Þ.

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7 N ¼ 8

λ (4,0) (3,1) (2,2) (5,0) (4,1) (3,2) (6,0) (5,1) (4,2) (3,3) (7,0) (6,1) (5,2) (4,3) (8,0) (7,1) (6,2) (5,3) (4,4)

δ̄ 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 4
h 0 2 2 0 2 2 0 3 2,3 3 0 3 3 3 0 4 4 4 4
T 1 1 2 1 1 2 1 1 2 3 1 2 2 3 1 2 3 3 4
I 0 1 2 0 1 2 0 1 2 3 0 1 3 3 0 1 3 4 4
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Vd

Z
Sd

dP
Yd
s¼1

pns
s ¼

Z
1

0

dp1

Z
1−p1

0

dp2…

×
Z

1−
P

d−2
s¼1

ps

0

dpd−1

Yd
s¼1

pns
s

¼
Q

d
s¼1ns!

ðd−1þP
d
s¼1nsÞ!

ðE1Þ

[the calculation becomes straightforward by iterating the
change of variables pr ↦ x, where pr ¼ ð1 −P

r−1
s¼1 psÞx,

r ¼ d − 2; d − 3;…; 2; 1]. In particular, setting ns ¼ 0 for
all s in Eq. (E1), we obtain Vd ¼ 1=ðd − 1Þ!. Then,

Z
Sd

dP
Yd
s¼1

pns
s ¼ ðd − 1Þ!Qd

s¼1 ns!
ðd − 1þ NÞ! ; ðE2Þ

where N ¼ P
d
s¼1 ns.

Next, we provide a simple proof that any fixed von
Neumann measurement on a uniform distribution of pure
states in ðd;CÞ gives rise to CDs whose probability
distribution is flat. As a result, the classical and semi-
classical strategies discussed in the main text have the same
success probability.
Take jϕi ∈ ðd;CÞ and let fjsigds¼1 be an orthonormal

basis of ðd;CÞ. By performing the corresponding von
Neumann measurement, the probability of an outcome s
is ps ¼ jhsjϕij2. Thus, any distribution of pure states
induces a distribution of CDs fps ¼ jhsjϕij2gds¼1 on Sd.
Let us compute the moments of the induced distribution,
namely,

Z
dϕ

Yd
s¼1

pns
s ¼

Z
dϕtr½⊗d

s¼1
ðjsihsjÞ⊗nsðjϕihϕjÞ⊗N �

¼ 1

Dsym
N

tr½⊗d
s¼1

ðjsihsjÞ⊗ns1symN �; ðE3Þ

where we recall that Dsym
N (1symN ) is the dimension of

(projector on) the symmetric subspace of ðd;CÞ⊗N and
we have used the Schur lemma. A basis of the symmetric
subspace is

jvni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

d
s¼1 ns!
N!

r X
σ∈SN

Uσ ⊗
d

s¼1
jsi⊗ns ; ðE4Þ

where n ¼ ðn1; n2;…; ndÞ. Note that there are ðNþd−1
d−1 Þ

different strings n (weak compositions of N in d parts),
which agrees with Dsym

N ¼ sðN;0Þ [recall Eq. (B6)], as it
should be. Since 1symN ¼ P

n jvnihvnj, we can easily
compute the trace in Eq. (E3) to obtain

Z
dϕ

Yd
s¼1

pns
s ¼

Q
d
s¼1 ns!

N!Dsym
N

¼ ðd − 1Þ!Qd
s¼1 ns!

ðN þ d − 1Þ! : ðE5Þ

This equation agrees with Eq. (E2), which means that all
the moments of the distribution induced from the uniform
distribution of pure states coincide with the moments of a
flat distribution of CDs on Sd. Since the moments uniquely
determine the distributions with compact support [61] (and
Sd is compact), we conclude that they are identical.
As a by-product, we can compute the marginal distri-

bution μðc2Þ, where c is the overlap of jϕiwith a fixed state
jψi. Since we can always find a basis such that jψi is its
first element, we have c ¼ jh1jϕij. Because of the results
above, the marginal distribution is given by

μðc2Þ ¼
Z

1−p1

0

dp2…

Z
1−
P

d−2
s¼1

ps

0

dpd−1

����
p1¼c2

¼ ðd − 1Þð1 − c2Þd−2; ðE6Þ

in agreement with Ref. [62].

APPENDIX F: OPTIMAL CLUSTERING
PROTOCOL FOR UNKNOWN

CLASSICAL STATES

In this Appendix, we provide details on the derivation of
the optimal protocol for a classical clustering problem,
analog to the quantum problem discussed in the main text.
The results here also apply to quantum systems when the
measurement performed on each of them is restricted to be
local, projective, d dimensional, and fixed. We call this type
of protocol semiclassical.
Here, we envision a device that takes input strings of N

data points s ¼ ðs1s2…sNÞ, with the promise that each si is
a symbol out of an alphabet of d symbols, say, the set
f1; 2;…; dg, and is drawn from either roulette P or from
roulette Q, with corresponding categorical probability
distributions P ¼ fpsgds¼1 and Q ¼ fqsgds¼1. To simplify
the notation, we use the same symbols for the roulettes and
their corresponding probability distributions and for the
stochastic variables and their possible outcomes. Also, the
range of values of the index s is always understood to be
f1; 2;…; dg, unless specified otherwise. The device’s task is
to group the data points in two clusters so that all points in
either cluster have a common underlying probability dis-
tribution (either P or Q). We wish the machine to be
universal, meaning that it operates without knowledge on
the distributions P and Q. Accordingly, we choose as the
figure ofmerit the probability of correctly classifying all data
points, averaged over every possible sequence of roulettes
x ¼ ðx1x2…xNÞ, xi ∈ fP;Qg, and over every possible
distribution P andQ. The latter are assumed to be uniformly
distributed over the common probability simplex Sd on
which they are defined. Formally, this success probability is
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Pcl
s ¼

Z
Sd

dPdQ
X
x;s

Pr ðx̂ ∈ fx; x̄g; s;x;P;QÞ

¼ 2

Z
Sd

dPdQ
X
x;s

δx̂;x Pr ðs;x;P;QÞ; ðF1Þ

where x̂ is the guess of x emitted by the machine, which by
the universality requirement, can depend only on the data
string s. The sums are carried out over all 2N possible strings
s and sequences of roulettes x. The factor of 2 in the second
equality takes into account that P and Q are unknown;
hence, identifying the complementary string x̄ leads to the
same clustering. By emitting x̂, the device suggests a
classification of the N data points si in two clusters. In
the above equation,we use the notation ofAppendixE for the
integral over the probability simplex.
An expression for the optimal success probability can be

obtained from the trivial upper bound

Pcl
s ¼ 2

X
s

Z
dPdQPr ðs; x̂;P;QÞ

≤ 2
X
s

max
x

Z
dPdQPr ðs;x;P;QÞ

¼ 2
X
s

max
x

Pr ðs;xÞ; ðF2Þ

where Pr ðs;xÞ is the joint marginal distribution of s and x.
This bound is attained by the guessing rule

x̂ ¼ argmax
x

Pr ðs;xÞ: ðF3Þ

For two specific distributions P and Q, the probability
that a given roulette sequence x gives rise to a particular
data string s is Prðsjx;P;QÞ ¼ Q

s p
ns
s q

ms
s , where ns (ms) is

the number of occurrences of symbol s in s [i.e., how many
si ∈ s satisfy si ¼ s] arising from roulettes of type P (Q).
For later convenience, we define Ms ¼ ns þms, which
gives the total number of such occurrences. Note that fMsg
is independent of x, whereas fnsg and fmsg are not.
Performing the integral over P and Q, we have

Prðs;xÞ ¼ PrðsjxÞ
2N

¼ 1

2N

Z
dPdQPrðsjx;P;QÞ

¼ 2−Nd♭!2
Q

sns!ms!

ðd♭ þ
P

smsÞ!ðd♭ þ
P

snsÞ!
; ðF4Þ

where we use Eq. (E2) and in the first equality we assume
that the two types of roulette P andQ are equally probable;
hence, each possible sequence x occurs with equal prior
probability equal to 2−N . We also introduce the notation
d♭ ≡ d − 1 to shorten the expressions throughout this

Appendix. Note that all the dependence on x is through
the occurrence numbers ms and ns.
According to Eq. (F2), for each string s we need to

maximize the joint probability Prðs;xÞ in Eq. (F4) over all
possible sequences of roulettes x. We first note that, given a
total of Ms occurrences of a symbol s in s, Prðs;xÞ is
maximized by a sequence x whereby all these occurrences
come from the same type of roulette, in other words, by a
sequence x such that either ms ¼ Ms and ns ¼ 0 or else
ms ¼ 0 and ns ¼ Ms.
In order to prove the above claim, we single out a

particular symbol r that occurs a total number of times
μ ¼ Mr in s. We focus on the dependence of Prðs;xÞ on the
occurrence number t ¼ mr (so, nr ¼ μ − t) by writing

Prðs;xÞ ¼ aðμ − tÞ!t!
ðbþ tÞ!ðc − tÞ!≡ fðtÞ; ðF5Þ

where the coefficients a, b, and c are defined,
respectively, as

a ¼ d♭!2

2N

Y
s≠r

ns!ms!; ðF6Þ

b ¼ d♭ þ
X
s≠r

ms; ðF7Þ

c ¼ d♭ þ
X
s

ns þmr ¼ d♭ þ N −
X
s≠r

ms ðF8Þ

and are independent of t. The function fðtÞ can be extended
to t ∈ R using the Euler gamma function and the relation
Γðtþ 1Þ ¼ t!. This extension enables us to compute the
second derivative of fðtÞ and show that it is a convex
function of t in the interval ½0; μ�. Indeed,

f00ðtÞ
fðtÞ ¼ ½H1ðc− tÞ−H1ðμ− tÞ−H1ðbþ tÞ þH1ðtÞ�2

þH2ðc− tÞ−H2ðμ− tÞ þH2ðbþ tÞ−H2ðtÞ ≥ 0;

ðF9Þ

where HnðtÞ are the generalized harmonic numbers. For
positive integer values of t, they are HnðtÞ ¼

P
t
j¼1 j

−n.
The relationHnðtÞ ¼ ζðnÞ −P∞

j¼1ðtþ jÞ−n, where ζðnÞ ¼P∞
j¼1 j

−n is the Riemann zeta function, allows one to
extend the domain of HnðtÞ to real (and complex) values
of t.
The positivity of f00ðtÞ follows from the positivity of both

fðtÞ and the two differences of harmonic numbers in the
second line of Eq. (F9). Note that H2ðxÞ is an increasing
function of x. Since, obviously, bþ t > t and c − t >P

s ns ¼
P

sðMs −msÞ ≥ μ − t [as follows from the
definition of c in Eq. (F8)], we see that the two differences
are positive.
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The convexity of fðtÞ for t ∈ ½0; μ� implies that the
maximum of fðtÞ is at either t ¼ 0 or t ¼ μ. This
implication holds for every value of Mr and every symbol
r in the data string, so our claim holds. In summary, the
optimal guessing rule must assign the same type of roulette
to all the Ms occurrences of a symbol s; i.e., it must group
all data points that show the same symbol in the same
cluster, which is in full agreement with our own intuition.
The description of the optimal protocol that runs on our

device is not yet complete.We need to specify how to reduce
the current number of clusters down to two, since at this
point we may (and typically will) have up to d clusters, as
many as different symbols. The reduction or merging of the
d clusters can be based only on their relative sizes, as nothing
is known about the underlying probability distributions.
This restriction is quite clear: LetP be the subset of symbols
(e.g., the subset of f1; 2;…; dg) for which ns ¼ Ms, and let
Q be its complement; i.e.,Q contains the symbols for which
ms ¼ Ms, andP ¼ Q̄. The claimwe just proved tells us that,
in order to find the maximum of Prðs;xÞ, it is enough to
consider sequences of roulettes x that comply with the
above conditions on the occurrence numbers (For
example, suppose d ¼ 3 and N ¼ 12. Assuming that s ¼
ð112321223112Þ is the string of data, the sequence of
roulettes x in the table

i 1 2 3 4 5 6 7 8 9 10 11 12

S 1 1 2 3 2 1 2 2 3 1 1 2
X P P Q Q Q P Q Q Q P P Q

satisfies the conditions ms ¼ Ms or ns ¼ Ms, since
n1 ¼ M1 ¼ 5, m2 ¼ M2 ¼ 5, and m3 ¼ M3 ¼ 2. In this
case, P ¼ f1g, andQ ¼ f2; 3g. The suggested clustering is
fð1; 2; 6; 10; 11Þ; ð3; 4; 5; 7; 8; 9; 12Þg). For those, the joint
probability Prðs;xÞ can be written as

Prðs;xÞ ¼ a
ðd♭ þ

P
s∈QMsÞ!ðd♭ þ

P
s∈PMsÞ!

; ðF10Þ

where a now simplifies to 2−Nd♭!2ΠsMs!. Thus, it just
remains to find the partition fP;Qg that maximizes this
expression. It can also be written as

Prðs;xÞ ¼ a
ðd♭ þ xÞ!ðd♭ þ N − xÞ! ; ðF11Þ

where we define x ¼ Σs∈QMs. The maximum of this
function is located at x ¼ N=2, and one can easily check
that it is monotonic on either side of its peak. Note that,
depending on the values of the occurrence numbers fMsg,
the optimal value x ¼ N=2 may not be attained. In such
cases, the maximum of Prðs;xÞ is located at x� ¼ N=2� Δ,
where Δ is the bias:

Δ ¼ 1

2
min
Q

����X
s∈Q

Ms −
X
s∈Q̄

Ms

����: ðF12Þ

The subsetQ that minimizes this expression determines the
optimal clustering.
In summary (and not very surprisingly), the optimal

guessing rule consists in first partitioning the data s in up to
d groups according to the symbol of the data points and,
second, merging those groups (without splitting them) in
two clusters in such a way that their sizes are as similar as
possible. We have stumbled upon the so-called partition
problem [33], which is known to be weakly NP complete.
In particular, a large set of distinct occurrence counts fMsg
rapidly hinders the efficiency of known algorithms, a
situation likely to occur for large d. It follows that the
optimal clustering protocol for the classical problem cannot
be implemented efficiently in all instances of the problem.
To obtain the maximum success probability Pcl

s
[Eq. (F2)], we need to sum the maximum joint probability,
given by Eq. (F11) with x ¼ x�, over all possible strings s.
Those with the same set of occurrence counts fMsg give
the same contribution. Moreover, all the dependence on
fMsg is through the biasΔ. Therefore, if we define ξΔ to be
the number of sets fMsg that give rise to a bias Δ, then the
corresponding number of data strings is ξΔN!=ΠsMs!. We
thus can write

Pcl
s ¼

X
Δ

21−NξΔd♭!2N!

ðd♭ þ N
2
þ ΔÞ!ðd♭ þ N

2
− ΔÞ! : ðF13Þ

Equation (F13) is as far as we can go, as no explicit
formula for the combinatorial factor ξΔ is likely to exist
for general cases. However, it is possible to work out
the asymptotic expression of the maximum success prob-
ability for large data sizes N. We first note that a generic
term in the sum (F13) can be written as the factor
22d♭þ1ξΔd♭!2N!=ð2d♭ þ NÞ! times a binomial distribution
that peaks at Δ ¼ 0 for large N. Hence, the dominant
contribution in this limit is

Pcl
s ∼ ξ0

22d♭þ1d♭!2N!

ð2d♭ þ NÞ! ∼ ξ0
22d−1ðd − 1Þ!2

N2d−2 : ðF14Þ

From the definition of ξΔ, given above Eq. (F13), and
that of Δ in Eq. (F12), we readily see that ξ0 is the number
of ordered partitions (i.e., the order matters) of N in d
addends or parts [These ordered partitions are known as
weak compositions of N into d parts in combinatorics,
where weak means that some addends (or parts) can be
zero; in contradistinction, the term composition is used
when all the parts are strictly positive.] (the occurrence
countsMs) such that a subset of these addends is an ordered
partition of N=2 as well.
Young diagrams come in handy to compute ξ0. First, we

draw pairs of diagrams ½λ; λ0�, each of N=2 boxes and such
that λ ≥ λ0 (in lexicographical order; see Appendix A), and
lðλÞ þ lðλ0Þ≡ rþ r0 ≤ d; i.e., the total number of rows
should not exceed d. Next, we fill the boxes with symbols
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si (representing possible data points) so that all the boxes in
each row have the same symbol. We readily see that the
number of different fillings gives us ξ0. An example is
provided in Fig. 4 for clarity.
Although this pictorial method eases the computation of

ξ0, it becomes unpractical even for relatively small values
of N. However, it becomes again very useful in the
asymptotic limit, since the number of Young diagrams
with at least two rows of equal size becomes negligibly
small for largeN. (Actually, the number of Young diagrams
of a given length with an unequal number of boxes in each
row is equal to the number of Young diagrams of N −
rðr − 1Þ=2 boxes; i.e., it is equal to PðrÞ

N−rðr−1Þ=2. Using the

results in Appendix A, we immediately see that for large N

one has PðrÞ
N−rðr−1Þ=2=P

ðrÞ
N ∼ 1, which proves the statement.)

The same conclusion applies to the whole pairs ½λ; λ0�,
since, e.g., by reshuffling rows, one could merge the two
members into a single diagram of N boxes and length
rþ r0. Thus, we may assume that all pairs of diagrams with
a given total length have an unequal number of boxes in
each row, which renders the counting of different fillings
trivial: There are d!=ðd − r − r0 þ 1Þ! ways of filling each
pair of diagrams. Recalling that there is a one-to-one
mapping between partitions and Young diagrams, we
can use Eq. (A1) and write

ξ0 ∼
1

2

Xd−1
r¼1

Xd−r
r0¼1

PðrÞ
N
2

Pðr0Þ
N
2

d!
ðd − r − r0Þ!

∼
1

2

�
N
2

�
d−2Xd

r¼1

rðd − rÞd!
r!2ðd − rÞ!2

∼
1

2

�
N
2

�
d−2 ð2d − 2Þ!

ðd − 2Þ!ðd − 1Þ!2 : ðF15Þ

This result, together with Eq. (F14), leads us to the desired
asymptotic expression for the optimal success probability:

Pcl
s ∼

�
2

N

�
d ð2d − 2Þ!
ðd − 2Þ! : ðF16Þ

APPENDIX G: OPTIMAL CLUSTERING
PROTOCOL FOR KNOWN CLASSICAL STATES

In this Appendix, we give a short discussion on
clustering classical states under the assumption that the
underlying probability distributions are known. In par-
ticular, we discuss two low-dimensional cases, d ¼ 2, 3,
and derive the asymptotic expression of the success
probability of clustering for large data string length N
and arbitrary data dimension d. We stick to the notation
introduced in Appendix F.
If the underlying probability distributions are known,

a given data point s is optimally assigned to the proba-
bility distribution for which s is most likely. The success
probability is thus given by maxfps; qsg=2 (recall that the
data are assumed to be drawn from either P orQ with equal
prior probability). The average success probability of
clustering over all possible strings of length N then reads

Pcl
s;PQ¼ 1

2N

��Xd
s¼1

maxfps;qsg
�

N
þ
�Xd

s¼1

minfps;qsg
�

N
�
;

ðG1Þ
where the second term arises because assigning the
wrong probability distribution to all data points in s gives
a correct clustering. In order to compare with our results for
unknown classical states, we average the success proba-
bility over a uniform distribution of categorical probability
distributions. This average yields

Pcl
s ¼

Z
Sd

dP
Z
Sd

dQPcl
s;PQ; ðG2Þ

where the integration over the simplex Sd, shared by P and
Q, is defined in Appendix E.
To perform the integral in Eq. (G2), we need to partition

Sd × Sd in different regions according to whether ps ≤ qs
or ps > qs for the various symbols. By symmetry, the
integral can depend only on the number r of symbols for
which ps ≤ qs (not on its particular value). Hence, r ¼
1;…; d − 1 labels the different types of integral that we
need to compute to evaluate Pcl

s . Notice that we have the
additional symmetry r ↔ d − r, corresponding to exchang-
ing ps and qs for all s. Since the value of these integrals
does not depend on the specific value of s, we can choose
all ps with s ¼ 1; 2;…; r to satisfy ps > qs and all ps with
s ¼ rþ 1; rþ 2;…; d to satisfy ps ≤ qs. To shorten the
expressions below, we define

pk ≔
Xk
s¼1

ps; qk ≔
Xk
s¼1

qs: ðG3Þ

With these definitions, pd ¼ qd ¼ 1,
P

d
s¼rþ1 qs ¼ 1 − qr,

and likewise
P

d
s¼rþ1 ps ¼ 1 − pr. The integrals that we

need to compute are then

FIG. 4. Use of Young diagrams for computing ξ0. In the
example, N ¼ 8 and d ¼ 4. The fraction before each pair gives
the number of different fillings and hints at how it is computed.
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Idr ≔
Z
Sd

dP
1

Vd

Z
p1

0

dq1…
Z

pr

0

dqr

×
Z

prþ1−qr

prþ1

dqrþ1…

Z
pd−1−qd−2

pd−1

dqd−1

× ½ð1þ pr − qrÞN þ ð1þ qr − prÞN �; ðG4Þ

and we note that, as anticipated, Idr ¼ Idd−r. The average
probability of successful clustering then reads

Pcl
s ¼ 1

2N

Xd−1
r¼1

�
d
r

�
Idr ; ðG5Þ

where the binomial is the number of equivalent integral
regions for the given r.

1. Low data dimension

We can now discuss the lowest-dimensional cases, for
which explicit closed formulas for Idr can be derived. For
d ¼ 2, one has

Pcl
s ¼ 8 − 22−N

ðN þ 2ÞðN þ 1Þ : ðG6Þ

This result coincides with that of unknown probability
distributions given in Eq. (F13) with ξΔ ¼ 1. This result is
expected, as the optimal protocol for known and unknown
probability distributions is exactly the same: Assign to the
same cluster all data points that show the same symbol s.
Therefore, knowing the probability distribution does not
provide any advantage for d ¼ 2.
For d > 2, however, knowledge of the distributions P

and Q helps classify the data points. If d ¼ 3, the success
probability (G5) can be computed to be

Pcl
s ¼ 6

25ðN − 2Þ − 22−NðN2 þ 7N þ 18Þ
ðN þ 4ÞðN þ 3ÞðN þ 2ÞðN þ 1Þ : ðG7Þ

In Table II, we compare five values of Pcl
s in Eq. (G7), when

N ¼ 2; 3;…; 6, with those for unknown distributions P and
Q given by Eq. (F13). As expected, the success probability
is larger if P andQ are known. The source of the increase is

illustrated by the string s ¼ ð112Þ, which is labeled as PPQ
(or QQP) if P and Q are unknown. However, if they are
known and, e.g., p1 > q1 and p2 > q2, the string is more
appropriately labeled as PPP.

2. Arbitrary data dimension: Large N limit

For increasing N, however, the advantage of knowing P
and Q becomes less significant and vanishes asymptoti-
cally, which can be checked explicitly for d ¼ 2, 3 by
expanding Eqs. (G6) and (G7) in inverse powers of N. In
this regime, the average is dominated by distributions for
which pr ≈ 1 and qr ≈ 0. Since in a typical string approx-
imately half of the data come from the distribution P and
the other half from Q, the optimal clustering protocol
essentially coincides with that for unknown distributions;
i.e., it collects the data points showing the same symbol in
the same subcluster and afterwards merges the subclusters
into two clusters of approximately the same size. We next
prove that this intuition is right for all d.
In the proof, we make repeated use of the trivial

observation that, for asymptotically large N and 0 < a <
b < c, one hasZ

b

a
ðc − xÞNdx ∼ ðc − aÞNþ1=N: ðG8Þ

We also note that the contribution to the success probability
coming from the completely wrong assignment of distribu-
tions, i.e., ð1þ qr − prÞN , is exponentially vanishing, since
we assume pr > qr, and thus qr − pr < 0 [this fact is well
illustrated by the terms proportional to 22−N in Eqs. (G6)
and (G7)].
Because of this last observation, we can drop the second

term in the integrand of Idr [Eq. (G4)]. The integrals over qs,
s ≤ r, of the remaining term, ð1þ pr − qrÞN , are domi-
nated by the lower limit qs ¼ 0, as this value maximizes
1þ pr − qr. Using Eq. (G8), we get

Idr ∼
ðd − 1Þ!

Nr

Z
Sd

dP
Z

prþ1−qr

prþ1

dqrþ1…

×
Z

pd−1−qd−2

pd−1

dqd−1ð1þ prÞNþr; ðG9Þ

where we recall that the volume of the simplex Sd is
Vd ¼ 1=ðd − 1Þ!. For the remaining integrals over qs in
Eq. (G9), we can take the lower limits to be ps ≈ 0, for
s ≥ rþ 1, since the integrand is maximized by pr ≈ 1.
Therefore, the upper limits become 1, 1 − qrþ1;…; 1−P

d−2
s¼rþ1 qs. We identify these upper and lower limits as

those of an integral over a ðd − r − 1Þ-dimensional proba-
bility simplex Sd−r. We can thus write

Idr ∼
ðd − 1Þ!

ðd − r − 1Þ!Nr

Z
Sd

dPð1þ prÞNþr: ðG10Þ

TABLE II. The success probability Pcl
s for d ¼ 3 and data string

lengths N ¼ 2;…; 6 in the cases of known and unknown
distributions P and Q. For unknown distributions, the values
are computed using Eq. (F13) in Appendix F. For known
distributions, the values are given by Eq. (G7). The table shows
that knowing P and Q increases the success probability of
clustering.

N 2 3 4 5 6

Unknown: 7=12 11=30 0.250 0.176 0.130
Known: 3=5 2=5 0.283 0.210 0.160
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The last equation can be cast as

Idr ∼
ðd − 1Þ!

ðd − r − 1Þ!Nr

Z
Sd

dP
�
2 −

Xd−1
s¼r

ps

�Nþr

; ðG11Þ

where we use again that pr ¼ 1 −
P

d
s¼rþ1 ps and note that

under the integral signwe are free to relabel the variablesps.
According to the definition of

R
sd
dP, we need to perform

d − r integrals over the variables pr, prþ1;…; pd−1, for
which we can use Eq. (G8), which yields a factor
2Nþd=Nd−r. The remaining integrals over p1; p2;…; pr−1
of this constant factor give an additional 1=ðr − 1Þ!, as
they effectively correspond to an integral over a (r − 1)-
dimensional simplex. Putting the different pieces together,
the asymptotic expression of Idr reads

Idr ≃
2Nþd

Nd

½ðd − 1Þ!�2
ðr − 1Þ!ðd − r − 1Þ! : ðG12Þ

We are now in a position to compute the asymptotic
success probability. Inserting Eq. (G12) into Eq. (G5), we
readily obtain

Pcl
s ∼

�
2

N

�
d
ðd − 1Þ!ðd − 1Þ

Xd−1
r¼1

�
d
r

��
d − 2

d − r − 1

�

¼
�
2

N

�
d ð2d − 2Þ!
ðd − 2Þ! ; ðG13Þ

where we use the well-known binomial identityP
kðakÞð b

s−kÞ ¼ ðaþb
s Þ [here, k ranges over all values for

which the binomials make sense]. Equation (G13) coin-
cides with the asymptotic expression in the unknown case
Eq. (9), as we anticipated.
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