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We report on the investigation of the three-dimensional single-atom-resolved distributions of bosonic
Mott insulators in momentum space. First, we measure the two-body and three-body correlations deep in
the Mott regime, finding a perfectly contrasted bunching whose periodicity reproduces the reciprocal
lattice. In addition, we show that the two-body correlation length is inversely proportional to the in-trap size
of the Mott state with a prefactor in agreement with the prediction for an incoherent state occupying a
uniformly filled lattice. Our findings indicate that the momentum-space correlations of a Mott insulator at
small tunneling are those of a many-body ground state with Gaussian statistics. Second, in the Mott
insulating regime with increasing tunneling, we extract the spectral weight of the quasiparticles from the
momentum-density profiles. On approaching the transition towards a superfluid, the momentum spread of
the spectral weight is found to decrease as a result of the increased mobility of the quasiparticles. While the
shapes of the observed spectral weight agree with those predicted by perturbative many-body calculations
for homogeneous systems, the fitted mobilities are larger than the theoretical ones, mostly because of the
coexistence of various phases in the trap.
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I. INTRODUCTION

Measuring many-body correlations is central to inves-
tigate and reveal the properties of strongly interacting
quantum matter [1]. It allows one to test the predictions
of simple microscopic models used to understand many-
body physics [2]. One paradigmatic example is the Hubbard
Hamiltonian that describes quantum particles hopping
between the sites of a lattice in the presence of interaction.
A comparison of the predictions of the Hubbard model with
the measured response functions, e.g., the one-particle
spectral function [3] and the dynamical structure factor
[4], shows its relevance for a large variety of systems, from
transition-metal oxides [5] and heavy fermions [6] to high-
Tc superconductors [7]. A direct probe of correlations
between individual particles is yet hardly possible to imple-
ment in solids. Thanks to single-atom-resolved detection
methods [8], quantum gases offer an alternative test bed for
many-body theories.
The celebrated Mott transition, a generic metal-to-

insulator transition of Hubbard models [9], is investigated

with quantum gas microscopes, illustrating the benefits
from probing many-body physics at the single-particle
level. Position-space two-particle correlations in Mott
insulators indeed yield unprecedented and quantitative
observations, such as the reduction of on-site atom fluc-
tuations [10,11], string order in low dimensions [12], out-
of-equilibrium dynamics [13,14], and antiferromagnetic
ordering [15,16]. On the other hand, the investigation of
momentum-space correlations in atomic Mott states are
scarce, and, in particular, there has been no implementation
of a single-atom-resolved probe of momentum correlations.
Momentum-resolved light-scattering techniques are imple-
mented to measure spectral functions [17–19], and the
noise correlation analysis of time-of-flight (TOF) absorp-
tion images [20] reveals density correlations in expanding
Mott insulators [21,22]. But these probes do not permit
quantitative studies of correlation functions, including
their shape and their width, due to limited resolution in
momentum, line-of-sight integration, and lack of single-
particle sensitivity. Experimental signatures of the contri-
bution of particle-hole excitations to the coherence of a
Mott insulator are extracted from the visibility [23] and the
density modulation of TOF distributions [24]. But a
momentum-resolved measure of this contribution when
approaching the Mott transition, i.e., an observation of the
modifications of the spectral weight of the quasiparticles in
momentum space, was not possible. Recently, however, it
has become possible to measure momentum-space corre-
lations, in either one- or two-dimensional geometries using
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optical imaging [25–27] or in three dimensions with the
species metastable helium (He*), which can be detected at
the single-atom level [28,29].
In this work, we report on using momentum-space

single-atom-resolved distributions [29] in He* gaseous
Mott insulators to investigate both the average population
of the momentum states (i.e., the momentum density) and
its fluctuations (through two-body and three-body momen-
tum correlations). Deep in the Mott regime, we observe a
perfectly contrasted momentum bunching, with second-
and third-order correlation functions whose structure repro-
duces the reciprocal lattice. Moreover, from the shape of the
bunching peaks, we determine the two-particle correlation
length in Mott insulators of various in-trap sizes, finding an
excellent agreement with ab initio calculations. These
features show that in the limit of vanishing tunneling the
Mott correlations are driven by a Gaussian density operator
for bosons uniformly distributed in the lattice sites. From
cuts in the three-dimensional (3D) momentum density,
we also extract the spectral weight ZðkÞ of the Mott
quasiparticles. The evolution of ZðkÞ when the system
approaches the superfluid-to-Mott transition provides a
direct signature of the increased spatial coherence of the
quasiparticles. At the quantitative level, however, a com-
parison with perturbative many-body approaches reveals
discrepancies which we discuss.

II. MOMENTUM-SPACE CORRELATION
FUNCTIONS OF A MOTT STATE:

THEORY IN A NUTSHELL

A Mott insulator is an insulating phase caused by the
presence of strong interactions between particles moving in
crystalline structures. Hubbard models provide a micro-
scopic description of the Mott physics based on the
interplay between interaction and kinetic energy. When
the ratioU=J of the on-site (repulsive) interaction energyU
to the hopping energy J between adjacent lattice sites
increases, the ground state of a Hubbard Hamiltonian
undergoes a phase transition from a conductor to a Mott
insulator. The Fermi Hubbard model is central for the
understanding of metal-insulator transitions in solids when
electron-electron interactions are important [5,9]. Recently,
quantum gases have permitted the observation of a Mott
transition with bosons [30], which is described by the Bose-
Hubbard Hamiltonian [31]

H ¼ −J
X
hl;l0i

b̂†l b̂l0 þ
U
2

XNsite

l¼1

n̂lðn̂l − 1Þ; ð1Þ

where b̂l is the annihilation operator of a particle on site
labeled l and n̂l ¼ b̂†l b̂l. The critical value for the Mott
transition in the 3D Bose-Hubbard Hamiltonian is calcu-
lated numerically and found equal to ðU=JÞc ¼ 29.3 [32].
The properties of the Mott state—such as the amplitude of

the gap in the excitation spectrum or the role of particle-
hole excitations—change when varying U=J from deep in
the insulating regime [U=J ≫ ðU=JÞc] to the value at the
phase transition. In a first approximation, these modifica-
tions can be viewed as resulting from the contribution of
some particle and hole excitations on top of a uniformly
filled lattice. In quantum gas experiments, the ratio U=J
can be varied continuously by changing the amplitude of
the lattice potential, allowing one to investigate the mod-
ifications of that many-body ground state (the Mott
insulator) with a high degree of control [30]. In the
following, we describe the properties of the Mott state in
the momentum space. To this aim, we introduce the
momentum-space operators

âðk⃗Þ ¼ 1ffiffiffiffi
V

p
XNsite

l¼1

eik⃗:r⃗l b̂l; ð2Þ

where the volume of quantization V is chosen as the in-trap
volume of the gas. As a consequence of the crystalline
structure of the lattice, all momentum-space quantities
are periodic with the period of the reciprocal lattice
kd ¼ 2π=d, where d is the lattice spacing, e.g., âðk⃗þ K⃗Þ ¼
âðk⃗Þ with K⃗ ¼ kdðnxu⃗x þ nyu⃗y þ nzu⃗zÞ, where fu⃗jgx;y;z
are the orthonormal vectors associated to the lattice and
fnjgx;y;z are integers.

A. Many-body correlations in a perfect Mott insulator

Deep in the Mott phase at a large amplitude of the
lattice potential, the tunneling becomes vanishingly small,
and it is standard to approximate the many-body ground
state by a “perfect” Mott insulator, i.e., a Mott insulator
with no coupling between the sites, J ¼ 0. The perfect Mott
insulator for the Hamiltonian of Eq. (1) with unity
occupation of the lattice site is then jψiJ¼0 ¼ Πlb̂

†
l j0i.

The absence of phase coherence between the lattice sites,
hψ jb̂†l b̂l0 jψiJ¼0 ¼ hb̂†l b̂l0 iJ¼0 ¼ δl;l0 , has important conse-
quences on the momentum-space properties. Under these
conditions, the correlations between two momentum oper-
ators [see Eq. (2)] take the form

hâ†ðk⃗Þâðk⃗0ÞiJ¼0 ¼
1

V

XNsite

l¼1

hn̂lieiðk⃗0−k⃗Þ:r⃗l : ð3Þ

The momentum density of a perfect Mott insulator is thus
constant: ρðk⃗Þ ¼ hâ†ðk⃗Þâðk⃗ÞiJ¼0 ¼ ρð0⃗Þ. In addition, the
correlations between momentum components separated by
more than the inverse of the system size L are vanishingly
small. On the contrary, the sum in Eq. (3) is nonzero for

jk⃗ − k⃗0j < 2π=L, which implies that some correlations are
present in momentum space even if there are no position-
space correlations, a situation similar to that described by
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the van Cittert–Zernike theorem in optics [33]. Equation (3)
defines the one-particle volume of coherence, i.e., the
volume over which the first-order correlation function

gð1Þðk⃗; k⃗0Þ ¼ hâ†ðk⃗Þâðk⃗0Þi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðk⃗Þρðk⃗0Þ

q
is nonzero. This

momentum-space volume of coherence reflects the distri-
bution of atoms fhn̂ligl in the lattice.
As pointed out in Ref. [20], higher-order momentum-

space correlations can reveal some properties of
many-body ground states even when the momentum
density is featureless. For instance, bosonic bunching
is expected in the two-body correlations gð2Þðk⃗; k⃗0Þ ¼
hâ†ðk⃗Þâ†ðk⃗0Þâðk⃗Þâðk⃗0Þi=ρðk⃗Þρðk⃗0Þ associated with finding
one particle with a momentum k⃗ and a second one with a

momentum k⃗0. In the case of the perfect Mott state, that is to
say, when the tunneling is zero, the amplitude and the width
of the bunching effect can be predicted accurately. Indeed,
the atom number per lattice site is then fixed. For a unity
occupation of the lattice nl ¼ 1, the Hamiltonian of Eq. (1)
reduces to that of noninteracting particles and is diagonal in
the momentum-space basis. As a result, the many-body
momentum-space correlations are those of uncorrelated
bosons with a Gaussian density operator [34]. For such a
Gaussian many-body ground state, the Wick decomposi-

tion yields gð2Þðk⃗; k⃗0Þ ¼ 1þ jgð1Þðk⃗; k⃗0Þj2. In particular, the
amplitude of the two-body correlation at zero particle
distance is twice that found for uncorrelated particles:
gð2Þðk⃗; k⃗Þ ¼ 2. In addition, the shape of the bunching peak
provides quantitative information about the in-trap profile.

Its exact shape is set by the term jgð1Þðk⃗; k⃗0Þj2, whose size
determines the volume of coherence. Interestingly, higher-
order correlation functions are also related to the first-order

correlation function gð1Þðk⃗; k⃗0Þ when the Wick theorem
applies (see Ref. [35], for instance).

B. Momentum density and spectral weight of a
Mott insulator at finite tunneling

At finite tunneling J > 0, a more elaborate picture than
that of the perfect Mott state jψiJ¼0 must be introduced to
account for the kinetic energy term in the Bose-Hubbard
Hamiltonian. To do so, various many-body treatments
introduce quadratic quantum fluctuations on top of the
classical Gutzwiller solution for the perfect Mott [36–38].
In these approaches, the low-energy excitations of the Mott
state are quasiparticles consisting of the combination of a
doublon and a hole. At finite J, the many-body ground state
contains a finite fraction of these particle-hole excitations.
In addition, the mobility of the quasiparticles in the lattice
restores some phase coherence. These modifications of the
many-body ground state are described by the formalism of
the Green function [2]. For our purposes, the Fourier
transform of the Green function, i.e., the one-particle
spectral function Aðk⃗;ωÞ, is of special interest, as it is

linked to the momentum density ρðk⃗Þ of the Mott insulator
[38]: ρðk⃗Þ ∝ −

R
0
−∞ dωAðk⃗;ωÞ. Replacing Aðk⃗;ωÞ by its

expression, one finds that the momentum density ρðk⃗Þ of
the Mott insulator is directly related to Zðk⃗Þ, the spectral
weight of the quasiparticles:

ρðk⃗Þ ¼ N ½Zðk⃗Þ − 1�; ð4Þ

where N is a normalization factor. The spectral weight
quantifies the overlap between the many-body wave
function with one added particle (or hole) and the true
excited one-particle (or one-hole) state. In the noninteract-
ing case, Zðk⃗Þ is a delta function, because a state with one
more particle or hole is still an eigenstate of the system. In
the correlated case, many momentum eigenstates have a
nonzero overlap with the state formed by simply adding a
particle or a hole. As a consequence, the spectral weight
acquires a finite momentum support whose shape reflects
these correlations.
The momentum density ρðk⃗Þ of the Mott state thus

provides a direct probe of its spectral weight Zðk⃗Þ. The
spectral weight of a homogeneous Mott with unity occu-
pation of the lattice sites can be calculated using perturba-
tive many-body approaches [38–40]. Deep in the Mott
regime (U=J ≫ 1), ZðkÞ is a small-amplitude oscillating
function of period kd ¼ 2π=d, with d the lattice spacing
[38,40,41]. These oscillations stem from the presence of a
small number of quasiparticles that hop between adjacent
lattice sites only. On approaching the Mott transition, the
spectral weight is expected to become increasingly peaked
around the reciprocal lattice vectors K⃗, as an added particle
(or hole) can tunnel over several lattice sites [38,40,41].

III. EXPERIMENTAL RESULTS

A. Observation of the Mott transition with metastable
helium-4 atoms

The experimental sequence starts with the production of
a Bose-Einstein condensate (BEC) of metastable helium-4
atoms (4He�) in a crossed optical trap as described in
Ref. [42]. The BEC is then loaded into the lowest-energy
band of a 3D cubic optical lattice with a spacing d ¼
775 nm and an amplitude V0 ¼ sEr, with Er ¼ h2=8md2

the recoil energy [29]. The lattice amplitude s is increased
linearly at a rate of 0.3 ms−1, while, simultaneously, the
intensity of the optical trap is switched off with a linear
ramp of duration 20 ms. The residual harmonic potential
due to the Gaussian intensity profiles of the orthogonal
lattice beams is isotropic with a trapping frequency
140

ffiffiffi
s

p
Hz. We calibrate the amplitude s by performing

amplitude modulation spectroscopy, and we numerically
calculate J and U from the value s. The rms uncertainty on
U=J is estimated to be 5%.
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In the experiment, we measure time-of-flight single-
atom-resolved distributions in the far field, from which we
can calculate the 3D momentum density as well as higher-
order correlation between individual atoms. We probe the
gas after a time of flight of ttof ¼ 297 ms with the time- and
space-resolved He* detector described in Ref. [43]. The
He* detector reveals the 3D positions r⃗tof of individual 4He�
atoms in the center-of-mass reference frame with an
excellent resolution (see the Appendix B). Importantly,
ttof is larger than the time required to enter the far-field
regime of propagation tFF ¼ mL2=2ℏ ∼ 30 ms for our
experimental parameters, where L ∼ 40d is the in-trap total
size of the gas. In addition, interaction can be neglected
during the expansion, as the TOF dynamics is driven by
the large trapping frequency (≳100 kHz) of the individual
lattice sites [44]. Indeed, in a previous work [29], we
validate quantitatively the assumption of ballistic expan-
sion from the lattice, i.e., ℏk⃗ ¼ mr⃗tof=ttof , where k⃗ is the
momentum of the atom in the lattice and r⃗tof is the
measured atom position after a time of flight ttof . With
the ballistic assumption, the far-field TOF density
ρ∞ðr⃗tof ; ttofÞ yields the in-trap momentum density ρðk⃗Þ:

ρðk⃗Þ ¼ 1

jω̃ðk⃗Þj2
�
ℏttof
m

�
3

ρ∞ðr⃗tof ; ttofÞ; ð5Þ

where ω̃ðk⃗Þ is the Fourier transform of the Wannier
function in each lattice site. We determine ω̃ðk⃗Þ numeri-
cally in 3D and rescale the measured density ρ∞ðr⃗tof ; ttofÞ
according to Eq. (5). Doing so, ρðk⃗Þ can be directly
compared to the momentum density of the discrete
Bose-Hubbard Hamiltonian introduced in the theory sec-
tion [see Eq. (1)].
In Fig. 1, we plot examples of 3D TOF distributions

across the Mott transition. The Mott transition has been

investigated with various atomic species [45], and here we
report its observation with metastable helium-4 atoms,
which allows us to obtain 3D single-atom-resolved dis-
tributions. Each blue dot in Fig. 1 corresponds to one
detected atom. In Fig. 1(a), the distribution displays sharp
diffraction peaks located at kd ¼ 2π=d, a manifestation of
the long-range coherence of the superfluid state atU=J ¼ 5.
Deep in the Mott insulating regime (U=J ¼ 100), the phase
coherence is lost [see Fig. 1(b)]. By decreasingU=J from the
Mott state back to the superfluid regime, the long-range
coherence is restored, as illustrated by the high visibility of
the diffraction peaks in Fig. 1(c). In the following, we focus
on the Mott insulator regime using values of the ratio U=J
larger than the critical value for the Mott transition
ðU=JÞc ¼ 29.3 [32].

B. Many-body momentum-space correlations deep in
the Mott insulating regime

We first discuss the single-atom-resolved distributions
measured deep in the Mott insulator regime. As expected,
we find that the momentum density ρðkÞ [as defined in
Eq. (5)] is almost constant in this regime. To characterize
the fluctuations of the momentum-space population, we
introduce the two-particle correlation function defined as
(see Appendix C for details)

gð2Þðδk⃗Þ ¼
R
dk⃗hâ†ðk⃗Þâ†ðk⃗þ δk⃗Þâðk⃗þ δk⃗Þâðk⃗ÞiR

dk⃗ρðk⃗Þρðk⃗þ δk⃗Þ
; ð6Þ

where âðk⃗Þ is the annihilation operator associated to
finding a particle at position k⃗ with the He* detector. To
facilitate the presentation and the discussion of the two-
body correlation function, we plot gð2Þðδk⃗Þ along some
specific directions u⃗ that can be chosen at will. In Fig. 2, we

(c)(b)(a)

U/J = 5 U/J = 100 U/J = 5

FIG. 1. Observation of the superfluid-to-Mott transition in momentum space with 4He� atoms. Far-field three-dimensional atom
distributions, along with the corresponding two-dimensional projections in the (kx, ky) plane. Each blue dot is an individual atom
revealed by the He* detector. (a) Superfluid regime at U=J ¼ 5, (b) Mott regime U=J ¼ 100, (c) superfluid regime U=J ¼ 5 restored
when sweeping back from U=J ¼ 100 to U=J ¼ 5. With this set of data, the visibility of the interference pattern [23] goes from
V ¼ 0.96 in (a) to V ¼ 0.92 in (c). This observation demonstrates that the loading ramps are adiabatic with a good approximation.
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plot gð2Þðδk⃗Þ in a Mott insulator with U=J ¼ 100 along
u⃗ ∝ nxu⃗x þ nyu⃗y þ nzu⃗z, where fu⃗jgx;y;z are the orthonor-
mal vectors associated to the lattice and nx, ny, and nz are
equal to 0 or 1. The two-body correlation function is plotted
as a function of the difference δk of momentum between
two atoms found along the u⃗ axis (see Appendix C). We
find a well-contrasted bunching whose amplitude gð2Þð0Þ ¼
1.98ð3Þ is close to two, as expected for Gaussian statistics.
The corresponding large fluctuations in the momentum
space are in contrast with the reduced atom-number
fluctuations in the lattice sites, as monitored with in situ
quantum gas microscopes in a similar regime of the
Mott insulator [10]. Note that there have been only a

few observations of gð2Þð0Þ ≃ 2 with massive particles
[35,46,47] and that none of them was obtained in a 3D
isotropic situation. As illustrated in Fig. 2(b), the two-body
correlation gð2Þðδk⃗Þ is 3D periodic. We find periods equal to
kd,

ffiffiffi
2

p
kd, and

ffiffiffi
3

p
kd along the different axes of the 3D

reciprocal lattice associated with the crystalline structure of
the ground state. As we explain below, the lower amplitude
of the bunching peaks at δk⃗ ≠ 0⃗ is due to small imperfec-
tions of the He* detector.
We now turn to investigating the shape and width of the

two-body correlation function. In the vicinity of δk⃗ ¼ 0⃗, we
find that gð2Þðδk⃗Þ is well fitted by an isotropic 3D Gaussian
function. This isotropy corresponds to the isotropy of the
optical trap created by the lattice beams. The Gaussian-like
shape probably results from the spherical distribution of
atoms in the lattice and from the absence of sharp edges in
the in-trap density. These observations about the isotropy
and the shape of the measured two-body correlations lead
us to define the two-particle correlation length lc according
to gð2Þðδk⃗Þ ¼ 1þ η expð−2δk⃗2=l2cÞ at jδk⃗j ≪ kd, where η
corresponds to the amplitude of the bunching. We find a
correlation length lc ¼ 0.027ð6Þkd for the data in Fig. 2(a).
As discussed in the theory section, the two-body

correlations of a perfect Mott state are known accurately,
as one can compute gð2Þðδk⃗Þ ¼ 1þ jgð1Þðδk⃗Þj2 from the
sum appearing in Eq. (3). This computation requires the
knowledge of the spatial distribution of atoms in the 3D
lattice, which we obtain using the Gutzwiller ansatz for the
experimental parameters [31]. To investigate in the experi-
ment how the shape of gð2Þðδk⃗Þ is modified when the spatial
distribution of the atoms in the 3D lattice varies, we use the
low compressibility of the gas: The size L of a trapped Mott
insulator increases with the atom number N as a result of
the strong on-site interactions. We vary the atom number
from N ¼ 3.0ð6Þ × 103 to N ¼ 22ð4Þ × 103 and measure
the different correlation lengths lc. Over this range, we note
that the lattice filling at the trap center varies from 1 to 2,
but numerical calculations of gð2Þ show that the presence of
a few doubly occupied sites at the trap center hardly affects
the value of lc. In Fig. 3, we plot the measured lc as a
function of the atom number N. The two-body correlation
length lc is found to decrease with N, as expected from the
fact that L increases with N. We also plot lc as a function of
the size L obtained from the Gutzwiller ansatz in the inset
in Fig. 3 (see Appendix C for details). Moreover, the
measured values for lc are in perfect agreement with
numerical calculations without adjustable parameters,
i.e., with the expectation for the atom distribution of a
Mott state and for a Gaussian density operator. Note that, in
a thermal gas of noninteracting bosons, the size L and, in
turn, lc are independent of N. The observed variation of lc
with N thus highlights the difference between probing the
Mott state and probing an ideal Bose gas [35]. As a side
remark, we note that an analogy with the Hanbury-Brown
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(1,0,1)
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(a)

(b)

FIG. 2. Two-body momentum correlations in bosonic Mott
insulators at U=J ¼ 100 with N ¼ 15 000. (a) Plot of 1D cuts
through the two-particle momentum correlation gð2ÞðδkÞ as a
function of δk ¼ δk⃗:u⃗ along the axis defined by u⃗ ¼ nxu⃗xþ
nyu⃗y þ nzu⃗z. The values of the integers ðnx; ny; nzÞ are indicated
next to the symbols of the data. The elementary volume we use to
code the positions of individual atoms has a longitudinal length
Δkjj ¼ 0.003kd along the axis where correlations are plotted and
a transverse length Δk⊥ ¼ 0.015kd. The 1D cuts are plotted
along the three axes of the cubic lattice, illustrating the spherical
symmetry of the experimental configuration. (b) 1D cuts gð2ÞðδkÞ
plotted on a broader scale through the gð2Þðδk⃗Þ along different
axes of the reciprocal lattice.
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and Twiss effect [21,48] can also be used to describe the
observed two-body correlations (see Appendix A for
details).
Proceeding similarly with a Gaussian fit, we measure the

two-body correlation length lδk≠0c ¼ 0.033ð9Þkd for the
peaks in Fig. 2(b) observed at δk⃗ ≠ 0⃗. This value is slightly
larger than lc (measured at δk⃗ ¼ 0⃗) by a few times ka=1000.
This tiny discrepancy may be explained by small imper-
fections of the He* detector in measuring particle distances
comparable to its radius (see, for instance, Refs. [49,50],
and Appendix C). While the measured correlation lengths
and amplitudes may be affected by the response function of
the detector, the 3D integral of the bunching peak, which
quantifies the probability for two atoms to bunch, should be
a physical quantity conserved through the detection. In a
crystalline ground state as a Mott insulator, atoms are
expected to have the same probability to bunch modulo a
vector K⃗ of the reciprocal lattice. It implies that the 3D
integrals of the bunching peaks should be equal on the
reciprocal lattice. Importantly, we find that this property is
verified in the experiment (see Appendix C). This result
implies that the observed amplitude gð2ÞðK⃗ ≠ 0⃗Þ < 2 results
from the measured correlation length lδk≠0c larger than lc.
From the measured 3D atom distributions, we can

extract higher-order correlations. To illustrate this possibil-
ity, we measure the three-body correlations. We observe
a well-contrasted and periodic bunching in the three-
body correlations gð3Þðk⃗; k⃗0; k⃗00Þ whose numerator is written

hâ†ðk⃗Þâ†ðk⃗0Þâ†ðk⃗00Þâðk⃗Þâðk⃗0Þâðk⃗00Þi. In Fig. 4(a), we plot

gð3Þðδk1; δk2Þ as a function of δk1 and δk2, where δk1 ¼
ðk⃗ − k⃗0Þ:u⃗x and δk2 ¼ ðk⃗ − k⃗00Þ:u⃗x are the differences of

momentum between two different pairs of atoms along the
lattice axis u⃗x. The correlations that are intrinsically three-
body are those for which three atoms are in the same
coherence volume, and, thus, they are located at positions
ðδk1 ¼ 0½kd�; δk2 ¼ 0½kd�Þ, where ½kd� stands for modulo
kd. We also observe lines with a correlation above the
background along the axis defined by δk1 ¼ 0, by δk2 ¼ 0,
and by δk1 ¼ δk2. Along each of these lines, two of the
three atoms are close to each other, and the correlation
amplitude signals two-body bunching. No correlation is
observed on the antidiagonal defined by δk1 ¼ −δk2. This
result is expected, since it corresponds to well-separated,
and, thus, uncorrelated, momentum components. Finally,
the ratio of the amplitudes of the intrinsic three-
body correlations gð3Þð0; 0Þ and the two-body ones
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FIG. 3. Two-body correlation length. Correlation length lc
plotted as a function of the total atom number N in the Mott
state. The dashed line is the theoretical prediction from 3D
numerical calculations without adjustable parameters. Inset: lc as
a function of the calculated in-trap total size L. The dashed line is
the same numerical calculation as that in the main panel.
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FIG. 4. Three-body momentum correlations in bosonic Mott
insulators. (a) Plot of gð3Þðδk1; δk2Þ as a function of the algebraic
distances δk1 and δk2 between atoms along the lattice axis (see
the text). The background amplitude associated to uncorrelated
atoms has an amplitude of approximately 1. The correlations
along the lines defined by δk1 ¼ 0, δk2 ¼ 0, and δk1 ¼ δk2
correspond to the two-body bunching gð2Þð0Þ associated with
finding two atoms close by. The intrinsic three-body correlations
(located at δk1 ¼ 0½kd�; δk2 ¼ 0½kd�) have an even higher ampli-
tude. Here, we use Δkjj ¼ 0.008kd and Δk⊥ ¼ 0.1kd. (b) Profiles
of gð3Þðδk1; δk2Þ at δk2 ¼ 0 and δk2 ¼ 0.5kd. We find gð3Þð0; 0Þ −
1 ¼ 0.32ð2Þ and gð3Þð0; 0.5kdÞ ¼ 0.065ð10Þ, i.e., that the ratio
between the amplitudes of three-body and two-body correlations
is compatible with the expected value for Gaussian statistics.
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gð3Þð0; δk2 ≠ 0Þ is found to be 2.9(4), a value compatible
with the expected one of 3!=2! ¼ 3 for Gaussian statistics
[35]. Note that this ratio is obtained for transverse inte-
grations (Δk⊥ ¼ 0.1kd) larger than those used in Fig. 2 in
order to increase the statistics of the three-body correla-
tions. As a consequence, the measured absolute amplitudes
are smaller than the ones expected in the absence of
integration [Fig. 4(b)].

C. Quasiparticle spectral weight in a Mott insulator

WhenU=J is decreased, a structure slowly appears in the
momentum density. Measuring momentum 3D densities in
the far field and without the line-of-sight integration
inherent to absorption imaging allows us to investigate
this evolution quantitatively. In Fig. 5(a), we plot ρðkxÞ in
the Mott regime along the lattice axis Ox and for a varying
ratio U=J. All these datasets are taken with a fixed atom
numberN ¼ 3.0ð6Þ × 103 to ensure unity occupation of the
lattice at the trap center. At large U=J, we recover the
periodic oscillations observed previously [23,24]. For
decreasing U=J, we observe that ρðkxÞ, and, thus, the
spectral weight ZðkxÞ ∝ ρðkxÞ þ 1, becomes increasingly
peaked around kx ¼ jkd with j an integer. To provide a
physical insight into the narrowing of ZðkxÞ, we expand
ρðkxÞ ¼

P
p αpe

i2πpkx=kd in Fourier components along the
lattice axis, finding

αp ¼
X
j

hb̂†j b̂jþpi: ð7Þ

The Fourier amplitudes αp quantify the average phase
coherence between lattice sites distant by p sites. The
evolution of the amplitudes αp as U=J decreases highlights

the continuous change from a perfect Mott state (for which
αp ¼ 0 for p ≠ 0) to a Mott state with a finite spatial
coherence (αp ≠ 0 for p > 1). Close to the Mott transition,
the mobility of the quasiparticles extends over several
lattice sites, say, distant by p sites, and results in αp ≠ 0.
The narrowing of the spectral weight ZðkxÞ thus reflects the
coherent tunneling of the quasiparticles over several lattice
sites. In Fig. 5(a) (bottom row), we plot the Fourier
amplitudes αp extracted from the measured profiles
ρðkxÞ. A mobility of the quasiparticles over up to p ∼ 6
lattice sites is observed at U=J ¼ 35, a distance corre-
sponding to about a quarter of the size of the trapped gas.
The spectral weight of a homogeneous Mott with unity

occupation of the lattice sites is calculated using perturba-
tive many-body approaches [38–40]. It provides a quanti-
tative prediction of the role of particle-hole excitation on
the building of long-range coherence which we confront
with the experiment. To do so, we fit the measured densities
ρðkxÞ with Eq. (95) of Ref. [40] using the numerical
parameters associated with a 3D lattice and letting the
ratio U=J ¼ ufit as a fit parameter (i.e., the parameter x of
Ref. [40]). The observed modification in the shape of ZðkxÞ
as the system approaches the superfluid regime is consis-
tent with these theoretical predictions [see Fig. 5(a)]. As the
predicted width and amplitude of the modulations are
connected through the dispersion of the lattice, this agree-
ment suggests that the physical picture drawn by perturba-
tive theories is valid.
However, a fully quantitative comparison reveals that ufit

is systematically smaller than the ratioU=J calibrated in the
experiment. To quantify the discrepancy between the
theory and experiment, we define a fractional deviation
as the ratio r ¼ ½U=J − ðU=JÞc�=½ufit − ðU=JÞc�, and we

100 60 45 35U/J

-1 0 1
0

10

20

103

0 1 2 3 4 5 6
0

0.5

1

-1 0 1
0

10

20

103

-1 0 1
0

10

20

-1 0 1
0

50

100
103

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
0

0.5

1

(b)(a)

40 60 80 1000

5

10

15

20

25

30

35

r

U/J

FIG. 5. Spectral weight of the quasiparticles in the Mott state. (a) Top row: Dimensionless momentum densities ρðkxÞ ∝ ZðkxÞ − 1 in
the Mott regime for a ratio U=J ¼ 100, 60, 45, 35. The dashed line is the momentum density expected from perturbation many-body
theories accounting for the presence of particle-hole excitations, with the value of U=J taken as a fitting parameter [40]. Bottom
row: Histograms of the amplitudes αp corresponding to the momentum densities displayed on top. (b) Ratio r ¼ ½U=J − ðU=JÞc�=
½ufit − ðU=JÞc� plotted as a function of U=J. The ratio r quantifies the discrepancy between U=J set in the experiment and ufit ¼ U=J
obtained from fitting the experimental data with perturbative theories.

MOMENTUM-SPACE ATOM CORRELATIONS IN A MOTT … PHYS. REV. X 9, 041028 (2019)

041028-7



plot r as a function U=J in Fig. 5(b). We find that r is large
close to the critical ratio ðU=JÞc and that it decreases as the
ratio U=J increases, becoming closer to unity. Our under-
standing of this observation goes as follows. Close to the
Mott transition, the trapped system realized in the experi-
ment is composed of a Mott insulator phase surrounded by
a condensate. The latter obviously increases the coherence
of the trapped system with respect to that predicted by the
theory. As U=J increases, the Mott region with unity filling
extends over a larger volume in the trap, and the outer shell
becomes normal. As a result, r should become closer to
unity at increasingU=J. However, we do not observe r ¼ 1

at large U=J, but r ≃ 2, a difference that may be related to
the increasing difficulty to adiabatically load the atoms in
the lattice at increasing U=J. We note that the observed
trend for the ratio r differs from that found in a previously
reported work with a similar quantity, the visibility [39]. It
is because the theoretical model we use here, which
captures the position of the Mott transition predicted by
quantum Monte Carlo calculations, is different from that
used in Ref. [39].

IV. CONCLUSION

We have reported on the measurement of 3D atom
distributions in momentum space for a Mott insulator. It
has allowed us to determine quantitatively the buildup of
long-range coherence when approaching the transition
towards a superfluid. Deep in the Mott phase, the extracted
two- and three-body correlation functions match that of
indistinguishable and uncorrelated bosons uniformly dis-
tributed in the lattice sites. It shows that the measured
correlations are that of a many-body state whose density
operator is Gaussian in momentum space. The results of this
work also demonstrate the outstanding capability of our
approach to identify Gaussian quantum states. It naturally
paves the way to the future investigation of 3D many-body
states with many-body correlations deviating from those
associated with Gaussian statistics. As illustrated with 1D
Bose gases [51], these deviations provide genuine informa-
tion about many-body correlations and have, therefore, the
potential to unveil complex quantum phenomena.
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APPENDIX A: OPTICAL ANALOGY OF THE
MOMENTUM-SPACE BUNCHING

The description of the momentum-space two-body
correlations we investigate in this work could be rephrased
in an optical analogy. Indeed, the momentum-space proper-
ties are obtained in a TOF experiment where the matter
wave evolves freely in space similarly to the propagation of
light. When the expansion of the gas is ballistic and long
enough for the paraxial approximation to be valid, the
atoms are detected in a regime identical to that of the
detection of photons in the far field. The momentum-space
bunching phenomenon can thus be understood from a
direct analogy with the Hanbury-Brown and Twiss (HBT)
effect reported with incoherent sources of light [48] or
matter [21,52].
It is also interesting to recall that the properties of the

HBT effect in optics may be derived from a classical model
of light with Gaussian statistics [53]. This derivation
requires one to assume that a large number of mutually
incoherent emitters form the source of light, a condition
under which the central limit theorem applies and the field
is a Gaussian random process. This assumption is a
classical analog of the hypothesis of a Gaussian ground
state we use here, and it highlights the fact that in both
situations the HBT type of correlations are connected with
Gaussian statistics.

APPENDIX B: ATOM-NUMBER CALIBRATION
AND HE* DETECTOR

1. Calibration of the atom number in the lattice

The data presented in this work come from various sets
of the experiment:

(i) A series of sets taken with N ¼ 3.0ð6Þ × 103 atoms
in the lattice and for U=J ¼ 35, 45, 60, and 100.—
This atom number ensures a unity occupation of the
lattice sites at the trap center and for all the lattice
amplitudes. These sets are used for Figs. 1 and 4 and
for the points at L ¼ 23 and L ¼ 25 in Fig. 3.

(ii) A set of data at U=J ¼ 100 with N ¼ 15 × 103

atoms, corresponding to a filling at the trap center
equal to 2.—This larger atom number increases the
signal-to-noise ratio to measure the two-body cor-
relation length. We check by performing numerical
simulations that the bunching peaks are quite in-
sensitive to the presence of a few doubly occupied
sites and that lc is dominated by the width L of the
trapped gas. Taking into account atom-number
fluctuations in the experiment, the overall data are
divided into four sets of data with N ¼ 12ð3Þ × 103,
N ¼ 16ð3Þ × 103, N ¼ 20ð4Þ × 103, and N ¼
22ð4Þ × 103 atoms.

To calibrate the atom number, Mott insulators at U=J ¼
100 are probed by absorption imaging after 1.5 ms TOF. At
this lattice amplitude, the momentum distribution is diluted,
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and absorption images can be fitted by a 2D Gaussian
function from which one can extract the number of atoms.

2. Detection with the He* detector

To access single-atom-resolved momentum distribu-
tions, the atoms are detected on the He* detector located
43 cm below the center of the science chamber, corre-
sponding to a time of flight of 297 ms. To avoid the effect of
spurious magnetic fields that would disturb the time-of-
flight distribution, a fraction of the atoms, initially spin
polarized into the 23S1 mJ ¼ 1 state, are transferred with a
radio-frequency (rf) resonant pulse to the nonmagnetic
mJ ¼ 0 state at the beginning of the TOF. The atoms
remaining in a state with a nonzero magnetic moment are
expelled from the detection area by the use of a magnetic
gradient. By adjusting the duration of the rf pulse, the
fraction of atoms transferred to the nonmagnetic state, in
which atoms are detected, can be controlled. To make sure
that there is no saturation effect of the He* detector, we
choose to detect about 5% of the atom number per shot.
Between 200 and 2000 shots are then taken for each
specific measurement.

APPENDIX C: CORRELATION FUNCTIONS
EXTRACTED FROM THE MEASURED

ATOM DISTRIBUTIONS

The measurement of two-particle momentum correla-
tions quantifies the conditional probability for an atom in a
given experimental realization to have a momentum k⃗1
provided one atom is detected with a momentum k⃗2:

Gð2Þðk⃗1; k⃗2Þ ¼ hâ†ðk⃗1Þâ†ðk⃗2Þâðk⃗2Þâðk⃗1Þi: ðC1Þ

In our experiment, the measurement of the full 3D
momentum distribution with single-atom sensitivity
allows us to compute the 3D correlation functions.
However, as the representation of the full distribution is
intricate, we calculate two-body correlations along some
specific directions k⃗1 − k⃗2 ∝ u⃗. These directions can be
chosen at will, and, in the present work, they are oriented
along the reciprocal lattice vector u⃗ ∝ nxu⃗x þ nyu⃗y þ nzu⃗z
with nx, ny, and nz integers and u⃗x, u⃗y, and u⃗z the lattice
axes. The translation invariance of the state we probe
implies that Gð2Þ depends only on the momentum separa-
tion between two particles, e.g,. Gð2Þðk⃗1; k⃗2Þ ¼ Gð2Þðδku⃗Þ
with k⃗1 − k⃗2 ¼ δku⃗. We consequently calculate Gð2Þ along
the lattice direction by integrating over the position of one
of the two atoms:

Gð2Þðδk⃗Þ ¼
Z
k⃗
hâ†ðk⃗Þâ†ðk⃗þ δk⃗Þâðk⃗þ δk⃗Þâðk⃗Þidk⃗: ðC2Þ

Here, the integral refers to the summation over all the
atoms present in one shot of the experiment. To increase

the signal-to-noise ratio, we also perform a transverse
integration:

Gð2Þðδku⃗Þ ¼
Z
jk⃗⊥j<Δk⊥

Gð2Þðδku⃗þ k⃗⊥Þdk⃗⊥: ðC3Þ

The procedure to calculate Gð2ÞðδkÞ is depicted in
Fig. 6. For each atom, we define a tube of radius Δk⊥
oriented along u⃗ from which the histogram of the
distances from this atom to the ones contained in the
tube is recorded. The histograms corresponding to
the different atoms of the shots are then summed and
Gð2Þ averaged over many realizations of the experiment. A
plot ofGð2Þ measured along the x axis and corresponding to
the data displayed in Fig. 2 is given in Fig. 7(a). Three
bunching peaks are visible at δk ¼ 0 and δk ¼ �kd on top
of a broad background which can be identified as resulting
from the Fourier transform of the Wannier function. This
background is equal to the autocorrelation of the momen-
tum density of the Mott insulator. It corresponds to the
value of the Gð2Þ function in the absence of correlation

between atoms and later referred as Gð2Þ
NC. The ratio Gð2Þ

divided byGð2Þ
NC yields the normalized two-body correlation

function gð2Þ used in themain text. By definition, gð2ÞðδkÞ ¼ 1

if there is no correlation in the system, and gð2ÞðδkÞ ≠ 1
otherwise [see Fig. 7(b)].
To ensure a proper normalization, we calculate Gð2Þ

NC

with a procedure similar to that used for Gð2Þ but by
getting rid of the correlations before performing the
calculation of the histogram. Removing the correlations
is obtained from considering the atoms belonging to all the
shots, since there are no correlations between two atoms
belonging to two different shots of the experiment. The

value of Gð2Þ
NC for the same set of data mentioned earlier is

given in Fig. 7(a).

(1,0,0)
(0,1,0)

(0,0,1)

(1,0,0)
(0,1,0

(

FIG. 6. Method to calculate Gð2Þ. One atom from a given shot is
chosen (highlighted in orange). A tube of radius Δk⊥ oriented
along u⃗ and centered on the considered atom is defined. The
distances δk between the atom and the other ones contained in the
tube are extracted. The operation is repeated for all the atoms of
the shot, and the results are saved in a histogram with a
longitudinal step Δk.

MOMENTUM-SPACE ATOM CORRELATIONS IN A MOTT … PHYS. REV. X 9, 041028 (2019)

041028-9



The result of dividing Gð2Þ by Gð2Þ
NC, i.e., gð2ÞðδkÞ¼

Gð2ÞðδkÞ=Gð2Þ
NCðδkÞ, is plotted in Fig. 7(b) for the same

set of data used in Fig. 7(a).

1. Effect of transverse integration

The volume of integrationΔk × Δk2⊥ may affect the shape
of gð2ÞðδkÞwhenΔk,Δk⊥ ≈ lc, with lc the correlation length
of gð2ÞðδkÞ as defined in the main text. To avoid affecting the
size and shape of the correlation peaks, we use Δk ≈ 0.1lc.
See Table I. Although the transverse integration does not
modify the shape of the correlation peaks, it results in
decreasing the bunching amplitude η defined by gð2ÞðδkÞ ¼
1þ η expð−2δk2=l2cÞ. Figure 8 displays the measured value
of η as a function of Δk⊥, illustrating this assertion.
For the data shown in Fig. 2, we use Δk⊥ ¼ 0.015kd,

which is smaller than lc ¼ 0.027ð4Þkd. At a lower trans-
verse integration, the signal becomes too noisy (see Fig. 8).

To further increase the signal-to-noise ratio in order to
reach a precise measurement of lc, we use Δk⊥ ≈ lc in
Fig. 3. Consequently, the bunching amplitude η lies
between 0.3 and 0.5 (see Table I).

2. Numerical calculation of the correlation length lc
The dashed line in Fig. 3 is obtained numerically

with the following procedure. First, we calculate the
three-dimensional distribution of atoms from the
Gutzwiller ansatz, which is valid at large U=J. Second,
we assume that atoms in the different lattice sites are fully
decoupled. The resulting density operator being Gaussian,
we can use the Wick theorem to show that gð2ÞðδkÞ ¼
1þ jgð1ÞðδkÞj2 and, thus, evaluate numerically gð2ÞðδkÞ
from summing the contributions of all the atoms to the
one-body correlation gð1Þ. This procedure is identical to that
used in Ref. [21].

3. 3D integral of the bunching peaks
on the reciprocal lattice

As explained in the main text, we find an identical 3D
integral for the bunching peaks associated with the recip-
rocal lattice. Table II contains the measured amplitudes and
correlation lengths of the different peaks in gð2Þ shown in
Fig. 2(b).We also give the values of the ratio between the 3D
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FIG. 8. Effect of the transverse integration on gð2ÞðδkÞ. (a) Am-
plitude of the bunching η as a function of Δk⊥ for the data used in
Fig. 2. (b) Correlation length lc as a function of Δk⊥. Gray areas
on both graphs correspond to the region where the signal is too
noisy to provide quantitative information.
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FIG. 7. Correlation functions. Value of the different correlation
functions along the x axis for the data displayed in Fig. 2.

(a) Gð2ÞðδkÞ and Gð2Þ
NCðδkÞ. (b) gð2ÞðδkÞ.

TABLE I. Parameters used to compute the data in Fig. 3. In
order to measure the correlation length with a good precision, we
use Δk⊥ ≈ lc, resulting in η ¼ gð2Þðδk ¼ 0Þ − 1 < 1.

L ½d� N ½103� ΔN ½103� lc ½kd� Δk⊥ ½kd� Δkjj ½kd� η…

23 3 1 0.038 0.03 0.002 0.38
25 5 1 0.035 0.03 0.002 0.32
30 12 2 0.03 0.03 0.001 0.51
34 16 3 0.027 0.03 0.001 0.43
36 20 4 0.025 0.03 0.001 0.42
38 22 4 0.023 0.03 0.001 0.40
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integrals of the peak located at δk ¼ 0 and that located at the
position δk ≠ 0 of the reciprocal lattice, ðηl3cÞ=½η≠0ðl≠0c Þ3�.
As the 3D integral of the bunching peak is found constant

at any δk⃗ ¼ K⃗, the lower amplitude in gð2Þðδk⃗Þ observed at
δk⃗ ¼ K⃗ ≠ 0⃗ results from the measured larger correlation
length. We stress that the measured increase in the corre-
lation length amounts only to a few times ka=1000. The
capability to measure such a small difference demonstrates
the outstanding performances of the He* detector. On the
other hand, it is most probable that the origin of this tiny
discrepancy lies in small imperfections of the He* detector.
More specifically, a detector made of microchannel

plates (MCPs) and a delay-line anode—as in the He*
detector—is better at measuring small distances than large
ones between individual particles. Small distortions in the
image of a regular pattern are indeed reported on distances
comparable with the MCP diameter [49]. In addition, a
recent investigation with MeV α particles also shows that
the uncertainty on the measure of distances of the order
of the MCP diameter may be up to 4 times larger than that
on the measure of small distances [50]. To our knowledge, a
full understanding of these distortions is missing, but
several origins for these imperfections have been identified.
It includes the inhomogeneity of the electric field on the
edges of the MCP and the presence of mechanical imper-
fections in the delay-line anode—e.g., an imperfect wind-
ing of the cables realizing the electronic waveguide.
In our experiment, the resolution with which the position

of individual atoms is reconstructed is estimated to be
σ ∼ 2.5 × 10−3kd. The increase in the correlation length
l≠0c ≃ 1.2lc is compatible with an accuracy to measure large
particle separation which is 3 times worse (approxi-
mately 7.5 × 10−3kd).
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