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We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics
in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction
expansion of the Green’s functions grow linearly with rate α in generic systems, with an extra logarithmic
correction in 1D. The rate α—an experimental observable—governs the exponential growth of operator
complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-N
limits. Moreover, α upper bounds a large class of operator complexity measures, including the out-of-time-
order correlator. As a result, we obtain a sharp bound on Lyapunov exponents λL ≤ 2α, which complements
and improves the known universal low-temperature bound λL ≤ 2πT. We illustrate our results in
paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical
models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique
for computing diffusion constants.
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I. INTRODUCTION

The emergence of ergodic behavior in quantum systems
is an old puzzle. Quantum mechanical time evolution is
local and unitary, but many quantum systems are effectively
described by irreversible hydrodynamics, involving famil-
iar quantities such as electrical conductivity. Understanding
this emergent thermal behavior at both a conceptual and
computational level is a central goal of theoretical research
on quantum dynamics, of which a cornerstone is the
eigenstate thermalization hypothesis [1–5].
Recent work has shifted focus from states to operator

growth in many-body systems [6–11]. Under Heisenberg-
picture evolution, simple operators generically decay into
an infinite “bath” of increasingly nonlocal operators. The
emergence of this dissipative behavior from unitary dynam-
ics is believed to be at the origin of thermalization, the
decay of dynamical correlation functions, and the accuracy
of hydrodynamics at large scales. This picture was recently
confirmed in random unitary models of quantum dynamics

[6,7] and extended to increasingly realistic systems involv-
ing conservation laws [8,9], Floquet dynamics [11], and
even interacting integrable models [10].
While random unitary models are valuable proxies for

studying operator growth, one would like to confirm this
picture in genuine Hamiltonian systems. In semiclassical
systems, a quantitative measure is provided by the out-of-
time-order correlation function (OTOC). The classical
butterfly effect gives rise to an exponential growth of the
OTOC, characterized by the Lyapunov exponent, which
may be computed in a variety of models. It is conjectured
that the Lyapunov exponent is bounded [12], and this
bound is achieved in certain large-N strongly interacting
models with a classical gravity dual, such as the Sachdev-
Ye-Kitaev (SYK) model [13–15]. Unfortunately, the OTOC
does not necessarily exhibit exponential growth outside
of semiclassical or large-N limits, rendering the Lyapunov
exponent ill defined [9,16–18]. A general theory of operator
growth under generic, nonintegrable Hamiltonian dynamics
is, therefore, still lacking.
The amount of information required to describe a

growing operator increases exponentially in time. Com-
putationally, this bars the exact calculation of operators at
long times. Yet, the exponential size of the problem has a
positive aspect: it acts as a thermodynamic bath, so a
statistical description should emerge and become nigh
exact. This idea indicates that operator growth should be
governed by some form of universality. In this work, we
present a hypothesis specifying universal properties of
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growing operators in nonintegrable quantum systems in
any dimension.

II. SYNOPSIS

Our hypothesis has a simple formulation in the frame-
work of the continued fraction expansion or recursion
method, which we review in Sec. III. This technique is well
understood, dating back to the 1980s [19], and has recently
been used to compute conductivities in strongly interacting
systems [20–22]. It is surveyed in great detail in Ref. [23].
Essentially, it converts any linear-response calculation to
the problem of a quantum particle on a half chain, with the
hopping matrix elements given by the Lanczos coefficients
bn. Section IV presents our hypothesis: operators in
generic, nonintegrable systems have Lanczos coefficients
with asymptotically linear growth with n, suppressed by a
logarithmic correction in one dimension. The linear growth
rate, denoted α, is the central quantity of this work. It has
dimensions of energy and can be bounded from above by
the local bandwidth [see Eqs. (16) and (23)]. In light of this,
the hypothesis essentially asserts that the Lanczos coef-
ficients grow as fast as possible in nonintegrable systems.
Although we are unable to prove the hypothesis rigorously,
we support it with extensive numerical evidence, calcu-
lations in SYK models, and general physical arguments
in Sec. IV. In particular, the hypothesis is equivalent to
the exponential decay of the spectral function at high
frequencies, which can be (and has been) observed
experimentally [24–26].
We explore several consequences of the hypothesis.

In Sec. V, we develop a precise picture of the universal
growth of operators. We show that under the hypothesis,
the 1D quantum mechanics, governed by the Lanczos
coefficients bn ∼ αn, captures the irreversible process
of simple operators evolving into complex ones.
Furthermore, the 1D wave function delocalizes exponen-
tially fast on the n axis, at a rate exactly given by α.
Asymptotically, the expected position of the 1D wave
function satisfies

ðnÞt ∼ e2αt: ð1Þ

The expectation value ðnÞt has a succinct interpretation as
an upper bound for a large class of operator complexity
measures called “q-complexities,” which we define in
Sec. V B. Crucially, this class includes out-of-time-order
correlators. This allows us to establish a quantitative
connection between α and the Lyapunov exponent, which
is the subject of Sec. VI. We show for quantum systems at
an infinite temperature that the growth rate gives an upper
bound for the Lyapunov exponent whenever the latter is
well defined:

λL ≤ 2α: ð2Þ

For classical systems, this statement is a conjecture, but it is
possible to prove a somewhat weaker bound. We check
Eq. (2) in the SYK model and a classical tops model and
find it to be tight in both cases.
A further application of the hypothesis, discussed

in Sec. VII, is a semianalytical technique to compute
diffusion coefficients of conserved quantities. We leverage
the hypothesis to extend classical methods of the continued
fraction expansion to directly compute the pole structure of
the Green’s function, thus revealing the dispersion relation
of the dynamics.
Section VIII discusses the generalization to finite

temperatures, which involves many open questions.
Nevertheless, we show that the universal bound on chaos
λL ≤ 2πkBT=ℏ [12] can be implied and improved by a
proper finite-temperature extension of the bound (2)
and provide evidence supporting this conjecture. We
conclude in Sec. IX by discussing conceptual implications
of our results and perspectives for future work.

III. PRELIMINARIES:
THE RECURSION METHOD

We briefly review the recursion method in order to state
the hypothesis. A comprehensive treatment may be found
in Ref. [23]. Consider a local Hamiltonian H and fix a
Hermitian operatorO. We regard the operator as a state jOÞ
in the Hilbert space of operators, endowed with the infinite-
temperature inner product ðO1jO2Þ ≔ Tr½O†

1O2�=Tr½1�. We
write kOk ≔ ðOjOÞ1=2 for the norm. We focus on systems
in the thermodynamic limit.
Just as states evolve under the Hamiltonian operator,

operators evolve under the Liouvillian superoperator L ≔
½H; ·�. Our central object is the autocorrelation function

CðtÞ ¼ Tr½Oð0ÞOðtÞ�=Tr½1� ¼ ðOj exp ðiLtÞjOÞ; ð3Þ

where the second equality follows from Baker-Campbell-
Hausdorff.
ComputingCðtÞ is inherently difficult. SupposeOðt ¼ 0Þ

is a relatively simple operator that can be written as the sum
of a few basis vectors in any local basis [27]. As the spatial
support ofOðtÞ grows, the number of nonzero coefficients of
OðtÞ in any local basis can blow up exponentially. To make
progress, one must compress this information. Intuitively,
there are so many basis vectors at a given spatial size or
“complexity” that we can think of them as a thermodynamic
bath; no single basis vector has much individual relevance—
only their statistical properties are important. In this inter-
pretation, the operator flows though a series of “operator
baths” of increasing size. The dynamics of an operator is
then reduced to how the baths are connected—a much
simpler problem. In particular, the second law then dictates
that an operator eventually flows to the largest possible
baths, running irreversibly away from small operators. This
is shown schematically in Fig. 1.
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We now quantify this idea precisely. This is done by
applying the Lanczos algorithm, which iteratively com-
putes a tridiagonal representation of a matrix. The idea is to
find the sequence fLnjOÞg and then apply Gram-Schmidt
to orthogonalize. Explicitly, start with a normalized vector
jO0Þ ≔ jOÞ. As a base case, let jO1Þ ≔ b−11 LjO0Þ, where
b1 ≔ ðO0LjLO0Þ1=2. Then inductively define

jAnÞ ≔ LjOn−1Þ − bn−1jOn−2Þ;
bn ≔ ðAnjAnÞ1=2;

jOnÞ ≔ b−1n jAnÞ: ð4Þ
The output of the algorithm is a sequence of positive
numbers, fbng, called the Lanczos coefficients, and an
orthonormal sequence of operators, fjOnÞg, called the
Krylov basis. [This is a bit of a misnomer, as the Krylov
basis spans an operator space containing OðtÞ for any t but
does not usually span the full space of operators.] The
Liouvillian is tridiagonal in this basis:

Lnm ≔ ðOnjLjOmÞ ¼

0BBBBBBBB@

0 b1 0 0 � � �
b1 0 b2 0 � � �
0 b2 0 b3 � � �

0 0 b3 0 . .
.

..

. ..
. ..

. . .
. . .

.

1CCCCCCCCA
: ð5Þ

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite [or if the subspace

spanned by jO0Þ; jO1Þ; jO2Þ;… is so], the algorithm halts
at n ¼ dþ 1: In this work, we work always in the
thermodynamic limit and discard this nongeneric situation.
Second, the Lanczos algorithm presented here is adapted to
operator dynamics. Generally, a tridiagonal matrix will
have nonzero diagonal entries, but they vanish in Eq. (5),
because one can inductively show that inOn is Hermitian
for all n, and, hence, ðOnjLjOnÞ ¼ 0. Third, the knowledge
of the Lanczos coefficients b1;…; bn is equivalent to that of
the moments μ2; μ4;…; μ2n, defined as the Taylor series
coefficients of the correlation function

μ2n ≔ ðOjL2njOÞ ¼ d2n

dt2n
CðtÞjt¼0: ð6Þ

The nontrivial transformation between the Lanczos coef-
ficients and the moments is reviewed in the Appendix A.
Fourth, the Lanczos coefficients have units of energy.
In the Krylov basis, the correlation function CðtÞ is

CðtÞ ¼ ðeiLtÞ00: ð7Þ

Hence, the autocorrelation depends only on the Lanczos
coefficients and not on the Krylov basis. One way to
interpret the Lanczos coefficients, which we employ
extensively below, is as the hopping amplitudes of a
semi-infinite tight-binding model—see Fig. 1. The wave
function on the semi-infinite chain is defined as
φnðtÞ ≔ i−nðOnjOðtÞÞ. Heisenberg evolution of OðtÞ
becomes a discrete Schrödinger equation:

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0; ð8Þ

where b0 ¼ φ−1 ¼ 0 by convention. The autocorrelation
is simply CðtÞ ¼ φ0ðtÞ, so the Lanczos coefficients are
completely equivalent to the autocorrelation function.
Just as different bases are well suited for particular

computations, a number of equivalent representations of the
autocorrelation function appear in this work, namely, the
Green’s function

GðzÞ ¼
�
O

���� 1

z − L

����O�
¼ i

Z
∞

0

e−iztCðtÞdt ð9Þ

and the spectral function

ΦðωÞ ¼
Z

∞

−∞
CðtÞe−iωtdt: ð10Þ

In summary, we have reviewed five equivalent ways to
describe the dynamics

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ð11Þ

Just as with a choice of basis, we use the most convenient
representation for the task at hand and translate freely

FIG. 1. Artist’s impression of the space of operators and its
relation to the 1D chain defined by the Lanczos algorithm starting
from a simple operator O. The region of complex operators
corresponds to that of largen on the1Dchain.Under our hypothesis,
the hopping amplitudes bn on the chain grow linearly asymptoti-
cally in generic thermalizing systems (with a log correction in one
dimension; see Sec. IV C). This implies an exponential spreading
ðnÞt ∼ e2αt of the wave function φn on the 1D chain, which reflects
the exponential growth of operator complexity under Heisenberg
evolution, in a sense that wemake precise in Sec. V. The form of the
wave function φn is only a sketch; see Fig. 5 for a realistic picture.
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between them. We note that fbng is special in the sense that
it is a nonlinear representation of the autocorrelation, while
all other representations are linearly related. We provide
the details on the mapping to bn in Appendix A, with a
particular focus on asymptotic properties.
The nonlinearity involved in fbng also makes them more

abstract. Intuitively, we can think of the Krylov basis fOng
as stratifying operators by their “complexity” (with respect
to the initial operator O), and bn’s describe how operators
of different complexities transform into one another. The
goal of this work is to study aspects of operator growth
that can be reduced to the quantum mechanics on this semi-
infinite chain.

IV. THE HYPOTHESIS

We now state the hypothesis. Informally, in a chaotic
quantum system, the Lanczos coefficients fbng should
grow as fast as possible. The maximal possible growth
rate turns out to be linear (with logarithm corrections in
1D). Our precise statement is therefore as follows. Suppose
thatH describes an infinite, nonintegrable [28], many-body
system in dimension d > 1 andO is a local operator having
zero overlap with any conserved quantity [in particular,
ðOjHÞ ¼ 0]. Then, the Lanczos coefficients are asymp-
totically linear:

bn ¼ αnþ γ þ oð1Þ; ð12Þ

for some real constants α > 0 and γ. This linear growth is
an example of universality. We will refer to α as the growth
rate, and it plays a multitude of roles. In fact, it quanti-
tatively captures the growth of “operator complexity” in a
precise sense (Sec. V B). On the other hand, it is observable
by standard linear response measures (Sec. IVA). This
section first describes why linear growth is maximal,
amasses a weight of evidence in favor of the hypothesis,
and finally discusses the special case of one dimension.
We note that the idea of classifying operator dynamics by

Lanczos coefficient asymptotics is as old as the recursion
method itself. Many examples have been explored, result-
ing in a broad zoology, as surveyed in Ref. [23]. In
particular, it is known that noninteracting models (such
as lattice free fermions) give rise to a bounded sequence
bn ∼Oð1Þ. If we start with a two-body operator O in such
free models, all On’s remain two-body. In this sense, the
operator dynamics is simple. In this work, we focus on the
opposite extreme of generic chaotic dynamics. To our
knowledge, the ubiquity of asymptotically linear growth
in these systems and its consequences have not been
systematically studied in quantum systems. Interacting
models with obstructions to thermalization (e.g., integrable
systems) lead to more involved behaviors, which have not
been thoroughly explored. Nevertheless, a square root
behavior bn ∼

ffiffiffi
n

p
is observed in a few examples

(Refs. [23,29]; see also Fig. 2).

A. Upper bounds

We start by showing that linear growth is the maximal
possible growth of the Lanczos coefficients, which is most
easily done starting with the spectral function. In interact-
ing many-body systems, the spectral function has a tail
extending to arbitrarily high frequencies. The asymptotic
behavior of the tail is directly related to the Lanczos
coefficients, with faster growth of Lanczos coefficients
corresponding to slower decay of ΦðωÞ. The precise
asymptotic behavior is [30,31]

bn ∼ nδ ⇔ ΦðωÞ ∼ expð−jω=ω0j1=δÞ ð13Þ

for any δ > 0 and some constant ω0. In particular, δ ¼ 1
corresponds to asymptotically linear Lanczos coefficients
and an exponentially decaying spectral function.
The decay of the spectral function is constrained by a

powerful bound. A rigorous and general result of Ref. [32]
(see also Refs. [33–35] and Appendix F for a self-contained
proof) is that, given an r-local lattice Hamiltonian H ¼P

ihi in any dimension,

ΦðωÞ ≤ Ce−κjωj; κ ¼ 1

2eGrkhik
ð14Þ

for some C > 0 and a known Oð1Þ geometrical factor Gr.
We may conclude δ ≤ 1 in Eq. (13), so the Lanczos
coefficients grow at most linearly.
When linear growth of the bn’s is achieved, the growth

rate α is quantitatively related to the exponential decay rate

FIG. 2. Lanczos coefficients in a variety of models demonstrat-
ing common asymptotic behaviors. “Ising” is H ¼ P

i XiXiþ1 þ
Zi with O ¼ P

j e
iqjZj (q ¼ 1=128 here and below) and has

bn ∼Oð1Þ. “X in XX” is H ¼ P
i XiXiþ1 þ YiYiþ1 with

O ¼ P
j Xj, which is a string rather than a bilinear in the

Majorana fermion representation, so this is effectively an interact-
ing integrable model that has bn ∼

ffiffiffi
n

p
. XXX is H¼P

i XiXiþ1þ
YiYiþ1þZiZiþ1 with O¼P

j e
iqjðXjYjþ1−YjXjþ1Þ that appears

to obey bn ∼
ffiffiffi
n

p
. Finally, SYK is Eq. (18), where q ¼ 4, J ¼ 1,

andO ¼ ffiffiffi
2

p
γ1 with bn ∼ n. The Lanczos coefficients are rescaled

vertically for display purposes. Numerical details are given in
Appendixes B and C.
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in the spectral function. In fact, Appendix A shows that the
following asymptotics are equivalent (see Fig. 3):

bn ¼ αnþOð1Þ; ð15aÞ

ΦðωÞ ¼ e−ðjωj=ω0ÞþoðωÞ; ω0 ¼
2

π
α: ð15bÞ

We stress that this equivalence is purely mathematical,
which holds independently of physical considerations such
as the dimension, the temperature, or even if the system is
quantum or classical. However, this equivalence has a key
physical consequence: It implies that α is observable in
linear response measurements. In fact, high-frequency
power spectra for quantum spin systems can be measured
with nuclear magnetic resonance, and exponential decays
are reported for CaF2 [24–26]. This experimental tech-
nique, therefore, provides a practical way of measuring α.
On a theoretical note, the spectral function also appears in
the off-diagonal eigenstate thermalization hypothesis,
which is therefore related to our hypothesis.
Additionally, comparing Eqs. (14) and (15) shows that

α ≤ π=2κ, so the growth rate is limited by the local
bandwidth of the model and the geometry:

α ≤ πeGrkhik; ð16Þ

cf. Eq. (14). This inequality is the consequence of the
natural energy scale for the Lanczos coefficients being set
by the local bandwidth. However, we see that α itself is not
merely the bandwidth but contains a great deal of physical
information about the system.
We find it useful to dispel a possible misconception

related to the high-frequency tail of the spectral function
ΦðωÞ. On dimensional grounds it is tempting—though
ultimately erroneous—to interpret Eq. (15) as a statement
about the short-time behavior of CðtÞ. To see why this is
wrong, notice that the short-time behavior is captured by
the first moment alone, as CðtÞ ¼ 1 − μ2t2=2þOðt4Þ. The
high-frequency information instead governs the asymp-
totics of moments μ2n as n → ∞ (which involve increas-
ingly large operators) and the analytical structure ofCðtÞ on
the imaginary-t axis, as shown in Fig. 3. In particular, the
exponential decay rate sets the location of the closest pole
to the origin on the imaginary axis. The high-frequency
information also does not control the large time limit
t → þ∞; we come back to this point in Sec. VII B below.
In brief, the hypothesis governs large ω behavior of ΦðωÞ
and, correspondingly, the behavior of CðtÞ on the imagi-
nary axis. Explicitly, a growth rate of α gives rise to a
singularity at

t ¼ � iπ
2α

: ð17Þ

B. Analytical evidence

The upper bounds of the previous section show that
the Lanczos coefficients cannot grow faster than linearly.
We now show that this bound is tight through two analytic
examples.
It is an ironic point that the assumptions for the

hypothesis (12) fail in virtually all known solvable models,
as those are often integrable or even noninteracting. This
explains why, to the best of our knowledge, linear growth is
not recognized in any of the extensive literature on the
recursion method as a universal behavior (except for certain
classical systems [36]). However, there is one solvable
model where we can compute the linear behavior analyti-
cally: the SYK model (see, e.g., Refs. [13–15]). Its
Hamiltonian is

HðqÞ
SYK ¼ iq=2

X
1≤i1<i2<���<iq≤N

Ji1…iqγi1γi2…γiq ; ð18Þ

where the γi’s, with 1 ≤ i ≤ N, are Majorana fermions
with anticommutators fγi; γjg ¼ δij and the Ji1…iq ’s are
disordered couplings drawn from a Gaussian distribution
with mean zero and variance ðq − 1Þ!J2=Nq−1. We study
the dynamics of a single Majorana O ¼ ffiffiffi

2
p

γ1 [37]. To
leverage the SYK solvability, we compute the moments
μ2n ¼ ðOjL2njOÞ, averaged over disorder in the large-N
limit. For any finite q, the moments can be computed
efficiently, thanks to the well-known large-N Schwinger-
Dyson-type equations satisfied by the correlation functions.

FIG. 3. Illustration of the spectral function and the analytical
structure of CðtÞ; t ∈ C. When the Lanczos coefficients have
linear growth rate α, ΦðωÞ has exponential tails ∼e−jωj=ω0 with
ω0 ¼ 2α=π; CðtÞ is analytical in a strip of half-width 1=ω0, and
the singularities closest to the origin are at t ¼ �i=ω0. See
Appendix A 2 for further discussion.
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The self-averaging properties of the SYK model allow the
typical Lanczos coefficients to be computed from the
averaged moments via a general numerical procedure
[23]. This is described in detail in Appendix B.
We find that the Lanczos coefficients follow the univer-

sal form (12) quite closely, as shown in Fig. 4(a). In the
large-q limit, there is a closed form expression for the
coefficients, computed in Appendix B:

bSYKn ¼
(
J

ffiffiffiffiffiffiffiffi
2=q

p þOð1=qÞ n ¼ 1;

nJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp þOð1=qÞ n > 1;

ð19Þ

whereJ ¼ ffiffiffi
q

p
2ð1−qÞ=2J. Therefore, in the large-q limit, the

SYK model follows the universal form (12) with α ¼ J .
We may conclude that our hypothesis is obeyed in a
canonical model of quantum chaos and that the upper
bound of linear growth of the Lanczos coefficients is tight.
The SYK model is quite unusual in several respects:

it is a disordered, large-N model in zero dimensions.
However, none of these special features are required to
achieve linear growth. To demonstrate, we turn to a model
studied in the mathematical literature, defined on the 2D
square lattice [38]:

H ¼
X
x;y

Xx;yZxþ1;y þ Zx;yXx;yþ1; ð20Þ

where X and Z are the normal Pauli matrices. A theorem
[38] states that the moments of the operator X0;0 grow as

μ2n ¼ n2neOðnÞ; ð21Þ

which implies that the Lanczos coefficients grow linearly
(see Appendix A for a translation between asymptotics).
Thus, linear growth (12) is a tight upper bound for the
growth of the Lanczos coefficients in dimensions greater
than one for “realistic” spin models. The content of our
hypothesis is that achieving this upper bound is generic in
chaotic systems.

C. The special case d = 1

We now turn to the special case of one-dimensional
systems. Let us first present some numerical evidence.
Figure 4(a) shows the Lanczos coefficients for a variety of
spin models in the thermodynamic limit. (Numerical details
are given in Appendix C.) One can clearly see that the
asymptotic behavior still appears linear whenever the
model is nonintegrable. There is often an onset period
before the universal behavior sets in; the first few Lanczos
coefficients are highly model dependent. We observe that
the more strongly interacting the system, the sooner
universal behavior appears [39]. Figure 4(b) shows the
robustness of this asymptotic behavior. The pure transverse
field Ising model may be mapped to free fermions so, as
expected, the Lanczos coefficients are bounded. But as
soon as a small integrability-breaking interaction is added,
the coefficients appear to become asymptotically linear, and
the asymptotic behavior sets in at smaller n as the strength
of the interaction increases, which is reminiscent of the
crossover from Poisson to generalized orthogonal ensemble
distributed level statistics as integrability is broken [40,41].
Observe also that the slope of the asymptotic growth
depends only weakly on the (integrability breaking) inter-
action strength, which seems to be a general phenomenon,
as it occurs also in the SYK model plus two-body
interactions; see Fig. 9 for details.
The numerical evidence is apparently compatible with

linear growth of the Lanczos coefficients in 1D—but only
apparently. We can see this by considering the singularity

(a) (b)

FIG. 4. (a) Lanczos coefficients in a variety of strongly inter-
acting spin-half chains:H1 ¼

P
i XiXiþ1 þ 0.709Zi þ 0.9045Xi,

H2 ¼ H1 þ
P

i 0.2Yi, and H3 ¼ H1 þ
P

i 0.2ZiZiþ1. The initial
operator O is an energy density wave with momentum q ¼ 0.1.
(b) Crossover to apparently linear growth as interactions are
added to a free model. Here, H ¼ P

i XiXiþ1 − 1.05Zi þ hXXi,
and O ∝

P
i 1.05XiXiþ1 þ Zi. The bn’s are bounded when

hX ¼ 0 but appear to have asymptotically linear growth for
any hX ≠ 0. Logarithmic corrections are not clearly visible in the
numerical data. Numerical details are given in Appendix C.

FIG. 5. The exact solution wave function (26) in the semi-
infinite chain at various times. The wave function is defined only
at n ¼ 0; 1; 2… but is extrapolated to intermediate values for
display.
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structure of the correlation function. When the Lanczos
coefficients achieve linear growth, there is a singularity in
CðtÞ on the imaginary axis, given by Eq. (3). However,
there is a classical theorem [42] which says, roughly, that
CðtÞ, t ∈ C, is entire for any local system in one dimension.
Lanczos coefficients, therefore, must have strictly sublinear
growth in one dimension. We note that this constraint is
entirely geometric and has been previously noted by several
works in a variety of contexts [32,35] and derive it from
first principles in Appendix F.
To formulate the hypothesis in one dimension, we return

to the informal version: the Lanczos coefficients should
grow as fast as possible. More concretely, the Lanczos
coefficients should achieve the upper bound imposed by the
geometry. Following Ref. [38], we compute this bound in
Appendix F and can therefore formulate the hypothesis as
follows. Suppose H describes an infinite, nonintegrable,
many-body system in dimension d andO is a local operator
having zero overlap with any conserved quantity. Then, the
asymptotic behavior of the Lanczos coefficients is

bn ¼
�A n

WðnÞ þ oðn= ln nÞ ∼ A n
ln n þ oðn= ln nÞ d ¼ 1;

αnþ γ þ oð1Þ d > 1

ð22Þ
for some constants α, γ, and A and W is the Lambert W
function, which is defined by the implicit equation z ¼
WðzezÞ and has the asymptoticWðnÞ¼ lnn− lnlnnþoð1Þ.
In other words, the hypothesis acquires a logarithmic
correction in one dimension. The coefficient A, like the
growth rate α, has dimensions of energy and can be
bounded above by the local bandwidth; for Hamiltonians
with nearest-neighbor local term hx, we have (see
Appendix F)

A ≤
4

e
khxk: ð23Þ

We note that, unlike in higher dimensions, we are not aware
of any analytic examples which achieve the maximal
growth rate in 1D, leaving open the possibility that the
first line of Eq. (22) is an overestimate.
In some sense, the linear growth “barely breaks” in one

dimension; the Lanczos coefficients can still grow faster
than bn ∼ nδ for any δ < 1. The phenomenological differ-
ence between linear growth in all dimensions and Eq. (22)
is often slight—such as in Fig. 4. Indeed, resolving
logarithmic corrections in numerical data is a hard problem
that often requires several decades of scaling. Altogether,
we see that there is a subtle logarithmic correction to the
operator growth hypothesis in one dimension.

V. EXPONENTIAL GROWTH OF COMPLEXITIES

Now that we have presented evidence in favor of the
hypothesis, we turn to the analysis of its consequences. In

this section, we study the universal behavior of operators
which have linear growth of Lanczos coefficients with
rate α. This is done in two steps. First, by studying the
quantum mechanics problem (8) on the semi-infinite chain,
we show that α measures the rate of exponential growth in
operator complexity, in a sense we make precise below.
Second, we prove that α gives an upper bound on a large
class of operator complexity measures. Finally, we remark
on the case of linear growth with log corrections.
We remark that our notion of complexity is prima facie

distinct from other notions bearing the same name, such as
circuit complexity (see the reviews in Refs. [43,44] and
references therein). Indeed, a satisfactory definition of
operator complexity of any sort is an unresolved problem
and may not have a unique answer.

A. Exponential growth in the semi-infinite chain

Recall that the Lanczos algorithm reduces the operator
dynamics to a discrete Schrödinger equation (8):

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0:

We analyze this quantum mechanics problem when the
hypothesis is satisfied in d > 1, i.e., bn ¼ αnþ γ þ oð1Þ.
As a first step, we take the continuum limit, by

linearizing around momenta 0 and π. This yields a Dirac
equation ∂tφ ¼ �2αx∂xφ, whose characteristic curves
x ∝ e�2αt show that the wave function spreads exponen-
tially fast to the right in the semi-infinite chain with rate 2α.
We remark that, among all power-law Lanczos coefficient
asymptotics bn ∼ nδ, the linear growth δ ¼ 1 is the only one
which results in exponential spreading. When δ > 1, the
characteristic curves reach x ¼ ∞ at a finite time [45].
When δ < 1, the spreading follows a power law x ∼ t1=ð1−δÞ.
In the case of d ¼ 1, with the logarithmic correction, the
wave function spreads as a stretched exponential—faster
than any power law but still slower than exponential.
To undertake a more careful analysis of the wave

function on the semi-infinite chain, we employ a family
of exact solutions. Suppose

b̃n ≔ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞ

p
⟶
n≫1

αnþ γ; ð24Þ
where η ¼ 2γ=αþ 1. For any system when the hypothesis
is satisfied, the bn’s approach the b̃n’s asymptotically, so
the properties of the exact solution using the b̃n’s are
universal properties at large n. It is shown in Appendix D
that the full wave function for the operator evolving under
the b̃n’s is

jOðtÞÞ ¼
X∞
n¼0

ffiffiffiffiffiffiffiffi
ðηÞn
n!

r
tanhðαtÞnsechαtÞηinjOnÞ; ð25Þ

where ðηÞn ¼ ηðηþ 1Þ � � � ðηþ n − 1Þ is the Pochhammer
symbol and jOnÞ is the nth Krylov basis vector. Note that

A UNIVERSAL OPERATOR GROWTH HYPOTHESIS PHYS. REV. X 9, 041017 (2019)

041017-7



this example is not artificial but arises naturally in the SYK
model, studied in Sec. VI A below.
The exact solution (26) benefits from a detailed analysis.

Recall that the component of the wave function at some
fixed site n is φnðtÞ ¼ ð−iÞnðOnjO0ðtÞÞ. For each n, φnðtÞ
is a purely real function which starts at 0 (for n > 1),
increases monotonically until reaching a maximum at
t ∼ ln n, and then decreases as ∼e−αηt. The fact that
exponential decay, reminiscent of dissipative dynamics,
emerges under unitary evolution is quite remarkable, and is
possible only in an infinite chain [46]. Physically, the wave
function is decaying by “escaping” off to n → ∞, which
serves as a bath. Note, however, that the hypothesis is not
sufficient to show that φnðtÞ decays exponentially with time
for small n, a fact whose consequences are studied in
Sec. VII B below.
We now come to a central consequence of the linear

growth hypothesis: the exponential spreading of the wave
function. At any fixed time and large n, the wave function
(25) has the form jφnðtÞj2 ∼ e−n=ξðtÞ, where ξðtÞ is a
“delocalization length” that grows exponentially in time:
ξðtÞ ∼ e2αt for αt ≫ 1. This exponential spreading is
reflected in the expected position of the operator wave
function (26) on the semi-infinite chain

ðnÞt ≔ ðOðtÞjnjOðtÞÞ ¼ η sinhðαtÞ2 ∼ e2αt: ð26Þ
More generally, ðnkÞt ∼ e2kαt for k ≥ 1. This result agrees,
of course, with the one obtained in the simple continuum
limit above. We believe that the asymptotic growth in
Eq. (27) holds whenever the Lanczos coefficients grow
linearly. Although we do not prove this assertion, we check
that it holds for many cases, such as artificially generated
sequences of Lanczos coefficients bn ¼ αnþ γn with
various kinds of bounded “impurity” terms γn ∼Oð1Þ.
We consider Eq. (27) as a fact that follows directly from
the hypothesis: the position of an operator in the abstract
Krylov space grows exponentially in time.
We may interpret this exponential growth as a quanti-

tative measure of the irreversible tendency of quantum
operators to run away towards higher “complexity” [47].
Indeed, we identify the position on the semi-infinite chain
ðnÞt as a notion of operator complexity. We refer to ðnÞt as
the “Krylov complexity” (or “K-complexity” for short) of
an operator. After all, as n increases, the operators On
becomes more “complex” in the following sense: In the
Heisenberg picture, the equations of motions forOn’s form
a hierarchy:

−i _O0ðtÞ ¼ b1O1ðtÞ;
−i _O1ðtÞ ¼ b1O0ðtÞ þ b2O2ðtÞ;
−i _O2ðtÞ ¼ b2O1ðtÞ þ b3O3ðtÞ;

..

. ð27Þ

that is, the dynamics of OnðtÞ depends on Onþ1ðtÞ. This is
analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy in statistical mechanics, in which the evolution of
the n-particle distribution depends on the (nþ 1)-particle
one. Similarly, as n increases, the On’s become less local
in real space, involve more basis vectors in any local
basis, and are more difficult to compute. We remark that
K-complexity is a distinct notion from precise terms such
as circuit complexity and no relation should be inferred
between the two. Closer precedents are the ideas of
f-complexity and s-complexity [48].
We know from Sec. IVA that linearly growing Lanczos

coefficients are the maximal rate so, in turn, the wave
function may not spread faster than exponentially. Thus, the
hypothesis in d > 1 implies that nonintegrable systems
have maximal growth of K-complexity: exponential, with
rate 2α.

B. A bound on complexity growth

The physical meaning of K-complexity is far from
transparent. After all, it depends on the rather abstract
Krylov basis, the initial operator, and the choice of dynam-
ics. To help pin down the idea of K-complexity, we study its
relation to more familiar quantities. We consider a class of
observables, “q-complexities” (q stands for quelconque),
that includes familiar notions like out-of-time-order corre-
lators and operator size. We show that the growth of any
q-complexity is bounded above by K-complexity.
We now define the q-complexity. Suppose Q is a

superoperator that satisfies two properties:
(1) Q is positive semidefinite. We denote its eigenbasis

as jqaÞ, indexed by a, so that

Q ¼
X
a

qajqaÞðqaj; qa ≥ 0: ð28aÞ

(2) There is a constant M > 0 such that

ðqbjLjqaÞ ¼ 0 if jqa − qbj > M; ð28bÞ

ðqajOÞ ¼ 0 if jqaj > M: ð28cÞ

Then the q-complexity is defined to be the expectation
value

ðQÞt ≔ ðOðtÞjQjOðtÞÞ; ð29Þ

whereOðtÞ is evolved under the Liouvillian dynamics of L.
A q-complexity is, in principle, an observable and requires
Hamiltonian (or Liouvillian) dynamics. The rationale for
the conditions is as follows: Equation (28a) ensures the
q-complexity is always non-negative, Eq. (28b) guarantees
it cannot change too much under one application of the
Liouvillian, and Eq. (28c) assigns a low complexity to the
initial operator. To illustrate this concept, we now consider
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three examples: K-complexity, operator size, and out-of-
time-order correlators.
Example 1: K-complexity.—The K-complexity is always

a q-complexity, withQ ¼ P
n njOnÞðOnj. The basis jqaÞ is

just the Krylov basis jOnÞ, and the conditions (28b) and
(28c) are satisfied by construction of the Krylov basis
with M ¼ 1.
Example 2: Operator size.—A second example of a

q-complexity is provided by operator size [37]. For
concreteness, we work in the framework of a spin-1=2
model (though Majorana fermions or higher spins work
equally well). Consider the basis of Pauli strings, e.g.,
strings IXYZII…with finitely many nonidentity operators.
DefineQ to be diagonal in this basis, where the action ofQ
on a Pauli string is the number of nonidentity Pauli’s. So,
for instance, QjIXYZI…Þ ¼ 3jIXYZI…Þ. The eigenvec-
tors of Q have non-negative eigenvalues, so Q is positive
semidefinite.
Any choice of dynamics with at most M-body inter-

actions (even long-ranged ones) satisfies Eqs. (28b), while
Eq. (28c) requires simply that O is d local. So, under these
conditions, the q-complexity ðQÞt becomes the average
size of Pauli strings contained in OðtÞ:

ðQÞt ¼
X

π∈Pauli strings
sizeðπÞjðπjOðtÞÞj2: ð30Þ

Example 3: OTOCs.—Our third (and most interesting)
example of q-complexity is out-of-time-order commutators
(OTOCs). Given OðtÞ, each choice of local operator V
defines an OTOC ð½V;OðtÞ�j½V;OðtÞ�Þ. For simplicity,
we work with a many-body lattice model and consider
an on-site operator Vi. We then define the OTOC super-
operator by

Q ≔
X
i

Qi; ðAjQijBÞ ≔ ð½Vi; A�j½Vi; B�Þ; ð31Þ

where the sum runs over all lattice sites i. Provided the
Hamiltonian and initial operator are r local and that the
dimension D of the on-site Hilbert space is finite, Eq. (31)
is a q-complexity.
To see this result, let us work in the eigenbasis of Q.

For each site i, there is a basis Qijqi;aÞ ¼ qi;ajqi;aÞ with
1 ≤ a ≤ D2. We take jqi;0Þ to be the identity operator with
eigenvalue 0 and note that 0 ≤ qi;a ≤ Q for some finite Q.
Since ½Qi;Qj� ¼ δij, the eigenbasis for the full operator
space is the tensor product of the on-site bases. So, for
any sequence a ¼ faig, jqaÞ ≔ ⊗i jqi;aiÞ is an eigenvec-
tor satisfying

QjqaÞ ¼ qajqaÞ; qa ¼
X
i

qi;ai ≥ 0: ð32Þ

For the eigenvalue to be finite, ai must be zero for all but
a finite number of i’s and all eigenvalues are non-negative,

so Q is positive semidefinite. Since the Hamiltonian is r
local, the matrix element ðqajLjqbÞ ≠ 0 only if a and b
differ on at most r sites. So by Eq. (32), we may bound
the difference jqa − qbj ≤ M ¼ rQ. Similarly, any r-local
operator satisfies Eq. (28c). Having verified all the proper-
ties (28), we may conclude that OTOCs of this form are a
q-complexity.
OTOCs are known to be closely related to the operator

size [12,37]. It is usually possible to bound either quantity
from the other and to choose Vi such that the OTOC
reduces to the operator size.
We have now seen three examples of q-complexities,

two of which are quantities that have been studied in
recent times to understand the complexity of operators. We
remark that q-complexities (including K-complexity) are
quadratic in OðtÞ and not linear response quantities,
although the growth rate α is, via the spectral function.
We see in Sec. VI B that q complexities may also be applied
to classical systems, though they work somewhat differ-
ently there.
A rigorous argument in Appendix E proves that, for any

q-complexity,

ðQÞt ≤ CðnÞt; C ¼ 2M: ð33Þ
The following section focuses on the application of this
general bound in the specific case of OTOCs.
To close this section, we show how the above results

are affected by the log correction to linear growth in 1D
from Eq. (22): bn ∼ An= ln n. The continuum Dirac equa-
tion analysis yields a stretched exponential growth of
K-complexity:

ðnÞt ∼ e
ffiffiffiffi
At

p
; ð34Þ

which is slower than any exponential growth but faster
than any power law. Combined with Eq. (33), we conclude
that all q-complexities have at most stretched exponential
growth in 1D.

VI. GROWTH RATE AS A BOUND ON CHAOS

We show in the preceding section that K-complexity
provides an upper bound for any q-complexity whatsoever,
which includes certain types of OTOCs. Combining
Eqs. (33) and (27), we see that q complexities grow at
most exponentially in time, at least when the hypothesis
holds for d > 1. If that is the case, with ðQÞt ∼ eλQt, then the
exponent is bounded above by 2α:

λQ ≤ 2α: ð35Þ
In the rest of this section, we focus on the case where the

q-complexity is an OTOC. When the OTOC grows expo-
nentially at late times,

ðQOTOCÞt ∼ eλLt; ð36Þ
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its growth rate λL is called the Lyapunov exponent, since in
the classical limit it reduces to the Lyapunov exponent
characterizing the butterfly effect in classical deterministic
chaos [49]. We can then state the following bound on
Lyapunov exponents: For any system at infinite temper-
ature where the operator growth hypothesis holds, then

λL ≤ 2α; ð37Þ

where we put λL ¼ 0 whenever the OTOC grows slower
than exponentially, and similarly for α. This follows
directly from Eqs. (33) and (27), so we essentially prove
Eq. (37) as a mathematical proposition.
It is interesting to note that, as λL is defined via a four-

point correlation function (the OTOC), while α depends on
a two-point correlation function (CðtÞ), the bound (37) can
be interpreted as a relation between correlation functions of
a distinct nature. Such a relation is, to our knowledge,
rather unusual (see Ref. [51] for a recent result). However,
this point of view is not how we derived Eq. (37); an
alternative proof working directly with the correlation
functions would be illuminating.
Remarkably, the bound (37) appears to be valid under

much less restrictive assumptions—at any temperature and
in either classical or quantum systems. In this section, we
examine the cases of quantum and classical systems at an
infinite temperature and leave that of finite temperatures to
Sec. VIII below.

A. SYK model

We illustrate the bound (37) for the SYK model (18). At
infinite temperature, no analytic formula for the Lyapunov
exponent is available, but it is computed numerically in,
e.g., Refs. [13,37]. Table I shows that not only does
Eq. (37) hold for the whole range of q-SYK models,
but α is almost equal to λL=2, with exact agreement in the
limit q → ∞ [52]. These results show that the bound
λL ≤ 2α is tight: The prefactor cannot be improved, in
general. Moreover, in the large-q limit, the probability
distribution jφnðtÞj2 on the semi-infinite line is identical to
the operator size distribution of γ1ðtÞ [37]. [See Eq. (B19)
in Appendix B for the precise statement.] So the large-q
SYK model is an instance where the quantum mechanics

problem on the semi-infinite chain can be concretely
interpreted.
We remark that in models with all-to-all interactions like

SYK and its variants may be the only circumstances where
the bound (37) can be nearly saturated. For spatially
extended quantum systems with finitely many local degrees
of freedom, Lieb-Robinson bounds [53] and its long-range
generalizations [54] guarantee that the OTOC has slower-
than-exponential growth in most physical systems at an
infinite temperature [55].
Such a difference can be understood as follows. Because

of the lack of spatial structure in the SYK model, we expect
that operator complexity (by any reasonable definition) is
almost completely captured by operator size, which, in
turn, is directly probed by OTOCs. In finite-dimensional
systems, complexity should be a distinct concept from
operator size. For instance, long Pauli strings generated in
the noninteracting Ising models have nonetheless low
complexity, since they can be transformed to simple
few-body operators under the Jordan-Wigner transform.
In nonintegrable systems, by contrast, operator size growth
is limited by Lieb-Robinson, while complexity can grow
exponentially in the bulk of an operator’s support.

B. Classical chaos

We now transition to the classical setting. After briefly
explaining how the recursion method carries over almost
verbatim to classical systems, we examine the classical
form of the bound (37). However, the arguments of
Sec. V B do not carry over in full, and we are able only
to prove a weaker bound. We close with a numerical case
study that suggests the stronger conjectural bound may well
be true (and tight).

1. A (weaker) bound on classical chaos

The recursion method applies to classical and quantum
systems in exactly the same manner [23]. Classically,
operator space is the space of functions on classical
phase space, and the Liouvillian L ¼ ifH; ·g is defined
by the Poisson bracket against the classical Hamiltonian H
(we take ℏ ¼ 1). The appropriate classical inner product
at infinite temperature is ðfjgÞ ¼ R

f�gdΩ, where dΩ is
the symplectic volume form on the phase space [56].
The Liouvillian L is a self-adjoint operator, and the
entire framework of the Lanczos coefficients carries over
wholesale.
Indeed, the Lanczos coefficients have been studied more

in the classical context. It is known [23,36] that linear
growth of the Lanczos coefficients appears in general finite-
dimensional, nonlinear systems, to which we restrict
ourselves [57]. The growth rate α is well defined in such
systems, as is the (classical) Lyapunov exponent λL, and the
bound (37) takes on the same form as before: λL ≤ 2α. In
short, the similarity of classical and quantum Liouvillian

TABLE I. The growth rate α versus half the OTOC-Lyapunov
exponent λL=2 in the q-SYK model (18) in units of J ¼ffiffiffi
q

p
2ð1−qÞ=2J. Here, α is obtained by exact numerical methods

discussed in Appendix B, while λL is taken from the Appendix in
Ref. [37]. The q-SYK is physical only for even integers q, but
large-N methods allow an extrapolation to any q ≥ 2.

q 2 3 4 7 10 ∞

α=J 0 0.461 0.623 0.800 0.863 1
λL=ð2J Þ 0 0.454 0.620 0.799 0.863 1
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evolution means that the recursion method—and its
consequences—carry over unchanged.
There is, however, one important caveat: a classical

OTOC does not generally qualify as a q-complexity.
We demonstrate this through an explicit, and instructive,
example. Let us consider a single classical SUð2Þ spin. Its
classical phase space is the two-sphere, and classical
operator space is spanned by the basis of spherical
harmonics jYm

l Þ, l ¼ 0; 1; 2…, m ¼ −l;…;l.
A typical Hamiltonian is a polynomial of the classical

spin operators Sx, Sy, and Sz with Poisson bracket
fSa;Sbg ¼ −εabcSc. We consider the simple nonlinear
example

H ¼ JSzSz þ hxSx: ð38Þ
Using Clebsch-Gordon coefficients, one can show that the
classical Liouvillian is quite sparse, and only the following
matrix elements are nonzero:

ðYl�1
m jLjYl

mÞ ≠ 0; ðYl
m�1jLjYl

mÞ ≠ 0; ð39Þ

whenever the states in question exist.
We now examine the classical OTOC for the local

operator Sz, given by matrix elements of a superoperator
Qz. This operator is diagonal in the basis of spherical
harmonics

ðYk
njQzjYl

mÞ ≔ ðfSz; Yn
kgjfSz; Ym

l gÞ
¼ m2δnmδkl; ð40Þ

and we may immediately read off the eigenvalues as m2.
When m changes by 1 upon application of the Liouvillian,
the eigenvalue m2 changes by 1� 2m, which can be
arbitrarily large. Hence, the condition (28b) cannot be
satisfied for any finite constant d. It is helpful to recall that
Sec. V B shows that the quantum OTOC is a q-complexity
whenever the on-site Hilbert space is finite dimensional.
This fails in the case of a spin s, whose on-site dimension
2sþ 1, in the classical limit s → ∞. We therefore see that
classical OTOCs are not q-complexities, and, hence, the
bound (37) does not follow from the reasoning of Sec. V B
in the classical case and remains a conjecture.
Nonetheless, for any Hamiltonian and initial operators

that are polynomials of the spin variables Sa, we can show
the following general bound:

λL ≤ 4α; ð41Þ
which is weaker than the conjectured λL ≤ 2α.
To show Eq. (41), observe that, by Eq. (40), the super-

operator Rz ≔ Q1=2
z satisfies Eq. (28b), since it has

eigenvalue m for Yl
m, which can change only by δ upon

one Liouvillian application, where δ is the polynomial
degree of the Hamiltonian. Other conditions in Eq. (28) are
satisfied straightforwardly. We then have

eλLt ∼ ðQzÞt ¼ ðR2
zÞt ≤ C2ðn2Þt ∼ e4αt; ð42Þ

which implies Eq. (41). Here, the first ∼ is by definition, the
inequality is a straightforward generalization of the bound
on q-complexity, Eq. (E8) in Appendix E, and the last ∼ is a
generalization of Eq. (27) (see below that equation).
This argument carries over to the OTOC with spin

variables in any direction by spherical symmetry and
applies almost verbatim to systems with a few spins,
Sx;y;z
i ; i ¼ 1;…; N. A Lyapunov exponent associated with

a finite sum such as

XN
i¼1

X
a¼x;y;z

ðfSa
i ;OðtÞgjfSa

i ;OðtÞgÞ ð43Þ

satisfies the same bound, since every term does so. In
summary, Eq. (41) is established in general classical few-
spin models. We expect it is possible to show Eq. (41)
rigorously.
An interesting corollary of Eq. (41) is a relation between

chaos and the decay rate of the spectral function. Recall that
the linear growth of Lanczos coefficients is equivalent to
the exponential decay of the spectral function ΦðωÞ ∼
expð−jωj=ω0Þ at high frequencies, where ω0 ¼ ð2=πÞα.
Then Eq. (41) is equivalent to

λL ≤ 2πω0: ð44Þ

(The conjectured bound would instead imply λL ≤ πω0.)
In numerous classical systems, the power spectrum decay
of time series is used as an empirical probe of determi-
nistic chaos [58–64]. To the best of our knowledge, the
bound (44) provides the first quantitative justification for
this usage.
We mention that the relation between chaos and long-

time decay of correlation functions has also been studied:
long-time relaxation to equilibrium is shown to be con-
trolled by Ruelle resonances in specific chaotic models
[65,66]. However, the long-time and high-frequency behav-
iors are a priori unrelated, as we discuss further in Sec. VII.
We stress that the growth rate is an upper bound but not a

diagnostic of classical chaos. Indeed, our bound is correct
but not tight for most classical integrable systems which,
generically, have a nonzero growth rate but no chaos [36].
Unfortunately, we are not able to improve the argument

and prove the stronger conjectured bound. Instead, we
resort to testing the validity of the conjectured bound (37)
in a canonical example of classical chaos.

2. Numerical case study

The Feingold-Peres model of coupled tops [67] is a well-
studied model of few-body chaos, both classically and at
the quantum level [68,69]. The quantum model is a system
of two spin-s particles, 1 and 2, with Hamiltonian
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HFP ¼ ð1þ cÞ½Sz1 þ Sz2� þ 4s−1ð1 − cÞSx1Sx2; ð45Þ

where c ∈ ½−1; 1� is a parameter and Sαi satisfy the SUð2Þ
algebra ½Sαi ; Sβj � ¼ iℏδijεαβγS

γ
i and act on a spin-s Hilbert

space. This is noninteracting when c ¼ �1 and chaotic in
the intermediate region. Correspondingly, the Lanczos
coefficients are asymptotic to a constant at c ¼ �1 and
increase linearly in intermediate regions. However, since
the operator space dimension is finite [equal to ð2sþ 1Þ4],
the sequence of Lanczos coefficients is finite; in fact, the
Lanczos coefficients saturate. The classical limit is obtained
by taking s to infinity. There, the Hamiltonian becomes

HFP;cl ¼ ð1þ cÞ½Sz
1 þ Sz

2� þ 4ð1 − cÞSx
1S

x
2; ð46Þ

where Sα
i ; i ¼ 1, 2 are two sets of classical SUð2Þ spins.

As an SUð2Þ representation, the classical operator space
contains all integer spins, whereas the quantum operator
space has only integer spins up to 2s.
We compute the classical Lanczos coefficients for the

operator O ∝ Sz1S
z
2 (S

z
1S

z
2 in the classical case). As shown

in Fig. 6(b), the quantum Lanczos coefficients converge to
the classical ones as s → ∞, as expected, and they increase
linearly near c ¼ 0. We have checked that α does not
depend on the choice of initial operator O, so long as O
does not overlap with any conserved quantity.

To test the conjectured bound (37), we compare the
growth rate α with the classical Lyapunov exponent (λL=2
in our notation), which can be calculated by the standard
variational equation method [70]. Remarkably, the data
shown in Fig. 6(a) corroborate the conjectured bound α ≥
λL=2 in the parameter region explored, with equality up to
numerical accuracy in the regime c ≈ 0, where the model is
known to be maximally chaotic, with almost no regular
orbits [67,68]. Enlarging the parameter space, for instance,
by adding terms such as Sz

i to the Hamiltonian, gives
further results consistent with the bound. It is thus possible
that the conjectured bound is valid in classical systems and
becomes tight in highly chaotic ones.

VII. APPLICATION TO HYDRODYNAMICS

Structural information about quantum systems can en-
able numerical algorithms. As an example, the success of
the density matrix renormalization group algorithm is a
consequence of the area law of entanglement entropy
[71,72]. We now apply the hypothesis to develop a semi-
analytical technique to calculate decay rates and autocor-
relation functions of operators and, in particular, compute
diffusion coefficients of conserved charges. The key idea
is to use the hypothesis to make a meromorphic approxi-
mation to the Green’s function. This section introduces
the continued fraction expansion of the Green’s function,
describes the zoology of operator decay, and finally
presents the semianalytical method.

A. Continued fraction expansion: Brief review

We briefly review the continued fraction expansion of
the Green’s function [23]. The Green’s function (9)
is related to the autocorrelation CðtÞ by the following
transform:

GðzÞ ¼ i
Z

∞

0

CðtÞe−iztdt; CðtÞ ¼
I

GðzÞeizt dz
2πi

;

ð47Þ

where the integration contour is taken to be the shifted real
axis shifted down by −iϵ for some small ϵ > 0. Since CðtÞ
is bounded on the real axis, GðzÞ is analytic in the lower
half plane but may contain singularities on the upper half
plane. We shall refer to Eq. (47) as the Laplace transform,
despite the fact that it differs from the usual definition by a
factor of i.
In the Krylov basis, GðzÞ ¼ ½z − L�−100 corresponds to all

paths that start on the first site, propagate through the chain,
and return. We can divide all paths into those that stay on
the first site and those that first hop to the second site,
propagate on sites n ≥ 2, and then return. More formally,
for each n ≥ 0, let LðnÞ ≔ Lp≥n;q≥n be the hopping matrix
on the semi-infinite chain restricted to sites n and above,
and let GðnÞðzÞ ≔ ½z − LðnÞ�−1nn be the corresponding

(a)

(b)

FIG. 6. (a) The growth rate α versus the classical Lyapunov
exponent λL=2 in the classical Feingold-Peres model of coupled
tops, Eq. (46). α ≥ λL=2, in general, with equality around the
c ¼ 0 where the model is the most chaotic. The growth rate
appears to be discontinuous at the noninteracting points c ¼ �1,
similarly to Fig. 4(b). (b) The first 40 Lanczos coefficients of
the quantum s ¼ 2;…; 32 and classical ðs ¼ ∞Þ FP model,
with c ¼ 0.
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Green’s function. [Note that Gð0ÞðzÞ ¼ GðzÞ.] We then
have the following recursion relation—hence the name
“recursion method”—

GðnÞðzÞ ¼ 1

z − b2nþ1G
ðnþ1ÞðzÞ ; n ≥ 0: ð48Þ

[For a quick derivation [22], consider the polynomial
PnðzÞ≔detðz−LðnÞÞ. By Cramer’s rule, we haveGðnÞðzÞ ¼
Pnþ1ðzÞ=PnðzÞ; a cofactor expansion gives PnðzÞ ¼
zPnþ1ðzÞ − b2nþ1Pnþ2ðzÞ. Then, Eq. (48) follows from
the two preceding equations.]
Applying Eq. (48) recursively yields the continued

fraction expansion:

GðzÞ ¼ 1

z − b2
1

z−
b2
2

z− . .
.

: ð49Þ

To save space, we denote the recursion (48) by GðnÞ ¼
Mnþ1∘Gðnþ1Þ, where Mn is the Möbius transform w ↦
1=ðz − b2nwÞ and “∘” denotes function composition. It is
crucial that the convergence of the continued fraction
expansions is quite subtle and quite different from the
convergence of, say, Taylor series. Practically speaking,
one can compute only a finite number of the bn’s in most
situations. Truncating the expansion by taking the rest of
the bn’s to be zero (or any constant) rarely provides a good
approximation to the whole function [23].

B. Hydrodynamical phenomenology

Long-time and large-wavelength properties of correla-
tion functions are governed by emergent hydrodynamics.
For each conserved charge (e.g., energy, spin), the density
field should relax to equilibrium in a manner prescribed by
a classical partial differential equation. Often, this is a
diffusion equation, though more exotic possibilities such as
anomalous diffusion and ballistic transport (infinite con-
ductivity) can also appear.
A numerical (and sometimes experimental) protocol to

probe the emergent hydrodynamics is to study the auto-
correlation function of the density wave operator Oq ¼P

x e
iqxQx (here,Qx is the operator of the conserved charge

at x) at a range of momenta q. The behavior at a large
time is of especial interest and can, in turn, be read off
from the singularity structure of the Green’s function. Let
us give a few examples. If the closest pole to the origin is at
z ¼ iγ, then the autocorrelation function decays exponen-
tially as e−γt, while if the location of the closest pole varies
quadratically as z ¼ iDq2=2, then the dynamics are dif-
fusive. However, the presence of nonlinear terms in
addition to the linear diffusive ones can give rise to exotic
behavior where the diffusion constant itself becomes
a function of frequency. An example of this is
GðzÞ ¼ ½z − iDðzÞq2=2�−1, where DðzÞ ¼ D0 þD1

ffiffiffi
z

p
.

At any fixed q, GðzÞ has a branch cut in addition to the
diffusive pole, so, although the diffusion constantD0 is still
well defined, autocorrelation functions decay [73] as a
power law in time [74]. Regardless, the full singularity
structure of the Green’s function determines the long-time
behavior.
Of course, computing the singularity structure of the

Green’s function is a demanding task. Even in integrable
models, determining if the correct hydrodynamics is, say,
diffusion or anomalous diffusion is nontrivial—let alone
computing diffusion coefficients (see Refs. [75–80] for
recent developments). Indeed, accurately computing
diffusion coefficients has been the goal of much recent
numerical work [81–83]. This difficulty is reflected in the
continued fraction expansion (49): the location of the poles
changes with each new fraction, so the full analytic
structure of GðzÞ depends on all of the bn’s.
Knowing that the coefficients obey the universal form

(12) is not enough, because, even though the wave function
is spreading out into the semi-infinite chain exponentially
fast, we are given no guarantee about the wave function at
the origin n ¼ 0. For instance, the correlation functions
C1ðtÞ ¼ sechðαtÞ and C2ðtÞ ¼ ð1þ t2Þ−γ [23] both corre-
spond to Lanczos coefficients that grow linearly. But C1ðtÞ
decays exponentially, while C2ðtÞ decays as a power law,
so clearly the asymptotics of bn alone is insufficient to
establish long-time behavior. The power-law decay is none-
theless reflected in the Lanczos coefficients for C2ðtÞ, which
have an alternating subleading tail. Precisely, they have the
form bn ¼ αnþ γ þ ð−1Þnfn, where the fn’s are positive
and decay to zero. Therefore, determining the long-time tail
of CðtÞ probably requires additional information about the
subleading corrections to the hypothesis. In particular, the
results in this work are prima facie unrelated to a bound on
transport [84].

C. Numerical diffusion coefficients

Despite the complex behavior of autocorrelation func-
tions in the time domain, there are situations where the
hypothesis alone suffices to compute diffusion coefficients.
In the case where the bn’s approach the universal form (12)
especially quickly and regularly, we are able to make a
meromorphic approximation to GðzÞ. The idea is as
follows. In the semi-infinite chain picture, we may hope
to calculate the first few Lanczos coefficients exactly, so
we may describe behavior near the origin n ¼ 0 exactly.
For large n, on the other hand, the hypothesis gives the
coefficients almost exactly, so we can describe the dynam-
ics by some exact solution. By stitching the dynamics at
large and small n together, we can hope to find the
dynamics on the whole chain. This allows us to recover
a diffusive dispersion relation and numerically extract the
diffusion constant in specific models.
We remark that there are a number of existent extrapo-

lation schemes to determine the Green’s function from the
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first few Lanczos coefficients [22,23]. The new ingredient
here is the hypothesis, which controls the approximation.
To make this idea into a precise numerical technique, we

need three ingredients: a way to compute the Lanczos
coefficients at small n, an exact solution at large n, and a
robust way to meld them together. For a 1D spin chain in
the thermodynamic limit of a large system size, it is
straightforward to compute the first few dozen Lanczos
coefficients exactly through repeated matrix multiplication.
Details are given in Appendix C.
To find the large n-behavior, we employ an exact

solution for the quantum mechanics problem on the
semi-infinite chain. If the hypothesis is obeyed, then the
bn’s also asymptotically approach the form

b̃n ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞ

p
⟶
n≫1

αnþ γ; ð50Þ

where η ¼ 2γ=αþ 1. The agreement is better, of course, at
large n. The coefficients b̃n have the virtue that the quantum
mechanics problem they describe on the semi-infinite
chain is exactly solvable. Appendix D applies the theory
of Meixner orthogonal polynomials of the second kind
to determine the autocorrelation analytically: CðtÞ ¼
sechðαtÞη (which is the same exact solution used in
Sec. V above). By Laplace transform, the corresponding
Green’s function is

G̃α;γðizÞ ¼
1

α
Hðz=α; ηÞ; ð51aÞ

Hðz; ηÞ ¼ 2η

zþ η 1F2

�
η;
zþ η

2
;
zþ η

2
þ 1;−1

�
; ð51bÞ

G̃ðnÞðzÞ ¼ fMn
−1∘ � � � ∘fM1

−1∘G̃ðzÞ: ð51cÞ

Here, 1F2 is the hypergeometric function, and fMk depends
on b̃k. It is crucial that G̃ðnÞðzÞ is known analytically, so
that Eq. (51) provides the asymptotically exact large-n
behavior.
Now we stitch the small- and large-n information

together. The true Green’s function GðNÞðzÞ depends only
on the coefficients bn with n ≥ N. So for sufficiently
large N, where the bn’s are approximately the same as
the b̃n’s, we may approximate

GðzÞ ¼ M1∘ � � � ∘MN∘GðNÞðzÞ
≈M1∘ � � � ∘MN∘G̃ðNÞ

α;γ ðzÞ; ð52Þ

an approximation that becomes better at large N.
Equation (52) is our semianalytical approximation to the
Green’s function. One can check that this is a meromorphic
approximation for GðzÞ, whose poles lie only in the upper
half plane.

In practice, one must calculate the bn’s until the universal
behavior appears and fit α and η. Then, the approximate
GðzÞ can be calculated from Eq. (51) and a sequence of
two-by-two matrix multiplications. One can then find the
location of the first pole on the imaginary axis for a range of
wave vectors q and fit z ¼ iDq2=2þOðq4Þ to extract the
diffusion coefficient D. This procedure is illustrated for the
energy diffusion in the chaotic Ising model in Fig. 7.
Almost all the computational effort goes into computing the
first few bn’s exactly. We also note that the extrapolation is
carried out with a linear fit to the Lanczos coefficients which
is not strictly appropriate to d ¼ 1 (the log correction is
missing). Nevertheless, the numerical value of the diffusion
coefficient appears to match other methods to within a few
percent [85]. Further numerical tests on this example indicate
that the exact asymptotics of Lanczos coefficients may not
be necessary to compute D to a decent precision.
In short, the hypothesis is sometimes sufficient to

describe the emergent hydrodynamic behavior of operators,
even if we ignore the log correction in 1D. We reiterate
that the hypothesis governs the leading-order asymptotics
of the Lanczos coefficients only, while the autocorrelation
depends on further corrections, so there is no a priori
reason it should be computable just from the hypothesis.
On the other hand, in the better scenarios, less knowledge
on the Lanczos coefficients is required to capture the
hydrodynamic coefficients. We provide further examples
of this algorithm and discuss its theoretical and practical
accuracy in subsequent work.

(c)

(b)

(a)

FIG. 7. Numerical computation of the diffusion coefficient
for the energy density operator O ¼ Eq in H ¼ P

iXiXiþ1 −
1.05Zi þ 0.5Xi. (a) The Lanczos coefficients for q ¼ 0.15 are fit
to Eq. (50) with α ¼ 0.35 and η ¼ 1.74. We actually find it better
not to approximate GðNÞðzÞ by G̃ðNÞðzÞ but instead by G̃ðNþδÞðzÞ
for some integer offset δ so that η ≈ 1 (in the example shown,
δ ¼ 12). Large η or negative values lead to numerical pathologies.
(b) The approximate Green’s function (52) at q ¼ 0.15. The
arrow shows the “leading” pole that governs diffusion. (c) The
locations of the leading poles for a range of q. One can clearly see
the diffusive dispersion relation z ¼ iDq2=2þOðq4Þ. Fitting
yields a diffusion coefficient D ¼ 3.3ð5Þ.
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VIII. FINITE TEMPERATURE

So far, our discussion has been confined to infinite
temperature. In this section, we generalize to finite temper-
atures. Only a minor modification is required to carry out
the Lanczos algorithm at finite temperatures, so many of
our results carry over unaffected. A summary is provided in
Table II for the reader’s convenience.

A. Choice of inner product

A single modification is required to adapt the formalism
of the recursion method to a finite temperature: an operator
inner product which incorporates the thermal density
matrix. At temperature T ¼ 1=β (we set kB ¼ 1), a general
operator scalar product is defined by the integral [23]:

ðAjBÞgβ ≔
1

Z

Z
β

0

gðλÞTr½yβ−λA†yλB�dλ; ð53Þ

where gðλÞ is some even function on the thermal circle
½0; β�, y ≔ e−H, and Z ≔ Tr½yβ� [86]. The choice of the
inner product is not arbitrary but is equivalent to the choice
of the correlation function

Cg
βðtÞ ¼ ðOjOðtÞÞgβ ¼

Z
β

0

gðλÞTr½ρβO†Oðtþ iλÞ�dλ ð54Þ

(where ρβ ¼ e−βH=Z), which is in turn determined by the
physical context; in fact, only a few choices of g are
physically relevant, such as Eqs. (59) and (60) below.
Once the inner product is chosen, the Lanczos coeffi-

cients are defined by the same Lanczos algorithm with the
new norm. Quite explicitly, the recursion is

jAnÞ ≔ LjOn−1Þgβ − bðgÞn−1;T jOn−2Þgβ;
bðgÞn;T ≔ ½ðAnjAnÞgβ�1=2;

jOnÞgβ ≔ ðbðgÞn;TÞ−1jAnÞ; ð55Þ

for n ¼ 1; 2; 3;…, starting from jO0Þgβ ≔ jOÞ, jO−1Þgβ ≔ 0,

and bðgÞ0;T ≔ 0. We emphasize that only the inner product
is changed compared to the infinite-T version. In fact,

the Krylov subspaces spanfjOÞ;LjOÞ;…;LnjOÞg are
unchanged at finite temperatures, and only the notion of
orthogonality is different, giving us a new orthogonal basis
for those spaces. Also, we have the same relationships
between the Lanczos coefficients and the correlation
function (54), as well as its linear transforms, the
Green’s function and spectral function

Gg
βðzÞ ≔ i

Z
∞

0

e−iztCg
βðtÞdt; ð56aÞ

Φg
βðωÞ ≔

Z
∞

−∞
e−iωtCg

βðtÞdt; ð56bÞ

where the superscript g is not an exponent. For example,
the Green’s function (56) admits the continuous fraction
expansion

GðzÞ ¼ 1

z − ΔðgÞ
1;T

z−
ΔðgÞ
2;T

z− . .
.

; ΔðgÞ
n;T ≔ ðbðgÞn;TÞ2; ð57Þ

which is identical to Eq. (49), except that bn are replaced by
the finite-T Lanczos coefficients. Similarly, the results of
Appendix A carry over directly.
The statement of the hypothesis at finite temperatures is

also directly analogous. We hypothesize that a chaotic
system should have maximal growth of the Lanczos
coefficients,

bðgÞn;T ¼ αðgÞT nþ γ þ oð1Þ; ð58Þ

under the same conditions as before. Here, αðgÞT ≥ 0
depends on the inner product. Evidence for the hypothesis
at finite T is provided in Sec. VIII C.
Though the Lanczos algorithm proceeds in the same way

for any choice of inner product, this choice determines what
physical correlation function we end up computing. There
are two prominent choices of inner products.
For linear response theory, we use the “standard” inner

product given by gðλÞ ¼ ½δðλÞ þ δðλ − βÞ�=2:

ðAjBÞSβ ≔
1

2Z
Tr½yβA†Bþ A†yβB� ð59Þ

that leads to the usual thermal correlation function.
For quantum field theory, it is often natural to consider

the Wightman inner product, which corresponds to
gðλÞ ¼ δðλ − β=2Þ:

ðAjBÞWβ ≔
1

Z
Tr½yβ=2A†yβ=2B�: ð60Þ

In particular, this inner product allows us to relate our
bound on chaos [Eq. (37)] and the finite-temperature bound
of Ref. [12].

TABLE II. Correspondence between finite and infinite temper-
ature definitions and results.

T ¼ ∞ T < ∞

Inner product ðAjBÞ ∝ Tr½A†B� Eq. (53)
Lanczos algorithm Eq. (4) Eq. (55)
CðtÞ; GðzÞ;ΦðωÞ; μ2n Sec. III Eq. (56)
bn ↔ C ↔ G ↔ Φ ↔ μ Appendix A Appendix A
Hypothesis Eq. (22) Eq. (58)
bn ∼ αn for SYK Eq. (B17) Eq. (B23)
Bound λL ≤ 2α Proven Conjectured
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In Eqs. (59) and (60) and below, we replace the g by S or
W to indicate the choice of standard and Wightman inner
product, respectively. At infinite temperature, both inner
products reduce to the one ðAjBÞ ¼ Tr½A†B�=Tr½1� consid-
ered previously.
The spectral functions of the two choices are related by a

well-known identity:

ΦW
β ðωÞ ¼ sech

�
ωβ

2

�
ΦS

βðωÞ⟶
ω≫T

e−βω=2ΦS
βðωÞ; ð61Þ

which follows directly from the definition (10). The
Wightman inner product therefore imposes an extra
temperature-dependent exponential decay to the spectral
function, due to the suppression of high-energy excitation
by the two e−βH=2 factors in Eq. (60). This observation is
crucial in the following section. On the other hand, it would
be very interesting to understand how the high-frequency
tail of ΦðωÞSβ depends on the temperature.

B. Bound on chaos

A key result on quantum chaos at a finite temperature is
the bound on chaos of Ref. [12]. This universal bound
is derived for quantum field theories at finite temperature
T ¼ β−1 and reads as follows:

λL;T ≤ 2πT ð62Þ

in natural units ℏ ¼ kB ¼ 1. It is nontrivial in finite-
temperature quantum systems and is, therefore, comple-
mented by our bound λL ≤ 2α (37), which applies to
infinite temperature quantum and classical system. This
leads to two natural questions: can our bound be extended
to finite temperatures? How does it compare to the
universal one?
Since αðgÞT depends on the inner product, and the finite-T

OTOC admits various regularizations, it is already a non-
trivial task to find the correct formulation of the extension.
To make progress, we consider the regularization scheme
used for four-point OTOCs in Ref. [12] to derive the
universal bound. This scheme inserts the operators in
the thermal circle ½0; βÞ with even spacing, as does the
Wightman inner product (60), which suggests that an
extension of the bound λL ≤ 2α to finite temperatures
can be obtained by comparing the finite-T Lyapunov
exponent (as defined in Ref. [12]) and the finite-T growth
rate defined with the Wightman inner product:

λL;T ≤ 2αðWÞ
T ðconjectureÞ: ð63Þ

We stress that this is conjectural below infinite temperature.
Nevertheless, as we show in Sec. VIII C below, exact
results in the q-SYK model suggest that Eq. (63) is
plausible and tight.

We now turn to the relation between the conjecture (63)
and the universal bound and show that the former infers
the latter. By Eq. (61), the Wightman spectral function
decays at least as fast as e−βω=2 at high frequencies [because
ΦS

βðωÞ ≤ 1]. By Eq. (15), this is equivalent to the following
upper bound on the Lanczos coefficients’ growth rate:

αðWÞ
T ≤ πT; ð64Þ

where αðWÞ
T denotes the growth rate with a Wightman inner

product. Therefore, the conjecture (63), if true, would be
tighter than the universal one λL;T ≤ 2πT (62). At low
temperatures (β → ∞ limit), the decay of ΦW

β ðωÞ is

dominated by the factor e−βω=2, so αðWÞ
T =ðπTÞ → 1 and

the conjectural bound (63) becomes equivalent to the
universal one (62). This equivalence suggests further the
plausibility of the conjecture (63).

C. SYK model

To illustrate the foregoing discussion and provide
some evidence for the hypothesis at finite T (58) and
the conjectural bound on chaos (63), let us consider again
the example of the SYK model.
At low temperatures T ¼ 1=β ≪ J, it is well known that

λL;T ¼ 2πT [14] saturates the universal quantum bound
(62). In this limit, the finite-T autocorrelation function of
O ¼ ffiffiffi

2
p

γ1 may be computed exactly by conformal invari-
ance [13]. Choosing the Wightman inner product, we have

CW
β ðtÞ ∝ sechðtπTÞ2=q; ð65Þ

which is the autocorrelation function of the exact solution

(26) and corresponds to Lanczos coefficients bðWÞ
n;T ¼

πT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞp

. They satisfy the hypothesis (58) with

αðWÞ
T ¼ πT (64). Therefore, the low-temperature SYK

model saturates also our conjectural bound (63).
At finite (but not necessarily low) temperatures, using

analytic results in the large-q limit [13], it is not hard to
check (see Appendix B) that our conjectured bound (63) is
saturated, whereas the universal bound (62) is not; see
Fig. 8. This result indicates that an extension of our bound
on chaos to a finite temperature is at least plausible. The

exact agreement between αðWÞ
T and λL;T is notable given that

the former is defined solely from two-point correlators,
whereas the latter requires four-point functions.
We reiterate that the above SYK results depend crucially

on the Wightman inner product. If the “standard” inner
product (59) is chosen instead, the Lanczos coefficients

bðSÞn;T cannot be extracted from the conformal solution, since
that would require the Taylor expansion of CS

βðtÞ around
t ¼ 0, at which the conformal solution is nonanalytic.
A numerical high-temperature expansion (extending the
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method of Appendix B) and an exact calculation in the
large-q limit both indicate that the Lanczos coefficients
still grow linearly, but the growth rate increases as the
temperature decreases.
In summary, exact calculations in the SYK model

support the universal operator growth hypothesis at finite
temperatures and the conjectural bound on chaos.

IX. CONCLUSIONS

A. Discussion

We have presented a hypothesis on the universal growth
of operators: the Lanczos coefficients follow the asymp-
totically linear form bn ¼ αnþ γ þ oð1Þ in nonintegrable
systems, with a logarithmic correction in 1D. We have seen
copious evidence that the hypothesis is satisfied in a wide
variety of nonintegrable models. Over the course of this
work, the growth rate α has emerged as a quantity of prime
importance, tying a diverse array of seemingly disparate
ideas together. Let us recount them now: α > 0 is the slope
of asymptotically linear growth of the Lanczos coefficients.
ð2=πÞα ¼ ω0 is the exponential decay rate of the spectral
function ΦðωÞ ∼ e−jωj=ω0 , which can be (and has been)
measured experimentally [24–26]. �iπ=ð2αÞ are the loca-
tions of the singularities closest to the origin in the (analytic
continuation) of the autocorrelation CðtÞ; see Appendix A.
2α is the exponential growth rate of Krylov complexity. 2α
is an upper bound for the growth of all q-complexities. 2α is
an upper bound for the Lyapunov exponent (whenever
the latter is well defined), since quantum OTOCs are an
example of q-complexities.
We have, of course, put aside the precise conditions and

qualifiers of each statement. In light of these results, α plays
a central role in operator growth and dynamics of complex
systems.

Complexity—especially the Krylov complexity—arose
as a key concept in this work. We highlight its temporal
nature which, as we now argue, makes it a more general
notion than chaos. Chaos essentially tracks the develop-
ment of structures at ever-smaller scales in phase space. In
classical systems, of course, this may proceed indefinitely,
while in quantum systems, features smaller than ℏ are ruled
out and the process saturates. Chaos, therefore, cannot
carry over straightforwardly to systems deep in the quan-
tum regime, where the phase space volume is comparable
to ℏ and saturation occurs almost immediately. The K-
complexity, in sharp contrast, measures structures at ever-
smaller scales in the time domain. We believe this is a
fundamental difference ; as we have seen, the K-complexity
can grow exponentially in quantum systems beyond semi-
classical or large-N limits. Operator complexity may well
supersede the notion of chaos in quantum dynamics.

B. Outlook

We would like to understand how our hypothesis can
be affected by obstructions to thermalization. Based on
evidence available to us, it is tempting to conjecture that
they lead to a qualitative slower growth for quantum
systems. Confirming this, in general, would be a remark-
able result. However, given the diversity of nonthermaliz-
ing situations, it may be more reasonable to explore them
on a case by case basis. In free and integrable models, there
are an extensive number of conserved local or quasilocal
charges. The behavior of the Lanczos coefficients in
integrable models is likely nonuniversal and depends
strongly on the model and operator in question [23]. We
wish to gain general analytical insights in this direction
(especially for interacting models), by leveraging the
knowledge available on the quantum inverse scattering
method [87–89]. Also, it may be desirable to modify the
Lanczos algorithm to promote the semi-infinite line to a
lattice where the perpendicular direction is generated by
commutators against quasilocal conserved charges.
Another exceptional case is quantum scar states [90–92],
isolated states that fail to thermalize in otherwise chaotic
systems, possibly due to emergent or approximately con-
served charges. It would be revealing to see how scars are
reflected in the Lanczos coefficients. Finally, it would be of
great interest to understand the interplay of the hypothesis
with many-body localized systems (see Ref. [93] and
references therein for a review and Ref. [21] for numerical
calculations of Lanczos coefficients in disordered spin
chains) where thermalization fails.
Our treatment at finite temperatures is far from complete

and leaves numerous open questions, especially those
concerning the “standard” inner product: How do the
Lanczos coefficients grow? If linearly, how does the growth
rate depend on the temperature? How can we extend our
bound on chaos to finite T? Numerical investigations into
these questions are challenging due to the presence of the

FIG. 8. Exact Lyapunov exponent λLðTÞ (B21) and growth rate
αðTÞ with the Wightman inner product (B23) of the SYK model
in the large-q limit as a function of the temperature (in units of
coupling constant J ). The conjectured bound λLðTÞ ≤ 2αðTÞW is
exactly saturated at all temperatures, while the universal bound
λLðTÞ ≤ 2πT saturates only in the zero-temperature limit.
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thermal density matrix [22,94,95]. Quantum Monte Carlo
seems promising for this problem, as the Lanczos coef-
ficients can be computed without analytic continuation. In
low dimensions, the density matrix renormalization group
can be also useful: matrix product operators can be used to
approximate the thermal state and the operators in the
Lanczos algorithm.
One would like to put the hypothesis on more solid

mathematical footing, especially in 1D. Finding analyti-
cally tractable models far from the large-N limit that
achieve the maximal Lanczos coefficient growth seems a
formidable problem, which is made even harder by the
restriction to time-independent Hamiltonian systems; the
only result in this direction is that of Ref. [38] in 2D. Many
solvable models of quantum chaos (see Refs. [11,96] for
notable recent progress) are defined only as unitary maps
or Floquet systems. To this respect, a meaningful extension
of the hypothesis to such contexts would be a highly
rewarding advance.
An alternative route would be to develop an extended

(Hermitian) random matrix theory. Standard proofs of
the Wigner semicircle law exploit the connections
between the moments of a distribution, the combina-
torics of Dyck paths, Catalan numbers, and the Stieltjes
transform of a distribution [97]. These are directly
analogous to the moments μ2n, the combinatorics of
Motzkin paths, secant numbers, and the continued
fraction expansion for GðzÞ—all of which arose in the
calculation of our exact wave function in Appendix D.
The nontrivial appearance of the same type of objects in
both contexts suggests a strong analogy. We thus
speculate that the hypothesis can be derived analytically
by introducing a new type of random matrix ensemble
that incorporates locality and translation invariance. (This
is similar to the framework of Ref. [98].) In this case, a
Hamiltonian such as H ¼ P

hx;yi hx;y, where hx;y is a
random matrix acting on neighboring sites x and y, should
obey the hypothesis (12) in expectation. Therefore, generic,
2-local Hamiltonians would also be expected to obey the
hypothesis by concentration of measure. It may well be that
showing the hypothesis holds for a specific Hamiltonian is
of comparable difficulty to showing the ergodic hypothesis
applies to specific classical systems.
Coming back to physics, we argue that there should be a

general principle, analogous of the second law of thermo-
dynamics, that governs the operator growth in generic
systems. Indeed, the latter is irreversible, in the same sense
as the dynamics of an isolated gas is so in the thermody-
namic limit. We cannot help but wonder what entropy
is maximized by the operator growth process and whether
any notion of (quantum) dynamical entropy (see, e.g.,
Refs. [99–102]) is relevant in describing the process.
Elusive as it seems, such a thermodynamic principle might
be the ultimate explanation of our empirical observations
of ubiquitous maximal operator growth.

To close, we point out that the territory of q-complexities
beyond K-complexity and OTOCs is completely unexplored.
In generic many-body systems (i.e., not semiclassical) at an
infinite temperature, these two examples represent two
extremes, showing maximal and nonexistent exponential
growth rates, respectively. The significant gap between them
should be filled with potentially more meaningful measures
of complexity. These complexities could be entirely new
concepts or disguised forms of existing notions such as
circuit complexity and entanglement entropy. Hopefully,
charting this terra incognita will continue to shed new light
on the complex nature of many-body quantum dynamics.
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APPENDIX A: BRIEF REVIEW OF THE
RECURSION METHOD

In this Appendix, we recall the relations between the
Lanczos coefficients, correlation function, Green’s func-
tion, spectral function, and moments. These relations are
mathematical in nature and apply to any inner product on
the operator space and, thereby, to a finite as well as an
infinite temperature. For simplicity, we omit the sub- and
superscripts indicating the inner product.
Let us recall the five equivalent representations of the

dynamics of an operator:

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ðA1Þ
The first four are related by linear transformations given
in the text. For instance, the moments μ2n are the Taylor
expansion coefficients of autocorrelation around t ¼ 0:

Cð−itÞ ≔
X∞
n¼0

μ2n
t2n

ð2nÞ! ; μ2n ≔ ðOjL2njOÞ; ðA2Þ

where the odd terms vanish provided O is Hermitian.
The moments can also be extracted from the spectral
function via

μ2n ¼
Z

ω2nΦðωÞdω: ðA3Þ

All the transformations between the first four quantities are
similarly straightforward.
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The Lanczos coefficients, on the other hand, are related
to the others via a nonlinear transformation. The rest of this
Appendix discusses how to perform the nontrivial trans-
lation between the Lanczos coefficients and the moments
both asymptotically and numerically.

1. From moments to Lanczos coefficients

Cumulative products of the first n Lanczos coefficients
are given by determinants of the Hankel matrix of
moments [23]

b21…b2n ¼ det ðμiþjÞ0≤i;j≤n: ðA4Þ
If the moments are known, the determinant can be
computed efficiently by transforming the Hankel matrix
into diagonal form. Doing this iteratively for k ∈ ½1; n�
provides a fast algorithm that computes b1;…; bn from
μ2; μ4;…; μ2n. The algorithm may be expressed concisely
as a recursion relation [see Eq. (3.33) in Ref. [23] ] as
follows:

bn ¼
ffiffiffiffiffiffiffiffiffi
MðnÞ

2n

q
;

Mð0Þ
2k ¼ Mðm−1Þ

2k

b2m−1
−
Mðm−2Þ

2k−2
b2m−2

; k ¼ m;…; n;

Mð0Þ
2k ¼ μ2k; b−1 ¼ b0 ≔ 1; Mð−1Þ

2k ≔ 0: ðA5Þ
If an analytic expression for CðtÞ is known, then an
arbitrary number of the Lanczos coefficients may be
computed numerically via Eq. (A5). We remark that this
algorithm suffers from large numerical instabilities due to
repeated floating-point divisions.

2. From Lanczos coefficients to moments

It follows from the tridiagonal form of L that the
moments may be expressed in terms of the Lanczos
coefficients as

μ2n ¼ ðOjL2njOÞ ¼ ðL2nÞ00: ðA6Þ
If the Lanczos coefficients are known, this is a completely
combinatorial object. In particular, the moments are given
by a sum over Dyck paths. Formally, a Dyck path of length
2n can be defined as a sequence ðh0; h1;…; h2nÞ such that
h0 ¼ h2n ¼ 1=2; hk ≥ 1

2
and jhk − hkþ1j ¼ 1 for any k.

These are often visualized as paths starting at height zero
where each segment either increases or decreases the height
by one unit, with the constraint that the height is always
non-negative and returns to zero at the end. Denoting the
set of such paths by Dn, we have

μ2n ¼
X

fhkg∈Dn

Y2n
k¼1

bðhkþhk−1Þ=2: ðA7Þ

For example, μ2 ¼ b21 and μ4 ¼ b41 þ b21b
2
2. The number of

Dyck paths of length 2n is given by the Catalan numbers
Cn ¼ f½ð2nÞ!�=½ðnþ 1Þ!n!�g. A consequence of Eq. (A7) is
the following lower bound:

μ2n ≥ b21b
2
2 � � � b2n: ðA8Þ

On the other hand, we have the upper bound μ2n ≤
maxnk¼1ðb2kÞCn. Applying the upper and lower bounds,
linear growth of the Lanczos coefficients bn corresponds to
the following growth rate of moments:

μ2n ¼ exp½2n ln nþOðnÞ�: ðA9Þ
This equation is a useful reformulation of the linear growth
hypothesis.
If the growth rate is known as well, bn ¼ αnþOð1Þ,

it is possible to refine the asymptotic by specifying the
next-order exponential term:

μ2n ¼
�
4nα
eπ

�
2n
eoðnÞ: ðA10Þ

Combining this equation with the Stirling formula, the
correlation function CðtÞ ¼ P

n μ2nðitÞ2n=ð2nÞ! has con-
vergence radius r ¼ π=ð2αÞ, due to singularities at t¼�ir;
in fact, CðtÞ is analytical in the strip −r < ImðtÞ < r; see
Fig. 3. Therefore, the Fourier transform of CðtÞ, which is
the spectral density ΦðωÞ, has an exponential decay

jΦðωÞj ¼ e−jωj=ω0þoðωÞ; ω0 ¼ r−1 ¼ 2α=π: ðA11Þ

We illustrate the above results by a simple example:
When bn ¼ αn, then CðtÞ ¼ sechðαtÞ and ΦðωÞ ¼
ðα=πÞsech½ðπωÞ=ð2αÞ�. The moments μ2n ¼ 1; 1; 5; 61;
1385;… are known as Euler or secant numbers and have
the asymptotic behavior μ2n ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð4nÞ=π�p ½ð4nÞ=ðπeÞ�2n×
½1þ oð1Þ� [103]. We checked that Eqs. (A10) and (A11)
hold in all analytic examples we are aware of in the
literature and believe them to hold, in general.

APPENDIX B: MOMENTS AND LANCZOS
COEFFICIENTS IN THE SYK MODEL

In this Appendix, we compute the Lanczos coefficients
in the large-N SYK model at an infinite temperature with
the initial operator O ¼ ffiffiffi

2
p

γ1. Most often, this is done by
computing the moments and applying the mapping
described in Appendix A.
For convenience, we recall the SYK Hamiltonian and

disorder normalization:

HðqÞ
SYK ¼ iq=2

X
1≤i1<i2<���<iq≤N

Ji1…iqγi1…γiq ; ðB1Þ

J2i1…iq
¼ 0; ðB2Þ
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J2i1…iq
2 ¼ ðq − 1Þ!

Nq−1 J2; ðB3Þ

where the line denotes disorder averages. We extend Ji1…iq
to all i1;…; iq by antisymmetry. As discussed in the main
text, disorder averaging is assumed throughout. We first
describe the general method and then discuss the large-
q limit.

1. General method

Since the moments are closely related to the Green’s
function, they can be calculated by the diagrammatic
technique commonly used in the SYK literature. Indeed,
μ2n can be represented as a sum over diagrams G diagrams
with 2n vertices:

μ2n ¼ J2n2ð2−qÞn
X
G

CG; ðB4Þ

where CG is the combinatorial factor of the diagram, which
counts the number of labelings of the vertices by 1;…; 2n
such that the labels are increasing from left to right.
Let us illustrate the diagrams with some examples with

q ¼ 4 and n ¼ 1, 2. A direct calculation yields

Lγ1 ¼ −
X
j<k<l

J1jklγjγkγl;

L2γ1 ¼ 22−q
X
j<k<l

J21jklγ1 þ
X
j<k<l

J1jkl
X
r<s<t

Jjrstγkγlγrγsγt

þ
X
j<k<l

J1jkl
X
r<s<t

Jkrstγjγlγrγsγt

þ
X
j<k<l

J1jkl
X
r<s<t

Jlrstγjγkγrγsγt: ðB5Þ

The first two moments μ2 and μ4 are (twice) the norm
squared of the Lγ1 and L2γ1, respectively. Under disorder
averaging, the terms on the right-hand side are orthogonal,
and each corresponds to a different diagram:

ðB6Þ

The combinatorial factor is CG ¼ 1 for each of the above
graphs. The first nontrivial combinatorial factor is CG ¼ 6

for the diagram , which contributes to μ6. The six

vertex orderings are 1
2 3

4 5
6, 1

4 5

2 3
6, 1

2 4

3 5
6, 1

3 4

2 5
6,

1
2 5

3 4
6, and 1

3 5

2 4
6.

The SYK diagrams encode the Schwinger-Dyson equa-
tions governing the autocorrelation and Green’s function
which are, up to trivial transformations, the exponential and
ordinary generating functions of the moments, respectively:

zGðzÞ ¼ 1þ J222−qGðzÞΣ̃ðzÞ; ðB7aÞ

ΣðtÞ ¼ CðtÞq−1; ðB7bÞ

Σ̃ðzÞ ¼ i
Z

∞

0

ΣðtÞe−itzdt; ðB7cÞ

that is, Σ̃ðzÞ and ΣðtÞ are related by (nonstandard) Laplace
transform (47) just as GðzÞ and CðtÞ are. Equation (B7)
can be represented diagrammatically (here for the case
q ¼ 4) by

ðB8Þ

The dot represents a general SYK diagram (a fully dressed
Green’s function), which is the sum of the bare Green’s
function or the time-domain product of (q − 1) dressed
Green’s functions. Note that both exponential and ordinary
generating functions are needed to take the combinatorial
factors into account: a serial (respectively, parallel) com-
position of diagrams corresponds to the product of ordinary
(respectively, exponential) generating functions.
Equation (B7) has no closed form solution for general q.

However, working with the power series representations, it
enables the numerical calculation of μ2;…; μ2n in poly-
nomial time and space complexity in n. Concretely, the
following iteration algorithm can be easily implemented in
a computer algebra system:
(1) Set g0ðzÞ ≔ z−1, and let j ¼ 0.
(2) Compute cjðtÞ from gjðzÞ by replacing z−2n−1

with ðitÞ2n=ð2nÞ!.
(3) Set σjðtÞ ≔ cjðtÞq−1 up to order tj.
(4) Compute σ̃jðzÞ from σjðtÞ by replacing ðitÞ2n

with z−2n−1ð2nÞ!.
(5) Set gjþ1ðzÞ ≔ ½1þ J222−qgðzÞσ̃jðzÞ�=z up to

order tj.
(6) Increment j by 1 and repeat from step 2.
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When the above procedure is stopped at j ¼ n, the result
gnðzÞ will be a polynomial truncation of the Green’s
function: gnðzÞ ¼

P
n
j¼0 μ2jz

−2j−1, which contains the cor-
rect moments up to μ2n. They can be then used to compute
Lanczos coefficients b21;…; b2n by the recipe (A5).
Arbitrary-precision rational number arithmetic is necessary
for n ∼ 102, since the moments grow very fast. We calculate
bn for a few different values of q up to n ¼ 100 and extract
the linear slope by a linear fit. The results are reported in
Table I and Fig. 4(a).
The above method can be readily adopted to variants of

SYK where two-body and four-body interactions coexist:

H ¼ Hð4Þ
SYKðJÞ þHð2Þ

SYKðJ ¼ 1Þ: ðB9Þ

One needs only to replace the last term in Eq. (B7b) by a
sum over q ¼ 2 and q ¼ 4with the corresponding coupling
constants. Since the q ¼ 2 model is noninteracting,
Eq. (B9) can be another model to study the effect of a
weak thermalizing interaction on the Lanczos coefficients.
The results, shown in Fig. 9, are qualitatively consistent
with those from the Ising model (Fig. 4): The linear growth
rate depends only weakly on the interaction strength J as it
goes to zero. Quantitatively, a logarithmic dependence

α ∼ 1= lnð1=JÞ ðB10Þ

describes the numerical data well for vanishing J.

2. Large-q limit

In the large-q limit, Eq. (B7) can be solved analytically.
It is convenient to define the coupling constant [13,37]

J 2 ≔ 21−qqJ2: ðB11Þ

It is then known [13,37] that CðtÞ admits a 1=q expansion

CðtÞ ¼ 1þ 1

q
CðtÞ þOð1=q2Þ; ðB12Þ

where the leading nontrivial term satisfies the following
differential equation:

C00ðtÞ ¼ −2J 2eCðtÞ; Cð0Þ ¼ C0ð0Þ ¼ 0; ðB13Þ
whose solution is

CðtÞ ¼ 1þ 2

q
ln sechðJ tÞ þOð1=q2Þ: ðB14Þ

The corresponding moments

μ2n ¼
2

q
J 2nTn−1 þOð1=q2Þ; n > 0; ðB15Þ

where ðTnÞ∞n¼0 ¼ ð1; 2; 16; 272; 7936;…Þ are the tangent
numbers [104]. The generating function of Tn admits a
continued fraction expansion [104]:

X∞
n¼0

Tnxn ¼
1

1 − 1×2x
1− 2×3x

1−3×4x

1− . .
.

: ðB16Þ

Using this, one can obtain the following Lanczos coef-
ficients for the large-q SYK model:

bSYKn ¼
(
J

ffiffiffiffiffiffiffiffi
2=q

p þOð1=qÞ n ¼ 1;

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp þOð1=qÞ n > 1:

ðB17Þ

It is not hard to check using Eq. (8) that the wave function
on the semi-infinite chain is

φnðtÞ ¼
8<:

1þ 2
q ln sechðJ tÞ þOð1=q2Þ n ¼ 0;

tanhðJ tÞ
ffiffiffiffi
2
nq

q
þOð1=q2Þ n > 0:

ðB18Þ

FIG. 9. Change in the growth rate near integrability for the SYK
model with q ¼ 2 and q ¼ 4 [Eq. (B9)]. The ratio of the q ¼ 4 to
q ¼ 2 terms is given by J, and the model becomes free at J ¼ 0.

FIG. 10. The size distribution of the Pauli strings in the Krylov
vectors On for the Hamiltonian H1 with parameters and initial
operator as in Fig. 4. Though the distribution drops quickly after
its peak, PnðsÞ is supported on ½0; bn=2c þ 2�.
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The corresponding probability distribution is identical to
the operator size distribution [see Eq. (5.11) in Ref. [37] ]:

PsðtÞ ¼ jφnðtÞj2; s ¼ 1þ nðq − 2Þ: ðB19Þ

The large-q SYK model is also solvable at any finite
temperature [13]. The temperature T is parametrized by
v ∈ ð0; 1Þ via

T
J

¼ cos πv
2

πv
: ðB20Þ

The limits T → ∞ and T → 0 correspond to v → 0 and
v → 1, respectively. The Lyapunov exponent is then

λL;T ¼ 2vπT; ðB21Þ

and the autocorrelation under the Wightman inner product
(60) is

CW
β ðtÞ ¼ 1þ 2

q
ln sechðvtπTÞ þOð1=q2Þ: ðB22Þ

Comparing to Eq. (B14), we see immediately that

bðWÞ
n;T ¼

(
vπT

ffiffiffiffiffiffiffiffi
2=q

p þOð1=qÞ n ¼ 1;

vπT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp þOð1=qÞ n > 1:

ðB23Þ

Therefore, the finite-T growth rate with theWightman inner
product is

αðWÞ
T ¼ vπT ðB24Þ

at any temperature. Thus, the bound λL;T ≤ 2αðWÞ
T is

saturated at all temperatures in the SYK model, whereas
the bound λL;T ≤ 2πT is only so in the zero-temperature
limit (see Fig. 8). Using the relation between the growth
rate and spectral function decay rate (15) and the relation
(61) between spectral functions of different inner products,
it is not hard to obtain the growth rate with the standard
inner product from Eq. (B24):

αðSÞT ¼ vπT
1 − v

: ðB25Þ

Using Eq. (B20), we obtain the limits αðTÞS → J π=2 as

T → 0 and αðSÞT → J as T → ∞. We notice that αðTÞS
increases at low temperatures while, in contrast, αðWÞ

T
decreases.

APPENDIX C: NUMERICAL DETAILS
FOR 1D SPIN CHAINS

This Appendix discusses the numerical details involved
in computing the Lanczos coefficients and Krylov basis

vectors in 1D spin chains. We work directly in the thermo-
dynamic limit of a chain with N → ∞ sites. However,
bookkeeping reduces this to finite-dimensional matrix
multiplication.
Suppose we have a translation-invariant k-local

Hamiltonian H ¼ P
n hn and an l-local operator O ¼P

n On. Here, hn and Om are operators starting on sites
n or m, respectively. (For instance, we might have
O2 ¼ � � � ⊗ I1 ⊗ X2 ⊗ Z3 ⊗ I4 ⊗ � � �.) We normalize the
operators so that ðhnjhnÞ ¼ 1 ¼ ðOmjOmÞ. At minor addi-
tional computational cost, we can work with an operator at
a finite wave vector q:

Oq ¼
X
n

Oneiqn: ðC1Þ

The crucial point is that applying the Liouvillian to Oq is
another operator at wave vector q by using translation
invariance to reindex the sum at the cost of phase factors.
Explicitly,

½H;Oq� ¼
X
m;n

½hn;Om�eiqm ¼
X
m

O0
meiqm; ðC2Þ

where

O0
m ¼

Xm−lþ1

n¼m−kþ1

eiqsnm ½hnþsnm ;Omþsnm �; ðC3Þ

where the shift snm is the index of the first nonidentity site
of ½hn;Om� minus m, which is needed to keep track of
how much the support of the operator shifts due to the
commutator. One can check that O0

m starts on site m.
Therefore, we need only to keep track of operators

starting on a single site, say, site 0. We adopt the basis of
Pauli strings and, following, e.g., Ref. [105], we adopt a
representation which minimizes the computational cost of
taking commutators. Since iY ¼ ZX, we may adopt a
representation

iδð−1ÞϵZv1
1 X

w1

1 ⊗ � � � ⊗ Zvn
n Xwn

n ; ðC4Þ

where δ; ϵ; vk; wk ∈ f0; 1g; i.e., a Pauli string of length n
may be represented by two binary vectors v and w of length
n and two binary digits. So if τ1 ¼ iδ1ð−1Þϵ1Zv1Xw2 and
τ2 ¼ iδ2ð−1Þϵ2Zv2Xw2 , then their commutator is a string
τ0 ¼ ½τ1; τ2� with

δ0 ¼ δ1 þ δ2;

ϵ0 ¼ ϵ1 þ ϵ2 þ δ1δ2 þ w1 · v2;

v0 ¼ v1 þ v2;

w0 ¼ w1 þ w2: ðC5Þ

All additions are performed over Z2.
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With this setup, the Lanczos coefficients can be com-
puted in a similar way to matrix-free exact diagonalization
codes. A translation-invariant operator can be stored as a
hash map of Pauli strings starting on site zero with complex
coefficients. The Liouvillian is applied by combining
Eqs. (C2), (C3), and (C5). Of course, it is not necessary
to takeO to be translation invariant. One could equally well
take a small single-site operator and apply the same
technique without the sum over all sites. We note that
the Lanczos algorithm (4) requires only the storage of three
operators at any time. In practice, the method described
here allows a few dozen Lanczos coefficients to be
computed in a few minutes on a modern laptop and is
generally memory limited by the exponential increase in
the number of Pauli strings required.
Once the Lanczos coefficients and Krylov vectors are

computed, it is possible to understand how the operatorsOn
grow in physical space. One way to characterize this is in
terms of the distribution of string lengths in each On. If
On ¼

P
a caσ

a, where the sum runs over all Pauli strings a,
then the distribution is defined by PnðsÞ ¼

P
a∶jaj¼sjcaj2.

This distribution is shown in Fig. 10 for the Hamiltonian
H1 with the parameters given in Fig. 4. The mean and
variance of the distribution grow with n. We observe that
the distribution PnðsÞ appears to be highly model depen-
dent, which makes it difficult to translate information about
the exponential spreading of the wave function in the semi-
infinite chain back to physical space.

APPENDIX D: A FAMILY OF EXACT SOLUTION
WITH LINEAR GROWTH

This Appendix provides a derivation for the exact
solution (26) of the 1D quantum mechanics problem with
Lanczos coefficients

bn ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞ

p
: ðD1Þ

To solve this problem, notice that our infinite, tridiagonal
matrix is actually quite a familiar setup. If, instead, we had
bn ¼

ffiffiffi
n

p
, then L would be the matrix representing the

Hamiltonian for the quantum harmonic oscillator in the
basis of raising and lowering operators. So, really, this is
just a 1D quantummechanics problem, albeit not a standard
one. In particular, it is known that the system described by
L has very high symmetry, due to an infinite-dimensional
representation of the Lie algebra suð1; 1Þ, enabling us to
find an exact solution [106,107]. Indeed, there is a rich
mathematical literature on the close connections between
representations of suð1; 1Þ, the combinatorics of Motzkin
paths, and Meixner orthogonal polynomials [108,109].
Our solution is a simple application of these mathematical
results.
We start with some generalities on orthogonal polyno-

mials. Define LðnÞ ¼ L0≤i<n;0≤j<n to be the n × n matrix in
the upper-left block of L. For example,

Lð3Þ ¼

0B@ 0 b1 0

b1 0 b2
0 b2 0

1CA: ðD2Þ

We then define polynomials for each n via

Qnðz; α; ηÞ ¼ det ðz − LðnÞÞ: ðD3Þ

By performing a cofactor expansion for the determinant on
the nth row, the Q’s admit a three-term recursion relation

Qnþ1ðzÞ ¼ zQnðzÞ − b2nQn−1ðzÞ; ðD4Þ

together with initial conditionsQ0ðzÞ ¼ 1 andQ−1ðzÞ ¼ 0.
Equation (D4) should be compared with

Len ¼ bnþ1enþ1 þ bnen−1; ðD5Þ

where feng is the natural orthonormal basis of L. In fact,
Eqs. (D4) and (D5) are equivalent, under the identification

QnðzÞ ¼
�Yn
k¼1

bk

�
en; zn ¼ Lne0: ðD6Þ

Therefore, the polynomials QnðzÞ are orthogonal but not
normalized. Instead, they are monic; i.e., the highest-order
coefficient is unity: QnðzÞ ¼ zn þOðzn−1Þ.
By construction, both fQkðzÞg and fzng are a basis of

C½z� and can be related by a triangular linear transform with
matrix elements μn;k:

zn ¼
Xn
k¼0

μn;kQkðzÞ: ðD7Þ

Combined with Eq. (D6) and by orthonormality of feng,
we have

ðedjLnje0Þ ¼ μn;d
Yd
k¼1

bk; ðD8Þ

and therefore

ðedjeiLtje0Þ ¼
Yd
k¼1

bk
X∞
n¼0

ðitÞn
n!

μn;d: ðD9Þ

The statements so far are general and apply to any set of
Lanczos coefficients.
In the specific case bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞp

[the extra
overall factor α in Eq. (D1) can be recovered by a simple
time rescaling], one may recognize from the recursion
relation (D4) that Qn’s are a special case of the Meixner
polynomials of the second kind [110]. They are a non-
classical family of orthogonal polynomials defined by the
following three-term recursion [111,112]:
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Mnþ1ðz; δ; ηÞ ¼ ðz − λnÞMnðz; δ; ηÞ − b2nMn−1ðzÞ;
λn ¼ ð2nþ ηÞδ;
b2n ¼ ðδ2 þ 1Þnðn − 1þ ηÞ: ðD10Þ

In particular, QnðzÞ ¼ Mnðz; δ ¼ 0; ηÞ. For these polyno-
mials, the matrix elements μn;d have been exactly calcu-
lated, in terms of the following generating function [109]:

X∞
n¼0

Xn
d¼0

μn;dwd τ
n

n!
¼ secðτÞη

½1 − δ tanðτÞ�η exp
�
w

tanðτÞ
1 − δ tanðτÞ

�
:

ðD11Þ

As a side note, we mention that the above generating
function, referred to as that of the “inverse polynomials” in
the theory of orthogonal polynomial, is closely related to
the generating function of Meixner polynomials them-
selves. The latter has also a closed form expression, known
to be of Sheffer type [108,111]:X
n≥0

Mnðz; δ; ηÞ
τn

n!
¼ ½ð1þ τδÞ2 þ τ2�−η=2

× exp

�
z arctan

�
τ

1þ τδ

��
: ðD12Þ

Now, taking δ ¼ 0 and the series coefficient of wd in
Eq. (D11), we have

X∞
n¼0

μn;d
τn

n!
¼ 1

d!
secðτÞη tanðτÞd:

Applying this to Eq. (D9) and recalling bn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞp

, we obtain the wave function solution

ðenjeiLtje0Þ ¼ in
ffiffiffiffiffiffiffiffi
ðηÞn
n!

r
tanhðtÞnsechðtÞη; ðD13Þ

where ðηÞn ¼ ηðηþ 1Þ � � � ðηþ n − 1Þ is the Pochhammer
symbol. The general solution for bn ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1þ ηÞp

can be obtained by a simple rescaling t ↦ αt and is
precisely Eq. (26) of the main text where, of course,
ðOnjeiLtjO0Þ ¼ ðenjeiLtje0Þ. The special case η ¼ 1 of this
family of solutions is well known [23,29]. To the best of our
knowledge, the general solution (D13) has not been applied
to the recursion method.

APPENDIX E: DERIVATION OF THE
Q-COMPLEXITY BOUND

This Appendix derives Eq. (33), ðQÞt ≤ CðnÞt for
C ¼ 2M. The main idea is that the definition of Q
guarantees that the eigenbasis of Q is dilated by a factor
of at most C compared to the Krylov basis.

We first show that the Krylov basis vectors have a
bounded number of components in the Q basis due to the
dilation property. For any operator Φ where there is an
R > 0 such that ðqajΦÞ ¼ 0 for qa > R, the hypothesis
(28b) implies that ðqajLjΦÞ ¼ 0 for qa > RþM. Using
Eq. (28c), as a base case for induction, we have
ðqajLnjOÞ ¼ 0 for qa > Mðnþ 1Þ and, in particular, for
qa > Cn. By the construction of the Krylov basis,

ðqajOnÞ ¼ 0 if qa > Cn: ðE1Þ

We claim that Eq. (E1) implies

ðΦjQjΦÞ ≤ CðΦjnjΦÞ ðE2Þ

for any operator wave function Φ; taking Φ ¼ OðtÞ, we
obtain Eq. (33).
To show Eq. (E2), we introduce projectors to large

spectral values in the Krylov and Q bases, respectively:

PK
n ¼

X
m≥n

jOmÞðOmj; PQ
q ¼

X
a∶qa≥q

jqaÞðqaj: ðE3Þ

Then, we have, for n ¼ q=C,

PQ
q ð1 − PK

n¼q=cÞ ¼
X

a∶qa≥q

X
m<n

jqaÞðqajOmÞðOmj ¼ 0;

because m < n ¼ q=C ≤ qa=C, ðqajOmÞ ¼ 0 by Eq. (E1).
Equivalently,

PQ
qPK

q=c ¼ PQ
q : ðE4Þ

Applying this equation and its Hermitian conjugate, we
have

ðΦjPQ
q jΦÞ ¼ ðΦjPQ

qPK
q=CjΦÞ

¼ ðΦjPK
q=CP

Q
q PK

q=CjΦÞ
≤ ðΦjPK

q=CP
K
q=CjΦÞ

¼ ðΦjPK
q=CjΦÞ; ðE5Þ

where the inequality follows from the fact that PQ
q is a

projector. Finally, we need a standard integration-by-parts
identity that converts the expectation value to an integral
over the projectors:

ðΦjQkjΦÞ ¼
Z

∞

0

dq kqk−1ðΦjPQ
q jΦÞ;

ðΦjnkjΦÞ ¼
Z

∞

0

dn knk−1ðΦjPK
n jΦÞ ðE6Þ

for any k ¼ 1; 2; 3;…. Combining the case k ¼ 1 and
Eq. (E5), we obtain
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ðΦjQjΦÞ ¼
Z

∞

0

dqðΦjPQ
q jΦÞ

≤
Z

∞

0

dqðΦjPK
q=CjΦÞ

¼ CðΦjnjΦÞ; ðE7Þ

which finishes the proof. More generally, for any k, we have

ðQkÞt ≤ CkðnkÞt: ðE8Þ
This is useful as a bound on the growth rate of higher
moments of the q-complexity superoperator. See Sec. VI B
for an application.

APPENDIX F: GEOMETRIC ORIGIN OF
THE UPPER BOUNDS

In this Appendix, we derive the geometric upper bound
for the Lanczos coefficients in one-dimensional quantum
systems. The main object of our analysis is the growth of
the moments μ2n ¼ ðOjL2njOÞ ¼ kLnOk2. Moments and
Lanczos coefficients are equivalent, and Appendix A
details how to translate between them.
To warm up, we first show a bound corresponding to

linear growth (using essentially the same argument as in
Refs. [32,35]). This is asymptotically tight in d > 1.
Suppose we have a 2-local Hamiltonian H ¼ P

x hx and
a 1-local operator O (the general case of r-local hx and
r-local O can be reduced to the previous case by a block
renormalization step that groups consecutive sites into
renormalized sites). The Liouvillian becomes a sum of
terms L ¼ P

x lx with lx ¼ ½hx; ·�. We suppose that the
local terms are uniformly bounded, i.e., for all x, khxk ≤ E.
Now, the moment μ2n is the norm-squared of the sum

LnO ¼
X

x1;x2;…;xn

lxn � � �lx2lx1O: ðF1Þ

This sum is highly constrained by the spatial structure of
the spin chain. The operator O is supported only on one
site, and the applications of the Liouvillian grow that
support at the edges. Each term in Eq. (F1) can be
visualized as a discrete quantum circuit, where each
gate lxkþ1

must act on at least one site that is already in
the support of lxk � � �lx1O—otherwise, the term vanishes
due to the commutator. This condition is satisfied by at
most ðkþ 1Þ ≤ 2k positions xk, so the total number of
nonzero terms in Eq. (F1) is at most 2nn! for large n. The
value of each nonzero term is itself bounded due to the
finite local bandwidth E, so klxn � � �lx1Ok2 ≤ ð2EÞ2n. By
the triangle inequality, we have

μ2n ¼ kLnOk2 ≤ ðn!Þ2ð4EÞ2n: ðF2Þ
By Stirling’s formula, the right-hand side has the same
asymptotics as Eq. (21), which corresponds to linear

growth of the bn’s. Hence, Eq. (F2) implies that the
Lanczos coefficients can grow at most linearly in any
dimension.
Notice that the bound comes essentially from counting

the number of sequences x1;…; xn that give rise to a
nonzero contribution to Eq. (F1). In what follows, we show
that, in one dimension, there is a sharper upper bound on
this number, leading to the sublinear growth announced in
Sec. IV C. For this, we suppose without loss of generality
that O is supported on site 0 and hx on sites x and xþ 1.
Then it is not hard to see that lxn � � �lx2lx1O ≠ 0 only if for
all k ¼ 1;…; n,

Lk ≤ xk ≤ Rk; where

Lk ≔ minfx1;…; xk−1; 0g − 1;

Rk ≔ maxfx1;…; xk−1;−1g þ 1: ðF3Þ

We define Pn to be the set of ðx1;…; xnÞ’s that satisfy
Eq. (F3) and denote its size by Pn ≔ jPnj. Then, similarly
to Eq. (F2), we have

μ2n ≤ P2
nð2EÞ2n: ðF4Þ

Hence, bounding μ2n reduces to bounding Pn, which is a
completely combinatorial problem.
To produce this combinatorial bound, we partition the set

Pn as follows:

Pn ¼ ⋃
n

l¼1

Pn;l; where

Pn;l ≔ fðx1;…; xnÞ ∈ Pn∶l ¼ Ln − Rng: ðF5Þ

Intuitively, if the support of the operator grows to size lþ 1
after n applications of Liouvillian, then ðx1;…; xnÞ ∈ Pn;l.
By “size,” we mean the distance between the end points,
disregarding the “holes” between them. In the 1D case, the
operator size can grow only in two places: the left and right
sides. Therefore, for any ðx1;…; xnÞ ∈ Pn;l, xk ¼ Lk or
xk ¼ Rk must hold for l values of k among 1;…; n: for
each of such k’s, one has only two choices for xk. For the
remaining n − l, there are (at most) l choices [by Eq. (F3),
minus two boundary choices]. In summary, we have

jPn;lj ≤
�
n
l

�
2lln−l ≤ 4nln−l; ðF6Þ

where the binomial coefficient counts the choices of the l
values. Combining this with Eq. (F5), we have

Pn ≤ n4n max
l∈½0;n�

ln−l: ðF7Þ

In the limit n ≫ 1, the maximum is attained at
l ¼ n=WðnÞ, where W is the product-log function
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defined by z ¼ WðzezÞ. For large n, WðnÞ ¼ ln n−
ln ln nþ oð1Þ, so

Pn ≤ n4n
�

n
WðnÞ

�
n−½n=WðnÞ�

¼ n!4n

ðln nÞn e
oðnÞ; ðF8Þ

where we use n=WðnÞ ¼ eWðnÞ and Stirling’s formula.
Therefore,

μ2n ≤ ð4EÞ2n ðn!Þ2
ðln nÞ2n e

oðnÞ; ðF9Þ

which grows more slowly than the moment asymptotics
corresponding to a linear growth with rate α [Eq. (A10)],
Bn ≪ ½ð4nαÞ=ðeπÞ�2n, for any α > 0. So the Lanczos
coefficients corresponding to Eq. (F9) must be sublinear.
What, then, is the fastest possible growth of the bn’s in

1D? Although we cannot bound the individual Lanczos
coefficients in a useful way from the bound on the
moments, we can use the bound on their cumulative
product ln

Q
n
k¼1 b

2
k ≤ ln μ2n [Eq. (A8)] and differentiate

with respect to n. As a result, we find

bn ¼ A
n

WðnÞ ¼ AeWðnÞ ∼
An
ln n

: ðF10Þ

The bound (A8) [together with Eq. (F9)] is satisfied
asymptotically by the above choice of bn if and only if
A ≤ 4E=e. Therefore, bn ¼ aeWðnÞ captures the correct
asymptotic behavior of the upper bound in the moments
and qualifies as the maximal growth rate of Lanczos
coefficients in 1D.
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