PHYSICAL REVIEW X 9, 041015 (2019)

Symmetry and Topology in Non-Hermitian Physics

Kohei Kawabata,l’* Ken Shiozaki,z’% Masahito Ueda,l’3 * and Masatoshi Sato>*
'Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
*Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
*RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

® (Received 22 December 2018; revised manuscript received 15 May 2019; published 21 October 2019)

Non-Hermiticity enriches topological phases beyond the existing Hermitian framework. Whereas their
unusual features with no Hermitian counterparts were extensively explored, a full understanding about the
role of symmetry in non-Hermitian physics has still been elusive, and there remains an urgent need to
establish their topological classification in view of rapid theoretical and experimental progress. Here, we
develop a complete theory of symmetry and topology in non-Hermitian physics. We demonstrate that non-
Hermiticity ramifies the celebrated Altland-Zirnbauer symmetry classification for insulators and super-
conductors. In particular, charge conjugation is defined in terms of transposition rather than complex
conjugation due to the lack of Hermiticity, and hence chiral symmetry becomes distinct from sublattice
symmetry. It is also shown that non-Hermiticity enables a Hermitian-conjugate counterpart of the Altland-
Zirnbauer symmetry. Taking into account sublattice symmetry or pseudo-Hermiticity as an additional
symmetry, the total number of symmetry classes is 38 instead of 10, which describe intrinsic non-Hermitian
topological phases as well as non-Hermitian random matrices. Furthermore, due to the complex nature of
energy spectra, non-Hermitian systems feature two different types of complex-energy gaps, pointlike and
linelike vacant regions. On the basis of these concepts and K-theory, we complete classification of non-
Hermitian topological phases in arbitrary dimensions and symmetry classes. Remarkably, non-Hermitian
topology depends on the type of complex-energy gaps, and multiple topological structures appear for each
symmetry class and each spatial dimension, which are also illustrated in detail with concrete examples.
Moreover, the bulk-boundary correspondence in non-Hermitian systems is elucidated within our
framework, and symmetries preventing the non-Hermitian skin effect are identified. Our classification
not only categorizes recently observed lasing and transport topological phenomena, but also predicts a new
type of symmetry-protected topological lasers with lasing helical edge states and dissipative topological
superconductors with nonorthogonal Majorana edge states. Furthermore, our theory provides topological
classification of Hermitian and non-Hermitian free bosons. Our work establishes a theoretical framework
for the fundamental and comprehensive understanding of non-Hermitian topological phases and paves
the way toward uncovering unique phenomena and functionalities that emerge from the interplay of non-
Hermiticity and topology.
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I. INTRODUCTION

While Hermiticity is a common assumption that
underlies physics of isolated systems, non-Hermitian
Hamiltonians [1] have recently attracted growing attention.
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In fact, non-Hermiticity is ubiquitous in nature: it appears
in nonequilibrium open systems with gain and/or loss [2—6]
and correlated electron systems as a result of finite-lifetime
quasiparticles [7-12]. Moreover, effective non-Hermitian
matrices are significant, for instance, in superconductors
that undergo the depinning transition accompanying the
localization transition [13-23], noninteracting bosonic
systems that can exhibit dynamical instability [24-32],
and mechanical metamaterials [33,34]. Non-Hermitian
matrices exhibit unconventional characteristics compared
with Hermitian ones [35]: eigenstates are, in general,
nonorthogonal [36], and a complex-energy spectrum can
possess exceptional points [37,38]. It has been shown that
these mathematical properties lead to a number of unique
phenomena and functionalities with no counterparts in
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Hermitian systems in both theory [39-70] and experiments
[71-99]. Examples include power oscillations [40,74],
unidirectional invisibility [48,74,75,77], high-performance
lasers [46,47,51,59,78-80,84], exceptional-point encircle-
ment [82,86,87,95], and enhanced sensitivity [50,58,67,
90,91].

Much research in recent years has focused on the
topological characterization of non-Hermitian systems
[100-157] beyond the existing Hermitian framework
for condensed matter such as insulators [158—173] and
superconductors [174-183], as well as photonic systems
[184-193] and ultracold atoms [194-204]. Remarkably,
certain topological phases survive even in the presence
of non-Hermiticity [100,102], including non-Hermitian
extensions of the Su-Schrieffer-Heeger model (i.e., one-
dimensional system with chiral or sublattice symmetry [158])
[29,102,105,108,114,116,118,119,121,148,150,154], the
Chern insulator (i.e., two-dimensional system without any
symmetry [159-161]) [10,11,117,119,121,124,151,155],
and the quantum spin Hall insulator (i.e., two-dimensional
system with time-reversal symmetry [162]) [126]. In spite of
their persistence, non-Hermiticity drastically changes the
properties of topological boundary states. For instance, non-
Hermiticity amplifies the edge states, which enables a novel
laser topologically protected against disorder and defects
[150,151,153-155]. It also makes the Majorana edge states
nonorthogonal, which leads to nonlocal particle transport
[120]. Moreover, the conventional bulk-boundary corre-
spondence breaks down in certain non-Hermitian lattice
models [108,116,124,133]. Nevertheless, recent researches
[119,121] establish the modified bulk-boundary correspon-
dence that works even in the presence of non-Hermiticity.

Symmetry plays a pivotal role in topological phases. The
most fundamental symmetry is internal (nonspatial) sym-
metry, which does not rely on any specific spatial structure.
In Hermitian systems, key internal symmetries culminate in
the Altland-Zirnbauer (AZ) symmetry [205]: time-reversal
symmetry, particle-hole symmetry, and chiral symmetry.
Whereas symmetry protects non-Hermitian topological
phases as well, non-Hermiticity can alter the nature
of symmetry in a fundamental manner. In particular,
Ref. [126] shows that the two antiunitary symmetries that
are disparate in Hermitian systems can be equivalent to
each other for non-Hermitian systems. This symmetry
unification results in emergent non-Hermitian topological
phases that are absent in Hermitian systems. However, it
has remained unclear whether the AZ symmetry fully
describes all internal symmetries in non-Hermitian physics.

Here, an essential distinction between Hermitian and
non-Hermitian systems is the degrees of freedom that we
have access to; nonunitary operations forbidden in
Hermitian systems can be performed in non-Hermitian
systems. In other words, a change in the spectrum from real
to complex increases the number of parameters that
describe the system. Since topology crucially depends

on the underlying manifold, non-Hermiticity is expected
to alter the topological classification of insulators and
superconductors [206-219]. In fact, the emergent non-
Hermitian topological phases [126] do imply such a change
in the topological classification. A recent work [122]
proposed classification of non-Hermitian topological sys-
tems on the basis of two antiunitary symmetries. Under this
classification, however, topological phases are absent in
two dimensions due to its strict definition of the complex-
energy gap, which seems to conflict with the recent
theoretical [10,11,102,117,119,121,124,126] and experi-
mental [151,155] works in two dimensions. More-
over, Ref. [122] does not take into account the so-called
pseudo-Hermiticity [220-222], which is a generalization of
Hermiticity and parity-time symmetry [1]. As pointed out in
Ref. [102], pseudo-Hermiticity is a possible constraint
unique to non-Hermitian systems and may provide a novel
topological feature. Therefore, how non-Hermiticity alters
topology of insulators and superconductors has still been
elusive. In view of the rapid theoretical and experimental
advances in non-Hermitian physics, there has been a great
interest and an urgent need for comprehensive topological
classification that provides a reference point for experiments
and predicts novel non-Hermitian topological phases.

A. Summary of the results

This work provides a complete theory of symmetry and
topology in non-Hermitian physics. Non-Hermiticity dra-
matically changes fundamental concepts such as symmetry
and energy gaps compared with the conventional ones in
Hermitian physics. We first organize the internal sym-
metries in Sec. II. It is shown that symmetry ramifies due to
the distinction between complex conjugation and trans-
position for non-Hermitian Hamiltonians, which culmi-
nates in the 38-fold symmetry in contrast to the 10-fold AZ
symmetry in Hermitian systems. In particular, we demon-
strate that particle-hole symmetry in non-Hermitian
Bogoliubov-de Gennes (BdG) Hamiltonians should be
defined with transposition as Eq. (13), rather than complex
conjugation. Similarly, chiral symmetry and sublattice
symmetry become distinct from each other in non-
Hermitian physics, although they are equivalent in the
presence of Hermiticity. Moreover, the 38-fold sym-
metry naturally includes pseudo-Hermiticity [220-222],
which provides a novel topological structure unique to
non-Hermitian systems [102]. We note that the Bernard-
LeClair symmetry classification [223], which was previo-
usly considered to describe non-Hermitian random matri-
ces [223,224] and non-Hermitian topological phases
[29,102,128], only partially reproduces our 38-fold sym-
metry classification. In fact, the previous symmetry classi-
fication overcounted some and overlooked others of our
non-Hermitian symmetry classes, as discussed in detail in
Sec. II F. Our 38-fold symmetry classification thus serves as a
non-Hermitian generalization of the renowned AZ symmetry
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FIG. 1. Definition of the energy gap for Hermitian and non-
Hermitian Hamiltonians. (a) Energy gap for a Hermitian
Hamiltonian. A Hermitian Hamiltonian is defined to be gapped
if and only if its energy bands do not cross the Fermi energy Ef
(red dot), and gap closing associated with a topological phase
transition occurs between the trivial and topological phases.
(b) Point gap for a non-Hermitian Hamiltonian. A non-Hermitian
Hamiltonian is defined to have a point gap if and only if its
complex-energy bands do not cross a reference point E = Ep in
the complex-energy plane (red dot). (c) Line gap for a non-
Hermitian Hamiltonian. A non-Hermitian Hamiltonian is defined
to have a line gap if and only if its complex-energy bands do not
cross a reference line in the complex-energy plane (red line).

classification for Hermitian Hamiltonians. We next show in
Sec. III that an extension of the energy gap for non-Hermitian
Hamiltonians is not unique due to the complex nature of the
energy spectrum. It can be either pointlike (zero dimensional)
or linelike (one dimensional) in the complex-energy plane
(Fig. 1). Importantly, the definition that should be adopted
depends on individual physical situations, and the two
definitions are independent of and complementary to each
other; non-Hermitian topology relies on the type of complex-
energy gaps.

On the basis of these symmetry and complex-energy
gaps in addition to K-theory [225], we provide in Sec. IV
complete topological classification of non-Hermitian
insulators and superconductors for all the 38 symmetry
classes and two types of the complex-energy gap. The

results are summarized as periodic tables III-IX. The
crucial idea behind this topological classification is that
the complex-spectral-flattening procedures differ according
to the type of the complex-energy gaps: a non-Hermitian
Hamiltonian can be flattened to a unitary matrix in the
presence of a point gap, whereas it can be flattened to a
Hermitian or an anti-Hermitian matrix in the presence of a
line gap (Fig. 2). The corresponding topological invariants
are systematically obtained in Sec. IV C. We also elucidate
the non-Hermitian bulk-boundary correspondence in terms
of our classification in Sec. V. Remarkably, whereas the
conventional bulk-boundary correspondence can break
down in generic non-Hermitian systems, we demonstrate
that it is restored by certain classes of symmetry including
parity-time symmetry and pseudo-Hermiticity. As a unique
non-Hermitian feature, there appear multiple topological
structures in each symmetry class and each spatial dimen-
sion, which is illustrated with an example in Sec. VI. As
discussed in Sec. VII, our classification describes the non-
Hermitian topological phases observed in recent experi-
ments [145,146,148-151,153—-157], which are not fitted
into the previous classification scheme [122]. Furthermore,
our classification systematically predicts a new type of
symmetry-protected topological lasers that support lasing
helical edge states and dissipative topological supercon-
ductors that support nonorthogonal Majorana edge states.
As a crucial by-product, our non-Hermitian theory also
provides the topological classification of Hermitian and
non-Hermitian free bosons as shown in Sec. VIII. We
conclude this work in Sec. IX.

B. Distinction from the previous work

The general theory in the present work supersedes and
encompasses the results in the previous work [122]. In
particular, this work provides the following fundamental
insights into symmetry and topology in non-Hermitian
physics:

(i) Symmetry ramification.—We discover that non-
Hermiticity ramifies symmetry due to the distinction
between complex conjugation and transposition,
which are equivalent for Hermitian Hamiltonians,
as described in Sec. II. Consequently, we have a lot
of new non-Hermitian symmetries, culminating in
the 38-fold symmetry beyond the celebrated AZ
symmetry in Hermitian physics. In particular,
whereas a number of recent works including
Ref. [122] focused on symmetry in terms of complex
conjugation (such as parity-time symmetry), the
crucial significance of the transposition symmetry
has not been appreciated, and we have found its
special role, for instance, in symmetry-protected
topological lasers and dissipative superconductors.

(i) Complex-energy gaps and non-Hermitian topol-
ogy.—The definition of an energy gap is nontrivial
in non-Hermitian systems and essential for the

041015-3



KAWABATA, SHIOZAKI, UEDA, and SATO

PHYS. REV. X 9, 041015 (2019)

(a) Hermitian

Flattening
— O -y P — -
E E E=-1 E=+1 E
(b) Non-Hermitian (point gap)
ImE ImE
\ |
Unitary Loe —
flattening
® ) — *—j—
' Ee ' Re E ( ' Re E

(€) Non-Hermitian (line gap)

ImE ImE
Real gap
Hermitian
flattening
. = ) — e o —
ReE E=A1 E=+1 ReE
ImE ImE
Antl—Hermman P
flattening
————
Imaginary gap ReE Re E
E=-i @

FIG. 2. Flattening procedures of Hermitian and non-Hermitian Hamiltonians. (a) Flattening of a Hermitian Hamiltonian with an
energy gap. A Hermitian Hamiltonian can be flattened to another Hermitian Hamiltonian with H> = 1 without closing the energy gap.
(b) Unitary flattening of a non-Hermitian Hamiltonian with a point gap. A non-Hermitian Hamiltonian can be flattened to a unitary
Hamiltonian with H™H = 1 without closing the point gap. (c) Hermitian flattening of a non-Hermitian Hamiltonian with a line gap.
A non-Hermitian Hamiltonian can be flattened to a Hermitian (an anti-Hermitian) Hamiltonian with H? = +1 (H? = —1) in the

presence of a real (an imaginary) gap.

nature of non-Hermitian topological phases. We
clarify this fundamental issue and find that the
complex nature of the energy spectrum leads to
the two types of complex-energy gaps, a point gap
and a line gap (Fig. 1), as described in Sec. IIL
Whereas a point gap and the corresponding topo-
logical classification were considered in Ref. [122],
a line gap was not considered there, and the present
work has developed the unified understanding of
complex-energy gaps. Importantly, the two types of
complex-energy gaps enrich non-Hermitian topo-
logical phases in a fundamental manner that has no
analogs to the Hermitian ones; non-Hermitian top-
ology strongly depends on the type of complex-
energy gaps.

Our complete classification of non-Hermitian topological
phases relies on these fundamental insights in non-Hermitian
physics. Crucially, although the previous classification [122]
cannot correctly describe the recent experiments on non-
Hermitian topological systems, the present classification
encompasses them because of the above fundamental
insights into symmetry and energy gaps, as described in
Sec. VII A. Moreover, our work systematically predicts
novel non-Hermitian topological phases that enable richer
phenomena and functionalities due to the interplay of non-
Hermiticity and topology. For example, our theory predicts
novel symmetry-protected topological lasers and dissipative
topological superconductors, as described in Secs. VIIB
and VIIC.

II. SYMMETRY

For Hermitian Hamiltonians, internal (nonspatial) sym-
metries fall into the AZ symmetry class [205]: time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS), where TRS and PHS are antiunitary,
whereas CS is unitary. These symmetries lead to the
10-fold classification of Hermitian topological insulators
and superconductors [206-208]. On the other hand, it is
nontrivial whether the AZ symmetry fully describes all the
internal symmetries even in the presence of non-Hermiticity.
In fact, PHS is defined with transposition as Eq. (13) and
cannot be described in terms of complex conjugation any
longer for non-Hermitian BdG Hamiltonians due to the
distinction between complex conjugation and transposition.
Correspondingly, CS does not coincide with sublattice
symmetry (SLS), although they are equivalent in the
presence of Hermiticity. As a consequence, the total number
of symmetry classes is 38 as shown below, each of which
describes intrinsic non-Hermitian topological phases as well
as non-Hermitian random matrices.

A. Symmetry ramification and unification

Before describing our 38-fold symmetry in detail, we
summarize the changes in the nature of symmetry in non-
Hermitian physics. In fact, non-Hermiticity ramifies and
unifies symmetry in a fundamental manner. First, to see the
symmetry ramification, let us consider PHS as an example.
For Hermitian systems, PHS is defined by
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CH'C™' = —H, (1)

where C is a unitary matrix. Thus, PHS can be generalized
by Eq. (1) for non-Hermitian systems. However, we can
generalize PHS in another way. The key property is that
complex conjugation coincides with transposition for
Hermitian systems by definition: H* = H”. As a result,
for Hermitian systems, Eq. (1) is equivalent to the follow-
ing equation defined with transposition:

CH'C™' = —-H. (2)

Importantly, Egs. (1) and (2) are not equivalent for non-
Hermitian systems; thus, non-Hermiticity ramifies PHS.
Since non-Hermitian BdG Hamiltonians for superconduc-
tors and superfluids satisfy Eq. (2) as shown below, we
denote the symmetry in Eq. (2) [Eq. (1)] as PHS (PHS) for
non-Hermitian systems.

Such symmetry ramification occurs also for all the other
symmetries. Another crucial example is CS (SLS), which is
defined for Hermitian systems by

THT-! = —H, (3)

where I' is a unitary matrix. Equation (3) can be directly
generalized to non-Hermitian systems, but again, CS can be
generalized in a different manner. In fact, for Hermitian
systems, Eq. (3) is equivalent to

FH'T-!' = -H, (4)

due to H = H'. Importantly, Eqs. (3) and (4) are not
equivalent to each other for non-Hermitian systems,
although they are equivalent in the presence of
Hermiticity. Since the physical CS, which is a combined
symmetry of TRS and PHS, is described by Eq. (4) as
shown below, we denote the symmetry in Eq. (4) [Eq. (3)]
as CS (CS™) for non-Hermitian systems. We also denote
CS™ as SLS because bipartite lattice systems often realize
this symmetry even in the presence of non-Hermiticity.

Non-Hermiticity not only ramifies but also unifies
symmetry [126]. To see this symmetry unification, we
consider the following antiunitary symmetries:

T HT7' =H, T_H*TZ'=-H, (5)
where 7 . are unitary matrices. Here, 7, denotes TRS,
while 7 _ denotes PHS', which are clearly disparate from
each other for Hermitian systems. However, when a non-
Hermitian system H respects TRS, another non-Hermitian
system iH respects PHST. Thus, a set of all the non-
Hermitian systems having TRS coincides with another set
of all the non-Hermitian systems having PHS'; non-
Hermiticity unifies TRS and PHS'. As a consequence of
the symmetry ramification and unification, the 10-fold AZ

symmetry class for Hermitian systems is replaced by our
38-fold symmetry class for non-Hermitian systems, as
demonstrated in the following.

B. AZ symmetry

We consider a generic noninteracting fermionic system
described by the following second-quantized non-
Hermitian Hamiltonian

h = ZIIA/ITHUVA//" (6)
ij

where the matrix H is a first-quantized (single-particle)
non-Hermitian Hamiltonian. In addition, (;),_, , . isaset
of fermion annihilation operators for a normal system or
Nambu spinors for a superconductor. The time-reversal
operation is described by an antiunitary operator 7 that acts
on the fermion operators as
TlpiT_l = Z(T-&-)ijli/jv TiT™ =i, (7)

J

where 7, is a unitary matrix (7 7", = 7.7 = 1). This
operation serves as time reversal even in non-Hermitian
systems. In fact, if an operator O is invariant under 7° (.e.,
TOT ' = 0), THT ™" = H implies

TOWT ™" = T ("0 if1)T!

= e "1 Qe = (1), (8)

where O(t) := ¢/'"0e=" is the time-evolved operator
under the non-Hermitian Hamiltonian H [49,61].
Then, time-reversal invariance of the second-quantized

Hamiltonian (i.e., THT ' = H) leads to

TIHT, =H, T,T =+l 9)

in real space, and

T . H*(k)T7' = H(-k), 7. 77 =+1 (10)
in momentum space, where H(k) is a Bloch-BdG
Hamiltonian. This action on a single-particle non-
Hermitian Hamiltonian by TRS is the same as that on a
Hermitian one [205]. Our discussion can also be applied to
the generalized non-Bloch wave functions [121,137,143],
as long as the corresponding symmetry is respected with
complex wave numbers (see Sec. V for more details).
PHS is associated with charge conjugation that mixes
fermion creation and annihilation operators and generally
appears in superconductors and superfluids. It is described
by a unitary operator C that acts on the fermion operators as
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CyC™ =Y (Co)il, (11)
J

where C_ is a unitary matrix (C_CT = CLC_ = 1). Then, the
presence of PHS for the second-quantized Hamiltonian

CHC™' = H leads to

CZ'H'C_ = -H, C.Cr ==l (12)

in real space, and

C_H"(k)CZ' = —H(-k), C.Ct=+1 (13)

in momentum space. Remarkably, in the presence of
Hermiticity (H" = H), this PHS condition is equivalent
to C_H*(k)CZ' = —H(—k) [205]. For non-Hermitian
Hamiltonians, however, complex conjugation and
transposition do not coincide with each other, and thus
PHS is defined in terms of not complex conjugation but
transposition.

As a combination of TRS and PHS, CS is defined by an
antiunitary operator [':=7C. The invariance of the
Hamiltonian A under " imposes the following condition
on a single-particle Hamiltonian:

I'''H'T = -H, =1 (14)
in real space, and
TH' (k)" = —-H(k), =1 (15)

in momentum space. This CS condition is equivalent
to TH(k)IT™' = —H(k) in the presence of Hermiticity
(H" = H) [205], but it is not equivalent for non-Hermitian
Hamiltonians. For instance, the graphene [102] and the Su-
Schrieffer-Heeger model [105,114,148,154] with balanced
gain and loss respect CS.

The three symmetries 7, C_, and I constitute a natural
and physical extension of the AZ symmetry class for non-
Hermitian Hamiltonians (Table I), which respectively act
on a Bloch-BdG non-Hermitian Hamiltonian as Eqs. (10),
(13), and (15). The 10-fold AZ symmetry class is divided
into two complex classes that only involve CS and eight
real classes where TRS and PHS are relevant. We again
emphasize that PHS is defined in terms of not complex
conjugation but transposition for non-Hermitian
Hamiltonians, and that the definition of CS also changes
correspondingly.

C. AZ" symmetry

In contrast to the Hermitian case, internal symmetries
arise other than the AZ symmetry. In fact, as a result of the
distinction between complex conjugation and transposition

TABLE I. AZ and AZ" symmetry classes for non-Hermitian
Hamiltonians. Time-reversal symmetry (TRS) and particle-hole
symmetry (PHS) are defined by 7, H*(k)7 7' = H(—k) with
T.T% =+1 and C_HT (k)CZ' = —H(~k) with C_C* = =1,
respectively. Chiral symmetry (CS) is a combined symmetry of
TRS and PHS defined by TH(k)I™! = —H(k) with > = 1.
The 10-fold AZ symmetry class is divided into two complex classes
that only involve CS and eight real classes where TRS and PHS
are relevant. Moreover, TRST and PHS' are, respectively, defined
by C,H" (k)C7! = H(—k) withC,C}, = +1and T _H* (k)T =
—H(—k) with 7_T* = %1, which constitute the AZ" symmetry
classes. Class AI (AIl) in the real AZ symmetry class and class D
(C") in the real AZ" symmetry class are equivalent to each other.

Symmetry TRS PHS TRS' PHS" CS
class Ty € €y T @O
Complex AZ A 0 0 0 0 0
Alll 0 0 0 0 1
Real AZ Al +1 0 0 0 0
BDI +1 +1 0 0 1
D 0 +1 0 0 0
DIII -1 +1 0 0 1
All -1 0 0 0 0
CIL -1 -1 0 0 1
C 0 -1 0 0 0
CI +1 -1 0 0 1
Real AZ' AT 0 0 +1 0 0
BDI' 0 0 +1 +1 1
Df 0 0 0 +1 0
pIrt 0 0 -1 +1 1
AIl 0 0 -1 0 0
cif 0 0 -1 -1 1
(ol 0 0 0 -1 0
crf 0 0 +1 -1 1

for non-Hermitian Hamiltonians (H* # HT), a variant of
TRS can be defined with transposition by
C.HT(k)C:! = H(-k), C.C=%1, (16)
where C. is a unitary matrix (C.C| =ClC, =1).
Similarly, a variant of PHS can be defined with complex
conjugation by
T_H*(k)T-' = —H(-k), T_Tr=+1, (17)
where 7 _ is a unitary matrix (7 71 = 717 _ = 1). In the
following, we denote the symmetry described by Eq. (16) as
TRS and the symmetry described by Eq. (17) as PHS', since
TRS" (PHS) is defined by Hermitian conjugation of TRS
(PHS). For Hermitian Hamiltonians (H = H'), TRS and
PHS, respectively, coincide with TRS' and PHS'; however,
this is not the case in the presence of non-Hermiticity. This

Hermitian-conjugate counterpart of the AZ symmetry also
appears naturally in non-Hermitian systems. For instance,
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onsite dissipation often breaks Hermiticity and TRS at the
same time, but their combination can be retained as TRST.
Furthermore, effective non-Hermitian Hamiltonians in the
scattering theory support these symmetries [226]. We note
that PHS' is equivalent to “non-Hermitian particle-hole
symmetry” in Refs. [59,63,103,106,120,122,126], which
plays an important role in a single-mode laser [59] and a
flatband [63] in photonics.

An important consequence of TRS" with C,C% = -1 is
the twofold degeneracy of the complex spectrum as a non-
Hermitian generalization of the Kramers theorem [102]. To
see this non-Hermitian Kramers degeneracy, we consider a
non-Hermitian Hamiltonian H that satisfies C, H'C3! = H
with C,.C = —1 and denote its complex eigenenergy and
the corresponding right (left) eigenstate as E,, € C and |u,,)
(|u,, ), respectively. We then have

H(C.[up)) = E(Cylun)). (18)
which implies that C, |u},)) is also an eigenstate that belongs
to the same eigenenergy E. Because of C} = —C_, we also

have

QualCilun ) = CualCLIuR) = —uu|Colun ). (19)

which leads to (u,|C.|u;)) = 0. This fact in turn indicates
that |u,) and C, |u})) are biorthogonal to each other [36]
and linearly independent of each other; all the eigenstates
are thus at least twofold degenerate. This non-Hermitian
Kramers degeneracy holds even for complex eigenenergies.
In the presence of TRS with 7,77 = —1, by contrast,
eigenenergies are twofold degenerate if and only if they are
real [126].

TRST and PHS' in addition to CS also constitute the
10-fold symmetry class, which we call the AZ" symmetry
class (Table I). This AZ" symmetry class is again divided
into two complex classes that only involve CS and eight
real classes where TRST and PHS' are relevant. Here, each
complex AZ' class coincides with the corresponding
complex AZ class. Moreover, class Al in the real AZ class
and class D' in the real AZ' class are equivalent due to the
topological unification of TRS and PHS' [126]: when a
non-Hermitian Hamiltonian H respects TRS, another non-
Hermitian Hamiltonian iH respects PHS'. Similarly, class
All in the real AZ class and class CT in the real AZ' class
are equivalent.

D. Sublattice symmetry
Another important internal symmetry is SLS, which is
defined for a Bloch-BdG Hamiltonian by
SH(k)S™' = -H(k), §=1, (20)

where S is a unitary matrix (SST = S'S = 1). For in-
stance, SLS appears in a bipartite lattice where particle
hopping only connects sites on different sublattices, such as

the Su-Schrieffer-Heeger model [158] with asymmetric
hopping [108,114,116,118,119,121]. Remarkably, SLS
coincides with CS defined by Eq. (15) in the presence
of Hermiticity (H = H™) [205], but this is not the case for
non-Hermitian Hamiltonians.

SLS can be considered as an additional symmetry to the
AZ symmetry [213] (see Tables XI and XII in the
Appendix A for details). There are 3 symmetry classes
for the complex AZ class with SLS (Table XI) and 19
symmetry classes for the real AZ class with SLS
(Table XII). Here, classes Al, BDI, and CII with SLS that
anticommutes with TRS are, respectively, equivalent to
classes AIl, DIII, and CI with SLS that obeys the same
algebra. Moreover, each real AZ class with SLS is
equivalent to the corresponding real AZ' class with SLS
(see Table XIII in Appendix A for details).

E. Pseudo-Hermiticity
In non-Hermitian physics, pseudo-Hermiticity serves
as another key internal symmetry [220-222], which is
defined by

nH (k™' = H(k). — n*=1. (21)

with a unitary and Hermitian matrix # (5" = n'n = 1 and
n' = n). Here, pseudo-Hermiticity is a generalization of
Hermiticity, in that it is trivially satisfied with # = 1 in the
presence of Hermiticity. In addition, it has a similar role to
parity-time symmetry [1] because positivity of 7 is equiv-
alent to the real spectrum of a non-Hermitian Hamiltonian
[220]. Pseudo-Hermiticity can also be considered as an
additional symmetry to the AZ or AZ' symmetry class.
Moreover, the AZ or AZ' class with pseudo-Hermiticity is
equivalent to the AZ or AZ' class with SLS (see Table XIV
in Appendix B for details).

F. 38-fold classification

The symmetries discussed above constitute all the
internal symmetries in non-Hermitian physics, which gen-
eralize and extend the AZ symmetry classification [205] for
Hermitian Hamiltonians to that for non-Hermitian ones.
This symmetry classification is 38-fold: the 10 AZ sym-
metry classes with the additional 6 AZ' symmetry classes,
as well as the 22 AZ symmetry classes with SLS. Notably,
the 4 (i.e., A, AIIL, D, and C") in the AZ' symmetry class
also appear in the AZ symmetry class, and each AZ
symmetry class with SLS is equivalent to the corresponding
AZ" symmetry class with SLS (see Appendix A for details)
or the AZ symmetry class with pseudo-Hermiticity (see
Appendix B for details). Our 38-fold symmetry classifi-
cation is applicable to a number of non-Hermitian systems,
as discussed in detail below.

We can confirm that the 38-fold symmetry exhausts all
the internal symmetries for non-Hermitian systems. We
first note that it is sufficient to consider a single symmetry
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for each type without loss of generality. For instance, if a
Hamiltonian respects two TRSs, 7 and 7, the combined
symmetry 7,7 ', gives a unitary symmetry that commutes
with the Hamiltonian. In the block-diagonal form of
T.,7%, T, and T, are trivially related to each other in
each block, and it suffices to consider a single TRS. The 38
symmetry classes are divided according to the number N of
their generators TRS, PHS, TRS', and PHS" as follows:

(i) N =0.—There are 5 classes: no symmetry, CS,
SLS, and both CS and SLS that commute or
anticommute with each other.

(i)) N = 1.—Each symmetry has two different signs of
the square (e.g., 7,75 =+1 or 7,77 = —1).
Moreover, TRS and PHS' are equivalent to each
other [126]. As a result, we have 2 x (4—1) =6
classes.

(ii1l) N = 2.—Whereas there are six combinations to
choose two from the four symmetries (i.e., TRS,
PHS, TRS', and PHS"), the combinations TRS &
PHS and TRS & TRS' are equivalent to PHS &
PHS" and TRS' & PHS, respectively, due to the
topological unification of TRS and PHS' [126].
Moreover, the combination TRS (7 .77 =+1) &
PHS" (7_7* = +1) is equivalent to TRS
(T,7T% =-1) & PHS" (7_T* = +1). We thus
have 22 x (6 —2) — 1 = 15 classes.

(iv) N = 3.—Without loss of generality, we can consider
the generators to be TRS, PHS, and PHS, and we
assume that TRS and PHS commute with each other.
There are three combinations of TRS and PHSY, in a
similar manner to the case with N = 2. Furthermore,
PHS has two different signs of the square and can
commute or anticommute with PHST. Consequently,
we have 3 x 2 x 2 = 12 classes.

(v) N = 4.—If we have independent TRS, PHS, TRST,
and PHS", the combination of all the symmetries
gives a unitary symmetry that commutes with the
Hamiltonian. In the block-diagonal form of the
unitary operator, this case reduces to N < 3.

We have, in total, 5+ 6 + 15 4 12 + 0 = 38 classes.

Our 38-fold classification is basically equivalent to the

Bernard-LeClair symmetry classification that describes
non-Hermitian random matrices [29,102,128,223,224]:

Csym: cH'c¢™' = ¢.H, el =41, (22)
Psym: pHp~' = —H, PP =1, (23)
Qsym: gH'q”' =H,  4¢'q7' =1, (24)
Ksym: kH*k™' = H, kk* = 41, (25)

with €, = £1 and unitary operators c, p, ¢, and k. Table II
summarizes the relationship between the Bernard-LeClair
symmetry and ours. Whereas our classification is 38-fold,

TABLE II. Relationship between the Bernard-LeClair (BL)
symmetry and our 38-fold symmetry discussed in the present
work. Here, TRS, PHS, CS, and SLS, respectively, stand for time-
reversal symmetry, particle-hole symmetry, chiral symmetry, and
sublattice symmetry; TRST (PHS") denotes the symmetry defined
by Hermitian conjugation of TRS (PHS).

BL symmetry 38-fold symmetry

C sym. PHS, TRS'

P sym. SLS

Q sym. CS, pseudo-Hermiticity
K sym. TRS, PHS'

the one of Bernard and LeClair is 43-fold. This disagree-
ment originates from overcounting and overlooking
non-Hermitian symmetry classes in their classification.
In particular, they distinguished the pseudo-Hermiticity
[Q symmetry defined by Eq. (24)] with positivity from
generic pseudo-Hermiticity without positivity. However,
it is known that the pseudo-Hermiticity with positivity is
equivalent to Hermiticity [220-222]. Thus, the former
pseudo-Hermiticity just gives the Hermitian symmetry
classes. Here, the following 5 pairs of symmetry classes
distinguished in the Bernard-LeClair classification are con-
sidered to be the same in our classification:

(g=1)&(g=02);
(g=l,c=1), _ 1 &(g=0,c=1), _.y; (26)
(q=l.c=ioy), _,,&(g=0.®1.c=1®io,), _,,.

We recall that the Hermitian symmetry class is the 10-fold
AZ symmetry class. Subtracting these Hermitian 10 classes
from their 43 classes, we only have 33 classes as intrinsic
non-Hermitian symmetry classes. However, they overlooked
the following 5 symmetry classes, which should be added
when the aforementioned distinction is made:

(p=0.®1,g=1®0,);
(p:01®1,q:1®0y,c:1®1);
(p=0,®1l.g=1®0,,c=1Qios,);
(p:UZ®lyq:1®oxac:Gx®1)€C:il'

Adding these 5 classes to 33 classes reproduces our 38-fold
symmetry class.

We complete the non-Hermitian 38-fold symmetry class,
in which the 5 classes in Eq. (27) were overlooked by
Bernard and LeClair. Remarkably, our 38 classes present
different classifying spaces and give different topological
phases, as shown in Sec. IV. Importantly, although their
symmetries are mathematically the same as ours after
correctly including the 5 classes in Eq. (27), the physical
insight into these symmetry classes has remained elusive
until the present work. Therefore, our symmetries give
a more fundamental framework in the study of non-
Hermitian physics.

(27)
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III. COMPLEX-ENERGY GAPS

In the topological classification of Hermitian insulators
and superconductors, two Hermitian Hamiltonians are
defined to be topologically equivalent if and only if they
are continuously deformed into each other while retaining
symmetry and an energy gap. In the non-Hermitian case, on
the other hand, it is nontrivial how the energy gap is defined
since the spectrum is complex for a generic non-Hermitian
Hamiltonian.

Here, we recall that an energy gap means the energy
region where no states are present. In the Hermitian case,
such a vacant region in the spectrum should be contractible
to a zero-dimensional point E = Ep called the Fermi
energy since the spectrum is entirely real and one dimen-
sional. Thus, it is naturally and uniquely defined to have an
energy gap if and only if its energy bands do not cross the
Fermi energy E = Eg [Fig. 1(a)]. In the non-Hermitian
case, by contrast, the forbidden energy range where no
states exist is not necessarily contractible to a zero-
dimensional point since the complex spectrum of a generic
non-Hermitian Hamiltonian is two dimensional. As a
result, such a forbidden energy region can be either a
zero-dimensional point or a one-dimensional line, and
accordingly, the definition of the complex-energy gap in
a non-Hermitian Hamiltonian is not unique. It can be
defined to have a zero-dimensional point gap if and only if
its complex-energy bands do not cross a reference point
E = Ep in the complex-energy plane [Fig. 1(b)], and
independently, it can also be defined to have a one-
dimensional line gap if and only if its complex-energy
bands do not cross a reference line in the complex-energy
plane [Fig. 1(c)]. The precise definitions of these complex-
energy gaps are provided later in this section.

Importantly, two definitions are independent of each
other, and which one should be adopted depends on the
individual physical situations that we are interested in. For
instance, the localization (Anderson) transition in a one-
dimensional non-Hermitian system can be captured by
topology in terms of a point gap [13,18,122,138]. On
the other hand, the topologically protected edge states
experimentally observed in non-Hermitian optical and
photonic systems [145,146,148-151,153—155] can be
understood by a line gap. The two definitions of the

TABLE III.

complex-energy gaps are thus complementary to each
other. Moreover, the topological classification drastically
changes according to the definition of the complex-energy
gap, as discussed in detail in the next section. In the absence
of symmetry, for example, a topological phase characte-
rized by a point gap is present only in odd spatial
dimensions, whereas a topological phase characterized
with a line gap is present only in even spatial dimensions
(see class A of Table III in Sec. IV). We note that
Refs. [102,117,126] explicitly adopt a line gap, whereas
Ref. [122] adopts a point gap.

A. Point gap

Although a complex-energy point E = Ep that serves as
an obstacle in the complex-energy plane is arbitrary in the
absence of symmetry, it is subject to restrictions in the
presence of symmetry. For instance, it should be taken as
ImEp = 0 in the presence of TRS since eigenenergies come
in (E,E*) pairs; it should be taken as Ep =0 in the
presence of SLS since eigenenergies come in (E, —E) pairs.
Thus, it is convenient to choose Ep to be zero energy, which
leads to the precise definition of the point gap as follows:

Definition 1 (point gap).—A non-Hermitian Hamiltonian
H(k) is defined to have a point gap if and only if it is
invertible (i.e., Vk det H(k) # 0) and all the eigenenergies
are nonzero (i.e., Yk E(k) #0).

Under this definition, a gapless system possesses a zero-
energy state for some k. A point gap helps understand the
localization-delocalization transition in non-Hermitian sys-
tems in one dimension [13,18,122,138] that occurs due to
the competition between disorder and non-Hermiticity.
Since one-dimensional Hermitian systems always show
the Anderson localization, the delocalization is unique to
non-Hermitian systems. Here, a topological invariant [i.e.,
the winding number in Eq. (42)] can be assigned to a
generic non-Hermitian system in one dimension. In the
Hatano-Nelson model (i.e., a non-Hermitian extension of
the one-dimensional Anderson model with asymmetric
hopping) [13], wave functions are delocalized (localized)
and the system is metallic (insulating) if the winding
number is nonzero (zero) [122]. Moreover, it has recently
been reported that localization (delocalization) of wave
functions corresponds to the nontrivial (trivial) topology

Topological classification table for non-Hermitian systems in the complex AZ symmetry class. Non-Hermitian topological

phases are classified according to the AZ symmetry class, the spatial dimension d, and the definition of complex-energy point (P) or line
(L) gaps. The subscript of L specifies the line gap for the real or imaginary part of the complex spectrum.

AZ class Gap Classifying space d=0 d=1 d=2 d=3 d=4 d=>5 d=6 d=1

A P ¢ 0 z 0 z 0 z 0 z
L Cy /A 0 VA 0 Zz 0 VA 0

Alll P Co VA 0 VA 0 VA 0 VA 0
L, C 0 Z 0 Z 0 Z 0 Z
L; Cy x Cy VA WA 0 VA WA 0 VA WA 0 VA WA 0
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in a non-Hermitian quasicrystal (Aubry-André-Harper
model) [138].

B. Line gap

A complex-energy line that serves as an obstacle in the
complex-energy plane can also be subject to restrictions in
the presence of symmetry, whereas such a line is arbitrary
in the absence of symmetry. In particular, it should be either
the imaginary axis (ReE = 0) or the real axis (ImE = 0)
when symmetry imposes a real structure on the complex
spectrum. For instance, the real axis should be considered
when pairs of eigenenergies (E, E*) appear with TRS; the
imaginary axis should be considered when pairs of eige-
nenergies (E, —E*) appear with CS. In contrast to the point
gap, there are no restrictions in the presence of SLS since
SLS does not give the complex spectrum real structures
[eigenenergies just come in (E,—E) pairs]. Thus, it is
convenient to choose the line that determines the complex
gap as the imaginary axis (real gap) or the real axis
(imaginary gap), which leads to the precise definition of
the line gap in the following:

Definition 2 (line gap).—A non-Hermitian Hamiltonian
H (k) is defined to have a line gap in the real (imaginary)
part of its complex spectrum [real (imaginary) gap] if and
only if it is invertible (i.e., Vk detH(k) # 0) and the

real (imaginary) part of all the eigenenergies is nonzero
[i.e., Vk ReE(k) # 0 (ImE(k) # 0)].

Under this definition of a real (imaginary) gap, a
gapless system includes an eigenenergy with ReE(k) =0
[ImE(k) = 0] for some k. Line gaps are employed expli-
citly in Refs. [102,117,126] and implicitly in many other
pieces of work; they characterize topologically protected
boundary states, which were also observed in experiments
[145,146,148-151,153-155]. Remarkably, topologically
protected boundary states in Hermitian systems are immune
to non-Hermiticity as long as a real gap is open and relevant
symmetry is respected, which is generally ensured by the
nontrivial non-Hermitian topology in terms of line gaps.
Furthermore, the presence of an imaginary gap has a
significant influence on the nonequilibrium wave dynamics
[126], although it has no counterparts in the Hermitian band
theory.

IV. TOPOLOGICAL CLASSIFICATION

We provide topological classification of non-Hermitian
insulators and superconductors according to all the 38
symmetry classes discussed in Sec. II and the two types of
the complex-energy gaps discussed in Sec. III. Here, non-
Hermitian Hamiltonians H (k) and H, (k) are defined to be

TABLE IV. Topological classification table for non-Hermitian systems in the real AZ symmetry class. Non-Hermitian topological
phases are classified according to the AZ symmetry class, the spatial dimension d, and the definition of complex-energy point (P) or
line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part of the complex spectrum.

AZ class Gap  Classifying space d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=17
Al P Ry Z, z 0 0 0 27 0 Z,
L, Ro Zz 0 0 0 27 0 Z, Z,
L; R, Z, Z, Z 0 0 0 27 0
BDI P R, Z, Z, Z 0 0 0 27z 0
L, Ry Z, Zz 0 0 0 27z 0 Z,
I.z1 RzXRZ Zz@Zz Zz@Zz Z@Z 0 0 0 22@22 0
D P R; 0 Z, Z, Zz 0 0 0 27
L R, Z, Z, Z 0 0 0 27 0
DIII P Ry 27 0 Z, Z, Z 0 0 0
L, Rs 0 Z, Z, z 0 0 0 27z
L; Co z 0 A 0 A 0 Z 0
All P Rs 0 27 0 Z, Z, Z 0 0
L, Ry 27 0 Z, Z, Z 0 0 0
L; Re 0 0 27 0 Z, Z, Z 0
cl P R 0 0 27 0 Z, Z, Z 0
L, Rs 0 27z 0 Z, Z, Z 0 0
Ll R6XR6 0 0 22@22 0 ZZ®ZZ Z2®Zz Z@Z 0
C P R, 0 0 0 2z 0 Z, Z, Z
L Re 0 0 27 0 Z, Z, Z 0
CI P Ro Z 0 0 0 27 0 Z, Z,
L, R4 0 0 0 27 0 Z, 7, Z
L; Co Z 0 Z 0 Z 0 Z 0
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TABLE V. Topological classification table for non-Hermitian systems in the real AZ" symmetry class. Non-Hermitian topological
phases are classified according to the AZ" symmetry class, the spatial dimension d, and the definition of complex-energy point (P) or
line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part of the complex spectrum.

AZ" class Gap  Classifying space d=0 d=1 d=2 d=3 d=4 d=>5 d=6 d=17
AT P R, 0 0 0 27 0 Z, Z, Z
L Ro z 0 0 0 27 0 Z, Z,
BDI? P Ro z 0 0 0 27 0 Z, Z,
L, R, Z, Z 0 0 0 27 0 Z,
L, Ro X Ry WA 0 0 0 27 § 27 0 2,872, Z,®7Z,
Df P R, Z, Z 0 0 0 27 0 Z,
L, R, Z, Z, Z 0 0 0 27 0
L, Ro z 0 0 0 27 0 Z, Z,
DI P R, Z, Z, VA 0 0 0 27 0
L, R; 0 Z, Z, Z 0 0 0 27
L, Co Z 0 VA 0 VA 0 z 0
AII' P R; 0 Z, Z, Z 0 0 0 27
L Ry 27 0 Z, Z, z 0 0 0
c’ P Ry 27 0 Z, Z, VA 0 0 0
L, Rs 0 2Z 0 Z, Z, z 0 0
Li R4XR4 22@22 0 Zz@Zz Zz@Zz Z@Z 0 0 0
ol P Rs 0 27 0 Z, Z, Z 0 0
L, Re 0 0 27 0 Z, Z, z 0
L, Ry 27 0 Z, Z, z 0 0 0
cr p Re 0 0 27 0 7, Z, z 0
L, R, 0 0 0 27 0 Z, Z, VA
L, Co Z 0 zZ 0 z 0 z 0

topologically equivalent if and only if there exists a family
of non-Hermitian Hamiltonians H,(k) (0 <A< 1) that
interpolates between them, i.e.,

Hy_o(k) = Ho(k),  H_ (k)= H,(k) (28)

with certain symmetries and a complex-energy gap for all
A€ [0,1]. Our strategy is to reduce this non-Hermitian
problem to the established topological classification of

TABLE VL

Hermitian Hamiltonians in the AZ symmetry class without
[206-208] and with [213] additional symmetries. In par-
ticular, we demonstrate that a non-Hermitian Hamiltonian
can be continuously deformed into a unitary matrix and
hence a larger Hermitian matrix in the presence of a point
gap [Fig. 2(b); see also Theorem 1 below and its proof in
Appendix C for details] and a Hermitian or an anti-
Hermitian matrix in the presence of a line gap [Fig. 2(c);
see also Theorem 2 below and its proof in Appendix D for

Topological classification table for non-Hermitian systems in the complex AZ symmetry class with sublattice symmetry

(SLS). Non-Hermitian topological phases are classified according to the AZ symmetry class with additional SLS, the spatial dimension
d, and the definition of complex-energy point (P) or line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part
of the complex spectrum. The subscript of S, specifies the commutation (4) or anticommutation (—) relation to chiral symmetry:

FSi:iSil—‘

SLS AZclass Gap  Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=6 d="17

S, Alll P Cy 0 A 0 VA 0 Zz 0 VA
L, Cy xC 0 2@ 7 0 7@ 7 0 VWA 0 VWA
L Cy xC 0 7@ 7 0 7@ 7 0 7@ 7 0 7@ 7

S A p C, xC, 0 zZeZ 0 Z®Z 0 zZeZ 0 zZeZ
L C 0 z 0 z 0 z 0 z

S Alll P Co x Cy 77 0 77 0 77 0 7277 0
L, Co z 0 VA 0 z 0 z 0
L; Co Z 0 Z 0 z 0 z 0
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TABLE VII. Topological classification table for non-Hermitian systems in the real AZ symmetry class with sublattice symmetry
(SLS). Non-Hermitian topological phases are classified according to the AZ symmetry class with additional SLS, the spatial dimension
d, and the definition of complex-energy point (P) or line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part
of the complex spectrum. The subscript of S.. specifies the commutation (+) or anticommutation (—) relation to time-reversal symmetry
(TRS) and/or particle-hole symmetry (PHS). For the symmetry classes that involve both TRS and PHS (BDI, DIII, CII, and CI), the first
subscript specifies the relation to TRS and the second one to PHS.

SLS AZ class Gap Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=6 d=17
Sy BDI P Ry Z, VA 0 0 0 27 0 Z,
L, R, xR, 2,87 767 0 0 0 222®22 0 7,87,
L R, X R, 7,67, 767 0 0 0 22®2Z 0 7, ® 7,
S._ DIl P R, 0 z, z, z 0 0 0 27
Lr R3XR3 0 Zz@Zz Zz@Zz Z@Z 0 0 0 22@22
L ¢ 0 z 0 z 0 z 0 z
S.. c1 P Rs 0 27 0 7, z, z 0 0
L, Rs x Rs 0 27@2Z 0 7,87, 7,87, 7&7 0 0
L R x Rs 0 272®2Z7 0 7,87, 7,87, 787 0 0
S_. c P R, 0 0 0 27 0 z, z, z
Lr R7XR7 0 0 0 22@22 0 Zz@Zz Zz@Zz Z@Z
L c 0 z 0 z 0 z 0 z
S Al P ¢ 0 z 0 z 0 z 0 z
L R, 0 0 0 27 0 z, z, z
L, Ry 0 z, Z, z 0 0 0 27
S. BDI P Co z 0 z 0 z 0 z 0
L Ry z 0 0 0 27 0 z, z,
L R, z, z, z 0 0 0 27 0
S, D P C, 0 VA 0 VA 0 VA 0 VA
L R, z, z 0 0 0 27 0 z,
S_, DIII P Co VA 0 VA 0 VA 0 VA 0
L, R, z, z, z 0 0 0 27 0
L Ry z 0 0 0 27 0 z, z,
S_ All P C, 0 VA 0 VA 0 VA 0 VA
L, Ry 0 z, 7, z 0 0 0 27
L R, 0 0 0 27 0 z, z, z
S_, CII P Co VA 0 VA 0 VA 0 VA 0
L, Ry 27 0 z, z, z 0 0 0
L Re 0 0 27 0 z, z, z 0
S, C p c 0 z 0 z 0 z 0 z
L Rs 0 27 0 z, z, z 0 0
S, ¢ P Co z 0 z 0 z 0 z 0
L Re 0 0 27 0 z, z, z 0
L, Ry 27 0 z, z, z 0 0 0
S._ BDI P R, 0 z, z, z 0 0 0 27
L c, 0 z 0 z 0 z 0 z
L Ry x Ry 0 2,87 72,87, 7&Z 0 0 0 227e27
Sy DIl P Rs 0 27 0 Z, Z, VA 0 0
L, c, 0 z 0 z 0 z 0 z
L C 0 z 0 z 0 z 0 z
S._ cu P R, 0 0 0 27 0 z, z, z
L C, 0 z 0 z 0 z 0 z
Li R7XR7 0 0 0 2Z®ZZ 0 ZZ®ZZ ZZ®ZZ Z@Z

(Table continued)
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TABLE VII. (Continued)

SLS AZ class Gap Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=6 d=17
Sy CI P Ry Z, Z 0 0 0 27z 0 Z,

L, C 0 Z 0 Zz 0 Z 0 Z

L; C 0 Zz 0 Zz 0 Zz 0 Z
S, Al P Ry xRy Z,®7Z, Z&Z 0 0 0 27 & 27 0 Z, ® Z,

L, Ry Z, Z 0 0 0 27z 0 Z,

L; Ry Z, A 0 0 0 2z 0 Z,
S+_ BDI P Rz X Rz Zz (&) Zz Zz (&) Zz Z (&) Z 0 0 0 27 (%) 27 0

L, R, Z, Z, Z 0 0 0 27 0

L; R, Z, Z, Zz 0 0 0 27 0
S_ D P R3 X R4 0 Z, ®7Zy, Z,®7Z, ZDZ 0 0 0 27 ® 27

L Rs 0 Z, Z, Z 0 0 0 27z
S, DIII P Ry X Ry 27 @27 0 Z,®7Z, 72,97, Z®Z 0 0 0

L, Ry 27z 0 Z, Z, Zz 0 0 0

L; Ry 27z 0 Z, Z, Z 0 0 0
Sy All P Rs x Rs 0 27 @ 27 0 7, ®7, Z,®7Z, Z&Z 0 0

L, Rs 0 27 0 Z, Z, Z 0 0

L; Rs 0 27z 0 Z, Z, Z 0 0
S+_ CII P R6 X R6 0 0 27 (<) 27 0 Zz (<) Zz Zz (<) Zz Z (<) VA 0

L, Re 0 0 27z 0 Z, Z, A 0

L; Re 0 0 27z 0 Z, Z, Z 0
S C P R7x R4 0 0 0 27 @ 27 0 7, &7, Z,®&72, Z&Z

L R4 0 0 0 27 0 Z, Z, Z
S+_ CI P R()XRO Z@Z 0 0 0 22@22 0 Z2®Zz Z2®Zz

L, Ro z 0 0 0 27z 0 Z, Z,

L; Ro A 0 0 0 2z 0 Z, Z,
TABLE VIII. Topological classification table for non-Hermitian systems in the complex AZ symmetry class with pseudo-Hermiticity

(pH). Non-Hermitian topological phases are classified according to the AZ symmetry class with additional pH, the spatial dimension d,
and the definition of complex-energy point (P) or (L) gaps. The subscript of L specifies the line gap for the real or imaginary part of
the complex spectrum. The subscript of 5. specifies the commutation (+) or anticommutation (—) relation to chiral symmetry:

Iny = +n, T

pH AZclass Gap  Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=6 d="17

n A P Cy VA 0 VA 0 VA 0 z 0
L, Co % Co 77 0 Z®7 0 77 0 zZeZ 0
L C 0 Zz 0 Z 0 z 0 VA

Ny Alll P Cy 0 z 0 z 0 z 0 VA
L, ¢, x C, 0 ZeZ 0 Zo7Z 0 ZoZ 0 Z®7
L, C, xC, 0 Ze®7 0 Z®7Z 0 Z7e®7Z 0 Z®7

n_ Alll P Co x Cy VA WA 0 VA WA 0 VA WA 0 VA WA 0
L, Co z 0 z 0 z 0 z 0
L Cy z 0 Z 0 Z 0 z 0

details]. The K-theory classification for point gaps is also
discussed in Appendix E.

Our results are listed in the periodic tables for the
complex AZ symmetry class (Table III), the real AZ
symmetry class (Table IV), the real AZ" symmetry class

041015

(Table V), the complex AZ symmetry class with SLS
(Table VI), and the real AZ symmetry class with SLS
(Table VII). In addition to this 38-fold topological classi-
fication, we provide the periodic tables for the AZ
symmetry class with pseudo-Hermiticity (Tables VIII

-13
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TABLE IX. Topological classification table for non-Hermitian systems in the real AZ symmetry class with pseudo-Hermiticity (pH).
Non-Hermitian topological phases are classified according to the AZ symmetry class with additional pH, the spatial dimension d, and
the definition of complex-energy point (P) or line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part of the
complex spectrum. The subscript of 77, specifies the commutation (+) or anticommutation (—) relation to time-reversal symmetry (TRS)
and/or particle-hole symmetry (PHS). For the symmetry classes that involve both TRS and PHS (BDI, DIII, CII, and CI), the first
subscript specifies the relation to TRS and the second one to PHS.

pH AZ class Gap Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=26 d=17
n. Al P Ro z 0 0 0 27 0 z, z,

L Ry X Ro zZe7 0 0 0 22@2Z 0 2,87, 7,87,

L R, z, z 0 0 0 27 0 z,
n., BDI P R, z, z 0 0 0 27 0 z,

]_4r RIXRI Zz@Zz Z@Z 0 0 0 ZZ@ZZ 0 ZZ®ZZ

Li R1XR1 Zz@Zz Z@Z 0 0 0 2Z®2Z 0 Zz@Zz
7, D P R, Z, z, z 0 0 0 27 0

L Ry X Ry 2,87, 2,07, Z&Z 0 0 0 227@&22 0

L R, z, z 0 0 0 27 0 z,
7., DIl P R, 0 z, z, z 0 0 0 27

]_4r R3XR3 0 Zz@Zz Zz@Zz Z@Z 0 0 0 ZZ®2Z

L ¢ 0 z 0 z 0 z 0 z
7. Al P R, 27 0 z, Z, z 0 0 0

L RaxRy  22@2Z 0 2,87, 7,87, Z®Z 0 0 0

L Rs 0 27 0 z, z, z 0 0
ne. CI P Rs 0 27 0 z, z, z 0 0

]_4r R5XR5 0 22@22 0 Zz@Zz ZQ@ZZ Z@Z 0 0

]_41 RSXRS 0 22@22 0 Zz@Zz Zz@Zz Z@Z 0 0
n. C P Rﬁ 0 0 27 0 Zz Zz Z 0

L, Re X R 0 0 27 @ 27 0 Z, o2, Z,®Z, ZSZ 0

L Rs 0 27 0 z, z, z 0 0
ne., CI P R, 0 0 0 27 0 z, z, z

Lr R7XR7 0 0 0 22@22 0 Zz@ZQ Zz@ZZ Z@Z

L ¢, 0 z 0 z 0 z 0 z
n.. BDI P Co z 0 z 0 z 0 z 0

L Ry z 0 0 0 27 0 z, z,

L R, z, z, z 0 0 0 27 0
Ny DIIT P Co VA 0 VA 0 VA 0 VA 0

L, R, z, z, z 0 0 0 27 0

L Ry z 0 0 0 27 0 z, z,
n.. CI P Co z 0 z 0 z 0 z 0

L Ry 27 0 z, Z, z 0 0 0

L Re 0 0 27 0 z, z, z 0
. Cl P Co z 0 z 0 z 0 z 0

L, Re 0 0 27 0 z, z, z 0

L R, 27 0 z, Z, z 0 0 0
7 Al P R, Z, z, z 0 0 0 27 0

L, Co VA 0 VA 0 VA 0 VA 0

L R, 0 z, z, z 0 0 0 27
n__ BDI P R3 O Zz Zz Z 0 0 0 27

L, c, 0 z 0 z 0 z 0 z

Li R3XR3 0 Zz@Zz Zz@Zz Z@Z 0 0 0 2Z®2Z

(Table continued)

041015-14
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TABLE IX. (Continued)

pH AZ class Gap Classifying space d =0 d=1 d=2 d=3 d=4 d=5 d=26 d=17
n- D P R4 ZZ O ZZ Zz Z 0 0 O
L, Co Z 0 Z 0 A 0 Z 0
L Rs 0 Z, Z, Z 0 0 0 27
n__ DIIT P Rs 0 27 0 Z, Z, A 0 0
L, C, 0 A 0 Z 0 Z 0 A
L C 0 A 0 z 0 Z 0 A
L, Co Z 0 VA 0 Z 0 Z 0
L Ry 0 0 0 27 0 Z, Z, Z
n__ ClI P R, 0 0 0 27 0 Z, Z, A
L, C 0 Z 0 Z 0 Z 0 Z
Li R7XR7 0 0 0 22@22 0 Zz@Zz Zz@Zz Z@Z
n- C P RO VA O 0 0 2Z 0 Zz Zz
L, Co VA 0 VA 0 A 0 VA 0
L R, 0 0 0 27 0 Z, Z, A
n__ CI P R, Z, Z 0 0 0 27 0 7,
L, C 0 Z 0 Z 0 Z 0 A
L C 0 A 0 z 0 Z 0 A
/- BDI P RzXRZ Zz@Zz Zz@Zz Z@Z 0 0 0 2Z®2Z 0
L, R, Z, Z, A 0 0 0 27 0
L R, Z, Z, z 0 0 0 27 0
ni_ DIIT P Ry X Ry 27 @ 27 0 7, D72, Z, ®Zy, ZDZ 0 0 0
L, Ry 27 0 Z, Z, Z 0 0 0
L Ry 27 0 Z, Z, A 0 0 0
n_y CII P R6 X R6 0 0 27 (&) 27 0 Zz (&) Zz Zz (&) Zz VA (%) Z 0
L, Re 0 0 27 0 Z, Z, VA 0
L Re 0 0 27 0 Z, Z, Z 0
Ny_ CI P R()XRO Z@Z 0 0 0 22@22 0 ZzeZZ ZZ®ZZ
L, Ro Z 0 0 0 27 0 Z, 7,
L Ry Z 0 0 0 27 0 Z, Z,
and IX). The 7-fold periodic table based on two antiunitary U(k)

symmetries (7 | and 7 _) and unitary symmetry (S) is also
shown in Table XV in Appendix F.

A. Unitary flattening for point gaps

In the presence of a point gap, a non-Hermitian
Hamiltonian can be flattened into a unitary matrix without
point-gap closing. This property is guaranteed by the
following theorem (see Appendix C for a proof):

Theorem 1 (unitary flattening for point gaps)—If a non-
Hermitian Hamiltonian H (k) has a point gap, it can be
continuously deformed into a unitary matrix U(k) while
keeping the point gap and its symmetry [Fig. 2(b)].

Theorem 1 reduces the topological classification of a
non-Hermitian Hamiltonian to that of a unitary matrix.
Furthermore, with the flattened unitary matrix U(k), we
have a flattened Hermitian matrix

r] 0 772 _
H(k)::(w(k) . ) Bk =1. (29)

Here, the presence of symmetry for the original non-
Hermitian Hamiltonian H (k) discussed in Sec. II imposes
the following constraints on the extended Hermitian
Hamiltonian H (k):

T H (k)T = +H(-k), Ty = (TOi TO >;
(30)
C.H*(k)C3' = £H(~k), C, = (coi C;), (31)
THK) ! = -H(k), [ = (1(1 g) (32)
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S := <‘§ g); (33)

'7). (34)

o =Aw. = ()

Moreover, H (k) respects additional CS (SLS):

TH(k)Z = -H(k), = ((1) 01 ) (35)
Importantly, there exists a one-to-one correspondence
between a unitary matrix U(k) and an extended Hermitian
matrix H(k) that satisfies Eq. (35) [122,227], and hence
topology of H(k) can also be captured by the extended
Hermitian Hamiltonian H (k). Therefore, the topological
classification of a non-Hermitian Hamiltonian H (k) with a
point gap and symmetry reduces to that of a Hermitian
Hamiltonian that respects symmetry given by Egs. (30)—(35),
which was already obtained in Refs. [206-208,213]. In this
manner, the periodic tables under point gaps are obtained as
Tables III-IX. Notably, a similar theorem was proved in
Ref. [122]. However, it is not applicable in the presence of
C,, and Theorem 1 in the present work is a nontrivial
generalization of the theorem in Ref. [122].

Let us consider class DIII as an example (Table IV). The
original non-Hermitian Hamiltonian H(k) respects both
TRS and PHS:

T, H'(k)T7' = H(k), 7.7, =-1; (36)

C_HT(k)CZ' = —H(-k), C_.C:=+1. (37)
As a result, the extended and flattened Hermitian
Hamiltonian H(k) respects TRS described by Eq. (30)
with 7. 7% = —1 and PHS described by Eq. (31) with
C_C* = +1, as well as additional CS (SLS) described by
Eq. (35). Therefore, the topological classification of the
original non-Hermitian Hamiltonian reduces to that of the
Hermitian Hamiltonian in class DIII, with additional CS
that commutes with TRS and anticommutes with PHS. The
topology of such Hermitian Hamiltonians is characterized
by the classifying space R, [213].

B. Hermitian flattening for line gaps

In contrast to the unitary flattening for point gaps, the
flattening procedure changes for line gaps. In fact, a non-
Hermitian Hamiltonian can be flattened into a Hermitian
matrix in the presence of a real gap and an anti-Hermitian
matrix in the presence of an imaginary gap. This property is
guaranteed by the following theorem (see Appendix D for
a proof):

Theorem 2 (Hermitian flattening for line gaps)—If a
non-Hermitian Hamiltonian H (k) has a line gap in the real
(imaginary) part of its complex spectrum [real (imaginary)
gap], it can be continuously deformed into a Hermitian (an
anti-Hermitian) matrix while keeping the line gap and its
symmetry [Fig. 2(c)].

Theorem 2 also reduces the topological classification of
a non-Hermitian Hamiltonian to that of a Hermitian matrix
[206-208,213]. Here, we note that topology of an anti-
Hermitian Hamiltonian H (k) [i.e., H' (k) = —H (k)] under
an imaginary gap is equivalent to that of a Hermitian
Hamiltonian iH (k) under a real gap [126]. The periodic
tables under line gaps are also obtained as Tables ITI-1X.

Let us again consider class DIII as an example
(Table 1V). The original non-Hermitian Hamiltonian
H (k) respects both TRS and PHS as Egs. (36) and (37),
respectively. In the presence of a real gap, H(k) can be
flattened to a Hermitian Hamiltonian H (k) that belongs to
class DIII, which is characterized by the classifying space
R5 [206-208]. In the presence of an imaginary gap, on the
other hand, H(k) can be flattened to an anti-Hermitian
Hamiltonian H(k) that respects Egs. (36) and (37).
Importantly, the topology of H(k) is equivalent to that

of H (k) == iH (k), which respects Hermiticity and

T.H 0T =-H(-k).  T.Ti=-1; (3%

C_H"(k)CZ' = —H(-k),  C_C:=+1. (39)
Here, complex conjugation and transposition coincide with
each other due to the presence of Hermiticity, and Eq. (39)
reduces to the antiunitary constraint given by

C_H (K)CZ' = —H(—k), C.C* =+1. (40)

Thus, the non-Hermitian Hamiltonian H (k) under an imagi-
nary gap reduces to the Hermitian Hamiltonian H (k) that
respects the two antiunitary symmetries as Egs. (38) and (40).
The topology of such Hermitian Hamiltonians is character-
ized by the classifying space C, [213].

C. Topological invariants

Based on our flattening procedures, the topological
invariants for Tables III-IX are obtained in a systematic
manner. For point gaps, the extended Hermitian Hamiltonian
H (k) defined as Eq. (29) from a non-Hermitian Hamiltonian
H (k) is relevant. The topological invariant of H (k) reduces
to that of H (k), the latter of which is already obtained in the
literature [219]. For instance, let us consider a non-Hermitian
system H (k) with a point gap and no symmetry, which can
have topological phases in odd dimensions as shown in
Table I11. Since the extended Hermitian system H (k) respects
CS, the topological invariant that characterizes H (k) is given
as the winding number
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n!
1% = t H_ldH 2n+1. 41
2n+1 (27[1)”“(2714— 1)![320, I‘( ) ( )

In one dimension, this formula reduces to [122]
dk dH dk (d
W, = —tr(H ') = — | —logdetH |.
! 7]{2 27i r< dk) 7]{2 27i (dk o8 e )

(42)
Similarly, the topological invariants for the other symmetry
classes are readily determined (see Appendix G for more
examples).

For line gaps, a non-Hermitian Hamiltonian H (k) can
always be continuously deformed into a Hermitian (or an
anti-Hermitian) Hamiltonian. As a result, the topological
invariant of a non-Hermitian Hamiltonian H (k) with a line
gap is obtained in a similar manner as in the Hermitian case.
Remarkably, right and left eigenstates are different from
each other, in sharp contrast to the Hermitian case.
Nevertheless, topological invariants are given by the
combination of both eigenstates [102,117]. For instance,
in even spatial dimensions d = 2n, the nth Chern number
C, can be defined as

I /1)”
C i=— | — 1 n
Tl (2”) Azd 7

1 i\”"
= = JEi (ﬁ) [gzd tr[Qr(dQg)™"]
_ n! 12041
= (2ﬂi)”+l(2n+ 1)!AmxBZd r(GdG™) . (43)

as long as a line gap is open. Here, F, Qg, and G are non-
Hermitian extensions of the Berry curvature, the Q matrix,
and the Green function, respectively (see Appendix H 1 for
details). In addition, in odd spatial dimensions d = 2n + 1,
the winding number W, | can be defined in the presence
of CS defined by Eq. (15) with a unitary operator I" as

n!
2(27i)" 1 (2n +1)!

Wa = - | uirco-tagy ),

(44)

as long as a real gap is open. Here, Q is another non-
Hermitian extension of the O matrix that respects CS.
Whereas Qg is non-Hermitian but Q3 = 1, Q is Hermitian
but Q% # 1 (see Appendix H 2 for details). In this manner,
the topological invariants for the other symmetry classes
are readily obtained (see Appendix H for more examples).
Remarkably, it is shown that the single Chern number is
defined in two-dimensional non-Hermitian systems,
although we have four different Berry connections and
curvatures due to the distinction between right and left

eigenstates [117]. Our classification indeed corroborates
this fact, as well as generally demonstrates that the conven-
tional topological invariants in Hermitian systems are
uniquely generalized to non-Hermitian systems in the
presence of a line gap.

We note in passing that the classification is based on
homotopy over the sphere in momentum space and is thus
modified if the full Brillouin-zone torus of lattice systems is
considered. This modification is the same as that for
the Hermitian case because the topological classification
of non-Hermitian systems reduces to that of unitary,
Hermitian, and anti-Hermitian systems, all of which in
turn result in the topological classification of Hermitian
systems. In fact, the classification becomes finer, and we
have weak topological invariants as well as the strong
topological invariants shown in Tables III-IX. In three
dimensions, for instance, we may have three, three, and
one weak topological invariants corresponding to the
classification table for two, one, and zero dimensions,
respectively, in addition to one strong topological invari-
ant corresponding to the classification table for three
dimensions.

D. Dirac Hamiltonian

Hermitian topological insulators and superconductors
can be universally understood with continuum models that
have the massive Dirac Hamiltonian representation [219]:

H(k) = Zd: k.T; + mT,, (45)

i=1

where k = (ky, ..., k;) is the momentum deviation from a
relevant momentum reference point, and I'j,...,I'; are
Dirac matrices that satisfy the Clifford algebra (i.e.,
{I';,T';} = 26;;). The mass term mI', anticommutes with
all the Dirac matrices I'y,...,I"; in the kinetic term and
determines the topology of the classifying space.

Our classification suggests that non-Hermitian topologi-
cal systems can also be described by a non-Hermitian
generalization of the Dirac Hamiltonians. However, the
complex-spectral-flattening procedures distinct from the
Hermitian case imply that non-Hermiticity can modify
the proper representation of Dirac matrices. In fact, in the
presence of a point gap, non-Hermitian Dirac matrices I'?
(i=1,...,d) are defined so that their Hermitianized

matrices
P
e 0N (46)
’ o

obey the Clifford algebra (i.e., {T*,T"

P [} = 25,), which in

turn leads to the relations for I'Y,
PP\t 4 TP(TP)t —
)T+ () =26 (47)

ij-
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TABLE X. Non-Hermitian Dirac matrices. A set of non-
Hermitian Dirac matrices I'y,...,I", is shown for both cases of
point gaps and line gaps for n = 1, ..., 5 with Pauli matrices o;
and 7; (i = x, y, 2).

n Point gap Line gap

1 1 1

2 1,1 oy, Oy

3 i, 0y, 0y Oy, Oy, O,

4 i, 0, 0y, O, Oy, Oy, G, Ty, G, Ty

5 i, 0, 6y, 6,7y, 0,T Oy, Oy, 0,Ty, 0.Ty, 0,1,

y? y y?

This set of relations determines the proper non-Hermitian
Dirac matrices in the presence of a point gap. Table X
shows an example of the representations of I't’s
(i=1,...,n) for small n, which is clearly distinct from
the conventional Dirac matrices. In the presence of a line
gap, on the other hand, Dirac matrices take the same
representation as the Hermitian case since a non-Hermitian
Hamiltonian can be flattened into a Hermitian one or an
anti-Hermitian one.

The non-Hermitian Dirac Hamiltonian provides a sys-
tematic way to have a model for the classification tables. In
1D class A in Table III, for instance, a non-Hermitian Dirac
Hamiltonian can be expressed as

Hk)=k+im (meR) (48)
in the presence of a point gap. With this continuum model,
the Z topological invariant (winding number) in Eq. (42)
can be readily obtained as

dk d sgn(m)
/2 dklog (k+im) = o (49)

Here, the fractional topological invariant W is common to
continuum models for both Hermitian and non-Hermitian
cases and should be complemented by the structure of wave
functions away from the relevant momentum point. It
becomes an integer W = sgn(m) when we regularize the
mass m as m — k2.

V. BULK-BOUNDARY CORRESPONDENCE

A. Sensitivity to the boundary conditions

The hallmark of topological phases is the bulk-boundary
correspondence: topologically protected boundary states
emerge that correspond to the nontrivial topology of the
bulk states. Importantly, non-Hermiticity alters the nature of
the bulk-boundary correspondence [108,116,119,121,
124,130,132-134,136,137,139,143,144]. The essential dis-
tinction from the Hermitian case is that the bulk spectra of
non-Hermitian systems can dramatically change according

to the boundary conditions. Nevertheless, the modified bulk-
boundary correspondence has recently been established
[119,121] despite the sensitivity of the spectrum to the
boundary conditions.

Remarkably, our general classification depends not on
the boundary conditions but solely on symmetry and spatial
dimension and indeed predicts the emergence of topologi-
cally protected boundary states. As described above, the
bulk spectrum of a non-Hermitian Hamiltonian Hpgc with
periodic boundaries can be different from that of the
corresponding Hamiltonian Hgpc with open boundaries.
Whereas the topologically protected edge states may not be
described by the topological invariant determined by Hppc,
they are accompanied by the nontrivial topology of Hgpc.
In particular, since a non-Hermitian Hamiltonian with a real
gap (line gap for the real part of the spectrum) can always
be continuously deformed into a Hermitian Hamiltonian as
described in Sec. IV B, the topologically protected edge
states in a certain Hermitian system survive as long as the
real gap is open. It is also noteworthy that the wave number
for Hogc can be complex due to Hppc # Hopc, Which
signals the localization of bulk states, i.e., the non-
Hermitian skin effect [121]. Despite the complex wave
number, our classification works because the bulk
Hamiltonian is still given as a map from the d-dimensional
torus as a generalized Brillouin zone to a non-Hermitian
system with certain symmetry.

To illustrate the above ideas, we consider a non-
Hermitian extension of the Su-Schrieffer-Heeger model
(see Appendix I for details) [108,114,116,118,119,121]:

—g)bja; + (v + g)aj by

+W(1A92L_151i + aj[;i—l)]’ (50)

where a; (&,T) and Z)i (l;iT) annihilate (create) a particle on
site 7 in sublattices, respectively, v, w € R denote the
hopping amplitudes, and g € R denotes the asymmetry of
the intracell hopping v as a degree of non-Hermiticity.
Regardless of the boundary conditions, the system respects
SLS defined in Eq. (20) with S :=0_:

o H(k)oo! = —H(k), (51)
where the bulk Hamiltonian H(k) is obtained for each
boundary condition. As a result of SLS, the Z topological

invariant is well defined in the presence of a line gap (see
Table VI), which is given as the winding number

W ja{ [ (k) P K (k)] . (52)

dk
As discussed above, the bulk spectrum E(k) crucially
depends on the boundary conditions. In fact, under the
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periodic boundary condition, the bulk Hamiltonian is
given as

0 + g+ we
v+ g+ we ) (53)

Hppc (k) = <v_g+weik 0

with a real wave number k € [0,27). Under the open
boundary condition, on the other hand, the wave number
is complex and

o] = ek — 229 ‘9'. (54)

v+g

Correspondingly, the bulk Hamiltonian with open boun-
daries is given as

0 v? — g + wei
Hope(q) = (

v* — > + wel? 0
(55)

with a real wave number ¢ € [0, 27). Whereas the topologi-
cally protected edge states are not described by the winding
number defined by Hpgc, the bulk-edge correspondence
holds for Hgpc; there emerges a pair of edge states that are
topologically protected to have zero energy for W =1
determined by Hqgpc (Fig. 3). In a similar manner, the
emergence of topologically protected boundary states can be
predicted on the basis of our classification. See also Sec. VII
for the bulk-edge correspondence in other examples.

(a) PBC

(b) OBC
3

N

FIG. 3. Phase diagrams of the non-Hermitian Su-Schrieffer-
Heeger model with asymmetric hopping under (a) the periodic
boundary condition and (b) the open boundary condition. The
one-dimensional model is described by the intracell hopping v,
the intercell hopping w, and the asymmetry g of the intracell
hopping v as a degree of non-Hermiticity. Whereas the bulk
Hamiltonian dramatically depends on the boundary conditions,
the one-dimensional model respects sublattice symmetry, and the
winding number W is well defined regardless of the boundary
conditions. The emergence of the topologically protected edge
states is predicted by the phase diagram (b) under the open
boundary condition.

B. Symmetry restoration

Whereas generic non-Hermitian Hamiltonians are sen-
sitive to the boundary conditions, certain non-Hermitian
Hamiltonians may not depend on them. For example, the
bulk wave functions are delocalized, and the non-Hermitian
skin effect does not occur in a different non-Hermitian
extension of the Su-Schrieffer-Heeger model with balanced
gain and loss [102,105,114,148,154] (see also Sec. VII A
for details). Furthermore, a couple of recent works
[137,143] show that bulk states are always delocalized
in Hermitian systems, indicating the absence of the skin
effect in the presence of Hermiticity.

Here, we show that symmetry plays a significant role in
the non-Hermitian bulk-boundary correspondence. In par-
ticular, we find that the bulk Hamiltonian is generally
insensitive to the boundary conditions in the presence of
pseudo-Hermiticity in Eq. (21) or parity-time symmetry if
the bulk spectrum is real. In one dimension, we also obtain
the same property in the presence of TRS' in Eq. (16) with
C,Ci = +1 or parity (inversion) symmetry, where the bulk
spectrum can be complex. Parity symmetry is defined by

PH(k)P~' = H(-k), P? =1, (56)
where P is a unitary matrix, and parity-time symmetry is
defined by

(PT)H*(k)(PT )" =H(k). (PT.)(PT.) =+l

(57)

where P7, is a unitary matrix.

To demonstrate the insensitivity of the bulk Hamiltonian
to the boundary conditions, we begin with the characteristic
equation that determines the generalized Brillouin zone.
For clarity, we consider a generic one-dimensional system
with its length L. Suppose that the bulk Hamiltonian is
given as

1
H(k) =" H,e*,

n=-I

ke cC, (58)

where [ is the range of the hopping and H,, is an N x N
matrix that describes the internal degrees of freedom. If the
non-Hermitian system is periodic and respects translational
symmetry, the wave number £ is real due to Bloch’s theorem.
On the other hand, k can be complex under the open
boundary condition. The Schrédinger equation leads to

l
det (Z H, il

n=-1

- E) =0, (59)

which is a 2/Nth order algebraic equation for ¢!*. Its solutions
are denoted as e'f1, ... e (Jeifi] < ..o < Jeffav|), Tt is
shown that the condition

] = it | (60)
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is necessary so that the bulk spectrum is continuum for
L — oo and the generalized Brillouin zone is determined as
the trajectory of k;y and kv, [121,143].

We demonstrate that the wave numbers k;y and kjy.
should be real regardless of the boundary conditions if
pseudo-Hermiticity is present [i.e., nH (k™' = H(k)]
and the eigenenergy E is real. Under the periodic boundary
condition, k is real, and the presence of pseudo-Hermiticity
leads to

nHon™ ' =H,. (61)

By contrast, the wave number k can generally be complex
under the open boundary condition. Nevertheless, from the
characteristic equation (59), we have

!
det <Z H,ekn — E) =0, (62)

n=-—1

where the reality of £ and pseudo-Hermiticity are used.
This equation implies that the solution comes in (e¥, ")
pairs, and we have e*vii-i = ¢k due to |eF| = 1/]el|
and |e1| <. < |efw|. In particular, we have ek =
efiv, and Eq. (60) reduces to

e | = |efkivar | = 1, (63)

which indicates k;y, ki € R, ie., the reality of the
wave numbers even under the open boundary condition.
Similarly, in the presence of parity-time symmetry, we have
(PT )H%,(PT )" = H, and the pair structure (e, e'*")
for £ € R, leading to the reality of the wave numbers
regardless of the boundary conditions. The insensitivity of
bulk systems with real spectra to the boundary conditions
is consistent with recent experiments and relevant for
symmetry-protected topological lasers (see Sec. VII for
details). It is also notable that Ref. [137] obtains a similar
result for unbroken parity-time symmetry in a transfer-
matrix perspective.

In one dimension, parity symmetry or TRS™ with
C,Ci =41 leads to the real wave numbers even for
complex spectra £ € C. In fact, we have

C.HT,C:'=H, (64)

in the presence of TRS', which then leads to

!
det (Z H, e kn — E> =0 (65)
n=-—1
from the characteristic equation (59). We stress that the
reality of E is not used to derive these equations.
Consequently, the solution comes in (e, e=) pairs and
elbi-i = ¢7iki - regulting in Eq. (63). Similarly, in the
presence of parity symmetry, we have PH_,P~! = H,, and
the real wave numbers. Therefore, these types of sym-
metries restore the delocalization of bulk wave functions.

We note that the above argument may not work for TRS'

with C,C% = —1 since the (e, e7) pairs form Kramers
pairs and thus cannot mix with each other.

Before closing this section, a couple of comments are in
order. First, in generic systems, we may have additional
unitary symmetry that commutes with the Hamiltonian. In
this case, the Hamiltonian is block diagonal in the eigen-
basis of the unitary symmetry, and we need one of the
above symmetries in each eigensector to avoid the non-
Hermitian skin effect. Second, similar symmetry protection
of the conventional bulk-boundary correspondence occurs
in the presence of other point group symmetry or magnetic
point group symmetry. For instance, if reflection symmetry
is respected, i.e.,

RH(ky, k)R = H(ky, k), (66)

where R is a unitary matrix, the non-Hermitian skin effect
does not occur for the boundaries parallel to the reflec-
tion plane.

VI. SIMPLE EXAMPLES

A. Real and imaginary gaps

For each symmetry class and each spatial dimension,
multiple topological structures appear in the classification
tables. For instance, since CS acts as an anti-Hermitian
conjugation for non-Hermitian Hamiltonians such as
Eq. (15), it distinguishes between real and imaginary
gaps, both of which give different topological structures
(Table III). To understand this unique non-Hermitian
feature in detail, we consider a 2 x 2 non-Hermitian
Hamiltonian in one dimension,

H(k) = ho(k)oy + h(k) - o, (67)

where o) is the 2 x 2 identity matrix and 6 = (0,.0,,0,) is
a set of Pauli matrices. Imposing CS with I :== &, we have
the following constraints on h;(k) (i =0, x, y, 2):

h6z<k) = _hO,z (k)’

which imply that h(k) and h (k) [h.(k) and hy(k)] are
pure imaginary (real) for all k. Therefore, by redefining
ho(k) and h,(k) as hy(k) — iho(k) and h_ (k) — ik (k), we
obtain the Hamiltonian with CS as

hy (k) = hey (k). (68)

H(k) = ihg(k)oo + hy (K)o, + hy (K)o, + ih.(K)o.,  (69)

where h;(k)’s (i =0, x,y,z) are real functions. The eige-
nenergies of H(k) are given as

E(k) = iho(k) = \/I2(k) + 12(k) = K2(K). ~ (70)

and thus the system supports a real (an imaginary) gap for
(k) + 13 (k) > k2 (k) [hi(k) + hi(k) < h2(k)].
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(a) h, (b) h,

FIG. 4. Topology of 2 x 2 non-Hermitian Hamiltonians in one
dimension that respect chiral symmetry (1D class AIIl). The blue
curves delineate the surface determined by the complex-spectral
flattening. (a) Hermitian flattening with E = +1 in the presence
of a real gap. A winding number can be defined over the surface
defined by h2 + h? — h? = 1. (b) Anti-Hermitian flattening with
E = =i in the presence of an imaginary gap. Topologically stable
loops are absent on the surface defined by h? + h — h? = —1,
and hence no winding number is well defined.

First we consider the case with a real gap. After the

Hermitian flattening with E(k) = +1, h;(k)’s obey

ho(k) =0, h3(k) + hy(k) — h2(k) = 1. (71)
These conditions define a surface in the parameter space
(hy. hy, h,) of the Hamiltonian [Fig. 4(a)]. The surface is
open in the /, direction and circular in the other directions.
Each Hamiltonian with a real gap gives an image from the
one-dimensional Brillouin zone through k(k), which draws
a circle on the surface. Obviously, a one-dimensional
winding number can be defined just by counting how
many times the circle winds the surface, which coincides
with W, in Eq. (44).

By contrast, we cannot have such a winding number in
the case with an imaginary gap. After the anti-Hermitian
flattening with E(k) = +i, we have

ho(k) =0, hi(k) + hj(k) — (k) = =1, (72)
which gives a surface in Fig. 4(b). Since topologically
stable loops are absent on this surface, no one-dimensional
winding number is well defined. The above observation is
fully consistent with the periodic table III: for 1D class
AllL, the topological invariant is characterized by an integer
for a real gap [the winding number W in Eq. (44)], while it
is trivial for an imaginary gap.

B. Pseudo-Hermiticity

Although there are topological phases characterized by
the Chern number in a two-dimensional system without
symmetry (Table III), these topological phases vanish
in the presence of TRS with 7,7% =+1 under a
real gap (Table IV). However, in the presence of
pseudo-Hermiticity #_ that anticommutes with TRS
n_T, =—-T .n"), a different type of topological phases

emerges that is described by the time-reversal-invariant
Chern number [102], as shown in detail below. Therefore,
pseudo-Hermiticity provides a novel topological structure
as a unique non-Hermitian feature.

To see this unique property of pseudo-Hermiticity, we
start with the standard procedure for diagonalization of
non-Hermitian Hamiltonians. Let |u,) (|u,))) be a right
(left) eigenstate of H,

Hlun> = Enlun>’ HTlun» = EZ'”n» (73)

The eigenstates form the biorthonormal basis [36], which
obey

<um|un» = «umlun> = Opns (74)

with the completeness condition
Dl =Dl )| = 1. (75)
n n
We compactly express these biorthonormal relations as
RIL=LTR=RL'=LR =1 (76)

by introducing 2N x 2N matrices
R = (luy), uy). ...). L= (luy), lugh),...), (77)

which diagonalize H as
E,
H=R Ey R (78)

Now let us see how pseudo-Hermiticity imposes an
additional constraint. From pseudo-Hermiticity defined by
n~'H'y = H, we have

Hnlu, )] = Exlnlu, )], (79)

which implies that 7|u,)) is a right eigenstate of H with
eigenenergy E;. Therefore, E,, in general, has a complex-
conjugate partner E; in the spectrum of H. This simple
structure leads to significant consequences. In particular, an
isolated real eigenenergy of H remains real for any
continuous deformation of H unless it coalesces with other
eigenenergies. In fact, the above constraint implies that
eigenenergies should come in complex-conjugate pairs,
and thus an isolated real eigenenergy cannot become
complex by itself. Such reality of the spectrum is important
to obtain stable states in non-Hermitian systems. For
example, it is relevant for topological lasers as discussed
in Sec. VII B and for free bosons as discussed in Sec. VIII.

Pseudo-Hermiticity also gives a nontrivial topological
structure [102]. In the presence of a real gap at ReE = Ep,
for instance, we can define an “empty” (“occupied”) state
as a state with ReE, > Er (ReE, < Eg). If |u,) is an
occupied (empty) state, so is 7|u,)) since |u,) and n|u,)
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have eigenenergies with the same real part. From the
completeness of the basis, we can relate them as

”'un» = Z'um>cmn7 (80)

with ¢,,, == {u,n|n|u,). Here, we have c,, =0 for
E, # E;, and c,,, is Hermitian with respect to the indices
m and n (i.e., ¢,,, = Ci,,) since n is Hermitian. Thus, we
can diagonalize c,,, by a unitary matrix G without mixing
between occupied and empty states,

ZG}kmclka" = /Imémn’ (81)
lk

with real eigenvalues 4,,. Taking the new biorthogonal basis

Gmn
) = glummmn ale |u) = §mj|um>> N
(82)
nlea) = sgn(d,)|e, ). (83)

Therefore, both occupied states and empty states in the new
basis are divided into two subsectors, i.e., states with

nldn) = +lou) (84)

and states with

Ndn) = =l du)- (85)

We denote these states as |¢;). This is a non-Hermitian
generalization of the 5 eigensector. In fact, for Hermitian H,
the right and left eigenstates coincide with each other, and
thus the above equations reduce to the eigenequations of #:
nlgE) = +|¢;). Importantly, the new basis {|¢)} is no
longer eigenstates of H unless E, is real. Indeed, G,,,
mixes the eigenstate with £, and that with E;;. However,
since G,,,, does not mix occupied and empty states, the new
basis {|¢ )} keeps the same topology as the original one
{|u,) }, while the subsector structure manifests itself only in
the new basis.

The presence of this subsector structure enables us to
introduce a topological invariant for each subsector. For
instance, in the case of class A with pseudo-Hermiticity in
two dimensions, the Chern number Cf in Eq. (43) is
defined for each subsector. As shown in Table VIII, these
two independent Chern numbers agree with two integer
topological invariants (Z @ Z) in 2D class A with pseudo-
Hermiticity in the presence of a real gap (see Appendix H 4
for another formula). This subsector structure also makes it
possible to define the nonzero Chern number even in time-
reversal-symmetric systems. From time-reversal symmetry,
the total Chern number vanishes (i.e., C,; + C, = 0), but

their difference can be nonzero [ie., (Cf —C;)/2#
0 € Z], which is referred to as the time-reversal-invariant
Chern number in Ref. [102]. As shown in Table IX, our
classification correctly captures this integer invariant (Z) in
the presence of a real gap. It is also found that pseudo-
Hermiticity is naturally imposed on free bosonic systems,
which is discussed separately in Sec. VIIIL

VII. EXPERIMENTAL RELEVANCE

A. Recent experiments

Our topological classification of non-Hermitian systems
based on internal symmetry is directly relevant to various
experiments in nonequilibrium open systems with gain and/
or loss [145,146,148-151,153-155]. In fact, the observed
topologically protected edge states are justified by the
periodic tables III-IX. For instance, topologically protected
bound states were observed in a passive dimerized photonic
crystal in one dimension [148]. Moreover, lasing topologi-
cal edge states were observed in an active (pumped) array
of microring resonators in one dimension [154]. Both
systems are essentially described by the Su-Schrieffer-
Heeger model [158] with balanced gain and loss
[102,105,114]:

+iy(aja; - biby)]. (86)

where a; (&IT) and @i (lSj) annihilate (create) a photon on site
i in sublattices, respectively, v, w € R denote the hopping
amplitudes, and y € R denotes the balanced gain and loss
as a degree of non-Hermiticity. In momentum space, the
Bloch Hamiltonian is obtained as

H(k)-( iy v+we‘ik>.

) 87
v + welk —iy ®7)

Although this system no longer respects SLS due to the
presence of gain and loss, it remains to respect CS defined
by Eq. (15) with I" :=06:

o H' (Koo' = —H (k). (88)

This system thus belongs to AZ symmetry class Alll, and
our classification table III predicts the topological phase
characterized by integers under the definition of a real gap
(line gap in the real part of the complex spectrum). This Z
topological phase is characterized by the winding number
W, in Eq. (44), where the Hermitian Q matrix is given
as [102]

1
o = e

0 v+ we K )
v+ welk 0 ’

(89)
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The nonzero winding number implies the emergence of
topologically protected bound states with ReE = 0, which
are indeed observed in experiments [148,154]. In stark
contrast to Hermitian systems, these bound states can have
eigenenergies with positive imaginary parts, which leads to
their amplification (lasing) with time [154]. Notably, the
bulk real spectrum does not depend on the boundary
conditions, and the non-Hermitian skin effect does not
occur in this system. This insensitivity to the boundary
conditions originates from parity-time symmetry in
Eq. (57) with PT_ :=0,:

o .H*(k)oy' = H(k). (90)

We also emphasize that the topological phase in this system
cannot be captured by the classification in Ref. [122],
which considers neither the line gap nor the CS that is
essential in this non-Hermitian topological phase.

Another prime example is topological lasers in two
dimensions [151,155], which are non-Hermitian extensions
of the Chern insulator such as the Haldane model [161]
with energy gain. In Ref. [151], magneto-optic effects
are used to break time-reversal symmetry, and a two-
dimensional photonic crystal subject to an external mag-
netic field and uniform gain is realized. In Ref. [155], on the
other hand, a two-dimensional topological cavity array with
optical gain is experimentally realized that does not require
magnetic elements and has a larger photonic band gap.
These topological lasers possess topologically protected
chiral edge states even in the presence of non-Hermiticity,
by which single-mode and high-efficiency lasers are
realized due to the topological immunity against defects
and disorder. The topological lasers do not rely on any
symmetry and hence belong to AZ symmetry class A in two
dimensions; the chiral edge states are attributed to the
topological invariant characterized by an integer (Table III).
This Z topological invariant is given by the Chern number
Cy in Eq. (43) [104,117,121,124]. Remarkably, only the
edge resonators are selectively pumped, and non-
Hermiticity is added only to the edges in Ref. [155]; the
bulk essentially remains the same as the Hermitian one.
Nevertheless, it is nontrivial whether the chiral edge states
in a Hermitian Chern insulator survive even in the presence
of non-Hermiticity, and it is possible that they can be
gapped out and disappear without closing a band gap, even
if non-Hermiticity is added only at the edges. Importantly,
our classification generally ensures that the topological
edge states are immune to non-Hermiticity as long as it
does not close a (real) line gap of the bulk. Here, again, the
topological phase of this non-Hermitian system cannot be
explained by the classification in Ref. [122], which only
considers point gaps.

B. Symmetry-protected topological laser

Whereas the existing topological lasers in two dimen-
sions [151,155] do not rely on any symmetry, symmetry

protection is needed for their systematic design. In fact,
while a defining characteristic of topological lasers is the
entire real spectra of bulk states and the complex spectra of
topologically protected edge states, the entire reality is, in
general, unfeasible without symmetry protection. More-
over, whereas the observed lasing edge states are chiral,
certain symmetry is needed for a different type of lasing
edge states such as helical ones. Our theory provides a
general recipe for designing the symmetry-protected topo-
logical lasers. In particular, our framework incorporates
pseudo-Hermiticity in Eq. (21) [220], which leads to the
reality of spectra in non-Hermitian systems as discussed in
Sec. VIB. Furthermore, the presence of a real gap is
necessary for the real bulk spectrum, across which topo-
logically protected edge states appear. There are a number
of possible candidates for pseudo-Hermiticity-protected
topological lasers in Tables VIII and IX. It is also notable
that all the bulk states are delocalized, and no skin effects
occur in the symmetry-protected topological lasers due to
the real bulk spectrum ensured by pseudo-Hermiticity, as
demonstrated in Sec. V B.

To illustrate how our theory systematically predicts
symmetry-protected topological lasers, here we focus on
the case in the presence of TRS in Eq. (10) as well as pseudo-
Hermiticity. Although two-dimensional topological phases
are usually absent in the presence of TRS with 7, 7% = +1,
they can appear if TRS anticommutes with pseudo-
Hermiticity as a unique feature of non-Hermitian symmetry
[102] (see also Sec. VIB). This situation corresponds to
symmetry class Al with pseudo-Hermiticity #_ in Table IX,
which indeed hosts Z topological phases in two dimensions.
Their topological invariants are given as the Chern number
C, in Eq. (43) with respect to nH (k), whereas the Chern
number of the original Hamiltonian H (k) always vanishes
due to the presence of TRS (see Appendix H 4 for details).
We also note that TRS' in Eq. (16) with C,.Cl = —1 is
respected as a combination of TRS and pseudo-Hermiticity
(i.e., C, =17 ;). As a result, the complex spectrum is
twofold degenerate because of the Kramers theorem for non-
Hermitian systems (see Sec. II C), and thus lasing helical
edge states emerge as a signature of the nontrivial topology.

A typical example of the pseudo-Hermiticity-protected
topological lasers with TRS is given as

H(k) = t(cos k, — cos k)7, + t(sink, sink,)o,7,

+ (m +tcosk, + tcosk,)r, +iyo,z,, (91)
with ¢, m,y € R. The system indeed respects both TRS and
pseudo-Hermiticity:

H*(k) = H(-k), o,H'(k)o;' = H(k). (92)
As a combination of these symmetries, it also respects
TRS with C,C. = -1, i.e,
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FIG. 5. Complex spectrum of the symmetry-protected topological laser. In panels (a,b,d,e,g,h), the open boundary condition is
imposed for the y direction (30 sites), whereas the periodic boundary condition is imposed for the x direction, along which the wave
number k, is defined. For panels (c,f,i), the open boundary condition is imposed for both x and y directions (30 x 30 sites). The complex
spectrum is twofold degenerate as a result of the non-Hermitian Kramers theorem. (a—c) Real-gapped phase with nontrivial topology
(t=1.0, m = —0.4, y = 0.5). Whereas the bulk states have entirely real eigenenergies due to pseudo-Hermiticity, lasing helical edge
states emerge with the nonzero imaginary part of the eigenenergies between the real-gapped bulk bands. The helical edge states form
pairs of exceptional points. (d—f) Real-gapped phase with trivial topology (1 = 1.0, m = —3.0, y = 0.8). The spectrum is entirely real,
and no topologically protected edge states emerge. (g—i) Real-gapless phase (f = 1.0, m = —0.4, y = 1.0). The real gap is closed for the
sufficiently strong non-Hermiticity, and even the bulk states can have the nonzero imaginary part of the eigenenergies due to

spontaneous breaking of pseudo-Hermiticity.

*—_
6,0y = 1.

o,H' (k)o, = H(—k), (93)
The presence of TRS™ leads to the Kramers degeneracy of
the spectrum at the time-reversal-invariant momenta.
Moreover, it respects parity (inversion) symmetry

H(k) = H(k), (94)

and hence parity-time
obtained as

symmetry. The spectrum is

E(k) = %[*(cos k, — cosk,)? + 1 sin® k, sin* k,

(m+ tcosk, + tcosk,)? — y*]1/2. (95)
If the non-Hermiticity y is sufficiently weak, a real gap
remains open. In the real-gapped phase with the topologi-
cally nontrivial bulk, helical edge states emerge corre-
sponding to the nonzero Chern number C; # 0 for nH (k)
[Figs. 5(a)-5(c)]. The bulk spectrum is entirely real and
hence stable due to the presence of pseudo-Hermiticity and
parity-time symmetry. Remarkably, the helical edge states
form pairs of exceptional points in the complex spectrum
and can have the nonzero imaginary parts of the eigene-
nergies, which leads to the amplification (lasing) of these

helical edge states with time. In the real-gapped phase with
the topologically trivial bulk, on the other hand, such lasing
helical edge states do not appear, and the entire spectrum is
real despite non-Hermiticity [Figs. 5(d)-5(f)]. Furthermore,
the real gap is closed for sufficiently strong non-
Hermiticity, and the bulk spectrum becomes complex
and unstable due to spontaneous breaking of pseudo-
Hermiticity and parity-time symmetry [Figs. 5(g)-5(@1)].
It is also noteworthy that helical edge states are forbidden to
have complex eigenenergies and cannot be lasing for
|Ci| = 1. In fact, a pair of helical edge states may be
degenerate only at the time-reversal-invariant momenta,
and the formation of exceptional points is impossible due to
the Kramers theorem for |C;| = 1. For Figs. 5(a)-5(c), on
the other hand, two pairs of them emerge due to |C,| = 2,
which enables the degeneracy away from the time-reversal-
invariant momenta and the formation of exceptional points.

A clear signature of the lasing helical edge states
manifests itself in the dynamics. In particular, we consider
the dynamics of a wave packet whose initial state is
prepared to be a localized wave function. Since the lasing
helical edge states emerge in the topological phase, the
wave packet remains localized under the time evolution
[Fig. 6(a)]. Because of the helical nature of the lasing edge
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FIG. 6. Dynamics of the symmetry-protected topological laser.
The system has open boundaries along both directions with
30 x 30 sites. An initial state is a localized wave function
o) & 32, e (7159 /40-0=1/10 and  the evolutions of the
normalized intensity |(x, ylw,)|*/{w.ly:) with ) = e=|y)
are shown for 1 = 0, 20, 40. (a) In the topological phase (1 = 1.0,
m = —0.4, y=0.5), the wave packet remains localized and
moves bidirectionally along the edges due to the presence of
the lasing helical edge states. (b) In the trivial phase (r = 1.0,
m = —3.0, y = 0.8), the wave packet quickly diffuses into the
bulk due to the absence of the robust edge states.

0 5 10 15 20 25 30

states, they move bidirectionally along the edges, which is
to be contrasted with the topological lasers that rely on no
symmetry protection and support the lasing chiral edge
states [151,155]. Notably, the group velocity Vi (ReE) of
the lasing edge states vanishes, and the wave packet moves
slowly because ReE(k) is flat for ImE(k) # O in this model
[Figs. 5(a)-5(c)]. However, an arbitrary potential (k) is
allowed in this symmetry class as long as it satisfies
e(k) = e(—k) = €*(k), and hence the transport of the wave
packet can be controlled in a flexible manner. In the trivial
phase, on the other hand, the wave packet quickly diffuses
into the bulk because of the absence of the robust edge
states [Fig. 6(b)]. Therefore, these dynamical features serve
as a clear experimental signature of the lasing helical edge
states. Importantly, whereas the specific symmetry class is

considered here as an illustration, our classification
tables VIII and IX have the potential to bring about a
number of different types of symmetry-protected topologi-
cal lasers.

C. Dissipative topological superconductor

Non-Hermitian extensions of topological superconduc-
tors constitute another salient platform for our theoretical
framework. Remarkably, since the physical PHS defined
by Eq. (13) in terms of transposition has not been
identified, the previous classification [122] does not
encompass non-Hermitian superconductors. Here, we con-
sider non-Hermitian spinless superconductors, which
intrinsically possess PHS with C_C* = +1 and belong to
class D (Table IV). Because of PHS in Eq. (13), eigene-
nergies, in general, come in (E, —E) pairs, and a simulta-
neous eigenstate of the Hamiltonian and the PHS operator
possesses zero energy.

The salient feature of topological superconductors is the
emergence of Majorana fermions at their boundaries
[182,183]. Because of the nontrivial Z, topology in one
dimension for a line gap, the Majorana zero modes are
robust even in the presence of non-Hermiticity as long as a
line gap is open [Fig. 7(a)]. The corresponding bulk
topological invariant v € {0, 1} is given by

(a) Im E (b) Im E

Line gap

Majorana
@

Re E Re E
(c) Im E (d) ImE
Line gap
Majorana Re E ReE

FIG. 7. Complex spectra of non-Hermitian topological super-
conductors (class D). Complex eigenenergies (blue regions) come
in (E, —E) pairs due to particle-hole symmetry. In one dimension,
the Majorana zero modes (red points) survive in the presence of
(a) a line gap and (b) a point gap, which originates from the Z,
topology of the bulk. In two dimensions, the chiral Majorana
edge states (red lines) survive in the presence of (c) a line gap due
to the Z topology (Chern number). Whereas their number is not
invariant if the line gap is closed, their parity is invariant in the
presence of (d) a point gap due to the Z, topology.
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dlogdet[H(k)C_]}}, (96)

which is equivalent to the z-quantized Berry phase defined
over the entire Brillouin zone (see Appendix H3 for
details). As with the Hermitian case [228], PHS ensures
that the Majorana zero modes possess zero energy even in
non-Hermitian systems. In fact, if a Majorana zero mode

A

Y, ..o localized at one edge is perturbed to have a nonzero
energy oE # 0, there should exist the other mode é‘i‘zem@'l
localized at the same edge with energy —dFE, which is
incompatible with the assumption that the number of
topologically protected edge modes is at most one per
one edge in the presence of a line gap. Furthermore, as a
direct result of the nontrivial Z, topology for a point gap,
the Majorana zero modes survive even if the bulk complex
spectrum encircles zero energy [Fig. 7(b)]. This remarkable
immunity originates from the unique gap structure of non-
Hermitian systems. The corresponding Z, topological
invariant is again given by Eq. (96) (see Appendix G 6
for details).

A prime example of the non-Hermitian topological
superconducting wire is a Kitaev chain [175] with the
complex chemical potential:

L-1
H= (—tU7,T-V7j+1 + Ay + Heel)
=

L
. |
wtind (#95-3): (97)
where y; (zi/j) annihilates (creates) a fermion on site j, and
t, A, and p are the hopping amplitude, the p-wave pairing
gap, and the chemical potential, respectively. Moreover, y
describes a degree of non-Hermiticity, which is attributed to
the external gain and/or loss [120] or the finite lifetime of
quasiparticles [7]. In momentum space, the Hamiltonian
reads

N 1
H = —QZ(&/Z

with the BdG Hamiltonian

ponw( ) oy

2iAsink

+iy+2tcosk
H(k)_(” ! . ) (99)
—(u+1iy +2tcosk)

—2iA*sink

The bulk spectrum is obtained as

E(k) = j:\/(u +1iy +2tcosk)? + 4|A*sin? k,  (100)

and both point and line gaps close for

(101)

() ) =

The bulk Hamiltonian does not depend on the boundary
conditions, and no skin effects occur in this system, which
originates from parity symmetry in Eq. (56) with P = o_:

o H(k)oo! = H(=k). (102)

Remarkably, the non-Hermitian BdG Hamiltonian
(y # 0) indeed respects not PHS' but PHS with C_ = o,:

o H' (k)o, = —H(=k),

(103)
o H*(k)o, # —H(—k).

Because of PHS, the Z, topological invariant v in Eq. (96)
is well defined as long as complex-energy gaps are open;
we have v=1 (=0) for (u/2t)>+ (y/2|A])? <1
[(1/21)* + (y/2|A])? > 1]. Corresponding to this Z, top-
ology of the bulk, a pair of Majorana edge states emerges,
which satisfies [H,¥,.,,] = 0 (L — o) and is given as

L N
(1) HA 1y T

Wiero ; <_ 2 > aj,

~(2) L Uiy Jj-1,

Wiero o Z (_ 27 > bLJrl_ja

J=1

(104)

. . . . . A — A A T
where 7 = A is assumed for simplicity, and a; = y; +;
and b; := (yr; — I/AIJ;) /i are Majorana operators. Despite the
persistence of the Majorana zero modes, non-Hermiticity
alters their statistics into ¥}, # ¥,.;o and

5% (2ip = 1)y
{‘Pzero’ leero} =2 |:1 - 42 (,U i 1]/)2 s
5 (105)
A /\T - }/
{lPZCI’07 lIIZ@I’O} - 2 |:1 - m] '
where the zero modes are normalized so that they satisfy
the canonical anticommutation relations in the Hermitian
limit (y = 0). These anomalous statistics contrast with the
conventional ones for Majorana fermions in the Hermitian
counterpart, which originates from the distinction between
right and left eigenstates in non-Hermitian systems [120].

In fact, the Majorana operators respect ‘i’zem =¥,
instead of W, = W¥,.,, with the Majorana zero modes

¥,.., for H'. Whereas a p-wave superconductor is con-
sidered here, similar Majorana zero modes can emerge also
in non-Hermitian s-wave superconductors. Recently,
Ref. [144] has explicitly constructed a model of a non-
Hermitian s-wave superconductor with a point gap that
indeed supports Majorana zero modes.
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In two dimensions, chiral Majorana modes emerge along
the edges. Because of the nontrivial Z topology for a line
gap, these chiral edge modes survive non-Hermiticity as
long as a line gap is open [Fig. 7(c)]. The corresponding
topological invariant is given as the Chern number C; in
Eq. (43). On the other hand, if the line gap is closed and
only a point gap is open, C; is not well defined, and
accordingly, the number of the chiral edge modes changes
without closing the point gap. Nevertheless, only a pair of
the chiral edge modes can be absorbed into the bulk,
and their parity is invariant as long as the point gap is
open [Fig. 7(d)] because eigenenergies are paired by
(E(k),—E(—k)) due to PHS. This parity conservation of
the chiral edge modes corresponds to the Z, invariant
v € {0,1} defined by

1y o JPE[H (kx, )C]
( 1) Xl;lnsg {Pf[H(kX—)C—]

b=k,

xexp[—% / dlogdet[H(k)c_]H, (106)

k=ky_

where (ki,, ki_) and (ky, k) are two pairs of particle-
hole-symmetric momenta (see Appendix G 7 for details).
Notably, v is equivalent to the parity of C; [i.e., C; (mod 2)]
defined in the presence of the line gap.

VIII. FREE BOSON

A. Topological classification

Whereas the topological classification of Hermitian free
fermions was well established [206-208], its bosonic
counterpart has been absent even in Hermitian systems.
Our theory of non-Hermitian systems provides such topo-
logical classification of Hermitian and non-Hermitian free
bosons. We consider a generic noninteracting (quadratic)
bosonic system

.1 a
H:_(&T d>HBdG I (107)

2 at
with a set of bosonic annihilation (creation) operators @:=
(@y.....ay) [a"=(a].....a})], which satisfies [a;.a] =5,
la;,a;] = [a],al] = 0. Here, the non-Hermitian BdG

J J
Hamiltonian Hpyg is described by

M A,
Hpgo = A M)

where M and A, are N X N non-Hermitian matrices, and
A are required to be symmetric (i.e., AL = A.) because
of Bose statistics. In the presence of Hermiticity, M
becomes Hermitian and A, satisfies A} = A_.

In contrast to fermionic systems whose BdG
Hamiltonians are diagonalized with unitary matrices,

(108)

bosonic BAG Hamiltonians should be diagonalized with
paraunitary matrices so that their quasiparticles fulfill Bose
statistics [32]. In other words, we should diagonalize not
the original BAG Hamiltonian Hpyg but the effective matrix

M A,
—A_ -MT

). (109)

H g4 = 0 .Hpag = (

Here, the effective matrix H ;54 is generally non-Hermitian
even if the original BAG Hamiltonian Hg,g is Hermitian.
Importantly, the non-Hermiticity results from Bose statistics,
which may induce dynamical instability [32].

To consider the topological phases of free bosons,
symmetry imposed on the effective non-Hermitian matrix
H p4c is relevant. In general, owing to AT = A, H g4
respects PHS,

C'Hlp46C- = —Hpac (110)
with C_ := o, which reduces to Eq. (13) in momentum
space. Moreover, in the presence of Hermiticity for Hpgg,
H g4 respects pseudo-Hermiticity,

”_IH;BdGW = H 4G, (111)
with 7 :==o,, which reduces to Eq. (21) in momentum
space. Therefore, the topological classification of
Hermitian and non-Hermitian free bosons reduces to that
of the non-Hermitian matrix H ;54 that respects Eqs. (110)
and/or (111) in addition to some other symmetries, which is
already obtained in the periodic tables.

PHS and pseudo-Hermiticity in Egs. (110) and (111)
satisfy C_Ct = —1 and {5,C_} =0. Therefore, in the
absence of TRS and other additional symmetries, a non-
interacting bosonic BdG system naturally belongs to class
C (class C with #_) for non-Hermitian (Hermitian) Hpyg.
On the other hand, in the presence of TRS, which usually
obeys 7 T% =1 for bosonic systems, the natural sym-
metry class is class CI (class CI with n,_). To apply our
classification to bosonic systems, however, a more careful
consideration for an energy gap is necessary. For Hermitian
fermionic systems with PHS, we usually assume a gap at
zero energy. In the case of Hermitian superconductors, for
instance, we take a superconducting gap at zero energy
since all states below the gap are fully occupied in the
ground state at zero temperature, and the lowest excited
state appears in the gap. For free bosons, on the other hand,
this assumption is not obvious since any states are not fully
occupied in the ground state because of Bose statistics.
Thus, we can consider an energy gap away from zero
energy. In this case, the choice does not respect PHS, and
hence the topological classification effectively neglects
PHS. Therefore, the relevant symmetry class is class A
(class A + 1) or class Al (class Al + 7, ) for non-Hermitian
(Hermitian) Hgyg instead.
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Our topological classification describes topological phe-
nomena of free bosons [24-32]. In class A with 7,
Table VIII predicts the topological phase characterized
by an integer in two dimensions in the presence of a real
gap, which corroborates the magnon Hall effect [24] as a
bosonic counterpart of the quantum Hall effect. It should be
noted here that Hpyg in Ref. [25] is positive definite as well
as Hermitian, so that the Z @ Z invariant reduces to the
single Chern number (Z), as explained later. Recently, a
bosonic analogue of the Z, topological insulator was also
proposed in Ref. [31]. In addition to Egs. (110) and (111),
this system respects pseudo-time-reversal symmetry given
by Eq. (10) with 7,77 = —1, which leads to symmetry
class AII with pseudo-Hermiticity 7, . Table IX predicts the
Z, topological phase in two dimensions in the presence of a
real gap, which is consistent with the Z, topological
invariant constructed in Ref. [31]. Again, we note that
the Z, @ Z, invariant reduces to the single Z, number
since Hpqyg 1s positive definite. Remarkably, our topologi-
cal classification not only justifies the known bosonic
topological phenomena but also may lead to novel topo-
logical phases of free bosons.

B. Pseudo-Hermiticity and paraunitary condition

Because of pseudo-Hermiticity, H,gqg may host real
eigenvalues despite non-Hermiticity, and additional topo-
logical structures appear, as explained in Sec. VIB.
Meanwhile, as mentioned above, H,g4g is diagonalized
by a paraunitary rather than unitary matrix. In fact, this
unique feature of bosonic systems is a consequence of the
real spectrum and pseudo-Hermiticity, as described in
detail below.

Let |u,) (lu,)) be a right (left) eigenstate of H,gqg-
Using the same procedure as in Sec. VIB, we take the
biorthonormal basis  (|¢;F), [¢f)) in  which ¢, =
{u,|nlu,) is diagonal. When the eigenvalues of H,pyg
are real, this basis also diagonalizes H,p4g, and thus we
have

HaBdG|¢$> = Erﬂ(f’ﬂ ’1|¢$» = i|¢$>- (112)
Therefore, introducing the following matrices,
R= (), [n): 7). o [D3)). (113)
L= (|g) s [N 17D s [dN D)
we have
E+
H(rBdG:R< E_)R-l, nL = Ro., (114)

with E* := diag(Ef, ..., Ex). Recalling 7 =0, and the
biorthonormal relation LR" =1, the latter equation in
Eq. (114) yields nothing but the paraunitary condition
given by

Ro.R" =o0.. (115)

The original bosonic BdG Hamiltonian Hg,g is often
supposed to be positive definite as well as Hermitian. In this
case, we can construct R as follows [25]. From the
Cholesky decomposition [229], Hgyg is recast into the
product of an invertible upper triangle matrix K and its
Hermitian conjugate K' as

Hpi = KK'. (116)

Then, we introduce the Hermitian matrix Ko K' and
diagonalize it by a unitary matrix U,

0 )UT,
—€

where ¢ := diag(ey, ..., ey) is a diagonal matrix consisting
of positive eigenvalues of Ko.K'. From Sylvester’s law of
inertia [229], the numbers of positive and negative eigen-
values of Ko K" are the same, and thus KoK’ can be
diagonalized in the form of Eq. (117). Rewriting the right-
hand side of Eq. (117) as

e? 0 e 0 el 0 )
(% we)lo )0 Ja) am

€
Ko K" = U<O (117)

we obtain
. e 0
HUBdGZJZK'K:R< >R_1, (119)
0 —e¢
where
4 e 0
R:=K U< 0 81/2> (120)

satisfies the paraunitary condition in Eq. (115).

From the above construction, we can see that the
positive-definite Hermitian condition for Hgyg provides
a strong constraint. Comparing Eq. (114) with Eq. (119),
we have E* = +e. Therefore, a positive (negative)
energy state |u) in Eq. (119) always satisfies n|u)) = |u)
(n|u) = —|u)). We can also show that positive-energy and
negative-energy eigenstates are related to each other by
PHS in Eq. (110). Thus, the sector with 5|u)) = |u) and
that with n|u)) = —|u) are not independent of each other,
and thus they are characterized by the same topological
invariant. This constraint reduces possible independent
topological invariants.

IX. CONCLUSION

We have clarified symmetry and complex-energy gaps in
non-Hermitian physics and sorted out all the non-Hermitian
topological phases. Whereas symmetries are unified in non-
Hermitian physics [126], they can also ramify due to the
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distinction between complex conjugation and transposition
for non-Hermitian Hamiltonians. As a result, the non-
Hermitian symmetry class is 38-fold beyond the celebrated
10-fold AZ symmetry class [205], each of which describes
intrinsic non-Hermitian topological phases as well as non-
Hermitian random matrices. Moreover, a complex-energy
gap can be either pointlike (zero dimensional) or linelike
(one dimensional) due to the complex nature of the energy
spectrum, which enriches non-Hermitian topology. On the
basis of these fundamental insights in non-Hermitian
physics, we have classified all the non-Hermitian topo-
logical phases as summarized in the periodic tables ITI-IX.
This classification corroborates the unique lasing and
transport phenomena recently observed in experiments
[145,146,148-151,153—-155]. Although these experiments
cannot be described by the previous classification
provided in Ref. [122], our work provides a more general
and comprehensive framework, so that the book on non-
Hermitian topological systems has now been closed.

The theoretical framework developed in the present work
opens up new applications in non-Hermitian physics. One
of the crucial ones is to find and design novel symmetry-
protected topological lasers. Whereas a two-dimensional
one has been discussed in this work, even three-dimen-
sional ones can be systematically explored on the basis of
our classification theory. Our framework can also be
applied to find topological phases in non-Hermitian super-
conductors, which has the potential to be of use in
topological quantum computation [230]. We hope that
our general theory of symmetry and topology in non-
Hermitian physics will lead to such novel phenomena and
functionalities that originate from the interplay of non-
Hermiticity and topology.
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Note added.—Recently, a related work by Zhou and Lee
appeared [231]. Although Ref. [231] initially counted the
number of symmetry classes as 42, Ref. [231] has corrected
it as 38 after learning about our 38-fold symmetry classi-
fication [232].

APPENDIX A: SUBLATTICE SYMMETRY AS AN
ADDITIONAL SYMMETRY

SLS can be considered an additional symmetry to the AZ
symmetry [213] as shown in Tables XI and XII. Moreover,
Table XIII shows the equivalence between the real AZ
symmetry class with SLS and the real AZ" symmetry class
with SLS. Let us take class DIII' as an example. In this
symmetry class, the Hamiltonian respects both TRS' and
PHS':

C.HT(k)C7' = H(~k),
T_H*(k)T-' = —H(-k),

C.CL=-1;

Al
T Tt =+1. (A1)

We consider adding SLS that satisfies

TABLE XI. Possible types [t =0, 1 (mod 2)] of sublattice
symmetry as an additional symmetry in the complex AZ
symmetry class [s = 0, 1 (mod 2)]. The subscript of S.. specifies
the commutation (+) or anticommutation (—) relation to chiral
symmetry: 'Sy = £S5, T

K AZ class t=20 tr=1
0 A S
1 Alll S, S_
TABLE XII.  Possible types [t = 0, 1, 2, 3 (mod 4)] of sublattice

symmetry as an additional symmetry in the real AZ symmetry
class [s =0, 1,...,7 (mod 8)]. The subscript of S, specifies the
commutation (+) or anticommutation (—) relation between S,
and time-reversal symmetry (TRS) and/or particle-hole symmetry
(PHS). For the symmetry classes that involve both TRS and PHS
(BDI, DIII, CII, and CI), the first subscript specifies the relation to
TRS and the second one to PHS. Classes Al with S_, BDI with
S_, orS__, and CII with S_, or S__ are equivalent to classes
AIl with S_, DIII with S_, or S__, and CI with S_, or S__,
respectively.

K AZ class t=0 tr=1 t=2 tr=3
0 Al S_ S,
1 BDI S,y S_, S__ S,
2 D S, S_
3 DIII S__ S_y Sy S,
4 All S_ Sy
5 CIl Sy S_y S__ S,
6 C S, S_
7 CI S__ S_y Sy S,
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TABLE XIII. Equivalence between the real AZ symmetry class with sublattice symmetry (SLS) and the real AZ"
symmetry class with SLS. The subscript of S.. specifies the commutation (4) or anticommutation (—) relation to
TRS/TRS' and/or PHS/PHS'. For the symmetry classes that involve both TRS/TRS' and PHS/PHS™ (BDI, DIII,
CII, and CI; BDI', DIII*, CII*, and CI), the first subscript specifies the relation to TRS/TRS", and the second one

specifies the relation to PHS/PHS'.

AZT class S, S_ S, S._ S_, S__

NG D+S. C+S_

BDI' BDI+ S, DI+ S_, Cl+S8,_ Cll+S__

Df Al+ S, All +S_

DIIT CI+S,. Cll+S_, BDI + S, _ DIl + S__

AIT* C+S, D+S_

CIrt Cl+S,, Cl+S_, DI+ S, _ BDI +S__

ol All+ S, Al+S_

crt DI+ S, . BDI+S_, Cll+S,_ Cl+S__
SH(k)S™'=-H(k), S>=1;8C,=¢.C.S", (A2) Here, C_ is chosen so that it commutes with 7, :

ST _=¢T_S",

with €., ¢, € {x1}. Then, TRS can be constructed by
combining PHS™ and SLS as 7, := ST _, which satisfies

T H (k)T =H(-k). T.T =e¢;:

(A3)
ST, =¢7.5".
Similarly, PHS can be constructed by combining TRS'
and SLS as C_ := SC, for e.¢, = +1 and C_ :=iSC, for
€.€; = —1, which satisfies

T.C=C_TH. (AS)
Thus, class DIII" with SLS is equivalent to one of the AZ
symmetry classes with SLS.

APPENDIX B: PSEUDO-HERMITICITY
AS AN ADDITIONAL SYMMETRY

Table XIV shows the equivalence between pseudo-
Hermiticity and SLS as an additional symmetry to the
AZ symmetry. Let us consider class DIII as an example.
In this symmetry class, the Hamiltonian respects both TRS
and PHS:

C_HT(k)C=' = —H(-k),

C_Ct = —e,; T H (k)T = H(=k),

C_HT(k)CZ' = —H(-k),

T.7% =—1;
(A4) +4 5
C_Ct =+1.

SC_=e,C 8"

TABLE XIV. Equivalence between pseudo-Hermiticity and sublattice symmetry as an additional symmetry in the
AZ symmetry class. For the complex classes, the subscript of 7, and S, specifies the commutation (+) or
anticommutation (—) relation to chiral symmetry. For the real classes, the subscript of n,. and S, specifies the
commutation (4) or anticommutation (—) relation to time-reversal symmetry (TRS) and/or particle-hole symmetry
(PHS). For the symmetry classes that involve both TRS and PHS (BDI, DIII, CII, and CI), the first subscript
specifies the relation to TRS and the second one to PHS.

AZ class n My - M+ M- N—+ =

A Alll

A A+ S, Alll + S_

Al BDI? DII*

BDI BDI+S,.. BDI+S_. BDI+S._ BDI+S__
D BDI DIII

DIII DII+S__ DII+S,. DII+S_, DI + S,
All CIrf crf

CII Cll+ S, CU+S_, Cl+S8,._ Cll+S__

C CII CI

CI Cl+S__ Cl+S,_ Cl+S_, Cl+S,,
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As a combination of TRS and PHS, the Hamiltonian also
respects CS:

TH' (k)" = —H(k), =1, (B2)
with I':=iC_7%. Then, we consider adding pseudo-
Hermiticity that satisfies

H (=) — 2 _ 9.
nH' (kg = H(k), =1 (83)
nT . =eT ", nC_ = e,

with €;, €. € {£1}. Here, SLS can be constructed by
combining CS and pseudo-Hermiticity. In the case of
€,6, = +1, SLS is defined as S := 5" with §? = 1, which
satisfies ST, = —¢,7,.5° and SC_ = —.C_S*; in the
case of €,¢, = —1, SLS is defined as S := iy’ with S? = 1,
which satisfies S7, =¢,7,S* and SC_ = ¢.C_5".

APPENDIX C: PROOF OF THEOREM 1
(UNITARY FLATTENING FOR POINT GAPS)

To prove Theorem 1 we introduce the following
Hermitian Hamiltonian H(k) constructed from the non-
Hermitian Hamiltonian H (k):

. . 0 H (k)
Hy(k) := <H*(k) 0 ) (C1)
which satisfies CS (SLS)
THy(k)Z = —H,(k), Y= <(1) _01 ) (C2)

We note that (k) is identical to H (k) in Eq. (29), except
that the off-diagonal component H(k) is nonunitary
[F3(k) # 1]. For H(k) with certain symmetries, H(k)
has the corresponding symmetries defined by Eqgs. (30)—
(34), where H (k) is replaced by H (k). Moreover, as long
as H (k) retains a point gap, H,(k) also has an energy gap,
and vice versa [122,227]. Therefore, we can perform a
continuous deformation of H(k) while maintaining its
symmetries and point gap just by the corresponding
deformation of H(k).

Now, we show that we can continuously deform H (k)
so that it satisfies H3(k) = 1, which immediately leads to
Theorem 1. Since H,(k) is Hermitian, it can be diagon-
alized as

where ®(k) is unitary and ¢;(k)’s are real. We also have
e,(k) # 0 as Hy(k) is gapped. Using

Q" () = [ (k) Ho ()]
1 (k)72

— (k) lea (k)| /2

O (k),

(C4)
we introduce a one-parameter family of Hamiltonians,

H, (k) = Q52 (k)4 + 1 = AHy () [Q5 2 (k) + 1 = 2]
(Cs)

with 1 € [0, 1]. Here, H,(k) is Hermitian and it keeps a
gap because Q,:,l/ 2(k)ﬂ» + 1 =1 is positive definite. From
H?(k) =1, H,(k) provides an adiabatic path with
HX(k) - H2(k) = 1. Therefore, if H,(k) has the same
symmetry as Hy(k), we have Theorem 1.

In fact, H;(k) has the same symmetry. For instance,
consider H,(k) with PHS,

C_Hj(k)CZ' = —Hy(~k). (C6)
In this case, we have
C_{H(k) Ho(k)"C=" = Hy(~k)Ho(~k).  (CT)
which yields
C_1Q; (k)] C=t = Q2 (~k). (C8)
As a result, we also have PHS for H,(k),
C_H:(k)CZ' = —H,(~k). (C9)

In a similar manner, we can show that ,(k) has the same
symmetry as H,(k) for all the other symmetries.

APPENDIX D: PROOF OF THEOREM 2
(HERMITIAN FLATTENING FOR LINE GAPS)

1. Spectral flattening for line gaps

Let us consider a non-Hermitian Hamiltonian H (k) with
a line gap and denote the right and left eigenstates as
lu, (k)) and |u,(k))), respectively:

H(k)|u, (k) = E, (k)|u, (k)),
HY (k) u, (k) = E; (k) u, (k).

For our purpose, it is sufficient to consider the case without
exceptional points since they can be pair-annihilated with-
out closing a line gap. Then, |u,,(k)) and |u, (k))) satisfy the
biorthonormal condition [36]

(D1)
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(i (Fe) |14 (K )) =ty () 10, (K) ) = G

and the completeness condition

D (k) ()| =D~ (R)) (uy(k)| = 1. (D3)

(D2)

For later convenience, we collect these eigenstates as row
vectors R(k) and L(k):

R(k) = (|uy (k)), [uz (K)), - -),
L(k) == (|ur (k). [ua (k). - - ).

The above biorthonormal and completeness conditions are
compactly written as

(D4)

LT(k)R(k) = RT(k)L(k) = L(k)R"(k) = R(k)L (k) = 1,

(Ds)
and the right eigenequations are put together as
E; (k)
H(k)R (k) = R(k) A R
which is recast into
E, (k)
H(k) = R(k) E, (k) R'(k). (D7)

Now, we flatten the complex spectrum of H(k) without
closing the line gap. As long as the system does not close
the gap, it keeps the same topological structures, and hence
this flattening procedure does not affect the classification of
topological phases.

Importantly, the flattening process depends on the
symmetry class. If any symmetry operation does not
include complex or Hermitian conjugation, a line gap
merely implies the presence of two disconnected parts of
the band energies in the complex-energy plane. While
keeping the line gap, we can continuously change one part
of the spectrum into +1 and the other into —1 as

Ly O »
H (k) —>R(k)<+5’ » )R (k)
= R(k)ER™! (k), (D8)

where p (¢g) is the number of bands contained in one (the
other) part of the spectrum. After this flattening procedure,
we obtain a non-Hermitian Hamiltonian H(k) with
H?(k) = 1. On the other hand, if a symmetry operation

with complex or Hermitian conjugation is relevant, we have
a real structure in the complex-energy spectrum. The real
part of the spectrum can be distinguished from the
imaginary one, and thus we have two distinct types of
line gaps, i.e., a real gap and an imaginary gap, where a real
(an imaginary) gap implies a gap in the real (imaginary)
part of the complex spectrum. Correspondingly, there are
two different flattening processes as follows. (i) For a
system with a real gap, one can continuously change the
band energies with a larger (smaller) real part into +1 (—1)
without closing the real gap. The resultant Hamiltonian has
the same form as Eq. (DS8). (ii) For a system with an
imaginary gap, one can continuously change the band
energies with a larger (smaller) imaginary part into +i (—i)
without closing the imaginary gap,

+1pxp 0

H(k)—>R(k)[i< A

Xq)}R—l(k). (DY)

q

Then, by multiplying H (k) by —i, the Hamiltonian takes the
form of Eq. (D8) again [126]. However, this procedure
gives an additional minus sign to the symmetry operations
with complex or Hermitian conjugation. Therefore, after
the flattening procedure, TRS (CS) becomes PHS' (pseudo-
Hermiticity), and vice versa.

Thus, the classification problem reduces to the non-
Hermitian Hamiltonian with the form

H(k) = R(k)ER™!(k), E>=1 (D10)

subject to proper symmetry constraints. Below, we show
that the above non-Hermitian Hamiltonian can be de-
formed into a Hermitian one while keeping the symmetry
constraints.

2. Symmetry constraints

To fulfill the above purpose, we solve the symmetry
constraints for H (k) in terms of R(k) and L(k).

a. PHS and TRS'

First, we consider PHS in Eq. (13). Taking complex
conjugation of the Bloch-BdG equation, we have

H (k) |u;, (k) = E5, (k) |u; (k). (D11)
so that the Hermitian conjugate of Eq. (13),
C_H*(k)CZ! = —H'(-k), (D12)
leads to
H (k) [C_|uy (k)] = —E; (=k)[C_|u(=k))]. ~ (D13)
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Therefore, C_|u;(—k)) gives a left eigenstate of H(k).
Since |u, (k)Y forms a complete basis of H(k), we have

C_luz(=k)) = Y _|un(k))[C ], (D14)

with [C_],,, = (u,,(k)|C_|u;,(—k)). Here, we choose a
gauge of the biorthonormal basis such that C_ is a unitary
matrix independent of k (such a gauge can be taken, at least
locally). In terms of R(k) and L(k), the above relation is
compactly summarized as

C_R*(—k) = L(k)C_. (D15)
Multiplying Eq. (D15) by CT and CT from the left and right,
respectively, we also have

R*(—k)CL = CILL(k). (D16)
Thus, Eq. (D15) is equivalent to
CTL*(—k) = R(k)CL. (D17)

Using Egs. (D15) and (D17), we can rewrite PHS as a
constraint on C_ and E. It then follows from Eq. (D5) that

C_ = L(k)C_L"(~k),

CT = R(k)CIRT (k). (D18)
The latter equation also implies
C* = R*(—k)C:R'(k), (D19)
so that we have
C_C* = L(k)C_LT(—k)R*(—k)C*R" (k)
= L(k)C_C*R'(k). (D20)
Thus, the relation C_C* = +1 of PHS reduces to
C_CL ==1. (D21)

In a similar manner, we can also show that PHS reduces to

C_E" = —EC_. (D22)

In the above, we derive the symmetry constraints on C_
and E [Egs. (D21) and (D22)] from PHS for H(k).
Conversely, we can also show that H(k) in the form of
Eq. (D10) has PHS with C_C* = +1 when R(k), L(k), C_,
and E satisfy Egs. (D5), (D15), (D21), and (D22).
Therefore, when we keep a set of relations

C_E" = -EC_, C_C: =+, Cic_=1,
C_R*(—k) = L(k)C_, LT (k)R(k) = 1, (D23)
the Hamiltonian given by
H(k) = R(k)EL"(k), E> =1, E=E' (D24)

retains PHS with C_C* = +1.
In a similar manner, we can obtain the following
relations:

C,ET =EC,,
C,R*(~k) = L(k)C,,

C,.Cy = =1,
LT (k)R(k) =1

cic, =1,
(D25)

from TRS" in Eq. (16). As long as we keep these relations,
we can also retain TRS' with C,C = £1 for H(k)
in Eq. (D24).

b. TRS and PHS

In a manner similar to the above argument, it can be
shown that TRS in Eq. (10) and PHS' in Eq. (17) with
T.T =¢,€{£l} can be obtained, provided that the
following relations hold:

T E*=+ET,, T, Ti=¢, T.T,=1,
T, R*(—k) = R(k)T_, LT (k)R(k) = 1. (D26)
c. CS
CS in Eq. (15) reduces to
GE" = —EG, GGl =1, G'G =1,
T'R(k) = L(k)G, LT (k)R(k) = 1. (D27)
d. SLS
SLS in Eq. (20) reduces to
SE = —ES, S? =1, Sfs =1,
SR(k) = R(k)S, LY (k)R(k) = 1. (D28)
e. Pseudo-Hermiticity
Pseudo-Hermiticity in Eq. (21) reduces to
HE' = EH, HH! =1, HH =1,
nR(k) = L(k)H, LT (k)R(k) = 1. (D29)

3. Relations between symmetries

When there are two or more symmetry operations, we
have commutation or anticommutation relations between
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them. By choosing phases of operators, TRS and PHS
(TRS' and PHS) can always be commutative:

T.Cy=CT. (D30)
For SLS and pseudo-Hermiticity, we have
ST, =¢7T. S, SC_ =¢.C_S*, SI' = ¢I'S,
(D31)
and
nT =eT ', nC_=eC_n,  nl =erly,
(D32)

respectively. These relations can be satisfied when we have

T.CL=C,T%,
ST, =¢,T,S",
HT, =¢, T, H*,

SC_=¢,C_S",
HC_ =¢,C_H*,

SG=¢GS,
HG == SFGH.
(D33)

4. Hermitianization

Now, we show that a non-Hermitian Hamiltonian in the
form of Eq. (D10) can be continuously deformed into a
Hermitian Hamiltonian while keeping symmetry con-
straints. For this purpose, we perform the polar decom-
position of R(k):

R(k) = Ap(k)U (k). (D34)
Here, Ag(k) is given as
Ag(k) = [R(K)R" (k)] 2, (D35)

where the root of R (k)R (k) is defined as follows. Since R (k)
is invertible, R(k)R"(k) is a positive-definite Hermitian
matrix, and thus R(k)R"(k) can be diagonalized as

43 (k)

A3 (k) Vik). (D36)

where V (k) is a unitary matrix and 4,(k) is a positive number.
Then, Ag(k) := [R(k)R"(k)]'/? is defined as

Ay (k)

[R(K)R (K)]'/2 = V (k) Ao (k) VY (k)

= V(k)A(k)V'(k), (D37)
with A(k) := diag[4,(k), A,(k), ...]. From this equation, we
also have
ARl (k) = V(K)A~ (k)VT(k). (D38)

Therefore, Ug(k) is uniquely determined as Ug(k) =
AR!(k)R(k), which is unitary:

Ur(k)Uk (k) = Ag' (K)R(K)R" (k)AR' (k) = 1. (D39)

As easily seen, we can make a non-Hermitian
Hamiltonian in the form of Eq. (D10) Hermitian by just
deforming Ag (k) as Ag(k) — 1. This process also retains
the line gap. However, we need to check whether this
process can be done while keeping symmetry.

From the symmetry constraints for R(k) in Egs. (D23)

and (D25)-(D29), we have the following constraints on
R(k)R' (k):

RUOR(K)C[R(-K)RT(—K)]* = C;  (D40)
for PHS/TRS',
R(k)RY (k)T A[R(-K)R*(—k)]"}"' =T, (D41
for TRS/PHS',
R(k)R'(k)TR(k)R' (k) =T (D42)
for CS,
R(K)R (k)S[R(k)R (k)] = S (D43)
for SLS, and
R(k)R'(k)nR(k)R' (k) = n (D44)

for pseudo-Hermiticity. It can also be shown that these
constraints are equivalent to the following ones:

AR (k)C+AR(—k)
Ag (k)T Ag (k)
Ag(k)nAg (k)

Co ARUOTLING(—R) =T,
I AR)SAF () = S,
. (D45)

For instance, the first equation in the above is derived as
follows. We first rewrite Eq. (D40) as
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V()2 (k) (k)C V* (—k)A2(=k)VT (=k) = C-.  (D46)
which leads to
2 (k)VI(k)C:V* (—k)A*(=k) = VT (k)C:V*(—k). (D47)
This equation is equivalent to

A (k)2 (—K) = 1 (D48)

for [V (k)C+V*(—k)],,, # 0, which yields the first equation

in Eq. (D45). From Eq. (D45), we also have

C¢U};(—k) = U;(k)(C?’
TU(k) = Ul (k)G,
HUR() = UM,

T Ug(—k) = Up(k)T.,
SUg(k) = Ug(k)S,
(D49)

Here, it should be noted that 4, (k) can be continuously
deformed into 1 while keeping Eq. (D48), and thus we can
retain the first equation in Eq. (D45) during the process of
Ag(k) — 1. Combining it with the first equation in
Eq. (D49), we obtain the correct symmetry constraint on
R(k) in Eq. (D23) for PHS/TRS'. This means that we can
deform a non-Hermitian Hamiltonian to a Hermitian one
while keeping PHS/TRS". In a similar manner, we can
make a non-Hermitian Hamiltonian Hermitian while keep-
ing any other symmetry.

5. Patching different momentum regions

To derive Eq. (D15), we have taken a special gauge in
which C_ is independent of k (we have also chosen similar
gauges for the other symmetries). Generally, such a gauge
can be taken not globally but locally; if we take such a
gauge globally, there arises a singularity in R(k) and L(k).
To avoid this singularity, we divide the whole momentum
space into several subregions and take a proper gauge in
each region. Whereas the matrix C_ can take the same form
in all regions, R(k) and L(k) are given locally so that they
can be different in different regions. From the arguments in
Appendix D4, we can deform in each region a non-
Hermitian Hamiltonian into a Hermitian one while keeping
the line gap and relevant symmetries. Now, we show that
this Hermitianization process can be performed globally.
For definiteness, we focus on the case with PHS below, but
the generalization to the other cases is straightforward.

First, let us consider two regions I and II in momentum
space and denote R(k) in region I (II) as R(k) [Ry(k)].
Since both Ry(k) and Ry(k) are well defined on the
boundary between regions I and II, they are related to
each other by a gauge transformation

Ry(k) = Ry(k)G(k), (D50)

with an invertible matrix G(k). Here, G(k) is unitary for
Hermitian systems, but this is not necessarily so for non-
Hermitian systems. Since both R;(k) and Ry(k) obey
Egs. (D10) and (D15) on the boundary, G(k) is found to
satisfy

G(k)EG™' (k) = E,G' (k)C_G*(~k) = C_.  (D51)

We then perform the polar decomposition of G(k),

G(k) = Ug(k)Qq (k). Qg (k) = [G'(k)G(K)]'*  (D52)
with a unitary matrix Ug (k). Here, Ag(k) is defined as
follows. Since G'(k)G(k) is a positive-definite Hermitian
matrix, it is diagonalized as

i (k)

G (k)G(k) = W(k) w3 (k) Wikk) (D53)

with a unitary matrix W(k) and positive real numbers
w?(k)’s. Then, Qg (k) is defined as

w (k)

Qq (k) = W(k) o2k) | wik)  (Ds4)

with w; (k) > 0. Using the polar decomposition of G(k), we
recast Eq. (D51) into
Qg (k)EQg' (k) =E.

Qu(k)C_QL(~k)=C_.  (D55)

Ug(k)EUL(k)=E, Ug(k)C_UL(—k)=C_. (D56)
Here, it should be noted that Qg (k) can be extended to the
whole region I without crossing a singularity. In fact, w;(k)
can be rewritten as w; (k) = ¢~k because of the positivity
of w;(k), and we can extrapolate p;(k) as p;(k) — 0 from
the boundary to the center of region I while keeping
Eq. (D55). As a result, we have a well-defined Qg (k) in
the whole region L.

Using this Qg (k), we can construct another well-defined
R(k) in region 1, i.e., Rj(k) = Ry(k)Qg! (k). Although the
new matrix Rj(k) satisfies Eqs. (D10) and (D15) again,
there is an important modification. Now, the gauge trans-
formation between regions I and II becomes unitary,

Ry(k) = Ry(k)Ug (k). (D57)

which yields

Ri(k)Ri" (k) = Ru(k) Ry (k). (D58)
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Therefore,

for region I

Axl) o= { (Ri(k)R;! (k))'/2 (D59)

(Ru(k)R;(k))'/>  for region II

defines a continuous single-valued matrix function in the
union of regions I and II. In a similar manner, all the gauge
transformations between the different regions can be made
unitary, indicating that Ag(k) can be defined continuously
in the whole momentum space. This means that the
Hermitianization process in Appendix D4 can be per-
formed globally.

APPENDIX E: K-THEORY CLASSIFICATION
BASED ON UNITARY FLATTENING
FOR POINT GAPS

We provide the K-theory classification of non-Hermitian
Hamiltonians H(k) defined over the d-dimensional
Brillouin-zone (BZ) torus T¢ based on unitary flattening
for point gaps. In particular, we show that this classification
is given by the twisted equivariant K-group K (GT‘C)_"_I(Td )
[214,233,234] with a shift of an integer degree, which
coincides with the classification of adiabatic time evolu-
tions with a certain period.

We first formulate possible symmetries of non-Hermitian
fermionic systems in the many-body Hilbert space. Let G
be a symmetry group and ¢:G — Z/2 = {+1} be a
homomorphism specifying whether g € G is unitary or
antiunitary: ¢ € G acts on the imaginary unit as

gig™h = . (E1)

In addition, let ¢:G — Z/2 = {£1} be a homomorphism
specifying whether or not g € G is a particle-hole type:
g € G acts on complex fermion operators as

AT 1

Py
Py

(¢, =+1)

o e, )

where (li/}c') is a complex fermion annihilation (creation)
operator in the BZ, and U (k) is a unitary matrix. Based on

g?b and ¢, there are four types of symmetries:
(1) Unitary symmetry U: a)gA: +1land ¢, = +1.
(2) Time-reversal symmetry 7 ¢, = —1 and ¢, = +1.
(3) Particle-hole symmetry C: ¢, = +1 and &, = —1.
(4) Chiral symmetry I': ¢, = —1 and ¢, = —1I.
It is notable that particle-hole symmetry Cis unitary in the
many-body Hilbert space. Furthermore, we fix the factor
system of the symmetry G that indicates a U(1) phase
among two symmetry actions gh € G and hg € G as

where the twist 7 = 7, (k) specifies the projective repre-
sentation for internal degrees of freedom and nonprimitive
lattice translations of space group symmetry [233]. For a

free fermion Hamiltonian A =3, lif;gH (k)yy, the sym-
metry gHg™' = H is recast as

0: U7 (k)H(k)U, (k)

T: U (H (k)U, (k) ( H(gk)  (E4)
C: = U7 (k)H" (k)U, (k) ’

- U\ (k)H (k)U, (k)

for the single-particle Hamiltonian H(k). Here, we
assume tr[H (k)] = 0.

We now develop the K-theory classification of H(k)
based on the unitary flattening for point gaps [i.e.,
det H(k) # 0 for all k]. Since H(k) can be assumed to
be a unitary matrix due to Theorem 1 in Sec. IVA, H(k) is
identified with an adiabatic time evolution of a Hermitian
system with a certain period, which implies that the
classification of non-Hermitian Hamiltonians H (k) under
the unitary flattening is the same as that for unit adiabatic
time evolutions. Here, the unit adiabatic time evolutions are
described by the K-group with a shift of the integer degree
n by +1 [214]. We thus expect that the non-Hermitian
Hamiltonians H (k) under the unitary flattening are clas-
sified by the K-group ’KT7N(Td) with ¢ :=g¢ and
¢ = ¢. In fact, for the extended Hermitian Hamiltonian
H(k) with CS (SLS) T [Egs. (29) and (35) in Sec. IVA],
symmetry g € G is represented as

u,k) 0 .
" ( 8 ZQEII:;> (&, =+1) s
(Ugac) RS

} = ¢iTan(9hk) f]gh (k), (E7)

U;' (k)20 (k) = ¢,x. (E8)
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TABLE XV. Topological classification table for non-Hermitian systems based on two antiunitary symmetries 7 ,, 7 _ and unitary
symmetry S. Non-Hermitian topological phases are classified according to the symmetry, the spatial dimension d, and the definition of

complex-energy point (P) or line (L) gaps.

(T,.,7_) S Gap Classifying space d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=17
0 0 P c, 0 z 0 Vi 0 Vi 0 Vi
L Co zZ 0 z 0 VA 0 z 0
0 1 P C, xC, 0 zZeZ 0 Z®Z 0 YA 0 zZez
L C, 0 VA 0 VA 0 VA 0 VA
(+L.+1) 1 P Ry xR, 72,07, 7&Z 0 0 0 2222 0 7,87,
L R, Z, Z, z 0 0 0 27 0
R, Z, Z, z 0 0 0 27 0
+1 0 P R, Z, z 0 0 0 27 0 Z,
L Ro z 0 0 0 27 0 Z, z,
R, Z, Z, z 0 0 0 27 0
(+1,-1) 1 P C 0 z 0 z 0 z 0 z
L R, 0 0 0 27 0 Z, Z, z
R, 0 Z, Z, z 0 0 0 27
-1 0 P Rs 0 27 0 Z, Z, z 0 0
L R, 27 0 z, Z, z 0 0 0
Re 0 0 27 0 z, Z, z 0
(-1,-1) 1 P Rs X Rs 0 27 @ 27 0 7Z,®72, Z,®7Z, ZSZ 0 0
L Rs 0 27 0 Z, z, z 0 0
Rs 0 27 0 Z, Z, zZ 0 0

These conditions determine nothing but the symmetry
class for Hermitian Hamiltonians with the integer grading
n =1 [214]. Therefore, we conclude that non-Hermitian
Hamiltonians H (k) under the unitary flattening are clas-
sified by the K-group ¢K<Gr'c>_l(Td). As a consequence, the
periodic table for the AZ symmetry class is obtained as
Tables III and IV.

Using the non-Hermitian Dirac matrices developed in
Sec. IVD, we can also define the symmetry class
(G, ¢, c,t,n) with the integer grading n > 0 [214] for
non-Hermitian Hamiltonians as follows. As in the
Hermitian case, the shift of the integer grading is defined
by adding CS for y;’s (i = 1, ..., n) satisfying

i (k)yy] = —=h(k). vl +rpl =26,  (B9)

(‘27!169 =1)

G — 1) } = ¢, (E10)
9-9 —

From the Hermitianization given by Eq. (29), the classi-
fication of non-Hermitian Hamiltonians with the symmetry

class (G, ¢, c,t,n) is given by (/’Kg'c)_"_l(T"), with ¢ =
$¢ and ¢ = ¢.

APPENDIX F: TOPOLOGICAL CLASSIFICATION
BASED ON TWO ANTIUNITARY SYMMETRIES

Topological classification based on two antiunitary
symmetries 7., 7_ and one unitary symmetry S is
considered in Ref. [122]. This classification assumes point
gaps, and the corresponding classification table for both
complex-energy gaps is shown in Table XV. Notably, two
antiunitary symmetries 7, and 7 _ are topologically
equivalent to each other for non-Hermitian Hamiltonians
[126], whereas they are clearly distinct for Hermitian
Hamiltonians. As a result, some symmetry classes are
equivalent to others in non-Hermitian physics. In fact, the
symmetry class only having 7, with 7_ 77 =+1
(T,.T% =-1) [ie., class Al (All)] is equivalent to that
only having 7_ with 7_T7* =41 (T_7* =-1) [ie,
class DT (C")], and the symmetry class having 7 with
T.7% =+land7_with7 _T* = —1isequivalent to that
having 7 with 7, 7% = -l and 7_ with 7_7* = +1.

APPENDIX G: TOPOLOGICAL INVARIANTS
FOR POINT GAPS

We explicitly present topological invariants of non-
Hermitian systems with point gaps. In particular, we focus
on basic symmetry classes such as the AZ and AZ" symmetry
classes for spatial dimensions d < 3 (Table XVI).
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TABLE XVI. Topological invariants for point gaps in the AZ and AZ" symmetry classes for the spatial dimension d < 3. The equation
numbers or the section numbers of the corresponding topological invariants are shown for each topological phase.

Symmetry Classifying
class space d=0 d=1 d=2 d=3
A C, 0 Z [Eq. (G3)] 0 Z [Eq. (G3)]
AIII Co Z [Eq. (G2)] 0 Z [Eq. (G2)] 0
Al R, 7, [Eq. (G4)] Z [Eq. (G3)] 0 0
BDI R, Z, [Eq. (G8)] Z, [Eq. (G9)] Z [Eq. (G2)] 0
D R; 0 Z, [Eq. (G11)] Z, [Eq. (G12)] Z [Eq. (G3)]
DI R4 27 [Egq. (G2)] 0 Z, (Appendix G 8) Z, (Appendix G 9)
All Rs 0 27 [Egq. (G3)] 0 Z, (Appendix G 10)
Cll Rs 0 0 27 [Eq. (G2)] 0
C R4 0 0 0 27 [Eq. (G3)]
CI Ro Z [Eq. (G2)] 0 0 0
AT R4 0 0 0 27 [Eq. (G3)]
BDI' Ro Z |Eq. (G2)] 0 0 0
DY R Z, [Eq. (G14)] Z [Eq. (G3)] 0 0
pHrf Ry Z, [Eq. (G17)] Z, [Eq. (G18)] Z [Eq. (G2)] 0
ATl R;3 0 Z, [Eq. (G20)] Z, [Eq. (G21)] Z [Eq. (G3)]
cIrt Ry 27 [Eq. (G2)] 0 Z, (Appendix G 16) Z, (Appendix G 17)
ct Rs 0 27 [Eq. (G3)] 0 Z, (Appendix G 18)
cr Re 0 0 27 [Eq. (G2)] 0
A+ S (AT  C; x( 0 Z & Z (Appendix G 19) 0 Z @ Z (Appendix G 19)
Alll+ S, C 0 Z [Eq. (G25)] 0 Z [Eq. (G25)]
Alll+ S_ CoxCy Z @ Z (Appendix G21) 0 Z @ Z (Appendix G 21) 0
. . . . . '
1. Z invariants in even dimensions I A—— H”' / wr(H-'dH)>*!.  (G3)
In the presence of CS defined by Eq. (15), we can define (271)" (2n + 1) Jpze

the nth Chern number C, of the Hermitian Hamiltonian
iH (k)" for even spatial dimensions d = 2n. Introducing

the Green function by 3. Class Al in zero dimension

In class Al, we have TRS defined by Eq. (10) with
(G1) 7,773 = +1, which leads to the reality of det /. Thus, the

G (w,k) = iw —iH(k)T,
Z, topological invariant v € {0, 1} is given as

we can define the nth Chern number for d = 2n dimensions

_1)% := sgndet H. G4
as [235,236] (=1)" = sgnde (G4)

n!
(271)" 1 (2n 4 1)!

C, = 4. Class BDI in zero dimension

Because of the presence of TRS with 7, 7% = +1 and
CS with I'=C_7" which commutes with TRS (.e.,
T.,.I'" =T7,) in class BDI, we have

A (GG (G2)

See also Appendix H1 for various expressions of the
Chern number in Hermitian and non-Hermitian systems.

T . (iHD)*T7' = —iHT. (G5)
2. 7Z invariants in odd dimensions
Hence, the Hermitian matrix iHI" belongs to class D with
the particle-symmetry operator 7 . The Z, topological
invariant for the non-Hermitian matrix H is thus given as
the Z, invariant for the Hermitian matrix iHT" in class D.
In particular, a matrix HC_ is antisymmetric, i.e.,

The Z (and 2Z) topological invariants in odd spatial
dimensions d = 2n + 1 are given as the winding number
W11 of the map H = H(k):BZ? - GLy/(C), where BZ¢
denotes the d-dimensional Brillouin zone and GLy(C)
the general linear group of N X N invertible matrices
(i.e., det H # 0). The winding number W, is explicitly

given as (HC.)" = -HC_, (Go)
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and hence its Pfaffian is well defined. In addition, we have

[PE(HC_)]* = det(T " )Pf(HC_), (G7)
which leads to the reality of Pf(HC_) in an appropriate
basis satisfying det(7"}) = 1. In this basis, HC_ is a real
antisymmetric matrix and thus the Z, topological invariant
v e {0,1} is given as

(=1)" = sgn[Pf(HC_)]. (G8)

5. Class BDI in one dimension
Since we have 7 [iH (k)['[*T 7! = —iH(—k)T similarly
to the zero-dimensional case, the matrix H(ky)C_ is
antisymmetric and satisfies Eq. (G7) at a particle-hole-
symmetric momentum kq € {0,z}. The Z, topological
invariant v € {0, 1} is thus given as

Pf(H(ﬂ)C_)}

(=1)¥ := sgn {W . (G9)

6. Class D in one dimension

In class D, we have PHS defined by Eq. (13) with
C_C* = +1, leading to

(G10)

Hence, H(k)C_ is antisymmetric, and its Pfaffian is
well defined at a particle-hole-symmetric momentum
ky € {0,7}. In a similar manner to 1D class DIII for the
Hermitian case [237-239], the Z, invariant v € {0, 1} is
given as

X exp [—2 dlogdet[H(k)c_]H. (G11)

T
(=)

7. Class D in two dimensions
Since we have [H(k)C_]" = —H(—k)C_ similarly to
the one-dimensional case, the Z, invariant v € {0, 1} is
given as
PH[H (kx, )C_.
(=1)7 == Sgn{i
XI:_I[,II Pf[H (ky_)C_]
k=kx,
1
X exp {—5 / dlog det [H(k)C_]} }, (G12)

k=ky_

where (k;, k;_) and (ky,, ky_) are two pairs of particle-
hole-symmetric momenta [238].

8. Class DIII in two dimensions

Because of the presence of TRS with 7, 7% = —1 and
CS with I' = iC_7" which anticommutes with TRS (i.e.,
T.,.I'" = -I'T ) in class DIII, we have

T [iHK)]*T7' =iH(—k)I. (G13)
Hence, the Hermitian matrix iH (k)I" belongs to class AlL
The Z, topological invariant for the non-Hermitian
Hamiltonian H is thus given by the Kane-Mele [162] or

Fu-Kane [163] invariant for the Hermitian matrix iH (k)I" in
class AlL

9. Class DIII in three dimensions
Since we have 7 [iH(k)[|*7 3! = iH(—k)T" similarly
to the two-dimensional case, the Fu-Kane-Mele invariant
[165] is defined for the Hermitian matrix iH(k)I' in
class AIl. Alternatively, the integral of the Chern-
Simons three-form provides the same Z, topological
invariant [240].

10. Class AII in three dimensions

In class All, we have TRS with 7,77 = —1. The Z,
topological invariant of a non-Hermitian Hamiltonian in
class All thus reduces to that of a Hermitian Hamiltonian in
class CII [219].

11. Class D' in zero dimension
In class D', we have PHS™ defined by Eq. (17), which
leads to the reality of det (iH). Thus, the Z, topological
invariant v € {0, 1} is given as

(=1)¥ == sgndet (iH). (G14)

12. Class DIIIT in zero dimension

Because of the presence of PHS' defined by Eq. (17)
with 7_7* = +1 and CS which anticommutes with PHS"
(i.e., 7_I'" = —I'T_) in class DIII", we have

T_(iHT)*TZ! = —iHT. (G15)
Hence, the Hermitian matrix iHT" belongs to class D with
the particle-symmetry operator 7 _. Similarly to class BDI,
the Z, topological invariant for the non-Hermitian matrix
H in class DIII' is given as the Z, invariant for the
Hermitian matrix iHT" in class D. In particular, the anti-
symmetric matrix HC_ satisfies

[Pf(HC,)]* = det(71)Pf(HC,), (G16)
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and thus the Z, topological invariant v € {0, 1} is given as

(—=1)¥ :== sgn[Pf(HC, )] (G17)

with an appropriate basis satisfying det(77) = 1.

13. Class DIII' in one dimension

Since we have 7 _[iH (k)['|*7TZ' = —iH(—k)T similarly
to the zero-dimensional case, the matrix H(ky)7 _ is
antisymmetric and satisfies Eq. (G16) at a particle-hole-
symmetric momentum ko € {0,z}. The Z, topological
invariant v € {0, 1} is thus given as

(1) := sgn [Pf(H(ﬂ)C+)] (G18)

PE(H(0)C,) ]’

14. Class AII' in one dimension
In class AII", we have TRS' with C,C = —1, leading to

[H(K)C, )" = —H(=k)C,. (G19)

Hence, H(k)C, is antisymmetric, and its Pfaffian is well
defined at a time-reversal-invariant momentum k, € {0, z}.
In similar to 1D class DIII for the Hermitian case [237-239],
the Z, invariant v € {0, 1} is thus given as

X exp {— % J dlog det [H(k)cg} } (G20)

15. Class AII" in two dimensions

Since we have [H(k)C,|" = —H(—k)C, similarly to
the one-dimensional case, the Z, invariant v € {0, 1} is
given as

X exp [—% / dlogdet[H(k)C+]]}, (G21)

k=ky_

where (ky,,k;_) and (ky, ky_) are two pairs of time-
reversal-invariant momenta [238].

16. Class CII' in two dimensions
Because of the presence of PHS' with 7_7* = +1 and

CS which commutes with PHST (ie, 7_I'" =I'7_) in
class CII', we have

T_[iHE)T=" = iH(~k)T. (G22)

Hence, the Hermitian matrix iH (k)I" belongs to class AIL
The Z, topological invariant is thus given as the Kane-Mele
[162] or Fu-Kane [163] invariant for this Hermitian matrix
iH (k)T in class AIL

17. Class CII' in three dimensions
Since we have 7 _[iH (k)[')*7 2! = iH (k)T similarly to
the two-dimensional case, the Fu-Kane-Mele [165] or the

Chern-Simons invariant is defined for the Hermitian matrix
iH (k)" in class AIl [240].

18. Class C' in three dimensions

In class C', we have PHS' with 7_7* = —1. The Z,
topological invariant of a non-Hermitian Hamiltonian in

class CT thus reduces to that of a Hermitian Hamiltonian in
class CII [219].

19. Class A with sublattice symmetry S (class AIII")

For gapped systems with SLS in Eq. (20), any state |u,,)
is independent of S|u,,), from which we can construct two
independent eigenstates of S with the opposite eigenvalues
+1. Thus, & can be chosen as a Pauli matrix S = o,
without loss of generality. With this choice of S, the
Hamiltonian H (k) becomes

H+(k)> (G23)

= <H_0(k) 0

in this basis. Notably, H , (k) and H_(k) are independent of
each other for generic non-Hermitian Hamiltonians,
whereas H' (k) = H_(k) is respected for Hermitian
Hamiltonians. Moreover, we have detH (k) #0 and
detH_(k) #0 in the presence of a point gap [i.e.,
det H(k) # 0]. Therefore, in odd dimensions d = 2n + 1,
the two independent winding numbers W5, . | that are given
by Eq. (G3) for H. (k) constitute the Z @ Z topological
invariant.

20. Class AIII with sublattice symmetry S,

Because of the commutation relation between the CS
operator and the SLS operator (i.e., 'S = SI"), we have

S[HE)T|S™ = —iH(k)T (G24)
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which implies that the Hermitian matrix iH (k)I" respects
CS and belongs to class AIIl. Thus, in odd spatial
dimensions d = 2n + 1, the Z winding number is given as

Wapor =g [ wlSIGHT) dGHD)) (625)

with the coefficient N, := n!/(2zi)"*!(2n + 1)!. This for-
mula reduces to

W2n+1 = _7 7

W[ S(H-dH )]
Wz+ 11~ Wann

= Ton41 — Pongl G26

. (G26)

where W3, is the winding number for H*(k)

in Eq. (G23).

21. Class AIII with sublattice symmetry S _

Because of the anticommutation relation between the CS
operator and the SLS operator (i.e., 'S = —ST"), we have
S[iH(k)T'|S™! = iH(k)T, S?=1, (G27)

which implies that the Hermitian matrix iH (k)I” respects the
Z, unitary symmetry. Thus, iH (k)[" can be block diagon-
alized into the two Hermitian matrices (iH (k)I")s_,, and
(iH(k)I')g__, in the subspaces where the eigenvalues of S
are +1 and —1, respectively. Therefore, in even spatial
dimensions d = 2n, the two independent nth Chern numbers

CiF can be defined as the Z @ Z topological invariant, each
of which is given by Eq. (G2) for (iH (k)I")g_, ;.

APPENDIX H: TOPOLOGICAL INVARIANTS
FOR LINE GAPS

We present topological invariants of non-Hermitian
systems with line gaps. We diagonalize the Hamiltonian as

H(k) = Ey (k) |, (k)) (e (k) (H1)

where E, (k) € C is an eigenenergy and |u,(k)) and
{u, (k)| are the corresponding right and left eigenstates,

H(k)|u, (k) = E, (K)|u,(k)),

. (H2)
H (k) u, (k) = E;, (k) |u, (k)),
both of which are biorthogonal [36],
( (k) [y ()Y = Kot (k) [ty (K)) = Oy (H3)

and satisfy the completeness condition

D (k) G (k)] = >~y () )y (K)| = 1. (H4)

Here, we assume the presence of a real gap, i.e.,
ReE, (k) # 0 for all n and k, and an eigenstate with a
positive (negative) n is chosen to satisfy ReFE,(k) > 0
[ReE, (k) < O].

1. Z invariants in even dimensions

The Z topological invariants in even spatial dimensions
d =2n are given as the nth Chern number C,. In non-
Hermitian systems, a non-Abelian Berry connection is
defined as

Ap = Cuildu,,) = (ug|opu,,) - d. (H5)
and a Berry curvature is defined as
F=dA+ A% (H6)

Using (du;|u,,) + (u;|du,,) = d{u;|u,,) = 0, we have

Fon = du] (1 - Z|un><<un|) duy). (HT)

n<0

The nth Chern number C, is then given as

I /1\*
C i=—|— 1] ”’
"ol <27T> [;Zd 7

where the trace is taken over the occupied bands (complex
bands with n < 0).

The Chern number C,, can be expressed in terms of the Q
function. Here, we introduce the projector Py by

Pr = Z|un>«un|’

n<0

(H8)

(H9)

satisfying P32 = Pg. Then, the Berry curvature reduces to

Fim = §duy| (1 =Pg)|du,,) = §u)|Pr(dPr)*|u,).  (H10)
Defining the O matrix as
Or =1-2Pg, (H11)

which is non-Hermitian but satisfies Q% = 1 and hence
QOrdQg + dQrQr = 0, we have

C= (5) | ulPulapery

1 i\”

The Chern number can also be expressed in terms of the
Green function defined by
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G Y, k) :=iw — H(k). (H13)

Since a real gap is assumed to be open, G(w,k) is
invertible. The Green function is thus identified with a map,

R, x BZ¢ — GLy/(C), (H14)

where GLy(C) is the general linear group of N x N
invertible matrices. With this Green function, the nth
Chern number C, can be expressed as

n!
(2zi)" 1 (2n 4+ 1)!

C, = / tr(GdG=1)r+1. (H15)
R, xBZ4

To derive this expression, we first show its topological
invariance. In fact, a variation G — G + 6G gives

S[tr(GdG=1)2r+1]

= —(2n+ 1)d{w[G™'6G(dG~'G)*"]}, (H16)
which just gives a boundary term and vanishes after the
integration. Since the right-hand side of Eq. (H15) is
topologically invariant, the Hamiltonian H(k) can be
continuously deformed into the Q function Qg (k). We
denote G~!(w,k) = iw — Qg (k) as the Green function of
the O function. Noticing

(dQOr)?

G(diG NG (dG™) = - H17
(@G NGGT) = =R (H17)
because of QrdQOr + dQOr0Or = 0, we have
tr(GdG—l)Zn—H

i2n+ 1) (=1)"*" n

=dw (5 ol tr[(iw + Qg)(dQg)*"]. (HI18)
Integrating it with respect to w € R, we have
/ w(GdG1 )
R,
i(=1)"1(2n + 1)!
A B D guao, ). (H19)

22n<n!)2

which leads to the equivalence between Eqs. (H12)
and (H15).

2. Z invariants in odd dimensions (real gap)

In the presence of a real gap and CS defined by Eq. (15),
we can define the winding number W,, ; in odd spatial
dimensions d = 2n + 1. When |u,) is a right eigenstate
with E,, [|u,) is a left eigenstate with —FE} due to
CS. Therefore, eigenstates and eigenenergies can be
expressed as

|u—n>> = F|un>7 E_, = _Erzv (HZO)
where an eigenstate with a positive (negative) n is chosen to
satisfy ReE, > 0 (ReE, < 0). Here, we introduce the

following projectors:

Pro= > lu)ual.  Pre= ) lu)u,l,

n<0 n<0

(H21)

which satisfy Py /. = Pry and PE = P.. Because of CS,
we also have
I'PrIC=1-"P, (H22)

where Eq. (H20) and the completeness condition are used.
We then define the Q matrix by
Q =1 - (PR + PL), (H23)

which is Hermitian but Q2 # 1, and respects CS. The
winding number W,, ., is thus defined as

n!
2(271)" 1 (2n + 1)!

« [ ulrio-tagyr )
BZ¢

Wopg1 :==—
(H24)

Moreover, when the chiral-symmetry operator I' is diagonal
(ie., I':==0,), the O matrix can be expressed as

¢- <q* 0)’

where the off-diagonal part ¢ is an invertible matrix. Here,
g 1s not necessarily unitary in contrast to the Hermitian
case due to Q” # 1. Nevertheless, ¢ is invertible, and the
winding number W,, ., is given as

(H25)

n!
(2zi)" 1 (2n +1)!

Waniy = / (g g (H26)

Remarkably, the winding number W, is constructed in a
one-dimensional non-Hermitian system with CS in
Ref. [102].

3. Class D in one dimension
The Z, topological invariant in 1D class D is given as the
quantized Berry phase. When |u,(k)) is a right eigenstate
with eigenenergy E,(k), we have
HY(K)[C_[u(—k))] = —E;(=k)[C_|uy (k)] (H27)
due to PHS defined by Eq. (13), which implies that
C_|uj(—k)) is a left eigenstate of H (k) with its eigenenergy
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—E, (—k). Therefore, eigenstates and eigenenergies can be
expressed as

|u_y (k)Y = C_[up (=K)).

where an eigenstate with a positive (negative) n is chosen to
satisfy ReE, >0 (ReE, <0). As a result, the Berry
connections for n >0 and n <0 are related to each
other by

E_,(k) = —E,(=k), (H28)

AL () = i, ()|, (K)) = Ay(=K).  (H29)

Thus, the Berry phase ¢ of all the occupied bands with
n <0 accumulated over the entire Brillouin zone is
given as

n<0

=3 0,>

all n

_ % ]](3 (L (R

= 71{3 , > A, (k)dk
1

A, (k)dk
(H30)

where R and L are given by collecting right and left
eigenstates, respectively:

R(k) = (|uy (k) |ua(K)), - - ),
L(k) = (lur ()Y, [uz(K)D. - --).

Although R and L are nonunitary in the presence of
non-Hermiticity, both of them are invertible and satisfy
RIL=L'R=1 as long as a line gap is open.
Consequently, we have ¢ = —zW; (mod 2z) with the
phase winding W, of detR(k) # O:

b H31
k) : (H31)

dk dk
Wl = f Ttr(R_lakR) = % 2—8k IOg detR. <H32)
B B

7«1 7 &1

The Z, topological invariant is thus given as the
nm-quantized Berry phase ¢, i.e., W (mod 2). Remarkably,
apoint gap is always open if a line gap is open. Consequently,
the Z, topological invariant for a point gap in Eq. (G11) is
also well defined, which is equivalent to the quantized Berry
phase @.

4. Z invariants in pseudo-Hermitian systems

In the presence of pseudo-Hermiticity defined by
Eq. (21), the matrix nH (k) is Hermitian:
[nH (k)]" = nH (k). (H33)

Moreover, eigenvalues of nH(k) coincide with singular
values of H(k) due to

[nH ()] [nH (k)] = H' (k) H (k). (H34)
which implies that an energy gap of nH (k) is equivalent to a
point gap of H(k). Consequently, in the presence of a real
gap, we have the two independent Chern numbers C, in
even spatial dimensions d = 2n, one of which is defined for
H(k) and the other of which is defined for nH (k).
In the presence of additional TRS with 7,77 = +1,
the Chern number for H(k) vanishes. Furthermore, if
the TRS commutes with pseudo-Hermiticity (i.e.,
T.n. =niT,), nH(k) respects TRS, and hence its
Chern number also vanishes. If the TRS anticommutes
with pseudo-Hermiticity (i.e., 7 ,n* = —,*7 ), on the
other hand, the Chern number for nH (k) does not neces-
sarily vanish and serves as the time-reversal-invariant
Chern number in Sec. VIB [102]. Whereas the time-
reversal-invariant Chern number defined in Sec. VIB
[102] requires a real gap, the present one only requires a

point gap.

APPENDIX I: EXACT SOLUTION TO THE
NON-HERMITIAN SU-SCHRIEFFER-HEEGER
MODEL WITH ASYMMETRIC HOPPING

We provide an exact solution to the non-Hermitian Su-
Schrieffer-Heeger model defined by Eq. (50) with open
boundaries. We assume v > g > 0, w > 0 for the sake of
simplicity, but the discussion can be generalized straight-
forwardly. Our calculations are based on a systematic
method of diagonalizing free fermions with generic boun-
daries described in Refs. [120,241,242], which is readily
applied to generic non-Hermitian lattice models.

We denote an eigenenergy as £ € C and the correspond-
ing right eigenstate as ¢ = > - | (A;a; + B;b;) with coef-
ficients A;, B; € C. The Schrédinger equation [H, §] = E@
reads

wBi_ + (v + g)B; = EA,
(v —g)A; +wA; | = EB,;

(i=2.3,...L),

(i=1.2,..L-1) )

in the bulk, and

(v +9)B, = EA,, (v—9)AL = EB, (12)
at the edges. Defining A; ., and B, with Eq. (I1), the
boundary equations (I2) reduce to

Apy1 =By =0. (I13)

Here, we take a plane-wave ansatz A;~Ae'*/, B;~Belt/
(k € C). Whereas the wave number is real (k € R) for the
bulk states in Hermitian systems, it can be complex in non-
Hermitian systems. The bulk equation (I1) reduces to
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((U - 9)0+ welk " g)0+ We_ik) <2) B

For a nontrivial solution, we have

()

(14)

E(k) = i\/vz +w? — @ + (v + g)welk + (v — gywe k.
(I5)

In the absence of the non-Hermiticity (¢ =0), if an
eigenstate with wave number k£ € R belongs to an eige-
nenergy E € R, another eigenstate with wave number —k
has the same eigenenergy E. In the presence of non-
Hermiticity (g # 0), however, this fact breaks down; if
two eigenstates with wave numbers k and &’ (k # k') belong
to the same eigenenergy E, Eqs. (I4) and (I5) lead to

(v + g)e* + (v =gle™ = (v + g)e¥ + (v —g)e ™, ie,

e =2 - Z ek, (16)

which implies that the eigenstates are localized at either
edge for g # 0 (non-Hermitian skin effect [121]). This
equation naturally leads to the redefinition of the wave

number as
ek = [Z I gia, (17)
v+g

where g should be real for the bulk eigenmodes. Using this
redefined wave number g € R, the bulk equation (I4)
reduces to

0 v? — g%+ we™l4 <A>_E(A)
Uz_gz+weiq 0 B B

(I8)

with B:=B\/(v+g)/(v—g), and the eigenenergy in
Eq. (I5) reduces to

E(q) = i\/vz +w? — @ +2¢/v? = gwcosq. (19)

With the real wave number ¢, the bulk Hamiltonian under
the open boundary condition is obtained as Eq. (55).
Now, a generic eigenstate is described by

A]-:A+eiq/ +A_eTi4), B; :B+ei‘1/+B_e‘i‘U (110)
with A,, A_, B,, B_ € C. The bulk eigenequation (I8)

leads to

v? — ¢* + we'ld
::C q N
E(q) @)

and B_/A_ = C(—q). The boundary equation (I3) leads to
the quantization of the wave number ¢. In fact, Eq. (I3)

leads to
(eiq(L-H) e—iq(L+1)> (A+> o
Clg)  C(=q) J\A_)
which has a nontrivial solution if and only if the determi-

nant of the coefficient matrix vanishes. After some calcu-
lations, we obtain

B, Juv—g
A, Vov+g

(111)

(112)

sing(L + 1) W (113)
singL 2 — P

which quantizes g. In the trivial phase (w < /2% — ¢?), all
the wave numbers ¢ are real, and thus all the eigenstates are
localized at an edge with the same localization length for

L — co. In the topological phase (w > /2% — ¢°), on the
other hand, some of the wave numbers g are complex even
for L — oo, and those eigenmodes are topologically pro-
tected to have zero energy [241]. Therefore, the winding
number defined as Eq. (52) for Hopc (Fig. 3) indeed
predicts the emergence of the topologically protected edge
states.
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