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Closed generic quantum many-body systems may fail to thermalize under certain conditions even after
long times, a phenomenon called many-body localization (MBL). Numerous studies support the stability of
the MBL phase in strongly disordered one-dimensional systems. However, the situation is much less clear
when a small part of the system is ergodic, a scenario which also has important implications for the existence
of many-body localization in higher dimensions. Here we address this question experimentally using a large-
scale quantum simulator of ultracold bosons in a two-dimensional optical lattice. We prepare two-component
mixtures of varying relative population and implement a disorder potential which is experienced only by one
of the components. The second nondisordered “clean” component plays the role of a bath of adjustable size
that is collisionally coupled to the “dirty” component. Our experiments show how the dynamics of the dirty
component, which, when on its own, show strong evidence of localization, become affected by the coupling
to the clean component. For a high clean population, the clean component appears to behave as an effective
bath for the system which leads to its delocalization, while for a smaller clean population, the ability of the
bath to destabilize the system becomes strongly reduced. Our results reveal how a finite-sized quantum
system can bring another one towards thermalization, in a regime of complex interplay between disorder,
tunneling, and intercomponent interactions. They provide a new benchmark for effective theories aiming to

capture the complex physics of MBL in the weakly localized regime.
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I. INTRODUCTION

Typical quantum many-body systems evolve into a
locally thermal state after driven out of equilibrium by a
global quench [1]. This quantum version of thermalization
is explained by the eigenstate thermalization hypothesis,
which postulates that small subsystems are described by a
thermal density matrix even for individual many-body
eigenstates of the global system [2-5]. Quantum thermal-
ization can, however, fail generically in systems exhibiting
quenched disorder [6—8] when the strength of the disorder
is large enough to prevent efficient spreading of entangle-
ment [9]. Nonthermalizing behavior and strong indication
for the existence of a many-body-localized (MBL) phase
have been observed experimentally in several systems, in
one [10-14] as well as in two dimensions [15,16]. An
efficient delocalization of such MBL systems can be
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induced by coupling them to an external dissipative bath,
which will ultimately restore thermalization. But similar
processes can take place even in perfectly isolated systems,
when a large enough part of the system is ergodic. Speci-
fically, the many-body eigenstates in some parts of the
energy spectrum may obey the eigenstate thermalization
hypothesis while in other parts remain localized [17-19]
and spatial rare regions of low disorder may form local
ergodic inclusions [20,21] that can trigger a destabilizing
avalanche, a common argument against the existence of a
MBL phase in higher dimensions. An understanding of the
mechanisms which lead to thermalization and to the
destruction of MBL is thus of central importance to verify
the robustness of the MBL phase. Such processes pose a
challenge for both numerical and experimental methods,
since their identification requires the study of long evolu-
tion times in large quantum systems.

An experiment which allows us to probe such delocal-
izing phenomena in a highly controlled setting and in the
complex regime near the transition between the ergodic and
localized phases consists of an interacting two-component
mixture composed of a “dirty” component in a random
potential and a “clean” component insensitive to the dis-
order [22-24]. In such a hybrid system, the clean compo-
nent, which on its own would quantum thermalize, can be
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viewed as a quantum bath with a tunable number of degrees
of freedom [25-27]. In particular, the small-bath regime
can be realized, a very different scenario compared to the
theoretically [28-31] and experimentally studied [32]
coupling of a MBL system to a classical bath at infinite
coupling bandwidth. Under some conditions, a small
quantum bath might even fail to thermalize the whole
system. Such a breakdown of thermalization can happen as
a consequence of the bath becoming localized via the
intercomponent interactions, which can play the role of an
effective disorder (a MBL proximity effect [22,23]). In this
work, we use a quantum-gas microscope to prepare an
out-of-equilibrium state in a disordered potential and to
measure its dynamics for long timescales beyond 1000
tunneling times. By introducing a second species insensitive
to the disorder, we realize the setting described above. While
the dirty component shows strong indication of localization
in the absence of a bath, the introduction of a large enough
number of clean atoms alters the dynamics qualitatively, and
the signs of localization vanish eventually.

II. EXPERIMENTAL SETUP

Our experimental system consists of a square optical
lattice with lattice spacing aj,, = 532 nm in which we
load an ultracold cloud of 3Rb atoms. By preparing the
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atoms in two different hyperfine states, the dirty |d) =
|F=2,mp=-2) and clean |c) =|F =1,mp=-1), a
two-species bosonic mixture is obtained, which features
almost equal inter- and intraspecies interactions U, ~
U.,.~U,;; = U [33]. We optically induce a state-depen-
dent on-site disorder potential §;, which affects only the
dirty |d) component, thereby breaking SU(2) symmetry
(see Supplemental Material [34]). This system can be
described by a two-species disordered Bose-Hubbard
Hamiltonian:
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where 4; ,, d; ,» and 7i; , denote the annihilation, creation,
and number operators for a particle in state o € {c,d} at
site i of our 2D system [i = (i, i,)]. The first sum indicates
the hopping between nearest-neighbor sites (i,j) with a
state-independent tunneling amplitude J, and V; character-
izes the harmonic trapping potential.

To prepare the out-of-equilibrium initial state for the
experiments in this work, we start with a unity-filling Mott
insulator in the atomic limit and remove the atoms on every
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Schematic description of the experiment. (a) Illustration of the two-component mixture at the beginning of the experimental

sequence. The system consists of a square optical lattice with species-dependent disorder in which two different bosonic hyperfine spin
states are prepared. The clean component (red, |c)) experiences only the lattice potential, while the dirty component (blue, |d)) is
additionally affected by a random on-site potential (blue boxes of different lightness). The initial state is prepared with a short-scale
density modulation along the x direction. (b) Dynamics of the mean density distribution for systems prepared independently with only
either one of the two components. The dirty component partially preserves the initial-state density modulation for a sufficiently high
disorder strength (in blue, for A = 28J), which is a signature of the breakdown of ergodicity and the formation of a MBL phase. The
clean component |c), in contrast, relaxes in a few tunneling times to a state with no clear density modulation (in red). (c) Mean state-
selective density distribution of a mixture after a long evolution time. The measurements are taken after 2817 evolution for three
exemplary component fractions.
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second column such that N = 124(12) atoms remain [see
Fig. 1(b)]. We then prepare a fraction of the atoms in state
|c) via a microwave pulse before imposing the disorder
potential (see Fig. 1) and quenching the optical-lattice
tunneling down to J/hA =2z x24.8 Hz and the inter-
actions to U = 24.4J. The random disorder potential is
chosen to be different for each experimental realization,
and its distribution is approximately Gaussian with a full
width at half maximum of A = 28/ [15]. The described
procedure involving a simultaneously quench of lattice
depth, disorder strength, and filling of the system leads to a
prepared state with a high energy density in the many-body
spectrum of the system (see a more detailed discussion in
the Supplemental Material [34]). After the lattice quench,
we allow the system to evolve for up to ¢ ~ 1100z, where
7= h/J is the characteristic tunneling time. After the
evolution, the lattices are increased to their maximum
depth in order to freeze the spatial distribution and image
the atomic occupations on each individual lattice site [35].
For the chosen value of the disorder strength A, the density
distribution of the dirty component eventually reaches a
steady state, retaining a signature of the initial density
modulation, while the clean one quickly becomes feature-
less [see Fig. 1(b)]. The access to the individual site
occupations allows us to characterize these dynamics by
tracking the imbalance Z = (N, — N,)/(N, + N,), where
N, , are the occupation numbers on sites at even and odd
columns. The use of the short-distance density modulation
efficiently probes localization at short length scales.

III. DYNAMICS WITHOUT BATH

We start by preparing a state in which all particles are in
the dirty component, i.e., in the absence of the atomic bath,
and measure the evolution of its imbalance Z ;. Over a few
hundreds of tunneling times, we observe a decrease of the
initial imbalance from Z, = 0.91(1) to a long-time qua-
sisteady value of Z,~0.13—a signature of MBL. The
measured dynamics can be phenomenologically well
described by the sum of two exponentials with vastly
different time constants and a stationary offset. During the
first identified period characterized by a decay time of
0.6(1)z, the atoms expand freely into empty sites. In the
following period of much slower dynamics [decay time
103(6)z], interactions are important and, together with the
even longer time dynamics, this timescale constitutes the
focus of our analysis. In addition, we resolve the formation
of doubly occupied sites (doublons) during the relaxation
dynamics, starting from an initially doublon-free case,
which exhibits a rapid growth and subsequent saturation
after the quench. This effect requires both interactions and
disorder, since in a disorder-free lattice with the same
parameters, such a dynamical doublon formation is
strongly suppressed by the interactions. The qualitative
behavior of these dynamics is reproduced by small-system
numerical simulations (see Supplemental Material [34]).

Furthermore, recent numerical work on the 2D disordered
Bose-Hubbard model has found signatures of MBL by
studying individual eigenstate properties at parameters
consistent with this work [36]. Nonetheless, the finite
coupling to the environment in our system, inevitable in
any experiment, becomes increasingly important at longer
times. Its dominant effect is an atom loss of 15% after 600z.
The effect of such a loss on localization is not entirely clear,
but in our experiments it does not seem to cause strong
delocalization. No total relaxation of the imbalance has
been observed even for the longest measured times, which
are among the longest times probed in any MBL-related
experiment so far. The data of Fig. 2 show that the timescale
of any potential subsequent relaxation is large and well
separated from the characterized initial decay. In addition,
an exponential fit of the data after 500z, combined with a
bootstrap analysis, allows us to bound any further relax-
ation to be 3 > 23007z with 92% confidence. This lower
bound is our sensitivity limit for the relaxation, in the sense
that any slower decay process cannot be distinguished from
true localization. We define this long-time behavior as a
“quasisteady state.” The separation of timescales between
the initial decay and any potential further decay is,
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FIG. 2. Dynamics of the dirty component alone. Evolution of
the imbalance 7 ; (points) for a system composed only of the dirty
component |d). The blue points show the measured data and the
solid line a fit of the points to the sum of two exponentials
including an offset. The imbalance decreases monotonically,
albeit on distinct timescales. An initial decay, where interactions
are negligible, is followed by a slower second timescale governed
by doublon relaxation. After approximately 300z, a quasisteady
state of finite imbalance 7, ~ 0.13 is reached. The four rectan-
gular boxes show the averaged density distribution in the trap
center (black-red-yellow color scale) at times Oz, 637, 2197, and
1094z, displaying the reduction in the imbalance. In the inset, we
show the short-time dynamics of the imbalance 7, (blue) and the
doublon population p4 (red) defined as the fraction of atoms in
doubly occupied lattice sites. Notably, the doublon formation rate
changes markedly between the two dynamical regimes of the
imbalance decay. The error bars represent 1 standard deviation of
the mean.
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however, large, rendering the observed plateau a useful
indication of the presence of MBL in the system.

IV. DYNAMICS WITH BATH

We now turn to studying the effects of coupling a tunable
atomic bath to the system. To this end, we initially prepare a
mixture with a preset number N, of atoms in the clean state,
and after the dynamics, we ensure that the detection is only
sensitive to atoms in state |d) by removing all |c) atoms
with a resonant light pulse prior to detection (see
Supplemental Material [34]). The evolution of the imbal-
ance Z, for three different bath sizes (N. = 20, 40, 90) is
shown in Fig. 3(a), together with the dirty-only case as
reference. Generally, the larger the bath, the smaller the
imbalance in the long-time limit. While introducing a
fraction of clean atoms also implies reducing the density
of the dirty component, it is important to consider that this
alone would actually yield a higher long-time imbalance
[15]. In the N. =90 case, the imbalance relaxes to a
vanishing value in less than 300z, implying that the
particles have delocalized over at least several lattice sites.
A time constant of 140(30)z can be extracted from a single
exponential fit (red dashed line) for this relaxation process.
A similar delocalization takes place for the N, = 40 case,
whose exponential fit gives a slower time constant of
200(20)z. These results indicate that the clean component
indeed acts as an effective bath, destabilizing and thermal-
izing the localized dirty component. Importantly, this effect
is caused by collisional interactions only, whose strength
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is equal to the intracomponent interactions in the system;
i.e., no new energy scale is introduced when adding the
clean component. When reducing the size of the bath even
further, to N. = 20, we still observe an overall reduction of
the imbalance, but the dynamics is qualitatively different.
A finite imbalance still persists for the longest measured
times, and a simple exponential fit does not describe the
dynamics accurately anymore. Introducing a steady-state
offset, as in the case without a bath, matches the data
significantly better (see Supplemental Material [34]), such
that this is the simplest model describing all datasets (solid
lines). A bootstrap analysis of the data after 6257 allows us
to bound the subsequent relaxation to be 73 > 11007 with a
confidence of 92%.

The observed dynamics for smaller baths may be
explained by an inefficient delocalization of the dirty
component, with a decay rate much smaller than the other
timescales in the system but could also hint at a failure of
thermalization. Theoretical studies for finite 1D systems
with coupled clean and dirty components [22,23] found a
persisting localization in certain regimes of reduced tun-
neling of the clean component, for which the coupling rate
of spatially separated points is decreased. To quantify the
delocalizing effect of the bath at long evolution time, we
show the imbalance 7, as a function of the bath size [see
Fig. 3(b)] for two different evolution times (r = 8597 and
t = 10947). The values at the two times are similar, and
they cannot be distinguished from the steady-state offsets
obtained from the fits of Fig. 3(a). For bath sizes below
N, ~ 40, a finite imbalance 7, remains at long times.
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Dynamics and delocalization in the presence of a quantum bath. (a) Dynamics of the dirty-state imbalance Z ; for four different

bath sizes (N, = 0 in dark blue, N, = 20 in green, N, = 40 in purple, and N. = 90 in red). The dashed lines indicate exponential fits
and the solid lines fits of an exponential with an offset. Introducing the clean component leads to delocalization indicated by the reduced
imbalance. The imbalance relaxes completely for the two largest bath sizes, while for the smallest size of the bath (N. = 20), a finite
imbalance remains. (b) Experimental steady-state imbalance as a function of the bath size. The data are measured at t = 8597 (round
points in blue) and at # = 1094« (round points in light blue). The square points correspond to the asymptotic offsets obtained from the
four solid line fits in (a). The horizontal dashed gray line indicates the typical statistical threshold at which the imbalance is compatible
with zero. The error bars indicate 1 standard deviation of the mean.

041014-4



MANY-BODY DELOCALIZATION IN THE PRESENCE OF A ...

PHYS. REV. X 9, 041014 (2019)

1-0 — T T T T T ]
10 = . . .
f Sosf
08} 5 06 s, J
© ¢ 3 04 -: e e, 0
S oet g o02f) ©2e00 4] |
8 0.0 g - ;,;T g
T o4l & 0 100 200 300 |
Ke) . .
§ + Time t (A/J)
0.2 + 4
J' | & +
0.0 ! = —

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (A/J)
FIG. 4. Imbalance dynamics of the clean component. Evolution
of the clean component imbalance Z,. for three different atom
numbers of the clean component (N, = 120 in light orange,
N, = 60 in orange, and N, = 20 in dark orange). The dashed-
line curve is an exponential fit with time constant of 0.7z. All bath
sizes result in a similar behavior, with the imbalance vanishing in
few tunneling times. The inset shows the long-time evolution of
the clean component compared with the dynamics of the dirty
component in the N, = 0 case, highlighting the strong difference
in the timescales. The horizontal dashed gray lines indicate the
typical statistical threshold at which the imbalance is compatible
with zero. The error bars represent 1 standard deviation of
the mean.

Finally, to probe the backaction of the dirty component
on the bath dynamics, we also track the evolution of the
bath component in our system. This is realized by removing
the dirty component |d) prior to detection in order to detect
the clean particles |c) only (Fig. 4). The results show that
no matter how small the bath is, Z . relaxes very quickly, on
a timescale of a few tunneling times z. Any potential
interaction-induced localization of the small bath by the
dirty component would therefore be characterized by a
localization length spanning many sites, beyond what can
be detected by the short-distance probing used here. Such a
behavior is expected given that even the remaining imbal-
ance of the dirty component Z; = 0.07(2) in the N, = 20
case is already very small; i.e., it can serve only as a rather
weak disorder source.

V. CONCLUSION

The experiments reported in this work shed first light on
MBL systems in contact with a quantum bath of tunable
size. Generally, the presence of such a bath tends to drive
the system towards delocalization, which eventually
becomes complete even on our experimentally accessible
timescales, when the bath formed by the clean component
becomes large enough. Follow-up experiments may
explore different initial states and disorder regimes to settle
the question of proximity-induced localization [22,23],
demonstrating the localization of a system due to and

not despite interactions. Furthermore, the debated question
on the stability of MBL in the presence of thermal
inclusions can be directly addressed in a similar experiment
with engineered low-disorder regions [20,21].
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