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Stochastic processes underlie a vast range of natural and social phenomena. Some processes such as
atomic decay feature intrinsic randomness, whereas other complex processes, e.g., traffic congestion,
are effectively probabilistic because we cannot track all relevant variables. To simulate a stochastic
system’s future behavior, information about its past must be stored, and thus memory is a key resource.
Quantum information processing promises a memory advantage for stochastic simulation. Here, we
report the first experimental demonstration that a quantum stochastic simulator can encode the required
information in fewer dimensions than any classical simulator, thereby achieving a quantum advantage
in minimal memory requirements using an individual simulator. This advantage is in contrast to recent
proof-of-concept experiments, where the memory saving would only become accessible in the limit of a
large number of parallel simulations. In those examples, the minimal memory registers of individual
quantum simulators had the same dimensionality as their classical counterparts. Our photonic
experiment thus establishes the potential of new, practical resource savings in the simulation of

complex systems.
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I. INTRODUCTION

Stochastic processes are ubiquitous in science and
technology [1,2]. Quantum information reduces the
required memory storage for simulating these processes
[3-16]—a newly identified advantage [3] that complements
other quantum information technological enhancements.
Recent first experiments confirmed the potential of this
advantage [9,10,16]. However, in all past experiments,
the memory enhancement was with respect to an entropic
information measure. A large number of parallel simulators
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would be required to exploit this entropic benefit in order to
encode the required information in a memory with lower
dimension. Because of the unavailability of a large number
of parallel simulators, the ultimate memory advantage,
a dimensional advantage, has never been achieved. Also,
verifying the entropic advantage requires quantum state
tomography, with state-reconstruction difficulty scaling
exponentially with the problem size.

Here, we realize the first experimental demonstration
of a dimensional memory advantage for simulating
stochastic processes. We achieve the dimensional advan-
tage directly with an individual quantum simulator, which
uses a memory register with fewer dimensions than any
classical counterpart. Our quantum encoding is achievable
with any number of simulators, rather than requiring an
asymptotically large array of simulators [4,17]. This
encoding realizes the quantum advantage for stochastic
simulation in its fullest sense. Moreover, characterizing
the dimensional advantage is relatively straightforward,
compared to other measures of memory, which rely on
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The stochastic process and its simulation. (a) The simplest classical simulator for the process can be represented by a directed

graph. Here, the three nodes S, S,, and S; represent internal states of the machine. Each edge between two nodes, S; and Sy, labeled
r|T ., represents the probability 7';; that the machine emits output 7 and transitions from state S; to state S;. To generate correct
conditional futures, one first initializes the machine in state S; depending on the value of the last output (0, 1, or 2). Iterating the machine
can then generate correct conditional future statistics. Mathematically, the probabilities T j; make up the transition matrix, whose
eigenvalues form the probability distribution of the causal states, called the stationary distribution {p;},_q,,. (b) Dynamically, a
simulator can be considered to consist of a memory (upper arm) that transfers information between time steps and sequentially interacts

with a blank tape (lower arm) at each time step.

determining the information entropy of a register.
Verifying information entropy requires tomographic
reconstruction, which is known to be an extremely hard
task for high-dimensional states.

We investigate a specific stochastic process, while
noting that the advantage is theoretically known to hold
for a range of other simulation tasks [14]. The process we
simulate here can be understood as the output of a biased
oracular coin [15] [see Fig. 1(a)]. The process involves a
(possibly biased) coin in a box. At each step, the box is
perturbed, such that the coin flips with some probability
(p if it is heads, ¢ if it is tails). The box outputs a 1
whenever the coin is tails. However, whenever the coin is
heads, the box is able to look up its output at the
subsequent future time step. If the next time step is 1,
it outputs a 2; otherwise, it outputs a 0. Because of this
dependence on future time steps, the classical memory for
simulation is markedly increased: Instead of needing a
single coin (1 bit), a three-level system is provably
required [15]. This requirement does not apply to quantum
simulators, which we implement using only a single qubit
as the memory.

II. FRAMEWORK

Generally, as illustrated in Fig. 1(b), a quantum simulator
of a stochastic process, henceforth simply referred to as a
quantum simulator, accepts a memory system and an
ancilla system as inputs to an interaction [3,4,14] for each
simulation step. Of the two, only the memory system
contains information about the past, while the ancilla
system carries no information. The interaction produces
an entangled state of the output memory system and a
second system. Measurement of the latter provides the
output of the stochastic process and collapses the memory
system to the appropriate quantum state for the next

simulation step. The memory cost of such a simulator is
then characterized by the amount of resources necessary to
carry information between time steps in order to generate
correct future statistics.

For the stochastic process of Fig. 1(a), it is known that
the provably optimal simulator classifies the set of all
possible pasts into three different states called causal states
[3,18]. To this end, the classical processor must have three
distinguishable states, {S;},_ 1, as its memory. By con-
trast, a quantum simulator can encode the three causal
states as three pure quantum states {[S;)},_, » that are not
mutually orthogonal and fit within a single qubit (as
described in the Appendix A).

We implement our simulator in a photonic quantum
information processor, while noting that it could also be
realized in other platforms in which quantum logic gates
can be implemented. The memory qubit containing
relevant past information is encoded in the polarization
degree of freedom of a single photon, as depicted in
Fig. 2(a). To simulate a time step, it is then required
to take this memory as input, deliver one of three
possible outputs 0,1,2 according to expected conditional
statistics, and subsequently leave the memory in the
correct state for the next time step. In our experiment,
this process involves interacting the memory qubit
with a qutrit space of three spatial modes (playing the
role of the tape), followed by a controlled-NOT (C-NOT)
[19,20] and a controlled-rotation (C-rotation) gate, as
detailed in Fig. 2(c). The path measurement of this
photon corresponds to measuring the qutrit in the
logical basis, which provides the classical output
(0, 1, or 2) of that step of the stochastic process. This
collapses the output memory qubit, encoded again in the
polarization state of a photon, to the correct conditional
state, which can be characterized by quantum state
tomography.
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III. EXPERIMENT

We overcome constraints in the nondeterministic
photonic implementation of consecutive quantum gates
by introducing a nondestructive measurement realized
by an additional C-NOT gate [21,22] and a corresponding
ancilla photon. The photons are generated via sponta-
neous parametric downconversion (SPDC), and fourfold
coincidences (three photons for the experiment and one
“spare” photon to herald the presence of its pair) are
detected using superconducting nanowire single-photon
detectors (SNSPDs [23]) and coincidence logic modules.
The detailed experimental setup is shown in Fig. 3, and
additional details are in Appendix B.

The first goal of the experiment is to verify that the
quantum simulator is performing the intended simulation.
For this to be true, two criteria must be fulfilled: (i) After
initialization in each of the three possible causal states, the
conditional output statistics, obtained through the qutrit
measurement, should match the transition probabilities
that determine the stochastic process [see Fig. 1(a)].
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(i) Conditioned on the qutrit measurement outcome,
the correct memory state should be produced to allow
the possibility of further simulation steps.

To check the first criterion, we prepare each of the three
causal states, whose definitions in terms of p and ¢ are
provided in Appendix A. For each input causal state, there
is a probability distribution over the three possible outputs
of the stochastic process. Comparing the measured dis-
tributions with the theoretical ones, we consistently obtain
(classical) fidelities [24] above 0.993. For the second
criterion, the collapsed output memory state is recon-
structed by quantum state tomography, given each of the
input causal states. The (quantum) fidelities of our exper-
imental stationary states (see Appendix C) with the ideal
stationary states are all above 0.991.

The second goal of the experiment is to demonstrate
the quantum advantage in memory requirements. Most
pertinent to this work is the dimensional memory
advantage, which has not been demonstrated before.
In this scenario, the memory size, in bits or qubits, is
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FIG. 2. Conceptual diagram of a simulation step. (a) The quantum processor (W) accepts a memory qubit and uses an ancilla. (We use
wavy lines to denote quantum objects, with the number of lines in parallel indicating the dimensionality.) In the processor, the qubit
undergoes a fan-out operation F to a qutrit space. The ancilla contains no information, and its preparation P is fixed. Then, a unitary
operation U acts on the qutrit and ancilla, outputting an entangled state of the memory qubit and a qutrit. A projective measurement of
the qutrit provides the output of the simulation step and collapses the memory qubit to the appropriate state for the next step. (b) The
classical simulator requires a three-dimensional memory system. The irreversible operation W acts on the memory system to generate
the classical output and the next memory state. (c) The experimental realization of the circuit in diagram (a) using linear optics gates
requires an ancilla qubit (Photon 2) and its herald (Photon 1). Following the fan-out operation F(p,q) on the memory qubit, we
implement a gate, C-NOT 1, which performs a nondestructive measurement (NDM). Then, the unitary operation U is performed by an
additional two gates, C-NOT 2 and C-rotation. The preparation P(g) of the memory system (Photon 3), the fan-out operation F(p, q),
and the single qubit rotation R(g) depend on the stochastic process parameters p and g as indicated.
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FIG. 3. Experimental setup. Single photons are generated from
SPDC events. The herald photon from Source 1 is sent straight to
a heralding detector. The polarization of the memory system is
used to encode the relevant causal state in a qubit, using a half-
wave plate (HWP). Ancillas are prepared in a fixed polarization
using HWPs. To implement the fanning out from the memory
qubit to a qutrit, a HWP and polarizing beam splitters (PBSs) are
used. Each of the C-NOT 1 and C-NOT 2 gates is implemented
using a HWP and a PBS. The C-rotation gate is realized via
HWPs and partially polarizing beam splitters (PPBSs). In order to
vary the relative delay between the single-photon wave packets,
an automated translation stage is used to move one of the
couplers. Classical readout is performed via projective measure-
ments on the path modes of the qutrit, which collapses the
memory state to the appropriate causal state. To verify the
memory qubit, its state is reconstructed via quantum state
tomography. A telecom bandpass filter is used in the tomography
arm in order to spectrally filter the SPDC photons and maximize
the visibility of the quantum interference. P stands for state
preparation, SMF for single-mode fiber, QWP for quarter-wave
plate, GT for Glan-Taylor prism, and FPC for fiber polarization
controller. For more details, see Appendix B.

measured by the max-entropy, which is simply log, d,
where d is the dimensionality of the memory system [4,17].
We denote this max-entropy memory size as D, for the
best classical simulator and D, for our quantum simulator.
Since the information about the past is encoded in the
polarization of a single photon, both at the beginning and
at the end of the simulated step, the memory system that
connects steps is obviously confined to a qubit space.
In contrast to this two-level quantum system, the optimal
classical simulator requires a three-level system [15].

Thus, there is a clear dimensional quantum advantage in
memory. This advantage enables the first quantum simu-
lators that use less physical resources (qubits compared to
bits) when performing individual simulations. In complex-
ity science, the max-entropy of the model, D#, which
captures the minimal dimensions required to store the past
for future simulation, is known as topological state com-
plexity [25,26], and we provide the first experimental
demonstration that the quantum analogue D, can be
reduced.

For completeness, we also investigate the resource
advantage one could obtain when multiple simulations
are run in parallel. Here, the required memory is no longer
determined by the dimensionality of the memory system
alone. In the limit of a very large number (N) of parallel
simulations [the independent and identically distributed
(i.1.d.) case [4,17]], the minimum required memory to
replicate the process faithfully is given by NC, where C is
called the statistical complexity [25]. The classical stat-
istical complexity [25] C, is the Shannon entropy of the
stationary distribution over causal states, while the quan-
tum statistical complexity [3] Cy, is the von Neumann
entropy of the quantum stationary state (see Appendix C
for mathematical definitions).

Figure 4(a) illustrates the theoretically expected stat-
istical complexities C, and C, for all possible values of p
and ¢, showing the potential for a significant asymptotic
quantum advantage over a large region of the parameter
space. We perform the simulation for sets of (p, ¢) values
along several cross sections. The experimental values of
Cgp, shown in Figs. 4(b)-4(e), are determined from the
density matrices of the output memory system and the
transition probabilities (see Appendix C). The slight
deviations of the experimental data compared to the
theoretical curves arise from experimental imperfections
such as reduced qubit purity from imperfect nonclassical
interference, small imperfections and setting errors in
polarization-dependent elements, and a minor imbalance
in detector efficiencies. These results nevertheless dem-
onstrate a substantial quantum advantage in the required
memory for simulation in the i.i.d. case (i.e., asymptotic
advantage).

Thus, our quantum simulator has an advantage over
its classical counterpart both for the individual
simulator and the i.i.d. scenario. Remarkably, we even
simulate processes, marked by the shaded regions in
Figs. 4(b)-4(e), where the classical statistical complexity
C, exceeds one bit. In these cases, we have a gap
between both quantum measures and both classical
measures: Cy < Dy < C, <D,. (Note that the max-
entropies D, and D, always form upper bounds on their
i.i.d. variants Cy and C,, but small values of Cy and C,
do not guarantee any bounds on Dy and D,,.)
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FIG. 4. Statistical complexity of the classical and quantum simulators. (a) The theoretically calculated statistical complexity. The pale
grey surface depicts C,, while the pale orange surface shows Cy. The transparent plane marks the value C = 1. The yellow, purple,
green, and cyan cuts illustrate specific cross sections, which are experimentally probed and shown in panels (b), (c), (d), and (e),
respectively. The red projection on the floor illustrates the (p, ¢) values for which C, > 1. (b)—(e) The quantum simulator is used to
investigate several sets of processes with different values of p and g. The entropy of the reconstructed stationary states (see Appendix C)
determines the quantum statistical complexity (red dots). The black and blue curves represent the theoretical C,, and Cy, respectively.
The plots demonstrate a considerable memory advantage for the i.i.d. case. Furthermore, the grey shaded areas mark processes where the
complexity C, of the classical simulator exceeds one bit, while the quantum simulation runs with only one memory qubit. Uncertainties

are estimated from the Poissonian distribution of photon counts.

IV. DISCUSSION

In conclusion, we have shown that quantum information
processing enables the simulation of a stochastic process
with a memory that is smaller in terms of its dimensionality
(the number of orthogonal states it can support), as compared
to any classical counterpart. This demonstrated decrease in
the dimensionality of the memory system establishes a new
type of memory saving—namely, a dimensional memory
advantage, complementing prior works that established
entropic reductions in memory [9,10,16]. Whereas the latter
quantified quantum memory advantages in the asymptotic
limit of simulating many stochastic processes simultane-
ously, the dimensionality reduction indicates an immediate
reduction in the physical resources used (number of qubits
compared to bits) when simulating stochastic processes at
the level of an individual simulator. Here, we were able to use
a single qubit to generate the same predictions that would
otherwise require at least two classical bits.

One crucial point to make is that dimensional and
entropic advantages are distinct. Having a dimensional
memory advantage for individual simulators guarantees
a memory advantage in the entropic setting but not
necessarily vice versa. Indeed, there exist processes for
which it is possible to design quantum models with reduced
entropic memory but not reduced dimensionality.
Meanwhile, recent works illustrated that the quantum

simulator optimized to reduce memory dimensionality is
not necessarily the same as the one that is optimized for
memory entropy—a uniquely quantum phenomenon that
has no classical counterpart [27,28]. Indeed, the present
experiment allows us to study both the dimensionality and
the statistical complexity of the memory system and
provides a means to explore this phenomenon.

On a more practical level, dimensional reduction also has
notable operational benefits. Since entropy is an i.i.d.
quantity, it is not directly observable in a single run of
the experiment. As such, verification of entropic advantage
requires the use of state tomography. For more complex
processes that entail high-dimensional memory systems,
the quantum state tomography would require increased
resources (such as photons, modes, and detectors) and
could become prohibitively time-consuming. In contrast,
verifying a dimensionality advantage remains relatively
straightforward because it is based on counting dimensions
of a Hilbert space rather than characterizing quantum
states. This simplicity may become especially pertinent
in the context of conducting experimental tests to verify
scaling advantages of quantum models. Such scaling
advantages have recently been predicted to also be possible
at the level of individual simulators and to even admit
scenarios with an unbounded dimensional advantage,
where a classical simulator would require infinite memory
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but a quantum simulator would only require a finite-
dimensional memory [15,29].
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APPENDIX A: STOCHASTIC PROCESSES

A stochastic process [1,2] evolving in discrete time
is a collection of random variables {...,X,_;,X,, X1,
X,42,...}, where the previously observed variables
{...,X,_1,X,} are considered the past of the process,
i.e., the list of past outputs. A faithful simulator is one
that correctly generates the process’s future statistical
behavior based on a given configuration of its past.
The memory system of the simulator must store sufficient
information about the past configuration to enable this
faithful simulation [18]. Then, a processor acts on the
memory, generating a new classical output X,,; and
updating the memory to be ready for the next step.

For optimal simulation of the process that we study here
[15], the most recent output X, is sufficient for determining
the memory state for step # 4 1 [25]. The possible memory
states are called causal states [18,25], and there are three of
them for this process. The classical causal states are
perfectly distinguishable states, {S;};_y,. The quantum
causal states {[S})},_o, can be similarly defined as

153) = VT pl0) + VF).
1S7) = Vq(1 = p)|0) + /1 —¢q|1) +/pq|2),

$5) = [1). (A1)

However, by choosing a different basis, these states can be
mapped to a single qubit space [15,30]:

[S0) = 10).
1) = V410) + V1 —ql1).
2) = 1), (A2)

where |0),|1) form an orthogonal basis.

APPENDIX B: EXPERIMENTAL DETAILS

Four photons are generated via SPDC, as shown in
Fig. 3. To generate the photons, two SPDC sources are
realized using a 775-nm Ti-sapphire picosecond-pulse-
length pump laser and ppKTP (46.20-um poling period)
crystals cut for type-II collinear degenerate phase matching
[31,32]. The photons are not entangled in polarization. The
crystal temperature is controlled at 25 °C by a temperature
controller. The bandpass filter is centered at 1550 nm and
has a full width at half maximum of 8.8 nm.

To run the simulator, the causal states in Eq. (A2) are
encoded in the polarization degree of freedom of a single
photon acting as the memory system. We use polarization
modes such that |0) = |H) and |1) = |V), where H and V
are horizontal and vertical polarizations, respectively.

The fan-out transformation implements the basis change
from Eq. (A2) to Eq. (A1), so the three paths correspond to
orthogonal states |0), [1), and |2). The experimental setup
contains nondeterministic two-qubit gates. The C-NOT
gates 1 and 2 are realized with a HWP, a PBS, and
postselective detection. This simplified version (compared
to a universal photonic C-NOT gate [19]) provides an
increased success probability and works correctly since the
photons in the two input spatial modes always have a
fixed polarization. The C-rotation gate is comprised of
two single-qubit rotation gates R(g) and a two-qubit
controlled-Z gate. This controlled-Z gate is based on the
scheme in Ref. [20], which uses three PPBSs. However, we
only require two because of the fixed polarization in one
of the input spatial modes. Fourfold coincidences are
detected in a 5-ns coincidence window, using SNSPDs
and fast-counting electronics.

The detection channels have slightly different efficien-
cies, which may affect the probabilities determined from
the various coincidence detection combinations and thus
the inferred transition probabilities. The possible fourfold
detection combinations are formed by coincidence detec-
tions between detectors from each of the following four sets
[see Fig. 2(c)]: {1}, {2,3}, {4,5,6}, and {7, 8}. Therefore,
the detectors within each set should ideally have the same
efficiencies. In the experiment, the detectors are installed in
such a way as to match this criterion as closely as possible.

APPENDIX C: STATISTICAL COMPLEXITY

The statistical complexity [18,25,33] is the minimal
memory a model needs to generate future statistics
correctly using only information from past observations.
The classical statistical complexity is

C,l = —Zl?ilogzpi,

where p; is the probability of each causal state in the
stationary stochastic process, i.e., in the limit of a long

(C1)
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evolution. The quantum statistical complexity is defined
as [3]

Co = —Tr(plogy(p)). (€2)

where p = Y, p;|S;)(S;| is the quantum stationary state.

Our simulator implements the provably optimal model,
the so-called quantum epsilon machine [3,15,25]. Therefore,
we can measure C,, by inputting the causal states described
in Eq. (A2) for a given set of p and ¢ values. The stationary
state p is calculated as

2 2
p = dy Z ToiSpos, + di Z T1iSpois,
i=0 i=0
2
+d, Z T5iSpols, (C3)
i=0

where {d;},_q,, are the eigenvalues of the experimentally
measured transition matrix:

Too Tio Too
T=|Ty Ty Ty |. (C4)
Toa Ty To,

Here, T;; is the probability of classical output j when the
input causal state is |S;). Moreover, S5, is the recon-
structed polarization state of the output memory system
when the input causal state is |S;).
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