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The turbulence problem at the level of scaling exponents is hard in part because of the multifractal
scaling of small scales, which demands that each moment order be treated and understood independently.
This conclusion derives from studies of velocity structure functions, energy dissipation, enstrophy density
(that is, square of vorticity), etc. However, it is likely that there exist other physically pertinent quantities
with less complex statistical structure in the inertial range, potentially resulting in huge simplifications in
the turbulence theory. We show that velocity circulation around closed loops is such a quantity. By using a
large database of isotropic turbulence, generated from numerical simulations of the Navier-Stokes
equations over a wide range of Reynolds numbers, we show that circulation exhibits, to excellent
accuracy, a bifractal behavior at the highest Reynolds number considered: space filling for low-order
moments, close but not identical to the 1941 paradigm of Kolmogorov, and a monofractal with a dimension
of about 2.2 for higher orders. This change in character, occurring around the third moment for the highest
Reynolds number considered here, is reminiscent of a “phase transition.”We explore the possibility that the
transition point moves to higher-order moments as the Reynolds numbers increases—even though one may
continue to regard the structure as bifractal for moments of sufficiently high order. We confirm that the
circulation properties depend essentially on the area of the loop, not its shape, and that the relevant contour
area in figure-eight loops is the scalar area and not the vector area. These results demonstrate an intrinsic
simplicity in the statistical structure of turbulence when considering circulation around closed loops, thus
motivating a paradigm shift in turbulence research.

DOI: 10.1103/PhysRevX.9.041006 Subject Areas: Fluid Dynamics, Nonlinear Dynamics,
Statistical Physics

I. INTRODUCTION

From Leonardo da Vinci’s half-a-millennium-old draw-
ings of turbulent motions in the river Arno [1] to their
visualizations on modern-day computers [2], evidence
abounds that turbulent motion comprises organized struc-
tures, often evocatively described as “eddies” and “vortices.”
On the other hand, both phenomenological and analytical
theories of turbulence [3,4] have largely focused on multi-
point correlators of velocity, whose connection to the
physical structures is not always clear. Furthermore, the
most obvious multipoint correlators are best described as
multifractals with an infinity of independent exponents

[5–8], which makes the problem very difficult to explore
analytically. In this paper, we show that the velocity circu-
lation around closed loops, besides providing a plausible
link between vortical structures and statistical objects, has
a simple bifractal structure in the inertial range (IR)—this
being the range of scales that is simultaneously far from
the forcing and dissipation scales. We find that the
circulation moments up to about order 3 are close to
Kolmogorov’s 1941 paradigm [3], henceforth denoted by
K41, arising from a space-filling set of dimension three.
Even though the departures from K41 are small, they
seem to be real. For higher orders, the moments live on a
fractal set with a dimension of about 2.2. We comment on
possible Reynolds number effects and the implications for
the intermittency of vorticity and velocity increments.
For reference, the circulation around a loop of linear

dimension r is defined as

Γr ≡
I
C
uðlÞ · dl ¼ ∯

A

ω · n̂dA; ð1Þ
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where C is the boundary of a loop of area Að∼r2Þ, u is the
velocity, dl is an elemental length along C, ω≡∇ × u is
the vorticity, and n̂dA is an elemental area of A in the
direction of the unit normal n̂. Migdal [9] initiated the
statistical theory of velocity circulation around closed
Eulerian loops by recasting the incompressible Navier-
Stokes equations via a reduced Hopf generating functional
[10]. He argued, on the basis of WKB asymptotics, that
the tails of the probability density function (PDF) depend
only on the minimal area circumscribed by a simply
connected loop, and not on its actual shape, as long as it
is entirely contained in IR. This is the area rule. Another
question posed by Migdal was whether, for a figure-eight
loop, the circulation statistics depend on the scalar sum of
the two subareas enclosed by the loop, or on their vectorial
sum as would be the case if one used the standard sign
convention for loop area. Within IR, he also reasoned that
the PDF of Γr might be consistent with K41. Since Γr has
the dimension of a characteristic velocity times the length
scale r, and the velocity increment in K41 scales as r1=3, he
expected the PDF of Γ3

r=r4 to possess a universal shape in
IR. A more general scaling would be Γ2k

r =r4k−2, where k is
arbitrary [10]. Migdal did not have conclusive thoughts on
the scaling of high-order circulation moments.
This theoretical framework was soon explored by a small

number of experimental and numerical papers [11–15].
Because they were all limited to low Reynolds numbers, the
verification of the area rule was stymied by the modest
extent of IR, and, because each of them considered only
one Reynolds number, none of them could extrapolate their
results to the infinite-Reynolds-number limit. Further, the
inferences drawn from them were ambiguous because the
experimental flows were not all homogeneous. It is thus not
a great surprise that these earlier studies did not agree
quantitatively among themselves. One inference drawn by
all these early studies was that circulation is also highly
intermittent, just as the velocity increments are, and display
multifractal scaling with no unique scaling for all moments,
making no new insights possible. We assess these proper-
ties persuasively here by taking recourse to direct numerical
simulation (DNS) data of statistically stationary, homo-
geneous, and isotropic turbulence in a periodic box over a
wide range of Reynolds numbers [16,17].
We first show that the area rule applies to a good

approximation to the entire PDF of circulation around
planar loops, not just its tails, and that it depends on the
scalar sum of the two subareas for figure-eight loops. We
also show that circulation at the level of low-order moments
is space filling and scales close to K41, but that it resides on
a fractal set of dimension 2.2 for moments of higher orders
than about 3. This simple behavior contrasts a highly
intermittent, multifractal structure of velocity increments,
dissipation, and vorticity at all orders. Thus, the result goes
a considerable distance in addressing the question: Among
the many statistical variables that can be used to describe

inertial range intermittency, is there one that does not
demand an infinity of independent exponents?

II. DATA

The DNS data used in this work have been acquired by
solving the incompressible Navier-Stokes equations,

∂u=∂tþ ðu ·∇Þu ¼ −∇ðp=ρÞ þ ν∇2uþ f; ð2Þ

where u is the solenoidal velocity field (∇ · u ¼ 0), p is
pressure, ρ is fluid density, ν is the kinematic viscosity, and
f is the forcing term that maintains a stationary state
[18,19]. We use Fourier pseudospectral calculations [20]
on a periodic domain of size ð2πÞ3 with an explicit second-
order Runge-Kutta integration in time. A combination of
phase shifting and truncation is used to reduce aliasing
errors, where the highest resolved wave number kmax ¼ffiffiffi
2

p
N=3 and N is the number of grid points in one direction.

As in earlier simulations [16,19,21], the resolution was held
around kmaxη ¼ 1, where η is nominally the smallest scale
of motion (defined more precisely later). Recently in
Ref. [17], it has been pointed out that the spatial and
temporal resolution are more stringent at higher Reynolds
numbers, and so improved resolution was sought in some
instances. See Table I, which lists some flow parameters of
general interest.
One other comment is useful. Circulation Γr around a

loop of side r is calculated using the second equality in
Eq. (1), which follows from the Stokes theorem, as the
two-dimensional local average of vorticity using the
algorithm given in Ref. [22]. Averages were performed
over the whole N3 simulation along the three Cartesian
directions. Statistics of Γr were also obtained using the loop
integration of Eq. (1), by means of cubic splines for
improved accuracy, and excellent confirmation of the area

TABLE I. Isotropic DNS database. N3 is the number of points
on a L3

0 grid with L0 ¼ 2π units, Rλ ≡ u0λ=ν is the Taylor-scale
Reynolds number where u0 is the root-mean-square velocity
fluctuation, λ≡ u0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð∂u=∂xÞ2ip

is the Taylor microscale, ν is
the kinematic viscosity, L ≈ L0=5 is the integral scale, η≡
ðν3=hϵiÞ1=4 is the Kolmogorov scale, Δx ¼ L0=N is the grid
spacing. Results have been averaged over a time span of at least
10 large-eddy timescales ðL=u0Þ, except for the 16 3843 data for
which the averaging time is much shorter.

N3 Rλ L=η Δx=η hϵiL=u03
2563 140 108 2.1 0.44
5123 240 226 2.1 0.42
20483 400 446 1.1 0.41
40963 650 898 1.1 0.39
81923 1300 2514 1.5 0.38
16 3843 1300 2522 0.8 0.39
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integral results were obtained for r=η > 5 (see the
Appendix A for details).

III. RESULTS

A. Area rules

To be specific, we provide the following definitions.
The longitudinal velocity increment is defined as Δru≡
uðxþ rÞ − uðxÞ, where the velocity component u and the
separation distance r are both taken in the same direction.
For this paper, the inertial range is defined as that range
where the circulation moments display power-law
behavior; it is essentially the range where the normalized
third-order velocity structure function hðΔruÞ3i=rhϵi, hϵi
being the global mean value of the energy dissipation
rate, is equal [23] to within �2.5% of the exact theo-
retical value of −4=5 [24]. We have indeed experimented
within limits the sensitivity of the results to the precise
definition of IR, and found that the results presented are
quite robust.
Figure 1 shows circulation traces for square loops in IR,

normalized by its standard deviation, at the microscale
Reynolds number Rλ ¼ 1300. Two different inertial sepa-
rations r, corresponding to the lower end and the middle of
the inertial range plateau in −hðΔruÞ3i=rhϵi, are shown.
These particular signals do not show frequent excursions to
very high values (unlike vorticity, for example).
Figure 2 shows the PDFs of ΓA for a number of

rectangular loops of the same area but differing aspect
ratios. As long as one of the sides of the loop lies outside
IR, the PDFs do not collapse, but they do collapse to a very
good accuracy when all sides of the rectangle lie within IR.
Even though the result will have to be confirmed for loops
of different shapes and for nonplanar configurations, this

figure supports the expectation that only the area of the
loop, not its shape, decides the PDF of circulation for loops
in IR. (Appendix B provides additional data expanding on
this conclusion.)
We quantify the applicability and limitations of the area

rule in Fig. 3, which plots the root mean square (rms) of
circulation as a function of the loop area. The circulation
standard deviation at Rλ ¼ 1300 pertains to two sets of
contours with the same area but differing aspect ratios of 1
and 4, as shown by the inset in the top left. For the two
aspect ratios, distinguished by two different symbols, the
data agree with each other, showing no major dependence
on the aspect ratio. Their actual ratio, displayed in the lower
right-hand inset, is close to unity within a few percent in IR
and shows the nature of approximation one endures in
invoking the area rule. Also shown in the inset is the similar
ratio for Rλ ¼ 240. This smaller Reynolds number does not
have an extensive IR, but there is a range of loop areas for
which one may reasonably invoke the area rule. It is evident
from Fig. 3 that, with increasing Reynolds number, the
validity of the area rule extends to a wider range of scales.
The power law denoted by a dashed line in Fig. 3 is the

classical K41 result, extended from the expectation that the
velocity increments scale as r1=3. The fit is very good—but
with a slope that is slightly larger than 2=3, as we shall
examine more closely in Sec. IVA.
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FIG. 1. Typical circulation traces in the inertial range, for
Rλ ¼ 1300 (computational domain 81923) along an arbitrary
edge of the cube of length L0. The linear sizes r of the loops
are (a) r=η ¼ 50 and (b) r=η ¼ 150, corresponding, respectively,
to the lower end and middle of the 4=5 plateau in the normalized
third-order structure function [24].
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FIG. 2. Probability density function P of normalized circula-
tion around loops with fixed area, A ¼ l1l2 ¼ 4646η2, but with
different edge lengths, calculated for the 40963 data at Rλ ¼ 650.
The dash-dotted lines correspond to contours with at least one
side outside IR with the dimensions ðl1=η;l2=ηÞ as follows:
(6.6,704), (11.0,422.4), (16.5,281.6), (22.0,211.2), (26.4,176.0),
and (33.0,140.8), in the direction of the arrows shown. The
collapsed solid lines correspond to loops with both sides ðl1=η;
l2=ηÞ contained within IR, and correspond to (44.0,105.6),
(52.8,88.0), and (66.0,70.4). The collapsed curves in IR verify
the area rule to a good approximation, more broadly than
Migdal’s anticipation for the tails (which drop off rapidly towards
the extreme ends here because of finite sample sizes). The tails
are approximately exponential in IR, especially for ΓA > 0, but
are fitted better by stretched exponential fits. The parameters of
the stretched exponential vary only slightly from one loop to
another in IR.
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In order to examine whether the circulation statistics
around a loop depend on the scalar area enclosed by the
loop or the tensor loop area [10], we consider a figure-eight
loop as shown in the inset of Fig. 4, with two different
squares with edge lengths L1 and L2 touching at a common
vertex, with L1 − L2 held as a fixed constant. If K41 is
valid, it readily follows that the standard deviation of circu-
lation based on the scalar area law will scale as hΓ2

Ai1=2∼
ðL2

1 þ L2
2Þ2=3 ¼ A2=3. On the other hand, if one traverses

along the loop in the direction of the arrows marked on the
loop in Fig. 4, the areas circumscribed by the two squares
will have different signs. If the resulting vector area is the
proper quantity to use, the standard deviation hΓ2

Ai1=2 for
the figure-eight loop should scale as

hΓ2
Ai1=2 ∼ ðL2

1 − L2
2Þ2=3 ¼ ½ΔðL1 þ L2Þ�2=3 ∼ A1=3; ð3Þ

since Δ ¼ L1 − L2 is a fixed constant. The main part of
Fig. 4 shows convincingly that the mean-square circulation
varies closely as A2=3, where A is the scalar sum of the areas
of the two loops, for most of the range; it is certainly far
from 1=3. For small A, the variance is clearly linear in A,
as expected from Taylor’s expansion, whereas it saturates
for large A because of many cancellations. Although all
the symbols collapse on each other quite well, a closer

inspection reveals that the quality of this invariance is
comparable to that in Fig. 3.
In summary, then, to a good approximation we find that

the PDF of circulation depends essentially on the loop area,
as long as both sides of the loops are contained within IR.
It is worth emphasizing that we do not present this
statement as exact but as a very good working approxi-
mation (more details will be presented elsewhere). We
further find that intersecting loops, i.e., loops with common
edges or vertices, such as the figure-eight loop, do not need
any special attention, as the statistically relevant area is the
scalar area enclosed by the loop. Thus, in the following, we
use planar square loops for simplicity. It is then sometimes
convenient to use the symbol ΓA to describe the circulation
around a loop of area A; there is no ambiguity when we
speak of Γr because r ¼ A1=2.

B. Kolmogorov’s similarity argument for
the third-order moment

As stated already, straightforward application of K41
shows that hΓ2

Ai1=2 ∼ A2=3; this is seen to be closely valid
for inertial loops (see Figs. 2 and 3). In turbulence theory, a
special place is held by the third-order moment of velocity
increments, and so it would be instructive to examine the
third-order moment of circulation as well. To assess
Migdal’s [9] proposal that the PDF of Γr

3=r4 would be
unique for all loops, we show the PDF of Γ3

r=r4hϵi in Fig. 5
for various inertial loops. The PDFs show good collapse,
with some modest deviations around Γ3

r=r4hϵi ¼ �150 and
in the tails (see the two insets). Neither the positive nor the
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FIG. 3. Circulation standard deviation hΓ2
Ai1=2 for two sets of

contours with the same loop area and different aspect ratios (see
insets to the upper left) as a function of the area, at Rλ ¼ 1300,
computed on a 81923 grid. The standard deviations seem to be
independent of the loop perimeter, especially for inertial loops
(roughly, 103 ≤ A=η2 ≤ 106). Inset on the bottom right plots the
ratio of the standard deviation of the two contours as a function of
loop area. The ratio is quite close to unity, though smaller by a
few percent. It is also not exactly a constant within IR. We also
show the same ratio for a lower Reynolds number, Rλ ¼ 240. It is
clear from the two Reynolds numbers that, within the accuracy
just noted, the area rule holds increasingly well at higher
Reynolds numbers. The dashed line indicates the K41 law,
hΓ2

Ai1=2 ∼ A2=3; it holds adequately for inertial loops though
the actual least-squares fit gives a slope of 0.674 (which is about
1.2% higher).
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FIG. 4. Circulation standard deviation as a function of the area
A of the figure-eight loop (shown in the inset), calculated in a
40963 grid at Rλ ¼ 650. The edge lengths of the figure-eight loop
are chosen such that L1 − L2 ¼ Δ, where Δ is a fixed constant.
Symbols (square), (circle), (diamond), (asterisk), and (triangle)
correspond to Δ=η ¼ 2, 4, 8, and 16, respectively. The standard
deviations collapse for different figure-eight loops with the same
area and follow the scalar area rule in IR, as evidenced by the
closeness to the A2=3 scaling. The linear area dependence for
small A is shown, and the tendency to saturation for large areas is
also apparent. Both these tendencies also occur in Fig. 3.
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negative tails of the PDF follow power laws. They can be
fitted nominally by stretched exponentials with unequal
stretching exponents, as stated in the caption of Fig. 5. The
mean and the mean square of this distribution yield the
third-order and sixth-order moments of circulation. These
and other moments are computed separately in Sec. IVA.
Figure 5 suggests that K41 holds closely for the third-

order circulation moment. We now explore the scaling
properties of other orders.

IV. SCALING RESULTS FOR
CIRCULATION MOMENTS

A. Exponents

We first evaluate various even-order moments of Γr and
show in Fig. 6 moments hΓp

r i for p ¼ 2, 4, 6, and 8 for
Rλ ¼ 1300 as functions of r. All of them display proper
power laws in IR, hΓp

r i ∼ rλp , as reinforced by the near
constancy of local slopes presented in the inset of Fig. 6.
The odd moments of Γr do not display equally clean

power laws because they have negligible intensity via
cancellation, leading to poor convergence. The scaling
improves if one considers absolute values of circulation,
hjΓrjpi ∼ rλjpj (while, obviously, those of even orders
remain unchanged). Absolute values enable us to define
scaling exponents for fractional p as well [25] up to
p ¼ −1 (but not equal to −1, for which the moments
diverge). The practice of using absolute moments for odd
orders is justified, at least a posteriori, as long as the
exponents so obtained are monotonic when plotted together
with even-order data.

In Fig. 7 we plot the scaling exponents λjpj for circula-
tion as a function of the power index p for all orders at
Rλ ¼ 1300. The exponents seem to organize themselves on
two straight lines, one below p ¼ 3 and the other above 3.
The line for p > 3 can be expressed by the fit

λjpj ¼ hpþ ð3 −DÞ; ð4Þ

where h ¼ 1.1� 0.02 and D ¼ 2.2; h here is the Hölder
exponent corresponding to jΓrj ∼ rh. This fit represents a
monofractal [27] of dimension 2.2. The low-order data,
p < 3, can be fitted best by the straight line λjpj ¼ ð1.367�
0.0095Þp with no intercept, suggesting that the moments
reside on a space-filling set (dimension three); for simplicity
wewill call this combined behavior the 1.4 scaling (which is
very close but not identical to K41, for which λjpj ¼ 4p=3).
Inset (a) of Fig. 7 shows the expanded view of the region
around p ¼ 0 to elucidate the space-filling nature at low
orders.
In Sec. V, we develop the theme of two scaling regimes

in greater detail. So far, we have considered results for only
the two highest Reynolds numbers of our dataset. We shall
also examine how the results depend on the Reynolds
number, and assess the asymptotic state.

B. Probability density functions

We see in Fig. 5 that the PDFs of Γ3
r=r4hϵi collapsed

quite well for loops of different areas. The tails show some
departure from the collapse, and a careful examination also
reveals some departures for jΓ3

r=r4hϵij between 100 and
200, say. Nevertheless, at the level of third-order statistics,
the collapse can be regarded as excellent, showing that K41
works quite well for this particular detail.
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FIG. 5. PDF of Γ3
r=r4hϵi at Rλ ¼ 1300 at different inertial range

separations, r=η ¼ 80 (circle), r=η ¼ 120 (times), r=η ¼ 171
(plus), r=η ¼ 246 (asterisk), and r=η ¼ 300 (square). Insets (a)
and (b) show portions of the PDF corresponding to negative and
positive Γr, respectively, on log-log scales. The PDFs nearly
collapse across the inertial range separations. If they are exam-
ined on an expanded scale, some modest differences are seen
around Γ3

r=r4hϵi ¼ �150. Differences occur also towards the
tails, as shown in the insets. The tails of each of the PDFs can be
fitted by stretched exponentials with unequal stretching factors
for the negative and positive tails. For the average curves, the
negative part decays with a stretch factor of about 0.35, about
twice as large as that for the positive (≈0.17).
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FIG. 6. Normalized circulation moments for various orders p as
a function of the linear dimension of the loop, for Rλ ¼ 1300.
Inset shows corresponding local slopes λp ¼ d½loghΓp

r i�=d½log r�,
with vertical lines demarcating the inertial range. Error bars
(which are often subsumed by the symbol thickness) indicate
95% confidence intervals. Horizontal straight lines drawn at 4p=3
correspond to K41 exponents.
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That the 1.4 scaling works for all low-order moments can
be seen by the collapse of the core region of the PDFs when
normalized by ðr=LÞ1.4 for several values of r in the inertial
range. Figure 8 shows that the PDFs collapse onto each
other, for amplitudes below about �10, which is decisively
where low-order moments reside (as illustrated by the inset
for the second moment). It should be emphasized that, even
though K41-like similarity exists for low-order moments,
the PDFs depart strongly from Gaussian.
But the PDFs of Fig. 5 differ in their tails, this being

the seat of higher moments. If, as we claimed with respect
to Fig. 7, the high-order moments reside on a fractal set
of dimension D ¼ 2.2 (with corresponding Hölder expo-
nent h), the tails of the PDF compensated by r3−D have to
collapse when scaled on rh. The corresponding result is
shown in Fig. 9. The collapse of the tails beyond about 3
standard deviations is clear. Together, Figs. 8 and 9 reaffirm
our claim that low-order moments follow a space-filling
monofractal model, but the higher moments inhabit a
fractal set of dimension 2.2. We discuss the potential
significance of this inference in Sec. VA.

C. Circulation flatness

The circulation flatness is defined as

FðrÞ≡ hΓ4
ri

hΓ2
ri2

: ð5Þ

Figure 10 shows that FðrÞ varies through the inertial range
ðη ≪ r ≪ LÞ, but its evolution with Reynolds number is
the more interesting point; the figure also compares FðrÞ at
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FIG. 8. Probability density function of circulation normalized
by the h ≈ 1.4 scaling for different inertial range separations, at
Rλ ¼ 1300. The PDF cores collapse for Y ∈ ½−10; 10� across the
inertial range, while diverging for larger jYj. Inset shows the
integrand of hY2i for a typical inertial separation, showing that
the dominant contribution to lower-order circulation moments
comes from the region where the PDFs collapse. This plot
confirms that the lower-order circulation moments follow the
1.4 scaling with the space-filling dimension of three.
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FIG. 9. Compensated probability density function of the
normalized circulation Y, with scaling exponent h ¼ 1.1 and
dimension D ¼ 2.2, for different inertial range separations, at
Rλ ¼ 1300. The upticks at the tails of the PDFs are due to finite
sampling. Inset shows the integrand of hY8i for a typical inertial
separation, demonstrating that the dominant contribution to
higher-order circulation moments comes from the collapsed
region. This plot confirms that the higher-order circulation
moments follow the scaling λp ¼ hpþ ð3 −DÞ, with the Hölder
exponent h ¼ 1.1 and fractal dimension D ¼ 2.2.
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FIG. 7. Scaling exponents as a function of moment order p;
Rλ ¼ 1300. The data can be fitted by two separate lines, one
below order 3 and one above it. For comparison purposes, the
dashed line is the K41 result given by 4p=3. The low-order data
can be fitted best by the expression λjpj ¼ ð1.367� 0.0095Þp
with no intercept as shown in inset (a) by the solid line. The high-
order data can be fitted (solid line) by a monofractal model,
λjpj ¼ 1.1pþ ð3 −DÞ, withD ¼ 2.2. Both fits are determined by
least-squares method. The error bar shown for the tenth moment
is typical and is subsumed by the symbol thickness. Inset
(b) compares the relative departures of circulation exponents at
Rλ ¼ 1300 and longitudinal velocity increment exponents (filled
triangle) at Rλ ¼ 10340 [26], from their respective K41 estimates,
for integral orders. The dashed line at zero is the K41 scaling. The
relative deviations from K41 for higher-order circulation expo-
nents are about a third of those of the longitudinal structure
function exponents (but the sign of these differences in both cases
is the same).
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three different Reynolds numbers. At Rλ ¼ 240, FðrÞ
increases smoothly from the Gaussian value of 3, for
r ∼OðLÞ, to the dissipation range limit of hω4i=hω2i2,
where ω is the vorticity component normal to the plane of
circulation. With increasing Rλ, however, FðrÞ tends
towards proper scaling in IR, indicating that it may
approach a constant that is independent of scale. The
inset of Fig. 10 compares the circulation flatness to those
of the longitudinal and transverse velocity increments
at Rλ ¼ 1300. Here, the transverse increment Δrv≡
vðxþ rÞ − vðxÞ, where the separation distance r is trans-
verse to the velocity component v. Even at Rλ ¼ 1300, the
flatness factors of both Δru and Δrv smoothly grow with
decreasing scale, showing that the velocity increments are
highly intermittent, whereas FðrÞ displays the tendency
towards constancy, suggesting that Γr at high Reynolds
numbers is only weakly intermittent. It should be stated
that, at lower Rλ, the flatness factors of all the three
quantities, Γr, Δru, and Δrv, increase rapidly with decreas-
ing scale in the inertial range, as already shown in
Refs. [13,15].
Our point from Fig. 10 is that the flatness FðrÞ has the

potential to become a constant in the inertial range as the
Reynolds number increases further. If so, this will be
the intermittency-free limit within which we expect the
logarithmic local slope d½logFðrÞ�=d½log r� → 0. To quan-
tify this approach to the intermittency free limit, we plot the
logarithmic local slope of FðrÞ as a function of spatial

separation in the inset of Fig. 11 for two different Reynolds
numbers. For Rλ ¼ 1300, the local slopes are closer to zero
over a wider range of inertial scales than for Rλ ¼ 240. The
peaks of the flatness local slopes decrease linearly with Rλ,
as shown in Fig. 11, suggesting that it may become zero at
Rλ ≈ 1900. This result should be regarded merely as
indicative and is discussed further in Sec. V B.

V. DISCUSSION AND PERSPECTIVE

Small-scale turbulence is known to be characterized by
extreme events in time and space. Such intense events can
be seen in local velocity increments and result in scaling
exponents that vary nonlinearly with respect to the moment
order. This is the phenomenon of intermittency that
necessitates the superposition of infinitely many scale-
invariant configurations to describe it. Much effort has been
expended in quantifying the nonlinear trend of the inter-
mittency exponents of velocity moments, with varying
degrees of success [8,28–32]. As noted in Ref. [33],
intermittency corrections from the velocity moments serve
as an upper estimate, since the velocity field is infrared
divergent. Here, using the largest simulations of isotropic
turbulence to date, we have shown that the structure of
velocity circulation is much simpler at higher Reynolds
numbers. In contrast to those of velocity increments, the
circulation statistics at high Reynolds numbers has an
approximately bifractal structure: for low moment orders,
circulation is a space-filling quantity with the 1.4 scaling
(close to but not equal to K41) whereas, for moments of
orders above 3, it has a self-similar dimension D ¼ 2.2
with a strictly sub-Kolmogorov scaling.
The inference that circulation, though arising from

highly convoluted vortex structures in space and time, is
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FIG. 10. Circulation flatness FðrÞ versus spatial separation r
from DNS at Rλ ¼ 240, 5123 (triangle), Rλ ¼ 650, 40963

(square), and Rλ ¼ 1300, 81923 (circle). The flatness from the
DNS at Rλ ¼ 1300 computed on a 163843 box is also shown
(filled diamond) and agrees well with FðrÞ from the 81923

box, for r=η > 10. Arrows on the ordinate show the limit
Fðr → 0Þ ¼ hω4i=hω2i2, which is the flatness of the vorticity
component normal to the circulation plane. At the largest scales,
FðrÞ is close to the Gaussian flatness of three (see dashed line).
Inset compares the circulation flatness with those of the longi-
tudinal (times) and transverse (plus) velocity increments at Rλ ¼
1300 in the inertial range within the dashed vertical lines. Unlike
circulation with a tendency towards constancy in the inertial
range, the velocity increments show no tendency towards con-
stancy in IR.
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FIG. 11. The peak magnitude of logarithmic local slope of
circulation flatness in the inertial range, plotted against Rλ. The
solid line is a least-squares fit. If extrapolated, the minimum of
the logarithmic derivative will reach zero, corresponding to
constant flatness in Fig. 10, at Rλ ≈ 1900. The data of Ref. [13]
at Rλ ¼ 216 (filled square) are shown for comparison. Inset
shows the logarithmic local slopes of circulation flatness as a
function of r=η, up to r ∼OðLÞ for Rλ ¼ 1300 (upside down
triangle) and Rλ ¼ 240 (circle). Error bars indicate 95% con-
fidence intervals.
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space filling for low-order moments and resides on a fractal
set of dimension 2.2 for high-order moments points to the
existence of simplicity in its physics. This simplicity must
manifest itself in the loop-space reformulation of the
Navier-Stokes equations [10]. For instance, exact asymp-
totic formulas for vorticity correlations around fixed loops
in the presence of large velocity circulation have recently
been derived [34], and warrant further input from mea-
surements. These observations by no means diminish the
usefulness of the standard Navier-Stokes treatments (in
physical space) which are better suited to studying other
aspects of turbulence, such as the decay of turbulent kinetic
energy [35].
Several questions arise from this work, but we discuss

only a few of them here. (1) How definitive is the obser-
vation that low-order moments scale slightly differently
from K41 (though very closely so)? What is the plausible
significance of D ¼ 2.2 for high-order moments? (2) Since
the data reveal that there is a Reynolds number dependence
of the circulation properties, it is worth asking whether the
asymptotic state has been reached even at the highest
Reynolds number considered here, and, if not, making an
educated guess on that state. This point is essentially an
expansion of the tentative result deduced from Fig. 11.
(3) Because the circulation is very closely related to
vorticity, it is natural to ask why the simplicity that is
apparent in circulation does not translate to enstrophy
density, which is known to be a strongly multifractal
quantity [36]. Finally, (4) what new research do these
results suggest for the future? We discuss these questions in
that same order.

A. K41, low-order moments, and an inference
from the high-order behavior

We have experimented with plausible variations of the
power-law fits from the one for which we have presented
the results here. Considering that the differences between
K41 and the 1.4 scaling are of the order of 3%, it is
impossible to escape the speculation that they may be some
artifact of data processing (or even of the manner in which
the data were generated). In fact, in an earlier version of this
paper [41], we had stated that they were essentially K41.
Our best assessment is that the low-order scaling for p < 3
comes from a space-filling set whose Hölder exponent
exceeds K41 by about 3%. Since low-order circulation
moments involve contributions from high probability
events of low magnitude vorticities and low probability
events of high magnitude but antiparallel vorticities, it is
not surprising that this deviation from K41 exists. This
slight negative anomaly (4p=3 − λjpj < 0 for p < 3) does
not seem to diminish with increasing Reynolds number and
appears to be a robust feature of circulation statistics.
Regarding the result that D ¼ 2.2 for higher moments,

one may infer that they are due to moderately wrinkled
vortex sheets rather than more complex singularities.

B. Asymptotic state

Figure 12 shows the behavior of δλp , the relative dif-
ference between the measured scaling exponents and the
corresponding K41 values, for moment orders 4, 6, 8, and
10, as functions of the Reynolds number. (Incidentally,
we could have plotted the difference between the mea-
sured exponents and the 1.4 scaling, but the conclusions
remain much the same.) For each order, this difference
seems to approach K41 roughly as a power law. The rates of
approach vary inversely with the order of the moment.
We cannot speculate about the behaviors at infinitely
large Reynolds numbers, but may expect that the behavior
of Fig. 12 will persist up to some higher Reynolds number.
That the approach to K41 is slower for the high-
order moments suggests that, in principle, the scaling will
remain a bifractal for all finite Reynolds numbers, with
the “phase transition” point moving to a higher p with
increasing Reynolds numbers. In practice, however,
moments may follow the 1.4 line for sufficiently high p
that the bifractal behavior may yield essentially a space-
filling monofractal.

C. Circulation, enstrophy, and velocity increments

Since circulation is very closely related to vorticity, it is
natural to ask why the simplicity that is apparent in
circulation does not translate to locally averaged enstrophy
density, which is known to be a strongly multifractal
quantity [17,36]. The corresponding question is relevant
also with respect to velocity increments. We address this
issue here briefly.
The area integral formula for circulation from Eq. (1)

reads as

Γr ¼
Z

ωdA; ð6Þ
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102 103

Rλ
-0.62±0.05

Rλ
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Rλ
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-0.19±0.04

(4
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λ p

) 
/ 4

p/
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FIG. 12. The relative difference of the circulation scaling
exponent λp from the K41 exponent 4p=3 as a function of the
Taylor-scale Reynolds numbers Rλ, for orders p ¼ 4, 6, 8, and
10. Data from Ref. [13] (pentagon) for orders p ¼ 4, 6, 8, and 10,
at Rλ ¼ 216, and the highly resolved DNS for orders p ¼ 4, 6
and 8, at Rλ ¼ 1300; 163843 (filled diamond), are provided for
comparison. Exponential least-squares fits through the data are
shown by the solid lines. Also shown are error bars.
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where ω is the vorticity component perpendicular to the
loop with area A ¼ r2 along an arbitrary direction. Raising
both sides of the above equation to power 2p and invoking
Schwartz’s inequality, we get

Γ2p
r ¼

�Z
ωdA

�
2p

ð7Þ

≤
�Z

12dA

�
p
�Z

ω2dA

�
p

ð8Þ

¼ r2p
�Z

ω2dA

�
p
: ð9Þ

Taking averages on both sides of the above inequality,
we get

hΓ2p
r i ≤ r2p

��Z
ω2dA

�
p
�
: ð10Þ

Now, define enstrophy,Ω≡ ωiωi, and its local 2D average,
Ωr ≡ r−2

R
ΩdA, and use statistical isotropy to get for any

power, p ≥ 1,

��Z
ω2dA

�
p
�

≤
1

3

��Z
ΩdA

�
p
�

¼ 1

3
r2phΩp

r i; ð11Þ

with equality valid for p ¼ 1. Substituting Eq. (11) in
Eq. (10) we are led to

hΓ2p
r i ≤ 1

3
r4phΩp

r i: ð12Þ

Although the upper bound in the above inequality can, in
principle, diverge to infinity in the limit ν → 0, inequality
(12) is useful from an empirical viewpoint. This inequality
shows that the moments of locally averaged enstrophy are
likely to be substantially larger than those of circulation,
and it is this that indicates that the multifractal character
of enstrophy density need not necessarily carry over to
circulation. In particular, for p ¼ 1, using the homogeneity
condition, νhΩri ¼ hϵri ¼ hϵi, and taking hϵi > 0, we
obtain

ψðrÞ≡ hΓ2
riν

r4hϵi ≤
1

3
; ð13Þ

with equality occurring in the limit r → 0,

lim
r→0

ψðrÞ ¼ lim
r→0

hΓ2
riν

r4hϵi ¼ hω2iν
hϵi ¼ 1

3

hΩiν
hϵi ¼ 1

3
: ð14Þ

Figure 13 shows that the DNS data satisfy inequality (13)
for all r and are consistent with the dissipative limit.

Furthermore, ψðrÞ at different Reynolds numbers shows
good collapse for r ≪ L, where L is the integral scale.
In order to relate the circulation moments to those of

velocity increments, we invoke the gauge invariance
property of circulation using the fact that

H
C dx ¼ 0 around

a closed contour C, with center x0 (say), to write

ΓðCÞ ¼
I
C
dx · ðuðxÞ − uðx0ÞÞ: ð15Þ

Considering the magnitude of both sides of Eq. (15) and
using the triangle inequality, we have

jΓðCÞj ≤
I
C
juðxðsÞÞ − uðx0Þjds; ð16Þ

where s is the arc length along contour C and ds denotes an
elemental length. Bounding the right-hand side using
Hölder’s inequality and then raising both sides of the
inequality to power p ≥ 1, we get

jΓðCÞjp ≤ ðLðCÞÞp−1
I
C
juðxðsÞÞ − uðx0Þjpds; ð17Þ

where LðCÞ is the total length of the contour C. Now define
the velocity structure function averaged in arc length s
along the loop C as

SpðrðsÞÞC ≔
1

LðCÞ
I
C
juðxðsÞÞ − uðx0Þjpds; ð18Þ

where rðsÞ ¼ xðsÞ − x0, SpðrÞ is the structure function
of velocity increments, and the subscript C denotes
an average in arc length s along the curve C. Since the
loop C is fixed in space with center x0, we must have

100 101 102 103 104
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100

FIG. 13. The function ψðrÞ [left-hand side of inequality (13)] as
a function of normalized spatial separation r=η for different
Reynolds numbers. The curves are seen to collapse, for r ≪ L (L
is the integral scale), at the different Reynolds numbers shown,
reasonably well. The limit ψðr → 0Þ ¼ 1=3 is marked by the
horizontal dashed line. Dash-dotted line indicates the correspond-
ing K41 slope.
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SpðrÞ ¼ V−1
R
SpðrðsÞÞCðx0Þdx0 due to homogeneity,

where V ¼ R
dx0 is the volume. Physically, this corre-

sponds to translating the loop C through the entire volume
V and averaging. Finally, substituting Eq. (18) in inequality
(17) and volume averaging, we end up with

hjΓðCÞjpi ≤ ðLðCÞÞpSpðrÞ: ð19Þ

for p ≥ 1. Now if r is the characteristic length of the loopC,
then ðLðCÞÞp ∼ rp. Furthermore, assume hjΓðCÞjpi ¼
Gjpjðr=LÞλjpj and SpðrÞ ¼ Bjpjðr=LÞζjpj , for η ≪ r ≪ L,
with exponents λjpj and ζjpj, respectively, where ð·Þjpj
denotes that ð·Þ corresponds to absolute velocity increments
and circulation. In general, the prefactors can depend on

the Reynolds number as Gjpj ∼ R
αjpj
λ and Bjpj ∼ R

βjpj
λ (for

instance), where αjpj and βjpj are order-dependent expo-
nents. Then, inequality (19) can be recast in the limit
Rλ → ∞ (see Appendix C) as

pþ ζjpj ≤ λjpj þ
2

3
ðβjpj − αjpjÞ: ð20Þ

In our DNS, we find that βjpj ¼ 0 (nominally to four
decimal places), whereas αjpj < 0, i.e., circulation prefac-
tors mildly decrease with Reynolds number, possibly due to
cancellations in the integrands of Eq. (1). For p > 3, since
4p=3 > λjpj (from Fig. 7), the relative differences of λjpj
and ζjpj from their respective K41 values are related as

p=3 − ζjpj
p=3

>
4p=3 − λjpj

4p=3
; p > 3; ð21Þ

where we have followed the data in taking αjpj=p ≈ 0 for
p > 3 and βjpj=p ≈ 0 for p ≥ 1. Our data confirm this
expectation convincingly for p > 3 [see inset (b) of Fig. 7].
Thus, circulation exponents depart considerably less
from their K41 values than do the exponents of velocity
increments. These arguments show that the simplicity in the
structure of circulation does not contradict the known
multifractal properties of velocity increments or enstrophy
density. We thus believe that we have covered new
ground here.

D. Perspective

Some overall comments are now in order on where this
work positions itself in the broad framework of turbulence
research. The search for a unified scaling theory in
turbulence has largely evolved around shell-averaged
velocity increments [37,38] and ball-averaged energy
dissipation and enstrophy [28,36], all of which display
intermittency and nontrivial anomalous scaling. In contrast,
by considering the Hopf generating functional which is
known to satisfy a equation similar to the Schrödinger

equation in quantum field theory, Migdal obtained a
reduction of the three-parameter spatial dependence to a
one-parameter dependence, namely the loop contour, in
describing the generating functional for circulation. By
traversing rectilinear loops in the inertial range at high
Reynolds numbers, we have shown that circulation
statistics depend, to a good approximation, on the loop
area alone. At high Reynolds numbers, we have discov-
ered that circulation correlations display weak anomaly
and a much simpler scaling structure than other inertial-
range quantities. The evidence presented here points to a
reduction in complexity when one considers the average
vorticity over loops, which seems to circumvent the
spatial complexity involving velocity differences and
gradients. This conclusion suggests a simplification of
principle for the intermittency problem in 3D turbulence,
when viewed through the lens of loop spaces. In doing so,
we have helped foster the analogy first initiated by Migdal
between Wilson loops in QCD and velocity circulation in
turbulence [39]. It is not unreasonable to hope that this
work could invigorate similar loop formulations in tack-
ling turbulence.
In order to place the still nascent statistical theory of

circulation on a firmer footing, a stringent examination
is desirable of the circulation statistics for nonrectilinear
loops, nonplanar loops, and even fractal loops. This
work will be reported separately. Calculating quantities
besides circulation, such as vorticity correlations around
fixed loops, can shed light on the usefulness of loop-
based approaches [34]. Finally, the results presented
here can spur similar investigations of other problems
which display anomalous scaling behavior, such as the
magnetic field correlations in the kinematic dynamo
problem [40], where the analog of circulation is the
magnetic flux; one may anticipate similar simplifications
in scaling theory.
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APPENDIX A: STOKES THEOREM

The circulation around a loop of linear dimension r is
defined as

Γr ≔
I
CðrÞ

uðlÞ · dl; ðA1Þ

where CðrÞ denotes the boundary of a loop of size r, with
area AðrÞ, u is the velocity, and dl is an elemental length
along CðrÞ. Using the Stokes theorem, we can write

Γr ¼ ∯
AðrÞ

ω · n̂dA; ðA2Þ

where ω≡∇ × u is the vorticity and n̂dA is an elemental
area of AðrÞ. Figure 14 compares the statistics of Γr
calculated using the loop integration of Eq. (A1) and the
area integral formula Eq. (A2). Excellent confirmation of
the area integral results is obtained for r=η > 5.

APPENDIX B: AREA RULE

With respect to the accuracy to which the area rule holds,
we plot in Fig. 15 the peak value of the circulation
probability density function for a fixed area but different
aspect ratios, as a function of one side of the loop. (Since
the area is fixed, a plot of the data against one side of the
loop has the same information as that against the perim-
eter.) For contours with both dimensions in the inertial
range, the PDF peaks decrease towards an approximately
constant value in IR, shown by filled symbols, consistent
with the area law.

APPENDIX C: RELATION BETWEEN
CIRCULATION AND VELOCITY

INCREMENT EXPONENTS

Starting with inequality (19), which is valid for orders
p ≥ 1, assuming a power-law behavior for pth-order
moments of circulation along contour C with characteristic
size r, hjΓðCÞjpi≡ hjΓrjpi ¼ Gjpjðr=LÞλjpj and velocity
increments SpðrÞ ≔ hjuðxþ rÞ − uðxÞjpi ¼ Bjpjðr=LÞζjpj
for r in the IR, with exponents λjpj, ζjpj and prefactors
Gjpj, Bjpj, respectively, we proceed as follows.
Let the prefactors of circulation and velocity increment

moments vary with the Taylor-microscale Reynolds num-
ber as Gjpj ∼ R

αjpj
λ and Bjpj ∼ R

βjpj
λ , where αjpj and βjpj are

order-dependent exponents. Then, inequality (19) can be
recast as

ðr=LÞλp−p−ζjpj ≤ R
βjpj−αjpj
λ : ðC1Þ

Taking the logarithm on both sides of the inequality in the
limit Rλ → ∞ and noting that r=L → η=L in this limit,
we get

ðλp − p − ζjpjÞ logðη=LÞ ≤ ðβjpj − αjpjÞ logRλ: ðC2Þ

Using the K41 estimate η=L ∼ R−3=2
λ , dividing both sides of

the above inequality by logRλ in the limit Rλ → ∞ and
rearranging, we get

pþ ζjpj ≤ λp þ
2

3
ðβjpj − αjpjÞ: ðC3Þ
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FIG. 15. Peak values of PDF of normalized circulation,
ΓA=u0L, at 40963, Rλ ¼ 650, around closed rectangular contours
with fixed area, but different perimeters, A ¼ l1l2 ¼ 4646.4η2,
as a function of side, l1. The plot is symmetric around l1 ¼

ffiffiffiffi
A

p
due to statistical isotropy of the underlying velocity field (which
holds by construction). Solid symbols correspond to contour
dimensions ðl1;l2Þ with both legs in IR, while open symbols
correspond to contours with at least one leg outside IR. The PDF
peaks tend to an approximately constant value for inertial loops.
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FIG. 14. Probability density function of circulation, normalized
by its standard deviation, on a 40963 grid at Rλ ¼ 650, calculated
using [Eq. (A1)] line integral of velocity (dashed lines) and
[Eq. (A2)] surface integral of vorticity (solid lines), around square
loops of size r. Different sets of curves correspond to, r=η ¼ 1.1,
6.6, 41.8, and 125.4, increasing in the direction shown. Insets (a)
and (b) compare the circulation moments from the two quad-
ratures for orders 2 and 8, respectively.
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By fitting power laws to the pth-order moments hjΓrjpi
and SpðrÞ in the IR and using the large-scale matching
r=L ≈ 1 to obtain the prefactors, we find that βjpj ≈ 0,
whereas αjpj < 0, giving βjpj − αjpj > 0. Table II shows
the various terms in inequality (C3) for orders p ¼ 1, 2,
and 3. Within the error bars of the calculations, the DNS
results are consistent with inequality (C3), at least for
orders p ≤ 10.
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