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We establish an operational characterization of general convex resource theories—describing the resource
content of not only states but also measurements and channels, both within quantum mechanics and in
general probabilistic theories (GPTs)—in the context of state and channel discrimination. We find that
discrimination tasks provide a unified operational description for quantification and manipulation of
resources by showing that the family of robustness measures can be understood as the maximum advantage
provided by any physical resource in several different discrimination tasks, as well as establishing that such
discrimination problems can fully characterize the allowed transformations within the given resource theory.
Specifically, we introduce a quantifier of resourcefulness of a measurement in any GPT, the generalized
robustness of measurement, and show that it admits an operational interpretation as the maximum advantage
that a given measurement provides over resourceless measurements in all state discrimination tasks. In the
special case of quantum mechanics, we connect discrimination problems with single-shot information
theory by showing that the generalized robustness of any measurement can be alternatively understood as the
maximal increase in one-shot accessible information when compared to free measurements. We introduce
two different approaches to quantifying the resource content of a physical channel based on the generalized
robustness measures and show that they quantify the maximum advantage that a resourceful channel can
provide in several classes of state and channel discrimination tasks. Furthermore, we endow another measure
of resourcefulness of states, the standard robustness, with an operational meaning in general GPTs as the
exact quantifier of the maximum advantage that a state can provide in binary channel discrimination tasks.
Finally, we establish that several classes of channel and state discrimination tasks form complete families of
monotones fully characterizing the transformations of states and measurements, respectively, under general
classes of free operations. Our results establish a fundamental connection between the operational tasks of
discrimination and core concepts of resource theories—the geometric quantification of resources and
resource manipulation—valid for all physical theories beyond quantum mechanics with no additional
assumptions about the structure of the GPT required.
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I. INTRODUCTION

The advantages provided by quantum phenomena in the
transfer and processing of information allowed for the
technological boom currently transforming areas such as
communication, computation, cryptography, and sensing
[1,2]. The realization that intrinsic physical properties of

quantum mechanics can be regarded precisely as resources
in information processing tasks sparked an investigation of
quantum information in the so-called resource-theoretic
setting, aiming to establish the theoretical and practical
methods to characterize both the advantages and the
limitations associated with different physical properties
of quantum systems, measurements, and transformations
[3]. Such resource theories are now commonplace in the
study of a diverse range of phenomena, such as entangle-
ment [4,5], coherence [6–8], asymmetry [9,10], quantum
thermodynamics [11,12], steering [13], non-Markovianity
[14–16], magic [17,18], non-Gaussianity [19–21], meas-
urement simulability and incompatibility [22–24], meas-
urement informativeness [25], and quantum memory of
channels [26].

*rtakagi@mit.edu
†bartosz.regula@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 031053 (2019)

2160-3308=19=9(3)=031053(28) 031053-1 Published by the American Physical Society

https://orcid.org/0000-0003-3837-8159
https://orcid.org/0000-0001-7225-071X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.031053&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.1103/PhysRevX.9.031053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Although applications of the resource-theoretic frame-
work have enhanced systematic studies of many physical
settings and significantly contributed to a deeper under-
standing of our capabilities in manipulating and exploiting
such resources, one could wonder whether the generality of
the framework allows one to go beyond specific examples
and obtain results applicable to a broad class of settings,
thus providing a unified picture of resources in general.
A complete study of which features are universal among all
resources, stemming from only the very foundations of
quantum mechanics, therefore remains a major area of
investigation, and such an approach of general resource
theories has recently gained much attention [3,27–37].
Indeed, although the framework of resource theories began
with the characterization of the properties of quantum
states, it has recently been adapted to the study of quantum
channels [26,37–45] and measurements [24,25,46–48],
allowing for the description of dynamic resources on a
similar footing to static ones and thus motivating the
question of whether all such resources can be described
by a unified formalism.
In fact, one can pose an even more fundamental question:

can common features of resource theories be understood
without relying on quantum mechanics at all? Despite the
success of quantum mechanics, the ongoing search for an
axiomatic theory of probability and correlations in nature
has provided us with insight into physical theories beyond
quantum, as well as allowed for a straightforward uni-
fication of the methods required to characterize physical
theories including classical and quantum probability
theory. The formalism of general probabilistic theories
(GPTs) [49–52] lends itself perfectly to the investigation
of states, measurements, and their transformations at a fully
fundamental and general level. It is particularly suited to
illuminate which assumptions and which basic features
of a theory lead to operational consequences, allowing
one to identify the exact axioms one has to accept in
order to recover the features of quantum theory [53–60].
This problem leads us to extend the framework of resource
theories to general probabilistic theories and investigate a
unified characterization of general resources in the exten-
sive formalism of GPTs rather than limiting it to quantum
mechanics, as has been previously considered for specific
examples of resource theories [61–65].
As the very word “resource” suggests, understanding the

operational aspects of resources—how they can be utilized
for physical tasks and what limitations a resource theory
places on the conversion of physical resources—has central
importance both theoretically and practically. However, it
frequently requires resource-specific approaches and does
not easily generalize to encompass all physically relevant
resource theories, and it is thus highly desired to find a
fundamental class of operational tasks that would allow for
the understanding of the resourcefulness of a given physical
property in general settings. A promising candidate for

such a class of operational tasks which, on the one hand, lie
at the heart of the nonclassical features of quantum theory
[66–74] as well as GPTs [49,50,75–77] and, on the other
hand, have found relevance in several existing resource
theories, are the tasks of state and channel discrimination.
In particular, Piani and Watrous [78] first showed that for
every entangled quantum state, there exists a channel
discrimination task in which it is more useful than any
separable state. Similar results were subsequently found in
several different resource theories of states [36,79–82] and
measurements [25,48,83], and the work of Takagi et al.
[36] finally showed that this property is shared by any
convex resource theory of quantum states. It remains to
understand how general this property truly is and whether
all resources—both static and dynamic, both within quan-
tum mechanics and beyond—can provide explicit advan-
tages in such operational tasks.
A fundamental aspect of any resource theory is its

quantification, which aims to measure the amount of
inherent resources contained in a given physical object
and allows for a quantitative comparison with other objects
within the resource theory. This can be approached in many
inequivalent ways, and a plethora of possible choices of
resource measures exist [3,34]. A natural question which
arises in this context is whether the given measure can be
understood in an operational sense, assessing exactly the
usefulness of a given object in some physical task;
however, establishing such an interpretation for a given
quantifier is often highly nontrivial. The family of so-called
robustness measures [34,84] stands out in this context, as
two prominent members of the family have found several
applications in operational settings: these are the general-
ized robustness [33,36,79–82,85–91] and the standard
robustness [18,89,92]. They are not only fundamental
resource quantifiers faithfully capturing the resourcefulness
of given objects with clear geometric interpretations but
also significantly relevant to experiments—they are directly
observable, that is, can be obtained in an experiment by
measuring a single, suitably chosen observable rather than
requiring complicated and expensive methods such as state
tomography, allowing for the experimental quantification
of resources [93,94]. In particular, the investigation of
discrimination tasks in resource theories of states [36,79–
82] revealed a notable similarity: the advantage that a given
resource provides in such discrimination tasks is often
quantified precisely by the generalized robustness. The
generality of this quantitative relation was unveiled in
Ref. [36], which showed that it is true in every convex
resource theory of quantum states. This, together with
recent progress in the resource theories of measurements
which showed a similar interpretation of robustness quan-
tifiers for measurements in specific settings [25,83], sug-
gests that a unified operational interpretation of generalized
robustness which could account for dynamic resources in
addition to static ones might be possible. However, no such
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universal interpretation of any of the robustness measures
has been obtained thus far, and in fact, despite several
known applications of the generalized robustness in the
context of discrimination, it has not been known whether
the standard robustness plays a role in understanding such
problems whatsoever.
The other predominant problem which resource theories

are expected to tackle is the manipulation of resources,
which asks whether it is possible to transform one resource
to another when constrained to employ only the trans-
formations allowed within the given resource theory. It is
particularly insightful to understand this question in rela-
tion to the operational and quantitative aspects of resource
theories: does there exist a family of resource measures or
operational tasks which completely characterizes resource
manipulation? The work of Skrzypczyk and Linden [25]
indicated a potential of discrimination-type problems in this
respect by showing that a family of state discrimination
tasks fully characterize the simulability of measurements
by classical postprocessing. A comprehensive extension of
this type of an operational characterization to more general
settings which, together with quantification, would com-
plete an operational characterization of general resource
theories, has hitherto remained elusive.

A. Summary of results

In this work, we solve the problems raised above under
the umbrella of operational tasks of discrimination; specifi-
cally, we characterize general convex resource theories of
states, measurements, and channels, establishing tools for
their quantification, endowing the class of robustness mea-
sures with an explicit operational interpretation as the
advantage that a physical object can provide in various
discrimination tasks, and showing that such discrimination
tasks fully characterize the conversion between states or
measurements with free operations of the given resource
theory. The generality of our methods and results establishes
a universal operational description of resources in GPTs,
revealing strong connections between several aspects of
general resources and showing that the underlying convex
structures can provide deep insight into the properties of
physical systems also in an operational setting.We stress that
all of our results are immediately applicable to broad classes
of physically relevant quantum resource theories of states
(including entanglement, coherence, magic, asymmetry,
athermality, etc.), measurements (informativeness, simula-
bility, separable and positive partial transpose measurements,
etc.), and channels (quantum memories, free channels in the
resource theories of states, etc.).
We begin by providing an introduction to the main

concepts of general probabilistic theories, discrimination
problems, and resource quantification in Sec. II. Our
investigation starts in Sec. III by extending the results of
Ref. [36] beyond quantum mechanics and showing that the
generalized robustness of states in any convex resource

theory and any GPT can be understood as the quantifier of
the advantage that a given resourceful state can provide in
channel discrimination problems. We then introduce the
measurement robustness in Sec. IV, which quantifies the
resource content of any measurement in convex resource
theories of measurements, generalizing the recent approach
of Ref. [25] to arbitrary resources and probabilistic theories.
In particular, we establish a direct operational interpretation
of the measurement robustness in any resource theory by
showing that it quantifies exactly the maximum advantage
that a measurement can provide in all state discrimination
tasks compared to all resourceless measurements. Having
established the connection between discrimination tasks and
generalized robustness of measurements, in Sec. IVA we
further extend this connection to single-shot information
theory within the setting of quantum mechanics. We
specifically show that the increase in min-accessible infor-
mation, a single-shot variant of accessible information, of
an ensemble of states effected by applying resourceful
measurements as compared to free measurements is exactly
quantified by the generalized robustness.
The considerations extend beyond the case of states and

measurements. In Sec. V, we formalize the quantification of
the resource content of channels in two different ways: by
measuring the amount of a resource that a channel can
generate by acting on a free state, as well as in a more
abstract formalism of convex resource theories of channels.
In particular, we introduce resource-generating power,
as well as generalized robustness of channels defined in
general resource theories. We establish operational inter-
pretations of these different robustness measures by show-
ing that the resource-generating power of a channel exactly
characterizes the advantage that the channel can enable in
resourceless-state discrimination tasks, and by showing
that, within quantum theory, the robustness of a given
channel or the maximum robustness of a given ensemble of
channels quantifies the advantage it provides in a class of
state and channel discrimination tasks, respectively.
We additionally consider in Sec. VI another resource

measure in the robustness family, the standard robustness,
and show that it admits a universal operational interpreta-
tion in any convex resource theory of states in the context
of quantifying the advantage that a state provides over
resourceless states in all balanced binary channel discrimi-
nation tasks. This gives a general operational meaning to
this quantity for the first time, extending the link between
resource quantification and operational advantages in
discrimination tasks to the standard robustness of states
defined in general settings.
Finally, in Sec. VII we show that different classes of

discrimination tasks can form complete sets of monotones
in any resource theory, in the sense that a state or a
measurement can be transformed into another state or
measurement using only free operations of the given
resource theory if and only if the former performs better
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than the latter in a family of channel or state discrimination
tasks. We therefore reveal explicitly that discrimination
tasks can be useful not only in the context of quantifying
the resource strength but also in fully characterizing the
conversions between resource states or measurements.
We also extend the results to describe the transformations
of state ensembles.
In addition to operationally characterizing two main

concepts of resource theories, quantification and manipula-
tion of resources, our results not only endow the robustness
measures with direct operational interpretations in general
resource theories of states, measurements, and channels but
also explicitly demonstrate strong relations between several
seemingly unrelated notions—discrimination-type tasks,
geometric resource quantification, resource transformations,
and one-shot quantum-information-theoretic quantities (see
Fig. 1)—as conjectured in Ref. [25] for quantum mechanics.
The majority of our results apply to every single physical
probabilistic theory in finite dimensions, relying only on the
convex structure of the underlying resources and requiring
no assumptions about the structure of the GPT beyond the
basic axiom referred to as the no-restriction hypothesis
[49,53,54]. We make use of methods in convex analysis
and in particular conic programming.

II. PRELIMINARIES

A. General probabilistic theories

We briefly outline the basic formalism of general
probabilistic theories. We refer the interested reader to
Chaps. 1 and 2 of Ref. [52], which provides a modern
introduction to the topic and a detailed discussion, deriva-
tion, and justification of the concepts.
The physical setting of a GPT can be identified with a

convex and closed set of statesΩðVÞ in a finite-dimensional
real complete normed vector space V and a set of effects

contained in the dual vector space V�, which correspond to
the results of physically implementable measurements.
A crucial role is played by the cone generated by ΩðVÞ,

C ≔ fλωjλ ∈ Rþ;ω ∈ ΩðVÞg, which we further assume to
be pointed [i.e., C ∪ ð−CÞ ¼ f0g] and generating (i.e., span
C ¼ V), such that it induces a partial order on the space V
given by x ≼ C y ⇔ y − x ∈ C, with x ≺ Cy ⇔ y − x ∈
intðCÞ. The dual cone C�≔fE∈V�jhE;ωi≥0 ∀ ω∈Cg,
where we write hE;ωi for EðωÞ, then similarly induces a
partial order E ≼ C� F ⇔ F − E ∈ C� on the dual space.
Associated with each GPT is a fixed unit effect U≻C�0

defined as the unique element of the dual space satisfying
hU;ωi ¼ 1 for all ω ∈ ΩðVÞ; equivalently, this allows one
to understand the set of valid states as the set of normalized
elements of the cone C in the sense that ΩðVÞ ¼
fω ∈ CjhU;ωi ¼ 1g. Under the so-called no-restriction
hypothesis, which we hereafter take as an assumption,
the effects are then all functionals E such that
0 ≼ C� E ≼ C� U, which are precisely all linear functionals
E∶ΩðVÞ → ½0; 1�. Any finite collection of effects fMigi
such that

P
iMi¼U are called a measurement, with hMi; ·i

identifying the probability of measuring the i th outcome.
We denote by M the set of all possible measurements.
Given two GPTs defined by the spaces V and V 0 with the

corresponding sets of states ΩðVÞ and ΩðV 0Þ, one can then
study the transformations between them. The question of
physically allowed transformations Λ∶V → V 0 between
different states, which we refer to as channels, is in general
heavily dependent on the physical setting of the given
theory and additional assumptions placed on it [95,96].
However, since we require the output to be a valid state, two
general assumptions can be made: (1) Any valid channel Λ
is state-cone preserving, that is, Λ½C� ⊆ C0 where C0 is the
cone defined by ΩðV 0Þ in the output space, and (2) Λ is
normalization preserving, that is, hU; xi ¼ hU0;ΛðxÞi for
any x ∈ C where U0 is the unit effect in the output dual

Resource theories

Thm. 7
Cor. 8

Discrimination tasks

ManipulationQuantification

Single-shot
information

Generalized
robustness

Standard
robustness

Thm. 1
Thm. 2
Thm. 4
Thms. 5, 6

Thm. 3 Thms. 9, 12
Cors. 10, 11, 13, 15
Thm. 14

States

Measurements

Channels

FIG. 1. Schematics showing the connections established by the results in this work. The colors of the theorem labels indicate the types
of resources relevant to the results (red, states; blue, measurements; green, channels). The underlined theorems (Theorems 3, 5, and 6)
are shown specifically for quantum theory, while the other results are valid in general GPTs.
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space. Any valid set of physical transformations in the
given GPT, which we denote by T ðV;V 0Þ, will necessarily
be a subset of all state-cone- and normalization-preserving
operations, although often the inclusion will be strict. To
allow for full generality of our results, we place no further
restrictions on the set of physically allowed transformations
at this point, except for the trivial assumption that the
identity map id∶x ↦ x is physically implementable.
For any Λ∶V→V 0, define the dual map Λ�∶V 0� → V� by

hE;ΛðxÞi ¼ hΛ�ðEÞ; xi ∀ E ∈ V 0�; x ∈ V: ð1Þ

Without loss of generality, we identify the bidual V�� with
V and say that Λ�� ¼ Λ.
Consider now transformations between measurements;

that is, maps Γ∶V 0� → V� such that for any measurement
fMigi, fΓðMiÞgi is also a measurement. It is not difficult to
see that two conditions need to be satisfied for such a map
to always result in valid measurements: One, it needs to
preserve the effect cone in the sense that Γ½C0�� ⊆ C�, and
two, it needs to preserve the unit effect, ΓðU0Þ ¼ U, so thatP

i ΓðMiÞ ¼ U. We refer to maps obeying the two con-
ditions as effect cone preserving and unital, respectively.
Using the duality relation (1), it is then not difficult to see
that the set of all maps dual to the set of state-cone- and
normalization-preserving maps are precisely the effect of
cone-preserving unital maps. More specifically, a map Λ is
state-cone preserving if and only if its dual preserves the
effect cone and normalization preserving if and only if its
dual is unital.
The concepts of quantum theory can be intuitively

understood in this setting. To help translate the notation
of the quantum-mechanical setting to more general GPTs,
we include a basic comparison in Table I.

B. Discrimination tasks

Consider a finite ensemble of the form fpi; σigi, where
σi ∈ ΩðVÞ and pi are the probabilities corresponding to
each state, such that

P
i pi ¼ 1. The task of state discrimi-

nation is concerned with the scenario where a state is
sampled from the ensemble and one aims to determine
which one of the states is in one’s possession by measuring
it. Specifically, given a measurement fMigi, we associate
the i th measurement outcome with the guess that the
sampled state is σi. The average probability of successfully
obtaining the correct guess is then given by

psuccðfpi; σig; fMigÞ ¼
X
i

pihMi; σii: ð2Þ

In the context of minimum-error discrimination, one is in
particular interested in choosing an optimal measurement
which maximizes this quantity. It is a fundamental fact
in any GPT that, generalizing the approach in the
seminal Holevo-Helstrom theorem [66,67], in the case of

discriminating between two states the problem can be
expressed as [75]

max
fMig∈M

psuccðfpi; σig1i¼0; fMig1i¼0Þ

¼ 1

2
ðkp0σ0 − p1σ1kΩ þ 1Þ; ð3Þ

where k · kΩ is the so-called base norm given by

kxkΩ ≔ minfλþ þ λ−jx ¼ λþωþ − λ−ω−;

λ� ∈ Rþ;ω� ∈ ΩðVÞg
¼ max fhE; xij −U ≼C� E ≼C� Ug; ð4Þ

where the equality follows by convex duality [97].
Notice that there exists a measurement which distinguishes
an ensemble of two states perfectly if and only if kp0σ0−
p1σ1kΩ ¼ 1. In the case that p0 ¼ p1 ¼ 1

2
, we refer to this

task as balanced binary discrimination.
We will furthermore make frequent use of the norm dual

to the base norm k · kΩ called the order unit norm k · k∘Ω,
which can be obtained as

kYk∘Ω ¼ max fhY; xijkxkΩ ≤ 1g
¼ max fjhY;ωijjω ∈ ΩðVÞg: ð5Þ

Notice in particular the set of effects is precisely
fY ∈ C�jkYk∘Ω ≤ 1g.

TABLE I. A comparison between the concepts and standard
nomenclature used in finite-dimensional quantum mechanics and
in more general GPTs.

GPTs Quantum mechanics

Real vector space V Self-adjoint operators acting on a
Hilbert space H

States ΩðVÞ Density operators
State cone C Positive semidefinite operators
Effect cone C� Positive semidefinite operators
Unit effect U Identity operator I
Canonical bilinear
form hE; xi

Hilbert-Schmidt inner product
TrðExÞ

Measurement Positive operator-valued measure
(POVM)

Effect POVM element
State-cone-preserving maps Positive maps
Effect-cone-preserving
maps

Positive maps

Normalization-preserving
maps

Trace-preserving maps

Physical transformations
T ðV;V 0Þ

Completely positive
trace-preserving maps

Unital maps Unital maps
Base norm k · kΩ Trace norm k · k1
Order unit norm k · k∘Ω Operator norm k · k∞
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Another setting often encountered in the task of state
discrimination is where one is constrained to use only a
restricted set of allowed measurements fMig ∈ MF ⊆ M.
This scenario has been found to be of fundamental
importance due to the phenomenon of data hiding, that
is, the existence of states which can be distinguished
perfectly with general measurements but not with local
measurements supplemented with classical communication
[98,99]. Provided that the set MF is informationally
complete, that is, the effects contained in MF together
span the whole space V�, the best success probability in this
setting can be expressed as [77,100]

sup
fMig∈MF

psuccðfpi; σig1i¼0; fMig1i¼0Þ

¼ 1

2
ðkp0σ0 − p1σ1kMF

þ 1Þ ð6Þ

with k · kMF
being the so-called distinguishability norm

kxkMF
≔ supfMig∈MF

P
i jhMi; xij.

A related task is concerned with channel discrimination,
where one of the channels from a given ensemble fpi;Λig
with each Λi ∈ T ðV;V 0Þ occurring with probability pi is
applied to a known state ω ∈ ΩðVÞ. The task then is, by
measuring the output state ΛiðωÞ, to decide which of the
channels was applied. The average probability of guessing
correctly with a measurement fMig is then

psuccðfpi;Λig; fMig;ωÞ ¼
X
i

pihMi;ΛiðωÞi; ð7Þ

which is completely equivalent to discriminating the state
ensemble fpi;ΛiðωÞg. A more general setting is that
of subchannel discrimination, in which the object to
discriminate is an ensemble fΨig of subchannels, that is,
state-cone-preserving maps which are normalization non-
increasing in the sense that hU;ωi ≥ hU0;ΨiðωÞi, and their
sum

P
i Ψi is normalization preserving. We can then write

psuccðfΨig; fMig;ωÞ ¼
X
i

hMi;ΨiðωÞi: ð8Þ

Finally, in some cases we allow for the inconclusive
discrimination; that is, a discrimination task in which an
ensemble fpi; σigN−1

i¼0 is discriminated with a measurement
fMigNi¼0, and we associate with the Nth measurement
outcome an inconclusive result. Similarly, the average
probability of guessing correctly is then

p0
succðfpi; σigN−1

i¼0 ; fMigNi¼0Þ ¼
XN−1

i¼0

pihMi; σii; ð9Þ

and analogously for the case of channel and subchannel
discrimination. Inconclusive discrimination is a broader
class of tasks than conclusive discrimination, in the sense

that the latter can be considered as a special case of the
former where one takes MN ¼ 0.

C. Resources and their quantification

A general resource theory can be identified with a set of
objects (here, a set of states, measurements, or channels)
together with a set of transformations of said objects that
one deems free, in the sense that they are available in the
given physical setting at no resource cost. Both definitions
will generally depend on the physical setting under con-
sideration; intuitively, an object being free can be under-
stood as it possessing no resource, and a transformation
being free means that it is allowed within the given physical
constraints. In particular, any such free operation should
not generate any resource; that is, any object subjected to a
free transformation should have quantitatively “less” of the
given resource than it possessed initially. This is formalized
precisely by resource monotones, which are functions from
the set of states, measurements, or channels to real numbers
whose aim is to quantify the resource content of the given
object and therefore do not increase under the action of the
free transformations. Frequently, further constraints are
imposed on functions admissible as valid resource monot-
ones [3,34,101], although we make no additional assump-
tions at this point. In most cases, the choice of a resource
monotone is not unique, and typically, one therefore looks
for a choice of monotones which characterize the physical
properties of the given resource in addition to merely
outputting a number associated with an object.
Having defined the setting of a resource theory in this

way, one is then interested in understanding the limitations
that it places on one’s operational capabilities within the
general probabilistic theory. Some of the fundamental
questions that can be asked in this context are (i) what
physical advantages a resourceful object can provide over a
free one, (ii) which transformations are possible with the
restricted set of free operations and how to characterize
them, (iii) and what exactly can measuring the resource-
fulness of an object tell us quantitatively about the use-
fulness of the object in physical tasks.
The concept which forms a central pillar of this work is

convexity. Although ultimately a technical assumption, it
stems from deep physical considerations and is a founda-
tion of any GPT [102]. In particular, take the set of states
ΩðVÞ: if one is free to prepare any ω1, ω2 ∈ ΩðVÞ within
the given physical setting of the theory, one should also
be allowed to simply forget which one was prepared—
such a randomization leads precisely to convex mixtures
pω1 þ ð1 − pÞω2. Dually, this means that allowed mea-
surements should form a convex set, and analogously,
the randomization of transformations should be a valid
physical procedure. In a similar way, this property can be
explicitly required from a given resource theory; if a
randomization procedure of free objects is free to be
performed, the associated set of objects should be free.
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Although it is certainly possible to define resource theories
in which convexity does not hold [19,103,104], it is a
natural assumption in most physical settings, and the vast
majority of established resource theories are indeed convex.
In any such convex resource theory, a very intuitive way to

define a quantifier is as follows: given an object A, what is
the least amount of mixing p ∈ ½0; 1� with another object B
such that ð1 − pÞAþ pB is free? This is precisely the idea
behind robustness measures [84], where in particular the
standard (free) robustness asks about the least coefficient p
such that B is also a free object, and the generalized (global)
robustness asks about the least p when B is any admissible
object. In an intuitive sense, this can be understood as the
robustness of the resource contained in A to noise in the form
of admixing the objects B.
To investigate the properties of such monotones, we now

specify to the particular settings of convex resource theories
of states, measurements, and channels in GPTs.

III. GENERALIZED ROBUSTNESS OF STATES

The generalized robustness has found a multitude of uses
in quantum resource theories. Its operational applications
include the tasks of one-shot entanglement dilution [88,89],
one-shot coherence distillation [85,86] and dilution [90],
phase discrimination with coherent states [81,82], and
catalytic resource erasure [33,91].
Notably, it was shown in Ref. [36] that the generalized

robustness of states defined in any quantum resource theory
serves as an exact quantifier for the maximum advantage
that a resource state provides in a class of (sub)channel
discrimination tasks. However, the construction considered
in the proof relies on the specific structure of quantum
theory, and it does not immediately generalize to all GPTs.
Here, we introduce a generalization of that result which
holds without any assumptions about the underlying GPT,
showing that this universal relation applies even beyond the
setting of quantum mechanics.
Given a convex and closed set of free states F ⊆ ΩðVÞ,

the generalized robustness is given for any state ω ∈ ΩðVÞ
as the optimal value of the convex optimization problem

RF ðωÞ ≔ min

�
r ∈ Rþ

���ωþ rδ
1þ r

∈ F ; δ ∈ ΩðVÞ
�

¼ min fr ∈ Rþjω ≼C ð1þ rÞσ; σ ∈ Fg: ð10Þ

To ensure that this quantity is well defined for any state, we
assume that F contains at least one interior point of C. It is
straightforward (see, e.g., the Appendix B) to obtain the
following equivalent dual problem:

maximize hX;ωi − 1

subject to X≽C�0

hX; σi ≤ 1; ∀ σ ∈ F : ð11Þ

One can check that the dual problem is strictly feasible by
taking the feasible solution X ¼ U=2, and thus strong
duality is ensured by Slater’s theorem [105], meaning that
the solutions to the primal and dual problems coincide.
Recalling that the average probability of success in a

channel discrimination task is given by

psuccðfpi;Λig; fMig;ωÞ ¼
X
i

pihMi;ΛiðωÞi; ð12Þ

we can now show that the generalized robustness of a state
quantifies its maximal advantage over the free states in all
such channel discrimination tasks with a fixed choice of
measurement.
Theorem 1: For any ω ∈ ΩðVÞ it holds that

max
fMig;fpi;Λig

psuccðfpi;Λig; fMig;ωÞ
maxσ∈Fpsuccðfpi;Λig; fMig; σÞ

¼ 1þ RF ðωÞ

ð13Þ
where the maximization is over all finite ensembles of
channels fpi;Λig with each Λi ∈ T ðV;V 0Þ and all mea-
surements fMig on the output space V 0.
Proof.—To show that the left-hand side is upper

bounded by the right-hand side, note that the definition
of the robustness implies that, for any state ω, there exists
another state δ such that ½ðωþrδÞ=ð1þrÞ�¼σ∈F where
r ¼ RF ðωÞ. This gives for any fMig and any channel
ensemble fpi;Λig that

psuccðfpi;Λig; fMig;ωÞ

¼
X
i

pihMi;Λi(ð1þ rÞσ − rδ)i

≤
X
i

pihMi; ð1þ rÞΛiðσÞi

≤ ð1þ rÞmax
σ∈F

psuccðfpi;Λig; fMig; σÞ; ð14Þ

where the first inequality follows since each Mi ∈ C� and
δ ∈ C, which concludes the first part of the proof.
To see the opposite inequality, consider an optimal solution

X in Eq. (11) for RF ðωÞ and define a measurement by
fX=kXk∘Ω; U − X=kXk∘Ωg. This is a validmeasurement since
each X ∈ C� by the dual form of the robustness in Eq. (11),
and so0 ≼C� X=kXk∘Ω ≼C� U bydefinitionof the normk · k∘Ω.
Consider now the channel ensemble defined by p0 ¼ 1,
Λ0 ¼ id, and p1 ¼ 0, Λ1 ¼ Λ0 where id denotes the identity
map x ↦ x, and Λ0 is an arbitrary channel. This gives

max
fMig;fpi;Λig

psuccðfpi;Λig; fMig;ωÞ
maxσ∈Fpsuccðfpi;Λig; fMig; σÞ

≥
1

kXk∘Ω hX;ωi
1

kXk∘Ω maxσ∈F hX; σi
≥ 1þ RF ðωÞ; ð15Þ
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where in the last inequality,weuse that hX; σi ≤ 1 for any free
state σ by the condition in Eq. (11). ▪
We stress that, although the above result optimizes

over the set of all ensembles of physical transformations
T ðV;V 0Þ, the only assumption about the set T ðV;V 0Þ that
we make is that it contains the identity map. This makes the
above theorem immediately applicable to every GPT,
regardless of how the given physical limitations constrain
the implementable set of operations.
We remark that instead of channel discrimination, one

can alternatively consider subchannel discrimination—
which is generally a broader class of discrimination
tasks—and show the same relation, whose proof proceeds
analogously. [Equation (14) still holds when one replaces
the channel ensemble with a set of subchannels, and one
can choose the same channel ensemble to show Eq. (15).]
Importantly, from the dual form in Eq. (11) one can see

that the robustness is directly observable, in the sense that it
can be obtained by measuring a single effect X (expectation
value of observable X for the case of quantum mechanics)
at the state ω. This ensures that the quantification of the
robustness is accessible, allowing in particular to straight-
forwardly bound the value of RF based on measurement
data obtained in experiment, adapting the approach of so-
called quantitative resource witnesses [93,94]. One should
also note that the generalized robustness can be computed
exactly for certain classes of states in quantum resource
theories such as entanglement and Schmidt number k
entanglement [34,106,107], coherence and multilevel
coherence [34,82,108,109], magic [34,110], and in several
cases can be cast as a semidefinite program for any state;
this makes the computation of the operationally motivated
quantity in Theorem 1 feasible in practice for many relevant
cases of resource theories.

IV. GENERALIZED ROBUSTNESS
OF MEASUREMENTS

Understanding the discriminative power of restricted
sets of measurements is of central importance not only
in characterizing the operational consequences precipitated
by limitations of physically allowed measurements but
often also in studying the very fundamental structure of the
underlying GPT [77,100,111]. The phenomenon of data
hiding [98,99] has in particular motivated the study of the
question: given a measurement, how well can one distin-
guish physical states with it as compared to some fixed
restricted set of measurements? We show that a robustness
measure associated with the measurement can provide a
precise answer to the question.
First, we formally define the generalized robustness of

measurements with respect to some convex and closed set
of measurements MF , which we define as

MF ≔ ffMigi ∈ MjMi ∈ EF ∀ ig; ð16Þ

where EF ⊆ C� is some chosen convex and closed cone
of free effects which we are able to access within the
constraints of thegiven resource theory.As examples of such
a setting, one can consider local measurements, separable
measurements [77], measurements simulable by a given set
of measurements [22,24,112], or trivial measurements
(proportional to the unit effect); within quantummechanics,
one can furthermore choose, for instance, positive partial
transpose (PPT) measurements, incoherent measurements,
or (probabilistic mixtures of) Pauli measurements.
We define the generalized robustness of measurement

with respect to EF for a given measurement M ¼ fMigi as

REF ðMÞ≔minfr∈RþjMiþrNi∈EF ∀ i;fNigi∈Mg:
ð17Þ

We assume that MF contains at least one measurement
consisting of effects Mi≻C�0 which are in the interior of
C�, so that the above quantity is well defined for any mea-
surement. The faithfulness REF ðMÞ ¼ 0 iff Mi ∈ EF ∀ i,
the convexity REF ðpMþð1−pÞM0Þ≤pREF ðMÞþð1−pÞ
REF ðM0Þ, and the monotonicity of the robustness
REF ðΓðMÞÞ ≤ REF ðMÞ for any effect-cone-preserving
map Γ s.t. Γ½EF � ⊆ EF follow easily from the definition.
It is also straightforward to show the monotonicity under
classical postprocessing REF ðM0Þ ≤ REF ðMÞ holds where
M0

b ¼
P

a pðbjaÞMa and pðbjaÞ is any conditional prob-
ability distribution. To see this, note that the definition
together with the conic structure of EF implies that for
any i, there exists a free effect Fi ∈ EF such that
½ðMi þ rNiÞ=ð1þ rÞ� ¼ Fi. Thus, one can write for any
b and pðbjaÞ,

M0
b ¼

X
a

pðbjaÞ½ð1þ rÞFa − rNa� ð18Þ

¼ ð1þ rÞF0
b − rN0

b; ð19Þ

where Fa ∈ EF , Na ∈ C� are some effects. Note that
F0
b ≔

P
apðbjaÞFa, N0

b ≔
P

a pðbjaÞNa are also effects
constituting valid measurements, and F0

b ∈ EF due to the
convexity of EF . Since Eq. (19) is one valid decomposition
of effects constitutingM, we get REF ðM0Þ ≤ REF ðMÞ due to
the minimization involved in the definition (17).
To observe a close connection between the robustness

and discrimination tasks, let us define N0
i ≔ rNi, and

rewrite the definition (17) as the following convex opti-
mization problem:

minimize λ; ð20Þ

subject to Mi þ N0
i≽EF 0; ð21Þ

N0
i ∈ C� ∀ i; ð22Þ
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X
i

N0
i ¼ λU: ð23Þ

An equivalent dual problem (see, e.g., Appendix B) is
written as

maximize −
X
i

hMi; σii; ð24Þ

subject to σi ≼C η ∀ i; ð25Þ

η ∈ V; ð26Þ

σi ∈ E�
F ∀ i; ð27Þ

hU; ηi ¼ 1; ð28Þ

and defining ωi ¼ −σi þ η, we can rewrite it as

maximize
X
i

hMi;ωii − 1; ð29Þ

subject to ωi ∈ C ∀ i; ð30Þ

η ∈ V; ð31Þ

hF;ωii ≤ hF;ηi ∀ i; ∀ F ∈ EF ; ð32Þ

hU; ηi ¼ 1; ð33Þ

where in Eq. (29) we use that
P

ihMi; ηi ¼ hU; ηi ¼ 1 by
Eq. (33), and in Eq. (32) we write the condition η − ωi ∈
E�
F explicitly. To see that strong duality holds and thus the

optimal value of the dual is equal to the optimal value of the
primal problem, choose any σ≻C0 (and therefore, σ≻E�F

0)
s.t. 0 < hU; σi < 1, which is guaranteed to exist since the
interior of C is nonempty by assumption, and define
η ¼ σ=hU; σi. This choice of σi ¼ σ and η can be noticed
to strictly satisfy the conditions (25)–(27), and so Slater’s
theorem ensures that strong duality holds.
This form of the dual problem allows one to identify the

generalized robustness of measurement as an exact quan-
tifier for the advantage in some state discrimination task.
Let A ¼ fpi; σig denote a state ensemble to be discrimi-
nated. Then, we obtain the following result.
Theorem 2: LetMF be the set of measurements whose

effects are elements of EF . Then, for any measurement
M ¼ fMigi, it holds that

max
A

psuccðA;MÞ
maxF∈MF

psuccðA; FÞ ¼ 1þ REF
ðMÞ; ð34Þ

where the maximization is over all finite ensembles of
states A ¼ fpi; σig.
Proof.—We first show that the left-hand side is smaller

than or equal to the right-hand side. Following the

definition of the generalized robustness, one can write
Mi ¼ ð1þ rÞFi − rNi for some Fi ∈ EF , Ni ∈ C� for all i
where r ¼ REF ðMÞ. Thus, we get

psuccðA;MÞ ¼
X
i

pihMi; σii

¼ ð1þ rÞ
X
i

pihFi; σii − r
X
i

pihNi; σii

≤ ð1þ rÞmax
F∈MF

psuccðA; FÞ; ð35Þ

where the inequality follows since σi ∈ C and Ni ∈ C� for
all i, which completes the first part of the proof. To show
the converse, consider the set of optimal fωig ⊆ C that
appear in Eq. (29). We choose the probability distribution
and states as

pi ¼
hU;ωiiP
ahU;ωai

;σi ¼ωi=hU;ωii when hU;ωii> 0;

pi ¼ 0 when hU;ωii ¼ 0: ð36Þ

Considering an ensemble defined by the above proba-
bility and states A ¼ fpi; σig, we obtain for any F ∈ MF,

psuccðA;MÞ
psuccðA; FÞ ¼

1P
a
hU;ωai

P
ihMi;ωii

1P
a
hU;ωai

P
ihFi;ωii

ð37Þ

≥
1þ REF ðMÞP

ihFi; ηi
ð38Þ

¼ 1þ REF ðMÞ
hU; ηi ¼ 1þ REF ðMÞ; ð39Þ

where the inequality is due to Eq. (32), and the second last
equality is due to Eq. (33), which concludes the proof. ▪
The above theorem establishes an explicit connection

in any GPT between the inherent resourcefulness of a
given measurement and the advantage realized in state
discrimination tasks with respect to a general set of free
measurements, which ensures an operational interpretation
of the generalized robustness of measurements, extending
the previously considered case of states. Furthermore, it
allows for a connection with the data-hiding phenomenon.
In the investigation of data hiding in general probabilistic
theories, it is common to encounter the so-called data-
hiding ratio [77,100], which in our notation can be
expressed as

max
A0

maxM∈MpsuccðA0;MÞ − 1
2

maxF∈MF
psuccðA0; FÞ − 1

2

; ð40Þ
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where the ensembles A0 are limited to contain at most two
different states. Theorem 2 then shows that maximizing the
robustness REF

ðMÞ over all measurements M provides an
alternative ratio of this form, generalized to include state
ensembles of arbitrary length.

A. Connections with single-shot information theory

Here, we extend the connection between generalized
robustness of measurements and state discrimination tasks
to another seemingly different information-theoretic quan-
tity, one-shot accessible information, which generalizes
the specific case considered in Ref. [25]. Since entropic
quantities are particularly relevant to quantum information
theory, in this section we restrict our attention to quantum
mechanics (and not general GPTs).
Consider the situation where Alice encodes her classical

information into an ensemble A ¼ fpx; σxg, and Bob tries
to decode it by making a POVM measurement on a state
sampled from A. When this process is independently
repeated for asymptotically many times, the amount of
information he may learn is quantified by the accessible
information IaccðAÞ ≔ maxfNygIðX∶YÞ where IðX∶YÞ ¼
HðXÞ −HðXjYÞ is the classical mutual information, X is
the random variable associated with the ensemble, and
fNyg refers to a POVM measurement whose associated
random variable is Y [113]. However, quantities based on
the von Neumann or Shannon entropy cease to be suitable
for more practical nonasymptotic cases, and several kinds
of alternative quantities playing major roles in single-shot
scenarios have been proposed and studied [114–116]. As in
Ref. [25], we consider a variant of the single-shot version
of accessible information, min-accessible information, for a
state ensemble A defined by

IaccminðAÞ ≔ max
fNyg∈M

IminðX∶YÞ

¼ − logmax
x

px þ max
fNyg∈M

log
X
y

max
x

pxTr½σxNy�;

ð41Þ

where IminðX∶YÞ ≔ HminðXÞ −HminðXjYÞ is a single-shot
variant of mutual information [116], and HminðXÞ ¼
− logmaxxpx, HminðXjYÞ ¼ − log

P
y maxxpðx; yÞ are the

min-entropy andmin-conditional entropy [114,115,117].We
shall see that the accessible information for state ensembles
enables the information-theoretic characterization of the
generalized robustness of measurements. To see the relation,
it is insightful to see the measurements as channels; in
particular, consider the measure-and-prepare channel asso-
ciated with the measurement M with POVMs fMig defined
by ΛMð·Þ ≔

P
j Tr½·Mj�jjihjj. Denoting the ensemble one

would possess by applying the channel Λ to the ensemble
A ¼ fpx; σxg by AΛM

≔ fpx;ΛðσxÞg, we obtain the fol-
lowing relation between the maximal increase in min-
accessible information due to the given resource measure-
ment and the generalized robustness of that measurement.
Theorem 3: For any measurementM ∈ M, it holds that

max
A

½IaccminðAΛM
Þ − max

M0∈MF

IaccminðAΛM0 Þ� ¼ log ½1þ REF ðMÞ�;

ð42Þ

where MF is the set of free measurements consisting of
POVM elements in EF .
Proof.—Consider the ensembleA ¼ fpx; σxg. Using the

definition (41), we get

IaccminðAΛM
Þ ¼ − logmax

x
px þmax

fNyg
log

X
y

max
x

�
px

X
a

Tr½σxMa�hajNyjai
�

ð43Þ

¼ − logmax
x

px þ log
X
y

max
x

�
px

X
a

Tr½σxMa�δay
�

ð44Þ

¼ − logmax
x

px þ log max
fqðxjyÞg

X
y

X
x

qðxjyÞpxTr½σxMy�: ð45Þ

The second equality is because Ny ¼ jyihyj can be chosen as optimal POVM elements, and the third equality is because
maxxfðxÞ ¼ maxfqðxÞg

P
x qðxÞfðxÞ for any function fðxÞ and probability distribution qðxÞ. Note that we can interchange

the summation over y and the maximization over probability distributions fqðxjyÞg because the summation over y is
maximized when qðxjyÞ maximizes the summant for each y. Then, we get for any ensemble A,

IaccminðAΛM
Þ − max

M0∈MF

IaccminðAΛM0 Þ ¼ log
maxfqðxjyÞg

P
y

P
x qðxjyÞpxTr½σxMy�

maxM0∈MF
maxfqðxjyÞg

P
y

P
x qðxjyÞpxTr½σxM0

y�
ð46Þ

≤ log ½1þ REF ðMÞ�; ð47Þ
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where the inequality can be proved in a way similar to
Eq. (35). To see the converse, note that for anyM0 ∈ MF and
conditional probability distribution qðxjyÞ, another measure-
mentM00 defined by the POVMM00

x ¼
P

y qðxjyÞM0
y is also a

member ofMF due to the convexity of EF that definesMF .
Thus, Eq. (46) is equivalently written as

IaccminðAΛM
Þ − max

M0∈MF

IaccminðAΛM0 Þ

¼ log
maxfqðxjyÞg

P
y

P
x qðxjyÞpxTr½σxMy�

maxM0∈MF

P
xpxTr½σxM0

x�
: ð48Þ

The equality in Eq. (47) can be achieved by setting qðxjyÞ ¼
δxy and taking the ensemble defined by Eq. (36), which
concludes the proof. ▪
Theorem 3 generalizes the result in Ref. [25] for the case

of theory of informativeness of measurements to general
quantum resource theories of measurements. As a result,
Theorem 3, together with Theorem 2, establishes the
general connections between discrimination tasks, robust-
ness measures, and single-shot information theory conjec-
tured in Ref. [25] for the case of quantum measurements.

V. ROBUSTNESS MEASURES FOR CHANNELS

In addition to states and measurements, the state trans-
formations themselves can also be regarded as resourceful,
and their operational characterization in this way has recently
become an active area of investigation [26,37,39–43,45].
Here, in particular, we discuss two general ways to

approach the resource content of channels. One is to relate
them to an underlying resource theory for states: if a
channel Λ ∈ T ðV;V 0Þ is a free operation in a resource
theory characterized by the set of free states F , then we
know that Λ½F � ⊆ F 0; the resourcefulness of a nonfree
operation can then be measured exactly by understanding
how much resource it can create, which is known as the
resource-generating power. The second approach is to
define an arbitrary set of transformation OF , which we
deem as free, and quantify the resource content of a channel
by defining a robustness measures in a similar way as we
have done for states and measurements.

A. Robustness-generating power of channels

Let F ⊆ ΩðVÞ be a set of free states in a given resource
theory, with F 0 the corresponding free states in another
space V 0. If a transformation Λ ∈ T ðV;V 0Þ is a free
operation in this resource theory, we know for certain that
σ ∈ F ⇒ ΛðσÞ ∈ F 0. As we have seen before, the re-
source content of a state is naturally and operationally
quantified by the robustness RF ðωÞ. Motivated by this,
we like to understand the best robustness achievable after
the application of a channel on a resourceless state. The
robustness-generating power of a map Λ is then defined
as [42,118]

PF ðΛÞ ≔ max
σ∈F

RF 0 ½ΛðσÞ�
¼ maxfhW;ΛðσÞi − 1jσ ∈ F ;W ∈ C0�;

hW; πi ≤ 1 ∀ π ∈ F 0g; ð49Þ
where the second line follows from the dual form of the
robustness.
We now show that this quantity admits an operational inter-

pretation in anyGPTas thebest advantage thatΛ can enable in
state discrimination tasks of free-state ensembles with a given
measurement, where the transformation Λ is applied to the
ensembles prior tomeasurement. Specifically, consider a state
discrimination task with the possibility of an inconclusive
outcome, where the average success probability is

p0
succðfpi; σigN−1

i¼0 ; fMigNi¼0;ΛÞ ≔
XN−1

i¼0

pihMi;ΛðσiÞi: ð50Þ

We then have the following.
Theorem 4: Given a map Λ ∈ T ðV;V 0Þ, its robustness-

generating power is equivalently given by

max
fMig

maxfpi;σig;σi∈Fp
0
succðfpi; σig; fMig;ΛÞ

maxfqi;πig;πi∈F 0p0
succðfqi; πig; fMig; idÞ

¼ 1þ PF ðΛÞ;

ð51Þ
where id denotes the identity map on V 0.
Proof.—One direction is as usual. Notice that the

definition of the robustness-generating power implies
that, for any free state σi ∈ F , there exists another state
δi ∈ ΩðV 0Þ such that ½ΛðσiÞ þ riδi�=ð1þ riÞ ¼ ρi ∈ F 0
where ri ≤ r ¼ PF ðΛÞ. This gives for any fMig and any
free-state ensemble fpi; σig that

p0
succðfpi; σig; fMig;ΛÞ
¼

X
i

pihMi; ð1þ riÞρi − riδii

≤
X
i

pihMi; ð1þ rÞρii

≤ ð1þ rÞmax
fqi;πig
πi∈F

0
p0
succðfqi; πig; fMig; idÞ: ð52Þ

On the other hand, consider the optimal solution W in
Eq. (49) and define a measurement by fW=kWk∘Ω0 ;
U0 −W=kWk∘Ω0 g. We can then choose the single-element
ensemble f1; σg where σ is an optimal state in Eq. (49).
This gives

max
fMig

maxfpi;σig;σi∈Fp
0
succðfpi; σig; fMig;ΛÞ

maxfqi;πig;πi∈F 0p0
succðfqi; πig; fMig; idÞ

≥
1

kWk∘
Ω0
hW;ΛðσÞi

1
kWk∘

Ω0
maxπ∈F 0 hW; πi

≥ 1þ PF ðΛÞ; ð53Þ
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where in the last inequality we use that π ∈ F 0, and so
hW; πi ≤ 1 by the conditions on W in Eq. (49). ▪
The above result establishes a universal operational mean-

ing of the robustness-generating power for any resource
theory and any choice of free operations in the given theory.
We remark that Ref. [37] showed an operational inter-

pretation in the context of binary channel discrimination of
another measure of channel resourcefulness within quan-
tum mechanics, the resource-generating power as quanti-
fied by the trace norm distance to the set of free states:
maxσ∈Fminσ0∈F 0 kΛðσÞ − σ0k1. It can be noticed that the
proof in Ref. [37] uses only the fundamental properties of
the trace norm as the base norm and thus holds in the same
way in any general probabilistic theory.

B. Generalized robustness of channels

Here, we take another approach to quantify the resource-
fulness of channels, in which we aim to directly evaluate the
intrinsic resourcefulness of a given channel without the aid of
an underlying resource theory of states. Having seen the
discussions for states and measurements, a natural approach
to take is to measure the resourcefulness with respect to a
given set of free channelsOF . Analogous to the cases of states
and measurements, we propose the generalized robustness of
channels and discuss an operational meaning of it via channel
discrimination (see also Ref. [42] for a discussion of this
quantity in the resource theory of quantum coherence).
The operational characterization of this measure

depends on several properties which general GPTs need
not satisfy, and in particular makes heavy use of the Choi-
Jamiołkowski isomorphism. Although equivalent forms of
this isomorphism can be obtained in GPTs beyond quantum
mechanics under suitable assumptions [54], for the sim-
plicity of the discussion, we limit ourselves to quantum
theory. Thus, in this subsection, operator inequalities
should be understood in terms of positive semidefiniteness
(we do not distinguish between the state and effect cones as
they are isomorphic to each other).
Given a convex and closed set of channels OF ⊆

T ðV;V 0Þ, we define the generalized robustness measure
for channel Λ ∈ T ðV;V 0Þ with respect to OF as

ROF
ðΛÞ ≔ min

�
r ∈ Rþ

����Λþ rΘ
1þ r

∈ OF ;Θ ∈ T ðV;V 0Þ
�
:

ð54Þ

For further analysis, we utilize the Choi representation
of channels. Let JΛ ≔ I ⊗ ΛðjΦ̃þihΦ̃þjÞ where jΦ̃þi ≔P

j jjji is the unnormalized maximally entangled state. It is
well known that Λ is completely positive if and only if
JΛ≽0, trace preserving if and only if TrV 0 ½JΛ� ¼ IV . Let
OJ

F ⊆ V ⊗ V 0 be the set of Choi matrices corresponding to
channels in OF . We assume that OJ

F contains at least one
interior point of C ⊗ C0, i.e., a channel Γ s.t. JΓ≻0, so that

Eq. (54) is well defined for any channel. Then, introducing
the variable Ξ ¼ Λþ rΘ, Eq. (54) can be rewritten as the
following optimization problem:

minimize r; ð55Þ

subject to JΛ ≼ JΞ; ð56Þ

JΞ ∈ coneðOJ
F Þ; ð57Þ

TrV 0 ½JΞ� ¼ ð1þ rÞIV ; ð58Þ

where coneðOJ
F Þ is the cone generated by OJ

F . The
corresponding dual problem is written as (see, e.g.,
Appendix B)

maximize Tr½YJΛ� − 1; ð59Þ

subject to Y ¼ −Z þ X ⊗ I≽0; ð60Þ

X ∈ V; Tr½X� ¼ 1; ð61Þ

Z∈V⊗V 0; Tr½ZJΞ�≥0; ∀ JΞ∈OJ
F : ð62Þ

It can be confirmed that the strong duality holds by taking
X ¼ IV=d and Z ¼ IVV 0=ð2dÞ where d ¼ dimV. Using
Eqs. (60) and (61), one can write Eq. (62) as

Tr½ð−Y þ X ⊗ IÞJΞ� ¼ −Tr½YJΞ� þ Tr½ΞðXÞ� ð63Þ

¼ −Tr½YJΞ� þ 1 ≥ 0: ð64Þ

Since the objective function does not include X or Z, we
reach the following equivalent formulation;

maximize Tr½YJΛ� − 1; ð65Þ

subject to Y≽0; ð66Þ

Tr½YJΞ� ≤ 1; ∀ JΞ ∈ OJ
F : ð67Þ

This quantity finds a connection with two different
types of discrimination problems: on the one hand, when
considered for a single channel, it can characterize the
advantage that the channel provides over all free channels
in state discrimination tasks with given input states and
measurement. On the other hand, when considered for
an ensemble of channels, it can be used to express the
advantage provided by the ensemble in a class of channel
discrimination problems over ensembles composed of free
channels.
Specifically, let us first consider the problem of

discriminating an ensemble of quantum states by an
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application of the channel I ⊗ Λ. The average success
probability for this task can be expressed as

psuccðfpj; σjg; fMjg; I ⊗ ΛÞ ¼
X
j

pjTr½I ⊗ ΛðσjÞMj�:

ð68Þ

We then have the following result.
Theorem 5: Let OF be a convex and closed set of free

channels. Then

max
fpj;σjg;fMjg

psuccðfpj; σjg; fMjg; I ⊗ ΛÞ
maxΞ∈OF

psuccðfpj; σjg; fMjg; I ⊗ ΞÞ
¼ 1þ ROF

ðΛÞ; ð69Þ

where the maximization is over all state ensembles fpj; σjg
with σj ∈ ΩðV ⊗ V 0Þ and all measurements fMjg in the
space V ⊗ V 0.
Proof.——The proof again proceeds analogously to the

proof of Theorem 1. Specifically, for any given measure-
ment and state ensemble, we have

psuccðfpj; σjg; fMjg; I ⊗ ΛÞ ¼
X
j

pjTr½I ⊗ ΛðσjÞMj�

ð70Þ

≤
X
j

pjð1þ rÞTr½I ⊗ Ξ̃ðσjÞMj� ð71Þ

≤ ð1þ rÞmax
Ξ∈OF

psuccðfpj; σjg; fMjg; I ⊗ ΞÞ; ð72Þ

where r ¼ ROF
ðΛÞ and Ξ̃ ∈ OF is a free channel for an

optimal decomposition of Λ. The converse follows by
choosing the measurement fY=kYk∞; I − Y=kYk∞g where
Y is an optimal solution in Eq. (65) and the ensemble
fpi; σig1i¼0 defined as p0 ¼ 1; σ0 ¼ jΦþihΦþj, and p1 ¼ 0

where jΦþi is the maximally entangled state and σ1 is an
arbitrary state. For this choice, it holds that

psuccðfpj; σjg; fMjg; I ⊗ ΛÞ
maxΞ∈OF

psuccðfpj; σjg; fMjg; I ⊗ ΞÞ

¼ Tr½I ⊗ ΛðjΦþihΦþjÞY�
maxΞ∈OF

Tr½I ⊗ ΞðjΦþihΦþjÞY�

¼ Tr½JΛY�
maxΞ∈OF

Tr½JΞY�
≥ 1þ ROF

ðΛÞ; ð73Þ

where the inequality follows from Eq. (67). ▪
Another approach is to consider, instead of a single

channel Λ, an ensemble of channels, and characterize

its performance in a class of channel discrimination
problems.
Consider a scenario where a channel sampled from some

prior distribution is applied to one part of the input bipartite
state and a collective measurement is made on the output
system, where we allow for an inconclusive measurement
outcome. The success probability of this channel discrimi-
nation problem is written as

p0
succðfpi; I ⊗ ΛigN−1

i¼0 ; fMigNi¼0;ωÞ

¼
XN−1

j¼0

pjTr½fI ⊗ ΛjðωÞgMj�: ð74Þ

For a given ensemble ofN − 1 channels fpi;ΛigN−1
i¼0 , where

we assume that each pi > 0 for simplicity, let us consider
the maximum robustness for the ensemble:

R̃OF
ðfpi;ΛigÞ ≔ max

j
ROF

ðΛjÞ: ð75Þ

Then, we obtain the following result, which connects
the maximal advantage for this class of channel dis-
crimination and the maximum robustness of channel
ensembles.
Theorem 6: Let OF be a convex and closed set of free

channels. Then,

max
ω∈ΩðV⊗VÞ
fMjgNj¼0

p0
succðfpj; I ⊗ ΛjgN−1

j¼0 ; fMjgNj¼0;ωÞ
maxΞj∈OF

p0
succðfpj; I ⊗ ΞjgN−1

j¼0 ; fMjgNj¼0;ωÞ

¼ 1þ R̃OF
ðfpj;ΛjgÞ: ð76Þ

Proof.—One direction of the inequality is shown as
usual,

p0
succðfpj; I ⊗ ΛjgN−1

j¼0 ; fMigNj¼0;ωÞ

¼
XN−1

j¼0

pjTr½fI ⊗ ΛjðωÞgMj� ð77Þ

≤
XN−1

j¼0

pjð1þ rjÞTr½fI ⊗ ΞjðωÞgMj� ð78Þ

≤ ð1þrj⋆Þ max
Ξj∈OF

p0
succðfpj;I⊗ΞjgN−1

j¼0 ;fMjgNj¼0;ωÞ; ð79Þ

where we set rj ≔ ROF
ðΛjÞ and j⋆ ¼ argmaxjrj. To show

the left-hand side is greater than or equal to the right-hand
side, consider the state ω ¼ jΦþihΦþj and the POVM
defined by Mj⋆ ¼ Yj⋆=kYj⋆k∞ where Yj⋆ is an optimal
solution for Λj⋆ in Eq. (65), Mj ¼ 0 for j ≠ j⋆, and
MN ¼ I −Mj⋆ . For this choice, we then have

GENERAL RESOURCE THEORIES IN QUANTUM MECHANICS … PHYS. REV. X 9, 031053 (2019)

031053-13



p0
succðfpj; I ⊗ ΛjgN−1

j¼0 ; fMigNj¼0;ωÞ
maxΞj∈OF

p0
succðfpj; I ⊗ ΞjgN−1

j¼0 ; fMigNj¼0;ωÞ

¼
P

N−1
j¼0 pjTr½fI ⊗ ΛjðjΦþihΦþjÞgMj�

maxΞi∈OF

P
N−1
j¼0 pjTr½fI ⊗ ΞjðjΦþihΦþjÞgMj�

ð80Þ

¼ pj⋆Tr½JΛj⋆Yj⋆ �
maxΞ∈OF

pj⋆Tr½JΞYj⋆ �
ð81Þ

≥ 1þ R̃OF
ðfpj;ΛjgÞ; ð82Þ

where the last inequality is due to Eq. (67). ▪
We remark that, in the specific case of the resource

theory of quantum coherence and the choice of operations
OF as the so-called maximally incoherent operations (the
largest set of operations preserving the set of free states) [6],
it was shown that the two approaches to the quantification
of channel resources coincide, and we have PF ðΛÞ ¼
ROF

ðΛÞ for any channel Λ [42]. An investigation of more
general cases under which this happens is an interesting
open question in the operational characterization of resour-
ces of transformations.

VI. STANDARD ROBUSTNESS OF STATES

We have seen that the generalized robustness is a
fundamental measure capturing the resourcefulness con-
tained in general types of resources with operational
significance. In addition to the generalized robustness,
another important member of the class of robustness
measures is the standard (free) robustness. This is also a
valid resource monotone in any convex resource theory of
states [34] with some known operational interpretations;
the standard robustness of entanglement plays a role in
activation of quantum teleportation [92] and one-shot cost
for entanglement dilution under the nonentangling oper-
ations [89], and the standard robustness of magic is related
to classical simulation overhead for quantum Clifford
circuits with magic-state inputs [18]. Furthermore, this
quantifier in several quantum resource theories can be
evaluated analytically for some states [18,84,109,119] and
admits computable forms as semidefinite or linear pro-
grams [18,108,109]. However, the standard robustness has
not found use in discrimination-type problems thus far, and
a universal operational meaning of the standard robustness
in general resource theories, whether in quantum mechan-
ics or beyond, has not been established. We address this
question for the standard robustness of states and indeed
give such a general operational meaning in terms of the
advantage for the most fundamental type of discrimination
task: balanced binary channel discrimination.
An interesting difference between the generalized robust-

ness and standard robustness is that, unlike generalized

robustness, standard robustness can diverge for any resource
state in some important theories such as the resource theory
of coherence and asymmetry. It may thus appear that
interpreting such a divergent quantity in an operational
setting would be implausible. We address this issue by
considering a natural figure of merit for the advantage in
balanced binary channel discrimination in a way that it
encompasses this seemingly problematic circumstances as
well at the limit of diverging standard robustness. Note that
the following argument is valid in any GPT with an addi-
tional reasonable assumption introduced below.
The standard robustness of a stateω ∈ ΩðVÞwith respect

to a convex and closed set of free states F ⊆ ΩðVÞ is
defined as

RF
F ðωÞ ≔ inf

�
r ∈ Rþ

���ωþ rπ
1þ r

∈ F ; π ∈ F
�
: ð83Þ

It is straightforward to verify that the standard robustness is
faithful ðRF

F ðωÞ ¼ 0 ⇔ ω ∈ F Þ, convex, and monotonic
under free operations in the sense that RF

F ½ΛðωÞ� ≤ RF
F ðωÞ

for any linear map such that Λ½F � ⊆ F [34]. The dual
optimization problem can be obtained as

maximize hX;ωi − 1;

subject to 0 ≤ hX; σi ≤ 1 ∀ σ ∈ F : ð84Þ
We stress that this quantity is finite for any ω only when
the set F spans the whole space V; we therefore make this
assumption for the discussed quantities to be well defined,
although we later see that it is not necessary for the opera-
tional interpretation of RF

F . Under this assumption, the
infimum in Eq. (83) is achieved, and strong duality always
holds. Indeed, the cone generated by the set F is pointed by
the pointedness of C, and the dual of any pointed cone is
generating; hence, it contains an interior point, and sowe can
always choose a strictly feasible solution.
We show that the standard robustness characterizes the

maximum advantage that a resource state provides over free
states in channel discrimination. For this task to be well
defined, one needs to specify what constitutes the set of
physically allowed state transformations T ðV;V 0Þ or chan-
nels in the given GPT. As discussed before, the very basic
assumption one can make about the channels is that they
preserve the state cone as well as the normalization of
states. Throughout this section, we make an additional
assumption: Measure-and-prepare channels of the form
ΛðωÞ ¼ P

ihMi;ωiω0
i with fMigi being a measurement,

and fω0
igi a collection of states in the output space are

allowed physical transformations.
The justification for allowing measure-and-prepare

channels follows from the fact that measurement and
state preparation can be considered as the two building
blocks of any GPT and are necessarily physically imple-
mentable [51,52,102]; one then needs only to allow for
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classical information about the measurement outcome to
be transferred in order to implement any such measure-
and-prepare channel. In particular, this assumption is
clearly satisfied in any theory which extends quantum
mechanics or even classical probability theory. We denote
by T ðV;V 0Þ the set of all physically allowed operations
within the given GPT and assume throughout this section
that it satisfies the assumption above. In fact, for the
purpose of our proof, it suffices to assume that only
binary measure-and-prepare channels based on two-out-
come measurements are allowed.
Consider now a binary channel discrimination problem

where one of two channels is applied according to the
ensemble f1=2;Λig1i¼0, with each Λi ∈ T ðV;V 0Þ. The only
assumption about the output space V 0 we make is that it
contains at least two distinct states, as otherwise the task
becomes trivial. Since the two channels Λi are equiprob-
able, a random guess gives the success probability 1=2, and
thus, a meaningful figure of merit of this task is how much
one can increase the success probability by suitably
choosing a measurement and inferring the applied channel
from the measurement outcome. Motivated by this obser-
vation, we consider the following quantity:

pgainðf1=2;Λig1i¼0; fMig1i¼0;ωÞ

≔ psuccðf1=2;Λig1i¼0; fMig1i¼0;ωÞ −
1

2
; ð85Þ

and the one being maximized with respect to measurement,

pgainðf1=2;Λig1i¼0;ωÞ
≔ max

fMig1i¼0
∈M

pgainðf1=2;Λig1i¼0; fMig1i¼0;ωÞ: ð86Þ

Then, we obtain the following result, stating that the
maximum advantage in terms of success probability gain
that a resource state provides over free states is charac-
terized exactly by the standard robustness measure.
Theorem 7: It holds that

max
Λ0;Λ1∈T ðV;V 0Þ

pgainðf1=2;Λig1i¼0;ωÞ
maxσ∈Fpgainðf1=2;Λig1i¼0; σÞ

¼ 1þ 2RF
F ðωÞ;

ð87Þ

where the maximization is over all possible ensem-
bles f1=2;Λig1i¼0.
Proof.——By the definition of the standard robustness,

there exist τ̃; σ̃ ∈ F such that ω ¼ ½1þ RF
F ðωÞ�τ̃ −

RF
F ðωÞσ̃. For any ensemble of channels f1=2;Λig1i¼0, let

fM̃ig1i¼0 be a measurement maximizing the quantity
psuccðf1=2;Λig1i¼0; fMig1i¼0;ωÞ. Then,

pgainðf1=2;Λig1i¼0;ωÞ ¼
1

2

X1
i¼0

hM̃i;ΛiðωÞi −
1

2
ð88Þ

¼ 1

2
½1þ RF

F ðωÞ�
X1
i¼0

hM̃i;Λiðτ̃Þi −
1

2
RF
F ðωÞ

X1
i¼0

hM̃i;Λiðσ̃Þi −
1

2
ð89Þ

¼ ½1þ RF
F ðωÞ�

�
1

2

X1
i¼0

hM̃i;Λiðτ̃Þi −
1

2

�
− RF

F ðωÞ
�
1

2

X1
i¼0

hM̃i;Λiðσ̃Þi −
1

2

�
ð90Þ

≤ ½1þ RF
F ðωÞ�max

σ∈F
max
fMig

�
1

2

X1
i¼0

hMi;ΛiðσÞi −
1

2

�
ð91Þ

þ RF
F ðωÞmax

σ∈F
max
fMig

�
1

2
−
1

2

X1
i¼0

hMi;ΛiðσÞi
�
: ð92Þ

Let us change the variable in the second term by M0 ¼ U −M0
0 and M1 ¼ U −M0

1 where 0 ≼C� M0
0;M

0
1 ≼C� U,

M0
0 þM0

1 ¼ U. Then, the second term becomes

1

2
−
1

2

X1
i¼0

hMi;ΛiðσÞi ¼
1

2
−
1

2

X1
i¼0

hU −M0
i;ΛiðσÞi ¼

1

2

X1
i¼0

hM0
i;ΛiðσÞi −

1

2
; ð93Þ

and the maximum in Eq. (92) is taken with respect to the new variables fM0
ig. Hence, we get for any Λ0, Λ1,
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pgainðf1=2;Λig1i¼0;ωÞ

≤ ½1þ 2RF
F ðωÞ�max

σ∈F
max
fMig

�
1

2

X1
i¼0

hMi;ΛiðσÞi −
1

2

�

ð94Þ

¼ ½1þ 2RF
F ðωÞ�max

σ∈F
pgainðf1=2;Λig1i¼0; σÞ: ð95Þ

To show the opposite inequality, with the change of
variables X0 ≔ 2X −U we rewrite the optimization prob-
lem (84) as

1þ 2RF
F ðωÞ ¼ maxfhX0;ωij − 1 ≤ hX0; σi ≤ 1 ∀ σ ∈ Fg

ð96Þ

for any state ω. Let X0 be an optimal solution in the above
and η0, η1 ∈ ΩðV 0Þ be any two distinct states, and consider
the linear maps defined by

Λ0ðωÞ ≔
1

2
hU þ X0

kX0k∘Ω
;ωiη0 þ

1

2
hU −

X0

kX0k∘Ω
;ωiη1;

ð97Þ

Λ1ðωÞ ≔
1

2
hU −

X0

kX0k∘Ω
;ωiη0 þ

1

2
hU þ X0

kX0k∘Ω
;ωiη1:

ð98Þ

Now, since

hU � X0

kX0k∘Ω
; ρi ¼ 1� hX0; ρi

maxπ∈ΩðVÞjhX0; πij ∈ ½0; 2�;

ð99Þ

for any ρ ∈ ΩðVÞ, the set f1
2
½U þ X0=kX0k∘Ω�; 12 ½U −

X0=kX0k∘Ω�g constitutes a valid measurement, and so
Λ0 and Λ1 are measure-and-prepare channels. Hence,

Λ0;Λ1 ∈ T ðV;V 0Þ by our assumption about the set of
allowed transformations. We then get

max
fMig

psuccðf1=2;Λig1i¼0; fMig1i¼0;ωÞ −
1

2

¼ 1

4
kΛ0ðωÞ − Λ1ðωÞkΩ

¼ 1

4

				hX
0;ωi

kX0k∘Ω
ðη0 − η1Þ

				
Ω

¼ 1

4kX0k∘Ω
jhX0;ωijkη0 − η1kΩ ð100Þ

using the absolute homogeneity of the norm k · kΩ. Hence,
for this choice of Λ0, Λ1, we get

pgainðf1=2;Λig1i¼0;ωÞ
maxσ∈Fpgainðf1=2;Λig1i¼0; σÞ

¼ 4kX0k∘ΩjhX0;ωijkη0 − η1kΩ
4kX0k∘Ωmaxσ∈F jhX0; σijkη0 − η1kΩ

ð101Þ

¼ jhX0;ωij
maxσ∈F jhX0; σij ð102Þ

≥ 1þ 2RF
F ðρÞ; ð103Þ

where the inequality is due to the fact that jhX0; σij ≤ 1 by
Eq. (96). ▪
Although the use of general measurements can in general

provide a significant advantage over discrimination with
restricted sets of measurements [77,100], one can notice by
following the proof of Theorem 7 that, in the context of
quantifying the advantage provided by a resource state over
all free states, the restriction of measurements is incon-
sequential; the standard robustness still acts as the exact
quantifier of the advantage in binary channel discrimina-
tion, regardless of how the allowed measurements are
restricted. Specifically, we have the following.
Corollary 8: For any informationally complete closed

set of measurements MF , it holds that

max
Λ0;Λ1∈T ðV;V 0Þ

maxfMig∈MF
pgainðf1=2;Λig1i¼0; fMig1i¼0;ωÞ

maxfMig∈MF
maxσ∈F pgainðf1=2;Λig1i¼0; fMig1i¼0; σÞ

¼ 1þ 2RF
F ðωÞ; ð104Þ

where the maximization is over all possible ensembles
f1=2;Λig1i¼0.
Proof.—This follows exactly in the same way as the

proof of Theorem 7 by replacing the norm k · kΩ with the
distinguishability norm k · kMF

. ▪
Another fact which can be noticed from the proof of

Theorem 7 in Eq. (96) is that, for any state ω, the quantity
1þ 2RF

F ðωÞ in fact corresponds to the base norm induced
by the set F [34,120]; specifically,

1þ 2RF
F ðωÞ

¼ kωkF
¼minfλþ þ λ−jω¼ λþσþ − λ−σ−; λ� ∈ Rþ;σ� ∈ Fg:

ð105Þ

Although we assume that the standard robustness takes
finite value in the course of the above argument, Theorem 7
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and Corollary 8 successfully capture the cases where the
standard robustness diverges for resource theories of states
such as the theory of coherence and asymmetry. The results
then imply that one can always find two channels for which
no free state can enable one to perform the task better than
the random guess in such theories.
We further remark an interesting connection between our

results and the result in Ref. [18] where it was found that for
the case of theory of magic, the same quantity 1þ 2RF

F
quantifies an upper bound for the overhead of classical
simulation of quantum Clifford circuits with magic-state
inputs. (Note that the name “robustness of magic” was used
in Ref. [18] to refer to the quantity 1þ 2RF

F instead of RF
F .)

It would be an interesting problem to investigate whether
this is merely a coincidence or whether the two seemingly
very different tasks, channel discrimination and classical
simulation of quantum circuits, are related at a deeper level
through the standard robustness measure.

VII. COMPLETE SETS OF MONOTONES

It is not difficult to see that resource monotones in any
resource theory provide nontrivial necessary conditions on
themanipulation of resourceswith free operations because of
their monotonicity properties: namely, if one object contains
a larger amount of resources than another with respect to any
monotone, then the transformation from the less resourceful
to the more resourceful one with any free operation is
prohibited. However, a single monotone fails in most cases
to completely characterize the resource transformations; it is
necessary that the amount of resource measured by the
monotone does not increase under free operations, but it is
usually not sufficient to ensure the existence of a free
operation realizing that transformation. Finding the neces-
sary and sufficient conditions for the existence of a trans-
formation by means of free operations for a given input and
output object is one of the most important questions to
address in resource theories, as it underlies the operational
capabilities of a given resource theory.
We call a (possibly infinite) family of monotones a

complete set of monotones if it fully characterizes the
necessary and sufficient conditions for the existence of a
free transformation. Such sets of monotones were discussed
in several specific settings [25,26,32,121–131], but no set
of general conditions with a clear operational meaning was
previously known to provide a comprehensive characteri-
zation of transformations in general resource theories.
We now show that performance of a state or measure-

ment in a class of channel or state discrimination tasks
precisely serves as a complete set of monotones for general
resource theories defined in any GPT. This, together
with the results obtained above, completes the operational
characterization of quantification and exact state trans-
formations in general resource theories in terms of dis-
crimination tasks.

A. Complete sets of monotones for states

Let O ⊆ T ðV;VÞ be a convex and closed set of trans-
formations which contains the identity map x ↦ x and is
closed under concatenation in the sense that Λ1;Λ2 ∈ O
means that Λ2∘Λ1 ∈ O. This set of assumptions is particu-
larly natural ifO is identified with a set of free operations in a
convex resource theory, where the action of the identity
channel trivially cannot generate any resource and neither
should the application of two free channels; however, our
results are completely general, and we do not need to
explicitly assume any relation with resource theories.
Consider now the problem of channel discrimination

with a possible inconclusive measurement outcome of
channels from the set O, that is, ensembles of the form
fpi;Λig with each Λi ∈ O and pi being the corresponding
probabilities. We first show that the performance of two
given states ω;ω0 optimized over all such discrimination
problems leads to a complete set of monotones under the
operationsO, although as we see later, this condition can be
significantly simplified.
To begin, let us consider a fixed (N þ 1)-outcome

measurement M ¼ fMigNi¼0 and state ω, for which the
best achievable probability of success in all free channel
discrimination problems is

p̃0
succðM;ωÞ ≔ max

fpi;ΛigN−1
i¼0

Λi∈O

XN−1

i¼0

pihMi;ΛiðωÞi: ð106Þ

We additionally consider the case where the probability
distribution fpig is fixed a priori, and the optimization is
only over the channels fΛig themselves; specifically, in this
case we have

p̃0
succðM;ω; fpigN−1

i¼0 Þ ≔ max
fΛigN−1

i¼0
Λi∈O

XN−1

i¼0

pihMi;ΛiðωÞi: ð107Þ

We now have the following result. The proof is based on an
approach similar to the one taken to characterize meas-
urement informativeness in Ref. [25] (see also Ref. [125]).
Theorem 9: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ if

and only if either of the following conditions is satisfied:
(i) it holds that p̃0

succðM;ωÞ ≥ p̃0
succðM;ω0Þ for any

measurement M ∈ M,
(ii) for a fixed probability distribution fpigN−1

i¼0 , it holds
that p̃0

succðM;ω; fpigÞ ≥ p̃0
succðM;ω0; fpigÞ for any

measurement M ¼ fMigNi¼0 ∈ M.
Proof.—The proof proceeds in exactly the same way for

both of the conditions. In the following, we consider the
case where the probability distribution fpig can vary [case
(i)], but it can equivalently be taken to be fixed [case (ii)]
for the remainder of the proof.
Suppose first that ω0 ¼ Λ̃ðωÞ with Λ̃ ∈ O. Then, for any

M ¼ fMig, we have
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p̃0
succðfMig;ω0Þ ¼ max

fpi;Λig;Λi∈O

X
i

pihMi;Λiðω0Þi ð108Þ

¼ max
fpi;Λig;Λi∈O

X
i

pihMi;Λi∘Λ̃ðωÞi ð109Þ

≤ max
fpi;Λ0

ig;Λ0
i∈O

X
i

pihMi;Λ0
iðωÞi

¼ p̃0
succðfMig;ωÞ; ð110Þ

where the inequality is due to the closedness of O under
concatenation.
To show the converse, suppose that ∀ fMig, we have

p̃0
succðfMig;ωÞ ≥ p̃0

succðfMig;ω0Þ. This implies that

0 ≤ inf
fMig∈M

�
max

fpi;Λig;Λi∈O

X
i

pihMi;ΛiðωÞi

− max
fqi;Θig;Θi∈O

X
i

qihMi;Θiðω0Þi
�

ð111Þ

≤ inf
fMig∈M

max
fpi;Λig;Λi∈O

X
i

pihMi;ΛiðωÞ − ω0i ð112Þ

≤ min
fMigNi¼0

∈M
max

fpi;ΛigN−1
i¼0

;

Λi∈O

X
i

pihMi;ΛiðωÞ − ω0i ð113Þ

¼ max
fpi;ΛigN−1

i¼0
;

Λi∈O

min
fMigNi¼0

∈M

X
i

pihMi;ΛiðωÞ − ω0i; ð114Þ

where the second inequality is obtained by setting each
qi ¼ pi and each Θi to be the identity map in the second
term, the third inequality is because we restricted the
minimization over N þ 1-outcome measurements where
N ≥ 2 is an arbitrary integer, and the equality is due to
Sion’s minimax theorem [132] by the convexity and
compactness of M, O, and the set of ensembles
fpi;ΛigN−1

i¼0 (since N is a finite integer), as well as the
linearity of the objective function with respect toΛi andMi.
To show that there exists Λ ∈ O such that ΛðωÞ ¼ ω0,

suppose to the contrary that it does not hold true. Since any
Λi is a physical channel and thus normalization preserving,
we get that

hU;ΛiðωÞ − ω0i ¼ 0 ∀ i: ð115Þ

In particular, since ΛiðωÞ − ω0 ≠ 0 by assumption, we
cannot have that ΛiðωÞ − ω0 ∈ C as this necessarily implies
that hU;ΛiðωÞ − ω0i > 0. Therefore, by the hyperplane
separation theorem [97], for every Λi there exists an effect
Ei ∈ C� such that hEi;ΛiðωÞ − ω0i < 0. We now construct
an incomplete measurement fMigN−1

i¼0 by

Mi ≔
Ei

kPjEjk∘Ω
; ð116Þ

such that
P

iMi ≼C� U, and so fMigN−1
i¼0 can be completed

to a measurement fMigNi¼0 by appending another effect
MN ≔ U −

P
iMi which does not affect the measurement

outcomes corresponding to the ensemble fpi;ΛigN−1
i¼0 . We

then have for this choice of fMig that

X
i

pihMi;ΛiðωÞ − ω0i

¼
X
i

pi

kPjEjk∘Ω
hEi;ΛiðωÞ − ω0i < 0: ð117Þ

Since such a measurement can be constructed for any
ensemble fpi;Λig, this is in contradiction with Eq. (114),
which states that there exists a choice of an ensemble
fpi;Λig such that for every measurement fMig we haveP

i pihMi;ΛiðωÞ − ω0i ≥ 0. We conclude that our original
assumption must be wrong, and there exists Λ ∈ O such
that ΛðωÞ ¼ ω0. ▪
The result immediately establishes a general relation

between channel discrimination problems and state
transformations under any fixed set of operations O.
Remarkably, the freedom in choosing the probability
distribution fpig allows us to significantly simplify this
characterization and show that much smaller classes of
channel discrimination problems already constitute com-
plete sets of monotones. In particular, by taking fpig1i¼0

with p0¼p1¼ 1
2
, we reduce the problem to the much more

straightforward task of binary channel discrimination.
Corollary 10: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ

if and only if for any three-outcome measurement M ¼
fMig2i¼0 it holds that p̃0

succðM;ω;f1
2
;1
2
gÞ≥ p̃0

succðM;ω0;
f1
2
;1
2
gÞ.

This greatly reduces the difficulty of determining
whether a free transformation between two given states
exists.
Another particularly interesting case is obtained by

considering the binary probability distribution defined as
p0 ¼ 1, p1 ¼ 0. Although going beyond what one could
consider a physically motivated “discrimination” task, this
allows us to obtain the following characterization of a
complete set of monotones under the operations O.
Corollary 11: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ

if and only if for any E≽C�0 it holds that

max
Λ∈O

hE;ΛðωÞi ≥ max
Λ∈O

hE;Λðω0Þi: ð118Þ

Proof.—It follows from Theorem 9 by noting that for
any measurement M, we have

p̃0
succðM;ω; f1; 0gÞ ¼ max

fΛig1i¼0
⊂O

hM0;Λ0ðωÞi; ð119Þ
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so the conditions of the theorem reduce to verifying whether
the inequality p̃0

succðM;ω; f1; 0gÞ ≥ p̃0
succðM;ω0; f1; 0gÞ is

satisfied for any operator M0 ∈ C� such that there exists a
valid measurement fMig2i¼0. This can be easily verified to be
precisely the set 0 ≼C� M0 ≼C� U. Without loss of generality,
we can then relax the constraint M0 ≼C� U as any E ∈
C�nf0g can be renormalized as M0 ¼ E=kEk∘Ω. ▪
We can further make an observation that in Corollary 11

it suffices to optimize over effects E which are normalized
in a suitable manner. Specifically, it suffices to verify
whether Eq. (118) holds for any operator E in a chosen base
of the cone C�. Within quantum mechanics, or indeed in
any GPT where C ≅ C�, this means in particular that there
exists Λ ∈ O such that ω0 ¼ ΛðωÞ if and only if

max
Λ∈O

hσ;ΛðωÞi ≥ max
Λ∈O

hσ;Λðω0Þi ð120Þ

holds for any state σ. This recovers a result of
Refs. [133,134] obtained with different methods in the
context of quantum resource theories. We note that the class
of monotones in Eq. (118) has previously been considered
in the resource theory of quantum coherence [135], albeit
without an operational application to state transformations
under the free operations.
We further note that in Theorem 9 and Corollary 10, one

could instead consider the tasks of subchannel discrimi-
nation from a chosen set O of normalization nonincreasing
maps. The proofs proceed analogously.
Alternatively, we can establish a complete set of monot-

ones by considering a modification of the task: we now
consider channel discrimination (without inconclusive out-
comes) over all valid choices of channel ensembles but
allow for the application of a single chosen prior trans-
formation from the set O to the ensemble before applying
the channels to be discriminated. The success probability
for this task for a choice of channel ensemble fpi;Λig and
measurement fMig is given by

p̃succðfpig; fΛig; fMig;ωÞ ≔ max
Ξ∈O

X
i

pihMi;Λi∘ΞðωÞi:

ð121Þ

Note that we separate the probability distribution fpig from
the corresponding channels fΛig for reasons which become
clear shortly. We now show that this success probability
serves as a complete set of monotones for state trans-
formations under the operations O in two different ways.
Theorem 12: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ

if and only if either of the following conditions is satisfied:
(i) it holds that p̃succðfpig;fΛig;fMig;ωÞ≥p̃succðfpig;

fΛig;fMig;ω0Þ for all channel ensembles fpi;Λig
and measurements fMig,

(ii) for a fixed set of channels fΛigN−1
i¼0 containing the

identity channel id, it holds that p̃succðfpig; fΛig;
fMig;ωÞ ≥ p̃succðfpig; fΛig; fMig;ω0Þ for all

probability distributions fpigN−1
i¼0 and measurements

fMigN−1
i¼0 .

Note that one could also consider subchannel discrimi-
nation in (i) instead of channel discrimination. The proof
proceeds in a way similar to Theorem 9, and we include it
in Appendix A for completeness.
An interesting application of Theorem 12 is obtained by

choosing the set of channels fΛig1i¼0 where Λ0 ¼ id and
Λ1 ¼ Θ is a fixed transformation. The theorem then gives
the following.
Corollary 13: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ

if and only if for all two-element probability distributions
fpig and two-outcome measurements fMig it holds that

p̃succðfpig; fid;Θg; fMig;ωÞ
≥ p̃succðfpig; fid;Θg; fMig;ω0Þ ð122Þ

for some a priori fixed choice of Θ ∈ T ðV;VÞ.
One can interpret this scenario as detecting the noise

introduced by Θ with the help of prior processing with the
operations O. Remarkably, Corollary 13 then shows that a
single noise model completely determines the capability
of the input state ω as a noise-detecting resource aided by
the operations O—if ω is better than ω0 at detecting some
type of noise Θ for any noise strength and detection
strategy, ω is more capable than ω0 in detecting any other
noise introduced by a physical transformation. This tells us
for instance that, using a standard quantum-mechanical
example [136], considering only the family of depolarizing
noise models is sufficient to assess the usefulness of a given
state for all possible preprocessing assisted noise-detection
tasks considered here. It is notable that this nontrivial fact
can be shown via the seemingly unrelated problem of
resource manipulation thanks to Theorem 12.
We return to the problem of state transformations in the

next section, where we consider transformations of state
ensembles instead of single states.

B. Complete set of monotones for measurements

A familiar picture of transforming resources involves
channels applied to states, transforming one state to
another. However, any meaningful information processing
task includes a measurement at the end, so it is reasonable
to consider states, channels, and measurements as parts of
a single, consolidated family. It is therefore insightful to
understand channels from an alternative dual perspective:
namely, not as operations transforming states but as
operations transforming measurements. Motivated by this
observation, we extend the above consideration on the
transformation of states to the transformation of measure-
ments. We show that a similar reasoning allows for an
operational characterization of measurement transforma-
tions in the context of state discrimination.
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Let OE be a convex and closed set of effect-cone-
preserving unital maps V� → V� which furthermore
includes the identity map E ↦ E and is closed under
concatenation; i.e., if Γ1;Γ2 ∈ OE then Γ2∘Γ1 ∈ OE . These
assumptions are again particularly natural in the context of
a resource theory, but this is not assumed.
We now consider a variant of state discrimination where

instead of immediately making a measurement to discrimi-
nate the state ensemble, we apply a prior transformation to
the measurement effects. We see that by restricting a set of
allowed prior operations to the chosen set OE , the success
probability of this task serves as a complete set of
monotones for the measurements.
Recalling that any effect-cone-preserving and unital

operation has a corresponding dual operation which is
normalization- and state-cone-preserving, this can be
equivalently understood as a task of state discrimination
where the transformations from the set fΛjΛ� ∈ OEg are
applied to the states. The success probability of the
measurement M ¼ fMigi in distinguishing the ensemble
A ¼ fpi; σig in this setting is then

p̃succðA;MÞ ¼ max
Λ�∈OE

X
i

pihMi;ΛðσiÞi: ð123Þ

We now show that this success probability serves as a set
of complete monotones for measurements under the free
operations OE .
Theorem 14: Given measurements M ¼ fMigNi¼0 and

M0 ¼ fM0
igNi¼0, there exists Γ ∈ OE such that M0 ¼ ΓðMÞ

if and only if for all ensembles A ¼ fpi; σigNi¼0 it holds
that p̃succðA;MÞ ≥ p̃succðA;M0Þ.
Proof.—For one direction, suppose M0 ¼ ΓðMÞ. Then

for any A ¼ fpi; σig,

p̃succðA;M0Þ ¼ max
Λ�∈OE

X
a

pahΛ�∘ΓðMaÞ; σai ð124Þ

≤ max
Λ̃�∈OE

X
a

pahMa; Λ̃ðσaÞi ¼ p̃succðA;MÞ; ð125Þ

where the inequality is due to the closedness of OE
under concatenation. To show the converse, suppose
∀A; p̃succðA;MÞ ≥ p̃succðA;M0Þ. It implies that

0 ≤ min
A

�
max
Λ�∈OE

X
a

pahMa;ΛðσaÞi

− max
Δ�∈OE

X
a

pahM0
a;ΔðσaÞi

�
ð126Þ

≤ min
A

max
Λ�∈OE

X
a

pahΛ�ðMaÞ −M0
a; σai ð127Þ

¼ max
Λ�∈OE

min
A

X
a

pahΛ�ðMaÞ −M0
a; σai; ð128Þ

where the second inequality is obtained by setting Δ� being
the identity for the second term, and the equality is due to
Sion’s minimax theorem [132] because of the compactness
and convexity of A;OE , and the linearity of the objective
function with respect to Λ and paσa.
We now show that there exists Λ� ∈ OE such that

Λ�ðMaÞ −M0
a ¼ 0 ∀ a, thus concluding the proof. To

this end, suppose to the contrary that such an operation
does not exist. Since Λ� is unital by assumption, we get
for any Λ,

X
a

Λ�ðMaÞ −M0
a ¼ Λ�ðUÞ − U ¼ 0: ð129Þ

In particular, it holds that

h
X
a

Λ�ðMaÞ −M0
a;ωi ¼ 0 ∀ ω ∈ C; ð130Þ

which implies that we cannot have Λ�ðMaÞ −M0
a ∈ C� for

all a, as this necessarily means that Λ�ðMaÞ −M0
a are

identically zero. Therefore, for any choice ofΛ� there exists
an index a⋆ and a state σ ∈ ΩðVÞ such that

hΛ�ðMa⋆Þ −M0
a⋆ ; σi < 0: ð131Þ

Choosing the ensemble fpa; σag such that pa ¼ 0 if a ≠ a⋆
and pa⋆ ¼ 1; σa⋆ ¼ σ then gives

X
a

pahΛ�ðMaÞ −M0
a; σai < 0: ð132Þ

We have therefore reached a contradiction, as Eq. (128)
says that there exists a choice of Λ� such that any
ensemble fpa; σag gives

P
apahΛ�ðMaÞ −M0

a; σai ≥ 0.
We conclude that our original assumption must be wrong,
and therefore there exists Γ ¼ Λ� ∈ OE such that
M0

a ¼ ΓðMaÞ ∀ a. ▪
By using the aforementioned dual interpretation of this

task as operations applied to states rather than measurements,
we can additionally obtain a complete set of monotones for
the transformations between state ensembles. Such tasks have
been considered in quantum information theory in different
contexts [46,120,123,126,137,138] and indeed find use in
several resource theories which employ generalizations of
majorization [121,124,128]. To this end, we consider two
different types of tasks: one, the conclusive state discrimi-
nation just as above, with probability of success given by

p̃succðfpa; σag; fMagÞ ¼ max
Λ∈O

X
a

pahMa;ΛðσaÞi ð133Þ

with O being a set of operations defined as in Sec. VII A,
and two, the inconclusive state discrimination task charac-
terized by
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p̃0
succðfpa; σagN−1

a¼0 ; fMagNa¼0Þ ¼ max
Λ∈O

XN−1

a¼0

pahMa;ΛðσaÞi:

ð134Þ

The following is then a straightforward adaptation of the
concepts of Theorem 14.
Corollary 15: Let fσigN−1

i¼0 and fσ0igN−1
i¼0 be two collec-

tions of states. Then, there exists Λ ∈ O such that σ0i ¼
ΛðσiÞ ∀ i if and only if either of the following conditions
is satisfied:

(i) N ≥ 2 and for all N-outcome measurements M
and all probability distributions fpigN−1

i¼0 it holds
that p̃succðfpi; σig;MÞ ≥ p̃succðfpi; σ0ig;MÞ,

(ii) N ≥ 1 and for all (N þ 1)-outcome measurements
M ¼ fMigNi¼0 it holds that p̃0

succðfpi; σig;MÞ ≥
p̃0
succðfpi; σ0ig;MÞ, where fpigN−1

i¼0 is any fixed
probability distribution such that pi > 0 ∀ i, which
in particular can be taken to be pi ¼ 1=N.

We include the full proof in Appendix A for complete-
ness. We remark that for N ¼ 1, we recover Corollary 11.

VIII. CONCLUSIONS

We provided a general operational characterization
of quantification and manipulation of resources, the two
core concepts of resource theories, in terms of the perfor-
mance of state and channel discrimination tasks. The
generality of our work is threefold: our formulations
encompass general convex resource theories associated
with general types of resource objects (states, measure-
ments, and channels), and major parts of the results are
valid for general probabilistic theories beyond quantum
mechanics. In particular, we found that robustness mea-
sures play central roles in bridging the quantification of
resources and the success probability in discrimination
tasks, specifically establishing that the maximum advan-
tages in classes of discrimination tasks realized by resource
objects are exactly quantified by the corresponding robust-
ness measures. We also characterized the manipulation of
resources associated with states and measurements by
considering families of discrimination tasks where their
success probabilities serve as complete sets of monotones
that fully characterize the transformation of resources under
free operations. In the case of quantum mechanics, we
further extended the above connections between discrimi-
nation tasks and resource-theoretic concepts to single-shot
information theory.
In addition to providing fundamental insights spanning a

broad class of physical theories, the results are immediately
applicable to a wide range of physical resources in quantum-
information theory. The resource theories of coherence,
entanglement, magic, athermality, asymmetry, as well as
their generalizations in the form of multipartite entangle-
ment or multilevel entanglement and coherence all fit the

framework introduced herein, and therefore, all of our results
apply to them immediately. In the case of measurements,
many significant insights can be gained from studying
classes of measurements such as separable, PPT, incoherent,
or Pauli measurements, all of which are again special cases
of the resource theories considered in this work. In the
characterization of channels, we obtain results applicable on
the one hand to sets of free operations in the aforementioned
state-based resource theories, and on the other hand obtain
an operational characterization of quantum channels which
can be applied in the study of arbitrary channel-based
resource theories such as the resource theory of quantum
memories (non-entanglement-breaking channels).
Our results furthermore reveal interesting connections

between the quantification of resources and the phenome-
non of data hiding. Although data hiding has been mostly
discussed in the context of the theory of entanglement,
where one compares the capability of local operations and
classical communication (LOCC) measurements (or other
restricted sets such as separable or PPT measurements) to
that of arbitrary measurements for state discrimination, one
could consider more general data-hiding procedures
depending on the given physical setting. For instance, in
the scenario where only one party has the ability to produce
magic (so-called “magic factory”), it is sensible to encode
information in a way that Pauli measurements have less
capability of decoding it than arbitrary measurements, with
the data-hiding ratio characterized by the difference
between the capabilities of these two sets of measurements
in state discrimination. One can further think of various
other scenarios such as (i) one party having access to a
restricted but larger set of measurements than the other (not
necessarily arbitrary measurements), (ii) one party having
more access to resource states or channels (not measure-
ments) than the other, in which the data could be encoded in
the form of channel discrimination tasks, (iii) or the
encoded data requiring discrimination tasks more intricate
than the standard binary discrimination. Our general for-
mulations encompass such variants, allowing for consid-
erable flexibility of the encoding strategies.
The generality of the results also provides insights into

the foundation of quantum mechanics. As we show in this
work, the operational advantage realized by any type of
resource object is not unique to quantum mechanics but
rather a universal phenomenon stemming solely from the
convexity of the underlying cones and thus shared by
general GPTs. Our results in particular imply that there is
no separation between the generalized robustness (a priori a
geometric concept) and the advantage provided in the
considered classes of discrimination tasks (explicitly opera-
tional tasks) in any GPT; therefore, one cannot hope to
separate a given theory from quantummechanics by finding
a gap between these quantities. Our results additionally
provide an experimentally accessible way of bounding the
geometric resource measures as well as characterizing
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resource transformations in any GPT by relating them with
discrimination tasks.
An interesting problem we leave for future work is to

give general operational meaning to standard robustness
of measurements and channels, which would solidify the
fundamental operational significance of the standard
robustness measure alongside that of the generalized
robustness as established in this work. In light of the series
of results obtained in this work, it can be expected that
discrimination tasks are also suitable for characterizing
these measures at a high level of generality. Additionally, it
remains to understand whether general quantitative rela-
tions between the generalized and standard robustness
measures can be found and whether there exists a way
to generalize our results to more members of the robustness
family besides the two we considered. We also remark that
this work raises an interesting question about a unified
understanding of different operational tasks via robustness
measures: in addition to the discrimination tasks studied
in this work, robustness measures have appeared in very
different operational contexts, albeit mostly in a resource-
specific fashion. One could then speculate that these
operational settings may be deeply connected by a more
fundamental class of tasks whose performance is somehow
characterized by the robustness measures.
Finally, in addition to the transformation of states and

measurements, one could consider the transformation
of channels realized by superchannels [26,40,73,133,
139–141]. The full understanding of superchannels is still
on the way, and we hope that our results will help propel
this journey forward from the perspective of general
resource theories.
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Note added.— Recently, we became aware of the indepen-
dent related works by Uola et al. [142] as well as by
Oszmaniec and Biswas [143], which obtained results
similar to Theorem 2 on the relation between state
discrimination tasks and quantification of resources asso-
ciated with measurements within quantum mechanics.

APPENDIX A: PROOFS OF RESULTS
IN SEC. VII

Theorem 12: There exists Λ ∈ O such that ω0 ¼ ΛðωÞ
if and only if either of the following conditions is satisfied:

(i) it holds that p̃succðfpig;fΛig;fMig;ωÞ≥ p̃succðfpig;
fΛig;fMig;ω0Þ for all channel ensembles fpi;Λig
and measurements fMig,

(ii) for a fixed set of channels fΛigN−1
i¼0 containing the

identity channel id, it holds that p̃succðfpig; fΛig;
fMig;ωÞ ≥ p̃succðfpig; fΛig; fMig;ω0Þ for all
probability distributions fpigN−1

i¼0 and measurements
fMigN−1

i¼0 .
Proof.—As before, in the proof we optimize over all sets

of channels fΛig [case (i)], but one could equivalently
consider a fixed choice of fΛig setting Λ0 ¼ id [case (ii)]
and the proof proceeds the same.
For the “only if” direction, suppose ω0 ¼ ΛðωÞ. Then for

any fpi;Λig and fMig,

p̃succðfpi;Λig; fMig;ω0Þ
¼ max

Ξ∈O

X
i

pihMi;Λi∘Ξðω0Þi ðA1Þ

¼ max
Ξ∈O

X
i

pihMi;Λi∘Ξ∘ΛðωÞi ðA2Þ

≤ max
Λ0∈O

X
i

pihMi;Λi∘Λ0ðωÞi

¼ p̃succðfpi;Λig; fMig;ωÞ; ðA3Þ

where the inequality is due to the closedness of O under
concatenation.
On the other hand, assuming p̃succðfpi;Λig; fMig;ωÞ ≥

p̃succðfpi;Λig; fMig;ω0Þ holds for all fpi;Λig and fMig
implies

0 ≤ inf
fpi;Λig;fMig

�
max
Ξ∈O

X
i

pihMi;Λi∘ΞðωÞi

−max
Ξ∈O

X
i

pihMi;Λi∘Ξðω0Þi
�

ðA4Þ

≤ inf
fpi;Λig;fMig

max
Ξ∈O

X
i

pihMi;ΛiðΞðωÞ − ω0Þi ðA5Þ

≤ min
fpi;ΛigN−1

i¼0
;fMigN−1

i¼0

max
Ξ∈O

X
i

pihMi;ΛiðΞðωÞ − ω0Þi ðA6Þ

¼ max
Ξ∈O

min
fpi;ΛigN−1

i¼0
;fMigN−1

i¼0

X
i

pihMi;ΛiðΞðωÞ − ω0Þi; ðA7Þ

where the second inequality is obtained by setting Ξ as the
identity for the second term, the third inequality is because
we restricted the minimization over the N-element sets
where N ≥ 2 is an arbitrary integer, and the equality is due
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to the minimax theorem because of the convexity and
compactness of the sets of channels, measurements, and O
and the linearity of the objective function with respect to Ξ,
piΛi, and Mi.
Suppose now that there does not exist Λ ∈ O such that

ΛðωÞ ¼ ω0. Since each Ξ ∈ O preserves the normalization
of states, we have hU;ΞðωÞ − ω0i ¼ 0 which implies that
ΞðωÞ − ω0 ∉ C, and so there exists an effect E such
that hE;ΞðωÞ − ω0i < 0. Take N ¼ 2 in Eq. (A6) and
define the measurement fM0;M1g ¼ fE;U − Eg and the
channel ensemble defined by p0 ¼ 1, Λ0 ¼ id, and p1 ¼ 0,
Λ1 ¼ Λ0 where id denotes the identity map and Λ0 is an
arbitrary channel. We then getX
i

pihMi;ΛiðΞðωÞ − ω0Þi ¼ hE;ΞðωÞ − ω0i < 0 ðA8Þ

for any Ξ, which contradicts Eq. (A7), and so there exists
Λ ∈ O such that ω0 ¼ ΛðωÞ. ▪
Corollary 15: Let fσigN−1

i¼0 and fσ0igN−1
i¼0 be two collec-

tions of states. Then, there exists Λ ∈ O such that σ0i ¼
ΛðσiÞ ∀ i if and only if either of the following conditions
is satisfied:

(i) N ≥ 2 and for all N-outcome measurements M
and all probability distributions fpigN−1

i¼0 it holds
that p̃succðfpi; σig;MÞ ≥ p̃succðfpi; σ0ig;MÞ,

(ii) N ≥ 1 and for all (N þ 1)-outcome measurements
M ¼ fMigNi¼0 it holds that p̃0

succðfpi; σig;MÞ ≥
p̃0
succðfpi; σ0ig;MÞ, where fpigN−1

i¼0 is any fixed
probability distribution such that pi > 0 ∀ i, which
in particular can be taken to be pi ¼ 1=N.

Proof.——The “only if” part follows analogously to
Theorem 9. For the other implication, assume the desired
operation Λ ∈ O does not exist, and consider the case
(i) first. Notice that if p̃succðfpi;σig;MÞ≥ p̃succðfpi;σ0ig;MÞ
for all N-outcome measurements and all probability dis-
tributions, then

0 ≤ min
fMig;fpig

�
max
Λ∈O

X
i

pihMi;ΛðσiÞi

−max
Θ∈O

X
i

pihMi;Θðσ0iÞi
�

ðA9Þ

≤ min
fMig;fpig

max
Λ∈O

X
i

pihMi;ΛðσiÞ − σ0ii ðA10Þ

¼ max
Λ∈O

min
fMig;fpig

X
i

pihMi;ΛðσiÞ − σ0ii ðA11Þ

by Sion’s minimax theorem. But since for any Λ ∈ O
we have

hU;ΛðσiÞ − σ0ii ¼ 0 ∀ i; ðA12Þ
and ΛðσiÞ − σ0i are not uniformly 0, this means that there
must exist an index i⋆ such that Λðσi⋆Þ − σ0i⋆ ∉ C, and so

there exists an effect E such that hE;Λðσi⋆Þ − σ0i⋆i < 0.
Choosing an arbitrary index i⋄ ∈ f0;…; N − 1gnfi⋆g,
where such a choice is guaranteed to exist because N ≥ 2

by assumption, we see that the choice of measurementM ¼
fMigN−1

i¼0 as Mi⋆ ¼ E=kEk∘Ω, Mi⋄ ¼ U − E=kEk∘Ω, Mi ¼
0 ∀ i ∈ f0;…; N − 1gnfi⋆; i⋄g together with the proba-
bility distribution fpig defined as pi⋆ ¼ 1, pi ¼ 0 ∀ i ≠ i⋆
contradicts Eq. (A11).
Similarly, in case (ii) we get that

0 ≤ max
Λ∈O

min
fMigNi¼0

X
i

pihMi;ΛðσiÞ − σ0ii ðA13Þ

for a fixed probability distribution, and choosing the
measurementM¼fMigNi¼0 asMi⋆ ¼E=kEk∘Ω,Mi¼0 ∀ i∈
f0;…;N−1gnfi⋆g, with MN ¼ U − E=kEk∘Ω completes
the proof. ▪

APPENDIX B: DUALITY IN CONIC
OPTIMIZATION

For completeness, we include a derivation of the dual
form of the optimization problems which we employ
throughout the manuscript. This section is based on
standard arguments found, e.g., in Refs. [105,144].
Consider first some real complete normed vector spaces

W;W 0 and the optimization problem whose optimal value
is given by

inf fhA; xijΛðxÞ ¼ y; x ∈ Kg; ðB1Þ

where A ∈ W�; y ∈ W 0 are given, Λ∶W → W 0 is some
linear function, and K ⊆ W is a closed and convex cone.
All of the optimization problems considered in this work
can be expressed in this form (and indeed, so can any
convex optimization problem over a closed and convex set),
which we see explicitly.
We refer to the above as the primal problem and to the set

fx ∈ WjΛðxÞ ¼ y; x ∈ Kg as the feasible set. Define the
Lagrangian

Lðx;Q;ZÞ ≔ hA; xi − hZ;ΛðxÞ − yi − hQ; xi; ðB2Þ
where Q ∈ W�, Z ∈ W 0� are the so-called Lagrange multi-
pliers. Notice now that for every x such that ΛðxÞ − y ≠ 0,
there must exist a choice of Z ∈ W 0� such that
hZ;ΛðxÞ − yi < 0; similarly, by the strongly separating
hyperplane theorem [97], for any x ∉ K there will exist a
choice of Q ∈ K� such that hQ; xi < 0, where K� ¼
fY ∈ W�jhY; ki ≥ 0 ∀ k ∈ Kg is the cone dual to K.
This allows us to write

sup
Q∈K�
Z∈W�

Lðx;Q;ZÞ¼
�hA;xi if ΛðxÞ¼y and x∈K;

∞ otherwise;
ðB3Þ

which in particular means that
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p ¼ inf
x∈W

sup
Q∈K�
Z∈W0�

Lðx;Q;ZÞ: ðB4Þ

The dual problem is then defined by interchanging the
minimization and maximization in the above:

d ≔ sup
Q∈K�
Z∈W0�

inf
x∈W

Lðx;Q;ZÞ: ðB5Þ

Noticing that

inf
x∈W

Lðx;Q;ZÞ ¼ inf
x∈W

hA − Λ�ðZÞ −Q; xi þ hZ; yi

¼
� hZ; yi if A − Λ�ðZÞ −Q ¼ 0;

−∞ otherwise;

ðB6Þ

since hA − Λ�ðZÞ −Q; xi is a linear function of x, we can
equivalently write

d ¼ sup fhZ; yijA − Λ�ðZÞ −Q ¼ 0; Q ∈ K�g
¼ sup fhZ; yijA − Λ�ðZÞ ∈ K�g: ðB7Þ

We often refer to this form as the dual form of the primal
optimization problem p.
It is not difficult to see that p ≥ d in general, a fact often

called weak Lagrange duality. Crucially, Slater’s theorem
(see, e.g., Refs. [105,145]) states that if there exists a
feasible solution x such that x is in the (relative) interior
of K—called a strictly feasible solution—then p ¼ d. We
refer to this property as Slater’s condition, and the equiv-
alence between the primal and dual problems as strong
Lagrange duality.
Consider first the generalized robustness of states, which

can be expressed as

RF ðωÞþ1¼minfhU;σijσ−ω∈C; σ∈ coneðF Þg: ðB8Þ

Note that Eq. (B1) is reduced to Eq. (B8) by choosing
W ¼ V ⊕ V;W 0 ¼ V;K ¼ coneðF Þ ⊕ C;Λðx1 ⊕ x2Þ ¼
x1 − x2; A ¼ U ⊕ 0 and y ¼ ω; analogous forms can be
obtained for the other considered measures. Writing the
Lagrangian as Lðω;X; ZÞ ¼ hU; σi − hX; σ − ωi − hZ; σi,
following the steps above we straightforwardly obtain the
dual as

max fhX;ωijX ∈ C�; U − X ∈ F �g; ðB9Þ

as announced in Eq. (11). Analogously, the standard
robustness RF

F can be obtained by changing the constraint
σ − ω ∈ C to σ − ω ∈ coneðF Þ.
In the case of the robustness of measurement, for any

(N þ 1)-outcome measurementM¼fMigNi¼0, we can write

REF ðMÞ ¼ min
n
λ j Mi þ Ni ∈ EF ∀ i; Ni ∈ C� ∀ i;

λU −
X
i

Ni ¼ 0V�
o
; ðB10Þ

which gives the Lagrangian as

LðfNig; λ; fσig; fδig; ηÞ
¼ λ−

X
i

hMi þNi; σii−
X
i

hNi; δii − hλU −
X
i

Ni; ηi

¼ λð1− hU; ηiÞ þ
X
i

hNi; η− σi − δii −
X
i

hMi; σii:

ðB11Þ

Optimizing over the Lagrange multipliers σi ∈ EF
�, δi ∈ C,

and η ∈ f0V�g� ¼ V, we get the dual as in Eqs. (24)–(28).
In the case of the robustness of channels, we have the

problem as

ROF
ðΛÞ ¼ minfλ j JΞ ∈ coneðOJ

F Þ; JΞ − JΛ≽0;

TrV 0JΞ − ð1þ λÞIV ¼ 0Vg: ðB12Þ

Writing the Lagrangian as

LðJΞ; λ;X; Y; ZÞ ¼ λ − hZ; JΞi − hY; JΞ − JΛi
− hX; ð1þ λÞIV − TrV 0JΞi

¼ λð1 − hX; IViÞ − hZ þ Y − X ⊗ IV 0 ; JΞi
þ hY; JΛi − hX; IVi; ðB13Þ

where we used that TrV 0 ð·Þ� ¼ · ⊗ IV 0 , an optimization over
the Lagrange coefficients X ∈ V; Y≽0, and Z ∈ OJ

F
� gives

the desired dual problem (59)–(62).
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