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Understanding the material parameters that control the superconducting transition temperature Tc is a
problem of fundamental importance. In many novel superconductors phase fluctuations determine Tc,
rather than the collapse of the pairing amplitude. We derive rigorous upper bounds on the superfluid phase
stiffness for multiband systems, valid in any dimension. This in turn leads to an upper bound on Tc in two
dimensions, which holds irrespective of pairing mechanism, interaction strength, or order-parameter
symmetry. Our bound is particularly useful for the strongly correlated regime of low-density and narrow-
band systems, where mean-field theory fails. For a simple parabolic band in 2D with Fermi energy EF, we
find that kBTc ≤ EF=8, an exact result that has direct implications for the 2D BCS-BEC crossover in
ultracold Fermi gases. Applying our multiband bound to magic-angle twisted bilayer graphene, we find that
band structure results constrain the maximum Tc to be close to the experimentally observed value. Finally,
we discuss the question of deriving rigorous upper bounds on Tc in 3D.
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I. INTRODUCTION

Our work is motivated by the fundamental question,
what limits the superconducting (SC) transition temper-
ature Tc? Within BCS mean-field theory, and its extensions
like Eliashberg theory, the amplitude of the SC order
parameter is destroyed by the breaking of pairs, and Tc
scales with the pairing gap Δ. The material parameters that
control the mean-field Tc are the electronic density of states
(DOS) at the chemical potential Nð0Þ and the effective
interaction, determined by the spectrum of fluctuations that
mediate pairing.
Beginning with the pioneering experiments of Uemura

[1] and theoretical ideas of Emery and Kivelson [2] on
underdoped cuprates, it became clear that the mean-field
picture of Tc scaling with the pairing gap is simply not
valid in many novel superconductors. The loss of SC order
is then governed by fluctuations of the phase of the order
parameter, rather than the suppression of its amplitude, and
Tc is related to the superfluid stiffness Ds. The material
parameters that determineDs are rather different from those
that determine the pairing gap Δ.

The question of mean-field amplitude collapse versus
phase fluctuation dominated SC transition is brought into
sharp focus by a variety of recent experiments in narrow-
band and low-density systems. One of the most exciting
recent developments is the observation of very narrow
bands in magic-angle twisted bilayer graphene (MATBG)
leading to correlation-induced “Mott” insulating states [3]
and superconductivity [4] in their vicinity. Flatbands are
also also expected to arise in various topological states of
matter; see, e.g., Refs. [5–8]. BCS theory-based intuition
suggests that narrow bands have a large DOSNð0Þ and lead
to high-temperature superconductivity. Is this true, or do
phase fluctuations limit the Tc?
The extensive compilation of data in Fig. 6 of Ref. [4]

suggests that all known superconductors have a Tc that
scales at most like a constant times the “Fermi energy EF,”
though there is considerable leeway in defining EF in
strongly correlated and multiband materials. We also note
that ultracold Fermi gases in the strongly interacting regime
of the BCS-BEC crossover [9,10] exhibit experimental
values [11] of kBTc=EF larger than those observed in the
solid state. All of these observations raise the question of
ultimate limits on the Tc of a superconductor or paired
superfluid.
In this paper, we obtain sharp answers to these questions,

especially in 2D. First, we derive an upper bound on the
superfluid stiffness DsðTÞ ≤ D̃ðTÞ, where D̃ is propor-
tional to the optical conductivity sum rule. This inequality
is valid in all dimensions and for arbitrary interactions.

*Corresponding author.
randeria.1@osu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 031049 (2019)

2160-3308=19=9(3)=031049(12) 031049-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.031049&domain=pdf&date_stamp=2019-09-17
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1103/PhysRevX.9.031049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We then use the Berezinskii-Kosterlitz-Thouless (BKT)
theory in 2D to obtain kBTc ≤ πD̃ðTcÞ=2.
While the bound on Tc is of completely general validity,

it is most useful in the strongly correlated regime of narrow-
band and low-density systems, precisely where conven-
tional mean-field approaches fail. We show that D̃ is
necessarily “small” in such systems, and, in many cases
of interest, D̃ is essentially determined by the (noninter-
acting) band structure.
We give several examples that illustrate the usefulness

of our bounds for a variety of systems. For a single
parabolic band we show that kBTc ≤ EF=8 in 2D. This
exact result poses stringent constraints on the Tc of the
2D BCS-BEC crossover in ultracold atoms. We also
describe bounds on Tc for the 2D attractive Hubbard
model, relevant for current optical lattice experiments
[12], that demonstrate the tension between breaking of
pairs and phase fluctuations, and highlight the connection
with a pairing pseudogap [13,14].
Turning to multiband systems, we use available band

structure results [15–19] for MA TBG to calculate D̃ and
thus constrain its Tc without any assumptions about the
pairing mechanism or order-parameter symmetry. We
obtain a rigorous (but weak) bound of ≃15 K. Using
physically motivated approximations, we estimate a bound
on Tc as low as 6 K.
Finally, we discuss the question of deriving similar

bounds in 3D. We show that the presence of nonuniversal
prefactors in the relation between Tc and Ds, as well their
scaling behavior near a SC quantum critical point, poses
challenges in deriving a rigorous bound in 3D.

II. RESULTS

We first outline our main results and then give a detailed
derivation and specific applications. We consider a Fermi
system described by the general Hamiltonian,

H ¼ HK þHint; HK ¼
X
k;m;σ

ϵmðkÞc†kmσckmσ; ð1Þ

where k is crystal momentum, m is a band label, and σ the
spin. HK is the kinetic energy and Hint describes inter-
actions (electron-phonon, electron-electron, etc.), including
those that give rise to superconductivity. The external
vector potential A enters H through a Peierls substitution
in the tight-binding representation of HK , but does not
affect Hint. For now, we ignore disorder and return to it at
the end of the paper.
The macroscopic superfluid stiffness Ds determines

the free-energy cost of distorting the phase of the
SC order parameter jΔjeiθ via the Boltzmann factor
expð−Ds

R
ddrj∇θj2j=2kBTÞ. It is related to the London

penetration depth via 1=λ2L ¼ ð4μ0e2=ℏ2ÞDs in 3D.
Microscopically, Ds can be calculated as the static,

long-wavelength limit of the transverse current response
[20,21] to a vector potential. (Our results are equally valid
for neutral superfluids with rotation playing the role of the
magnetic field.) We obtain a rigorous upper bound valid in
any dimension:

DsðTÞ ≤ D̃ðTÞ ¼ ℏ2

4Ω

X
k;mm0;σ

M−1
mm0 ðkÞhc†kmσckm0σi; ð2Þ

where Ω is the volume of the system and M−1
mm0 ðkÞ is an

inverse mass tensor that depends only on the electronic
structure of HK; see Eq. (5). The temperature and inter-
actions impact D̃ only through hc†kmσckm0σi, where the
thermal average is calculated using the full H.
We next use Ds to provide an upper bound on the SC

transition temperature in 2D. We use the Nelson-Kosterlitz
[22] universal relation to obtain

kBTc ≤ πD̃ðTcÞ=2: ð3Þ

For a weak-coupling superconductor, Tc is well described
by mean-field theory, and our result, though valid as an
upper bound, may not be very useful. On the other hand,
as we show below, for a strongly interacting system the
bound gives insight both into the value of Tc and on its
dependence on parameters.

III. BOUND ON SUPERFLUID STIFFNESS

The intuitive idea behind Ds ≤ D̃ is as follows.
ð2πe2=ℏ2ÞD̃ ¼ R∞

0 dωReσðωÞ is the optical conductivity
spectral weight integrated over the bands in Eq. (1), and
ð4πe2=ℏ2ÞDs is the coefficient of the δðωÞ piece in ReσðωÞ
in the SC state; note that

R∞
0 dωδðωÞ ¼ 1=2. The inequality

Eq. (2) says that the weight in the SC delta function must be
less than or equal to the total spectral weight.
To derive Eq. (2), we use the Kubo formula for Ds as a

linear response [20,21] to an external vector potential in an
arbitrary direction a,

Ds ¼ D̃ − ðℏ2=4e2Þχ⊥jajaðq → 0;ω ¼ 0Þ; ð4Þ

where D̃ is the diamagnetic response ∼hδ2H=δAa
2i, while

χ⊥ is the transverse current-current correlation function. D̃
is given by Eq. (2) with

M−1
mm0 ðkÞ ¼

X
αβ

U†
m;αðkÞ ∂

2tαβðkÞ
∂ðℏkaÞ2 Uβ;m0 ðkÞ: ð5Þ

Here α, β label orbitals or sites within a unit cell of a
Bravais lattice, tαβðkÞ is the Fourier transform of the
hopping tαβðriα − rjαÞ, and Uα;mðkÞ is the unitary trans-
formation that diagonalizes tαβðkÞ to the band basis
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ϵmðkÞδm;m0 . The inverse mass tensor in Eq. (5) also depends
on the direction a ¼ x; y;… through the derivative with
respect to ka on the right-hand side; however, we do not
show this a dependence explicitly to simplify the notation.
These results are derived in Appendix A, and the relation to
the optical sum rule shown in Appendix B; see also
Ref. [23].
We next turn to the second term in Eq. (4). From its

Lehmann representation we see that χ⊥ðq → 0;ω ¼ 0Þ ≥ 0
at all temperatures; see Appendix C. We thus obtain
DsðTÞ ≤ D̃ðTÞ.
For a single band system Eqs. (2) and (5) simplify greatly

and we get D̃ ¼ ð4ΩÞ−1 Pk;σð∂2ϵðkÞ=∂k2aÞnσðkÞ, where
the momentum distribution nσðkÞ ¼ hc†kσckσi. This allows
us to recover well-known special cases. (1) With nearest-
neighbor (NN) hopping on a square or cubic lattice,
∂2ϵðkÞ=∂k2a ∼ ϵðkÞ, and D̃ is proportional to the kinetic
energy. (2) A parabolic dispersion ϵðkÞ ¼ ℏ2k2=2m leads
to the simple result D̃ ¼ ℏ2n=4m, independent of T and of
interactions. Here DsðTÞ ¼ ℏ2nsðTÞ=4m, and our bound
simply says that the superfluid density nsðTÞ ≤ n the total
density.
For materials with nonparabolic dispersion and/or multi-

ple bands, D̃ depends on T and interactions. It is thus
illuminating to derive a bound for D̃ which depends only
on the density. We describe the single-band result here,
relegating the multiband generalization to Appendix D. We
write HK ¼ −

P
Rδσ½tðδÞc†Rþδ;σcR;σ þ H:c:� with transla-

tionally invariant hopping amplitudes tðδÞ that depend only
the vector δ connecting lattice sitesR andRþ δ. We couple
the system to a vector potential and compute D̃, which
involves terms like

P
i;jδ

2
atðδÞhc†i cji with δ ¼ i − j

(schematically). We note that D̃ ≥ 0, since it is the sum
rule for ReσðωÞ ≥ 0. We then use the triangle inequality and
the Cauchy-Schwarz inequality jhc†i cjij ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihniihnji
p ¼ n

to obtain Ds ≤ D̃ ≤ n
P

δ δ
2
ajtðδÞj=2. This shows that for

small hopping and/or low density, one necessarily has a
small Ds.

IV. Tc BOUND IN 2D

For a BKT transition in 2D, the Tc and the stiffness Ds
are related by the universal ratio [22] kBTc=DsðT−

c Þ ¼ π=2.
Together with Eq. (2), DsðT−

c Þ ≤ D̃ðTcÞ, we then immedi-
ately obtain Eq. (3). In an anisotropic system D̃ depends
on a ¼ x, y through the ∂2=∂k2a in Eq. (5). We can use
D̃ ¼ maxfD̃x; D̃yg to obtain a bound on Tc; however,
we argue in Appendix H for a much stronger result
D̃ ¼ ½D̃xD̃y�1=2 in 2D.
We emphasize that Eq. (3) with D̃ðTcÞ on the rhs is

sufficient to derive the rigorous results below. However,
to obtain the intuitively more appealing result, kBTc ≤
πD̃ð0Þ=2, we need to assume that DsðTÞ is a decreasing
function of T, so that DsðT−

c Þ ≤ Dsð0Þ ≤ D̃ð0Þ.

V. 2D PARABOLIC DISPERSION

Consider a single band with ϵðkÞ ¼ ℏ2k2=2m with
density n, so that the Fermi energy EF ¼ πℏ2n=m, and
arbitrary interactions that lead to pairing and superconduc-
tivity. Then M−1ðkÞ ¼ m−1 and Ω−1P

k;σnσðk;TÞ ¼ n
independent of T and interactions, so that D̃ ¼ ℏ2n=4m.
Equation (3) then leads to the simple result

kBTc ≤ EF=8; ð6Þ

which must be obeyed independent of the strength of
attraction or order-parameter symmetry, provided the
system exhibits a BKT transition. In a weak-coupling
superconductor, Tc will actually be much smaller than
EF=8 but, as we discuss next, the bound can be saturated in
systems with strong interactions, such as the 2D BCS-BEC
crossover experiments in ultracold Fermi gases.

VI. 2D BCS-BEC CROSSOVER

In ultracold Fermi gas experiments the two-body s-wave
interaction between atoms is tuned using a Feshbach
resonance. This has led to deep insights into the crossover
[9,10] from the weak-coupling BCS limit with large
Cooper pairs all the way to the BEC of tightly bound
diatomic molecules. Asymptotically exact results are avail-
able in both the BCS and BEC limits; however, the
crossover regime between the two extremes is very strongly
interacting, with pair size comparable to the interparticle
spacing, and is much less understood. It is precisely here
that our exact upper bound Eq. (6) is relevant.
The 2D crossover for s-wave pairing is parametrized by

the dimensionless interaction [24] logðEb=EFÞ, where Eb is
the binding energy of the two-body bound state in vacuum
and EF the Fermi energy. In the weak-coupling BCS limit
(Eb ≪ EF), the mean field kBTc ∼

ffiffiffiffiffiffiffiffiffiffiffi
EFEb

p
[24], with a

prefactor that has been computed including the Gorkov-
Melik-Barkhudarov correction [25,26]. Clearly Tc is much
smaller than our bound.
In the BEC limit (Eb ≫ EF) the composite bosons have

mass 2m, density n=2, and an inter-boson scattering length
ab, where Eb=EF ∼ 1=na2b [26]. The 2D dilute Bose gas has
kBTc ¼ EF=½2 log logð2=na2bÞ� [27], which is valid in the
regime log log ≫ 1. This too is smaller than our bound,
though our exact result cautions against a naive extrapo-
lation of the BEC limit result into the strong interaction
regime.
The results of the 2D Fermi gas experiment of Ref. [28]

seem to violate Eq. (6) in the crossover regime. We note,
however, that our bound is obtained for a strictly 2D system
in the thermodynamic limit, while the experiment is on a
quasi-2D system in a harmonic trap, from which it is
difficult to accurately determine the BKT Tc. The finite size
of the trap raises Tc; even the noninteracting Bose gas in a
2D harmonic trap has a nonzero Tc.
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VII. MAGIC-ANGLE TWISTED BILAYER
GRAPHENE

Let us next turn to a multiband system of great current
interest. The existence of very narrow bands in MA TBG
was predicted by continuum electronic structure calcula-
tions [15,16] that pointed out the crucial role of
α ¼ w=ℏv0FKθ, where θ is the twist angle between the
two layers, w is the interlayer tunneling, v0F the bare Fermi
velocity, and K the Dirac-node location in monolayer
graphene. It was predicted that vF in TBG can be tuned
to zero [15], with a bandwidth less than 10 meV by
choosing certain magic angles θ, the largest of which,
≈1.1°, has now been achieved in experiments [3,4].
Recently, pressure tuning of w has also resulted in very
narrow bands [29].
Little is known at this time about the nature of the SC

state or the pairing mechanism, though the observed
nonlinear I‐V characteristics [3,4] are consistent with a
BKT transition. Proximity to a Mott insulator and narrow
bandwidth suggest the importance of electron correlations,
while the extreme sensitivity of the dispersion to structure
suggests that electron-phonon interactions could also be
important. We argue here that simply using the available
electronic structure information for MATBG, and without
any prejudice about the interactions responsible for SC, we
can put strong constraints on its superconducting Tc.
There are two bands for each of the two valleys, one

above and the other below the charge neutrality point
(CNP). Each band has a twofold spin degeneracy, with
bands for one valley related to those of the other by time
reversal. We include these eight bands in the

P
mm0;σ in

Eq. (2), while the
P

k is over the moiré Brillouin zone, a
hexagon with side 2K sinðθ=2Þ ≃ Kθ. We use the tight-
binding model of Ref. [17], a multiparameter fit to the
continuum dispersion [15], to calculate M−1

m;m0 ðkÞ of
Eq. (5), which is block diagonal in the valley index, so
that there are no cross-valley terms in Eq. (2).
To derive a general bound, where we make no simplify-

ing assumptions, we start with D̃ ≥ 0 and obtain D̃ ≤
ðℏ2=4ΩÞPkmm0σ jM−1

mm0 ðkÞjjhc†kmσckm0σij using the tri-
angle inequality. We next use the Cauchy-Schwarz inequal-
ity to obtain jhc†kmσckm0σij2 ≤ nmσðkÞnm0σðkÞ ≤ 1, since
the momentum distribution nmσðkÞ ≤ 1. We thus find
D̃ ≤ ðℏ2=4ΩÞPk;m;m0σjM−1

mm0 ðkÞj, which leads to the
bound kBTc ≤ 56 K.
We can obtain a more stringent Tc bound if we use

further physical inputs. The Mott gap in the correlated
insulator is experimentally [3,4] known to be ≈0.3 meV,
and we expect a superconducting gap which is at most that
value. Thus we may assume that, at half filling away from
CNP on the hole-doped side, say, the bands above the CNP
are essentially empty and unaffected by pairing.
Before proceeding, we derive a general result valid for

arbitrary interactions which shows that interband terms do

not contribute to Eq. (2) for completely filled or empty
bands. To prove this, we again use the Cauchy-Schwarz
inequality jhc†kmσckm0σij2≤nmσðkÞnm0σðkÞ¼0 when either
band m or m0 is empty. A similar argument works for
the filled case after a particle-hole transformation; see
Appendix E. Thus, hc†kmσckm0σi ¼ 0 for m ≠ m0, whenever
either of the two bands is completely filled or empty, and
only m ¼ m0 terms survive in Eq. (2).
To bound Tc for MA TBG near half filling on the hole-

doped side of the CNP, we take nmðkÞ ¼ 0 for the empty
bands above the CNP, as explained above. Keeping only
band-diagonal terms and using the triangle inequality,
we obtain D̃ ≤ ðℏ2=4ΩÞPk;m;σjM−1

mmðkÞjnmσðkÞ. Using
nðkÞ ≤ 1 for the bands below CNP we obtain the bound
Tc ≤ 14.4 K near half filling for hole doping using the
tight-binding model of Ref. [17]. A similar calculation
leads to Tc ≤ 15.0 K near half filling for electron doping;
see Appendix F. We note that using jM−1j and general
constraints on nðkÞ leads to rigorous results, but weakens
the bounds.
Finally, we make a physically motivated estimate

of D̃, which yields an improved, but approximate, result.
We use the T ¼ 0 band theory result hc†kmσckm0σi ¼
δm;m0Θ(μ − ϵmðkÞ), with the chemical potential μ deter-
mined by the density Ω−1P

k;m;σnmσðkÞ. This, together
with M−1

mmðkÞ calculated from the tight-binding model of
Ref. [17], leads to the density-dependent estimate of D̃
plotted in Fig. 1. We note that using ∂2=∂k2x versus ∂2=∂k2y
to calculate M−1 affects our estimates by less than a
percent.
The integrated optical spectral weight, given by

ð2πe2=ℏ2ÞD̃, vanishes at the band insulators when all
bands are either filled or empty. Clearly our band-
structure-based estimate does not know about the Mott
insulating states at half filling away from CNP. (π=2) times
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FIG. 1. D̃ as a function of doping from the charge neutrality
point (CNP) in magic-angle twisted bilayer graphene (MATBG),
calculated using the band structure of Ref. [17] at T ¼ 0.
ð2πe2=ℏ2ÞD̃ is the integrated optical spectral weight and πD̃=2
is an upper bound on the SC Tc in MA TBG.
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the D̃ plotted in Fig. 1 is an estimated upper bound on the
SC Tc. The system is not SC over most of the doping range,
but our bound is the maximum attainable Tc if the system
were to exhibit superconductivity. We find the maximum
Tc to be about 6 K, while the experimental value is
3 K [29].
We note that the Tc bounds are sensitive to the precise

electronic structure results we use as input for calculating
M−1. As shown in Appendix F, using the tight-binding
results of Ref. [18] for MA TBG leads to a Tc estimate
about 2.5 times higher than the one presented above, based
on the band structure of Ref. [17]. We emphasize that these
differences arise from the fact that the details of the
noninteracting band structure of MA TBG are not very
well established. Irrespective of that, our results suggest
that MA TBG is a strongly correlated SC in a phase
fluctuation dominated regime.

VIII 2D ATTRACTIVE HUBBARD MODEL AND
OPTICAL LATTICES

We next obtain important insights on the value of Tc and
its interaction dependence for the 2D attractive Hubbard
model, where we can compare our bound with sign-
problem-free quantum Monte Carlo (QMC) simulations
[30]. This system has also been investigated in recent
optical lattice experiments [12].
Consider NN hopping on a square lattice with H ¼

−t
P

hi;jiσ c
†
i;σcjσ þ H:c: − jUjPi ðni↑ − 1=2Þðni↓ − 1=2Þ.

For n ≠ 1, the system has an s-wave SC ground state,
exhibiting a crossover from a weak coupling BCS state
(jUj=t ≪ 1) to a BEC of hard-core on-site bosons
(jUj=t ≫ 1). The QMC estimate [30] of Tc, obtained from
the BKT jump in the Ds, is a nonmonotonic function of
jUj=t at a fixed density n; see Fig. 2. The BCS mean field

TMFT
c correctly describes the weak-coupling Tc. (For a more

accurate estimate, one should take into account the Gorkov-
Melik-Barkhudarov correction [25], which suppresses the
numerical prefactor but does not alter the functional form
of TMFT

c .) For jUj=t > 2, TMFT
c is the scale at which pairs

dissociate and lies well above Tc. In the jUj=t ≫ 1 limit we
see Tc ∼ t2=jUj, the effective boson hopping.
Our bound permits us to understand TcðjUj=tÞ in the

intermediate coupling regime where there are no other
reliable analytical estimates. To estimate D̃ analytically, we
need to make an approximation for nðkÞ. If we choose a
step function (as we did for the MATBG), we get Tc ≤ 0.3t
for n ¼ 0.7, independent of jUj=t.
To obtain a better estimate, we note that, as jUj=t

increases, the pair size shrinks and nðkÞ broadens. In the
extreme jUj=t limit of on-site bosons, nðkÞ is flat
(k independent), leading to D̃ → 0, since ∂2ϵ=∂k2x is a
periodic function with zero mean whose k sum vanishes.
To model this broadening of nðkÞ, we use the results of the
T ¼ 0 BCS-Leggett crossover theory; see Appendix G.
This gives us the (approximate) bound plotted in Fig. 2,
which has the correct t2=jUj asymptotic behavior at
large jUj.
In general, we see that Tc ≤ minfTMFT

c ; πD̃=2kBg. For
temperatures between the pairing scale TMFT

c and Tc at
which phase coherence sets in, the “normal state” exhibits a
pseudogap due to preformed pairs [13,14].

IX. THREE-DIMENSIONAL SYSTEMS

Experiments suggest that there may be an upper bound
on Tc in 3D systems; see, e.g., Fig. 6 of Ref. [4]. We have
not succeeded in deriving a rigorous bound on the 3D Tc,
unlike in 2D. There are two challenges that one faces in
trying to derive a bound in 3D: one related to rigorous
control on numerical prefactors and the other to the
functional form of the relation between Tc and Ds. Both
are related to the fact that in 3D the superfluid stiffness does
not have dimensions of energy, unlike in 2D.
Following Emery and Kivelson [2], we focus on the 3D

phase-ordering temperature kBTθ ¼ ADsð0Þā, which could
provide a bound on Tc. Here A is a (dimensionless)
constant and ā is the length scale up to which one has
to coarse grain to derive an effective XY model. Emery and
Kivelson use ā2 ¼ πξ2, where ξ is the coherence length,
and suggest, based on Monte Carlo results for classical
XY models, that A ≃ 4.4 gave a reasonable account of
experiments on underdoped cuprates and other materials.
However, the coefficient A is nonuniversal and can vary

from one system to another. Consider the 3D problem of
the BCS-BEC crossover in ultracold Fermi gases [10] with
ℏ2k2=2m dispersion and interaction, characterized by the
s-wave scattering length as, tuned using a Feshbach
resonance. At unitarity (jasj ¼ ∞), the experimental
kBTc ≃ 0.17EF [11], while QMC estimates [31,32] range

0 1 2 3 4 5 6 7 8
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0.10

0.15

0.20

0.25

0.30

FIG. 2. Tc for the 2D attractive Hubbard model at density n ¼
0.7 with QMC results from Ref. [30]. The BCS mean-field TMFT

c
controls Tc at weak coupling. Phase fluctuations, estimated using
our upper bound Tbound

c (see text), dominate at intermediate and
strong coupling, where we also show the t2=jUj asymptotics of
our bound.
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from kBTc ≃ 0.15EF to 0.17EF. QMC estimates show the
expected nonmonotonic behavior of kBTc=EF as a function
of 1=kFas, with a maximum kBTc=EF ≃ 0.22 at a small
positive 1=kFas. The maximum value of kBTc=EF is larger
than the noninteracting BEC result, consistent with the
rigorous result [33] that repulsive interactions increase the
Tc of a dilute Bose gas in 3D.
We choose ξ ≃ k−1F near unitarity [34] and try to use

kBTθ ¼ Aðℏ2n=4mÞð ffiffiffi
π

p
ξÞ as a bound on Tc. Consistency

with the observed kBTc=EF ≃ 0.22 then requires A ≃ 7.4,
quite different from the 4.4 quoted above. We do not
know if there is a definite value of A that would give a
“phase-ordering” upper bound on Tc in 3D.
The following argument suggests that there may, in fact,

be no general bound on Tc that is linear in Dsð0Þ in 3D.
From a practical point of view, one is interested in learning
about the highest Tc in a class of materials. But, if a
general bound were to exist, it should be equally valid in
situations where both Tc and Dsð0Þ are driven to zero
by tuning a (dimensionless) parameter δ → 0þ toward a
quantum critical point (QCP). From the action S ¼
1
2
Ds

R β
0 dτ

R
ddrj∇θj2 þ � � � describing the phase fluctua-

tions of the SC order parameter, we get the quantum
Josephson scaling relation [35]Dsð0Þ ∼ δðzþd−2Þν. One also
obtains, as usual, Tc ∼ δzν, where z and ν are the dynamical
and correlation length exponents in d spatial dimensions.
Thus, Tc ∼ ½Dsð0Þ�z=ðzþd−2Þ near the QCP. In 2D, this gives
a linear scaling between Tc and Dsð0Þ. However, in 3D we
get Tc ∼Dsð0Þz=ðzþ1Þ which, sufficiently close to the QCP,
will necessarily violate an upper bound on Tc that is
conjectured to scale linearly with Dsð0Þ. This is not just an
academic issue, as experiments see precisely such a
deviation from linear scaling with Tc ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Dsð0Þ

p
, consistent

with z ¼ 1, both in highly underdoped [36,37] and in
highly overdoped [38,39] cuprates.

X. CONCLUDING REMARKS

We have thus far ignored disorder. We note thatDs of the
pure system is necessarily larger than that in the disordered
system. This can be seen by generalizing Leggett’s bound
[40] on the superfluid density (derived in the context of
supersolids) to the case of disordered systems [41]. Thus
our upper bounds for translationally invariant systems
continue to be valid in the presence of disorder, although
they can be improved.
Although we have focused on narrow-band and low-

density systems here, our bounds have also important
implications for systems close to insulating states, either
correlation driven or disorder driven. In either case, if there
is a continuous superconductor-to-insulator transition, the
superfluid stiffness will eventually become smaller than the
energy gap and control the SC Tc.
As a design principle, it is interesting to ask if one can

have multiband systems where a narrow band has a large

energy gap and large “mean-field” Tc interacting with a
broadband that makes a large contribution to the superfluid
stiffness, thus getting the best of both worlds.
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APPENDIX A: LINEAR RESPONSE, Ds AND D̃

Let us consider the general Hamiltonian

H ¼ HK þHint; ðA1Þ

whereHint represents arbitrary interactions, including those
that give rise to superconductivity, and HK is the most
general single-particle Hamiltonian for a multiband or
multiorbital lattice model:

HK ¼
X
iαjβσ

tαβðriα − rjβÞc†iαcjβ: ðA2Þ

Here tαβðriα − rjβÞ represents the hopping matrix element
from orbital β in unit cell j to orbital α in unit cell i with i, j
spanning all unit cells, including i ¼ j. We omit the spin
label σ only to simplify notation, but we are not ignoring
spin, as emphasized by the spin sum. In the presence of an
external vector potentialA, the hopping picks up the Peierls
phase,

HK → HK ¼
X

Rr;αβσ

tαβðrÞe−ieAðRÞ·r=ℏc†iαcjβ; ðA3Þ

where we use the notation R ¼ ðriα þ rjβÞ=2 and r ¼
riα − rjβ for simplicity. Since we are eventually interested
in the long-wavelength limit q → 0, we choose a very slowly
varying vector potential and write

R
riα
rjβ

A · dl ≃AðRÞ · r.
Within linear response theory we can Taylor expand the

exponential, retaining terms which are linear (paramag-
netic) and quadratic (diamagnetic) in A. We transform
to Fourier space using tαβðkÞ ¼

P
r tαβðrÞe−ik·r and ciα ¼

Ω−1=2P
ke

ik·riαdkα. We can then write the current operator
jx ¼ δHK=δAx as the sum of the paramagnetic (P) and
diamagnetic (D) current operators given by

jPx ðqÞ ¼
e
ℏΩ

X
αβ;kσ

∂tαβðkÞ
∂kx d†kþq=2;αdk−q=2;β; ðA4Þ
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jDx ðqÞ ¼
e2

ℏ2Ω

X
αβ;kσ

∂2tαβðkÞ
∂k2x d†kαdkβAxðqÞ; ðA5Þ

where we only show the x component for simplicity. Note
that the paramagnetic current operator, when transformed
to the band basis, will in general have interband matrix
elements [7,8]. The only property of jPx ðqÞ that we will
need to use below, however, is that it is a Hermitian
operator; see Eq. (C1).
The superfluid stiffness Ds is defined as the static long-

wavelength limit of the transverse response of the current
density j to a vector potential A,

hjxiðq;ωÞ ¼
−4e2

ℏ2
DsAxðq;ωÞ;

with qx ¼ 0; q⊥ → 0; ω ¼ 0; ðA6Þ
and ⊥ represents the orthogonal directions to x. Standard
linear response theory leads to the Kubo formula:

Ds ¼ D̃ −
ℏ2

4e2
χ⊥jxjxðq → 0;ω ¼ 0Þ; ðA7Þ

where the first term is the diamagnetic term, which is of
central interest in this work, and the second is the transverse
paramagnetic current-current correlation function. We
focus on the latter in Appendix C, where we show that
χ⊥jxjx ≥ 0 at all temperatures.
Here we focus on the first term that can be read off from

the form of the diamagnetic current operator. We find it
convenient to write it in the band basis as

D̃ ¼ ℏ2

4Ω

X
mm0;kσ

M−1
mm0 ðkÞhc†kmckm0 i; ðA8Þ

with the inverse mass tensor given by

M−1
mm0 ðkÞ ¼

X
αβ

U†
m;αðkÞ ∂

2tαβðkÞ
∂ðℏkxÞ2 Uβ;m0 ðkÞ: ðA9Þ

The unitary transformation U that transforms from the
orbital to the band basis is defined by

X
αβ

U†
m;αðkÞtαβðkÞUα;m0 ðkÞ ¼ ϵmðkÞδm;m0 : ðA10Þ

This allows us to write the final result in the band basis
using

dkα ¼
X
m

Uα;mðkÞckm: ðA11Þ

We note several important points about the inverse mass
tensor M−1

mm0 ðkÞ. (i) It depends only on the bare band
structure, and is independent of temperature and

interactions, (ii) it has both diagonal and off-diagonal
terms in the band indices. and (iii) it is not simply related
to the curvature of the bands ∂2ϵmðkÞ=∂k2x, in contrast to
the single-band case in Eq. (A12).
The standard reference on the formalism for calculating

the superfluid stiffness in lattice systems isScalapino,White,
and Zhang (SWZ) [21]. Our normalization conventions
differ from them and, more importantly, they focus on the
special case of a single-band model with nearest-neighbor
hopping on a square (or cubic) lattice. Thus it may be useful
for us to provide a “dictionary” relating our results to theirs.
In the single-band case our expression for D̃ reduces to

D̃ ¼ 1

4Ω

X
kσ

∂2ϵðkÞ
∂k2x nðkÞ; ðA12Þ

where the momentum distribution

nðkÞ ¼ hc†kcki: ðA13Þ
This result is valid for arbitrary one-band dispersion. For
the special case of NN hopping on a square (or cubic)
lattice, it is easy to see that the right-hand side of Eq. (A12)
is proportional to the kinetic energy in the x direction,
h−Kxi in the notation of SWZ. Our result thus reduces to

D̃ → h−Kxi=4: ðA14Þ

Finally, we note that our superfluid stiffnessDs is related to
that of SWZ by

Ds ¼ ðℏ2=4πe2ÞDSWZ
s : ðA15Þ

APPENDIX B: RELATION BETWEEN D̃ AND
OPTICAL SPECTRAL WEIGHT

To see that D̃ is proportional to the optical sum rule
spectral weight, we identify the dynamical conductivity
σðωÞ as the current response to an electric field E ¼ −∂tA:

iωσðωÞ ¼
�
χjxjxðq ¼ 0;ωÞ − 4e2

ℏ2
D̃

�
: ðB1Þ

Using the Kramers-Krönig relation,

ωImσðωÞ ¼ −
2

π
P
Z∞

0

dω0Reσðω0Þ ω2

ω02 − ω2
; ðB2Þ

and Reχjxjxðω → ∞Þ → 0, we obtain the sum rule for the
optical conductivity as

Z∞

0

dωReσðωÞ ¼ 2πe2

ℏ2
D̃: ðB3Þ
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APPENDIX C: DERIVATION OF BOUND Ds ≤ D̃

We show that χjxjxðq;ω ¼ 0Þ ≥ 0 at any temperature.
This follows directly from its Lehmann representation:

1

Z

X
ij

�
e−βEi − e−βEj

Ej − Ei

�
jhijjPx ðqÞjjij2 ≥ 0; ðC1Þ

where jii and jji are exact eigenstates of the full
Hamiltonian H in Eq. (A1) with eigenvalues Ei, Ej and
Z¼Tr½e−βH�. The last inequality follows from ðe−x−e−yÞ=
ðy−xÞ≥0. At zero temperature, this expression reduces to

χjxjxðq;ω ¼ 0Þ ¼ 2
X
i

jhijjPx ðqÞj0ij2
Ei − E0

≥ 0; ðC2Þ

where j0i is the ground state. From Eq. (A7), we thus
conclude that

Ds ≤ D̃: ðC3Þ

APPENDIX D: REAL SPACE BOUND ON D̃

Except in the case of a single parabolic band, D̃ depends
in general on both the T and the interactions, since the
thermal average in hc†kmckm0 i is calculated using the fullH.
It is thus illuminating to derive an upper bound for D̃ which
shows that D̃must become small when the densities are low
or if all the hopping parameters are small. Such a bound for
the single-band case with arbitrary dispersion was sketched
in the paper. Here we turn to the multiband case.
It is convenient to start with the real space representation:

D̃ ¼ 1

4Ω

X
Rr;αβσ

r2xtαβðrÞhc†iαcjβi: ðD1Þ

Here, both forward and backward hopping are accounted
for in

P
r with tαβðjrjÞ ¼ t�βαðjrjÞ. Since D̃ ≥ 0, we can use

the triangle inequality. Further using the Cauchy-Schwarz
inequality we get

D̃ ≤
1

4Ω

X
Rr;αβσ

r2xjtαβðrÞhc†iαcjβij

≤
1

4Ω

X
Rr;αβσ

r2xjtαβðrÞj ffiffiffiffiffiffiffiffiffiffiffiffi
niαnjβ

p
; ðD2Þ

where niα ¼ hc†iαciαi.
Here and below we define an inner product for operators

A, B in terms of the thermal expectation value hA†Bi,
which allows us to use the Cauchy-Schwarz inequality
jhA†Bij2 ≤ hA†AihB†Bi.

APPENDIX E: INTERBAND
CONTRIBUTIONS TO D̃

We discuss here the conditions under which we can
ignore the interband contributions to D̃ given by

D̃ ¼ ℏ2

4Ω

X
mm0;kσ

M−1
mm0 ðkÞhc†kmckm0 i; ðE1Þ

This requires us to understand when hc†kmckm0 i ¼ 0 for
m ≠ m0. We show here that this is the case, independent of
interactions, when (a) either one of the two bands in empty
and (b) when either one of the two bands is fully filled.
We use the Cauchy-Schwarz inequality (see end of

Appendix D) to obtain

jhc†kmckm0 ij ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmðkÞnm0 ðkÞ

p
; ðE2Þ

where nmðkÞ ¼ hc†mkcmki is the momentum distribution
function, and equality holds for m ¼ m0. For m ≠ m0, if
either band is completely empty, nmðkÞ ¼ 0 for all k and
the interband contribution to D̃ in Eq. (E1) vanishes.
A similar argument for completely filled bands follows

from a particle-hole transformation cmk → h†mk. Since
hc†kmckm0 i ¼ −hh†kmhkm0 i,

jhc†kmckm0 ij ¼ jhh†kmhkm0 ij
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nhmðkÞnhm0 ðkÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − nmðkÞ�½1 − nm0 ðkÞ�

p
: ðE3Þ

Thus we conclude that for filled and empty bands, the
interband terms do not contribute to the sum in Eq. (E1),
even in the presence of arbitrary interactions.
Finally, we note the simple fact that within band theory

there are no interband contributions to D̃. In the absence of
interactions (denoted by subscript 0), we obtain

hc†kmckm0 i0 ¼ fðϵmðkÞÞδm;m0 ; ðE4Þ

where f is the Fermi function.

APPENDIX F: MAGIC-ANGLE TWISTED
BILAYER GRAPHENE

Magic angles in twisted bilayer graphene were first
predicted by the continuum model [15]. Following up on
the experimental discovery of correlation-induced insula-
tors and superconductivity in MA TBG, there has been
considerable progress in understanding its electronic struc-
ture [17–19]. We first focus on the bounds that we obtain
from the tight-binding model of Koshino et al. [17], and
then at the end of the appendix we compare these with the
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results we obtain from the tight-binding model of Kang and
Vafek [18].
The continuum model dispersion [15] is accurately

reproduced by the multiparameter tight-binding fit of
Koshino et al. [17] (see Fig. 3), which takes into account
hopping over distances up to 9jLMj, whereLM is the moiré
lattice vector. We use the hopping integrals presented in the
Supplemental Material of Ref. [17] to construct the non-
interacting Hamiltonian HK of Eq. (A2). We then identify
the unitary matrix UðkÞ that diagonalizes tαβðkÞ [see
Eq. (A10)] and use it together with tαβðkÞ to compute
the inverse mass tensor:

M−1
mm0;aðkÞ ¼

X
αβ

U†
m;αðkÞ ∂

2tαβðkÞ
∂ðℏkaÞ2 Uβ;m0 ðkÞ: ðF1Þ

Note that we have made explicit here the direction a ¼ x, y
as an additional subscript on M−1.
The inverse mass tensor, obtained from the band-struc-

ture information as described above, is used to compute D̃x

and D̃y and bound Tc as described in the paper. The
additional input needed to determine D̃ using Eq. (A8) is

hc†kmckm0 i, and we took two different approaches to
compute this.
In the first approach, we looked at SC near half filling on

the hole-doped side of the CNP, and argued that the
chemical potential was sufficiently far from the CNP that
we can take the band above the CNP to be empty. Then
using the result of Appendix E we can ignore all interband
terms with m ≠ m0. For the occupied band we used only
the general constraint that nðkÞ ≤ 1. Using the triangle
inequality, we then obtain

D̃a ≤
ℏ2

4Ω

X
km;σ

jM−1
mm;aðkÞj; ðF2Þ

where the empty bands above the CNP are excluded from
the sum.
A similar reasoning also works for SC in the vicinity

of half filling on the electron-doped side of the CNP, where
we need to use the fact that the bands below CNP are filled
to eliminate interband terms following Appendix E. We
use a particle-hole transformation cmk → h†mk, under which
tαβðkÞ → −tαβðkÞ and thus M−1 → −M−1. We write D̃ in
terms of the hole momentum distribution functions
nhmðkÞ ¼ hh†mkhmki to get

D̃a ¼
ℏ2

4Ω

X
m;kσ

M−1
mm;aðkÞðnhmðkÞ − 1Þ: ðF3Þ

We then show that the second term on the right-hand side
vanishes as follows:

X
m;k

M−1
mm;aðkÞ ¼

X
k;αβ

∂2tαβðkÞ
∂ðℏkaÞ2

X
m

U†
m;αðkÞUβ;mðkÞ

¼
X
k;α

∂2tααðkÞ
∂ðℏkaÞ2 ¼ 0: ðF4Þ

We have first used
P

mUβ;mðkÞU†
m;αðkÞ ¼ δβ;α, which

follows from the unitarity of U, and then the fact that

FIG. 3. Energy dispersion for MA TBG along high-symmetry
lines in the moiré Brillouin zone (BZ) for the continuum model
dispersion [15] that is accurately described by the tight-binding
model of Koshino et al. [17]. The bands shown in red and blue
correspond to the two valleys of the original BZ and are related by
time reversal.

FIG. 4. Comparison of (a) the band structure and (b) the integrated spectral weight D̃ for the models in Ref. [17] (in black) and
Ref. [18] (in red).
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∂2tααðkÞ=∂k2a is a periodic function with zero mean, whoseP
k vanishes. Using the triangle inequality and the general

constraint nhðkÞ ≤ 1, we obtain an expression for electron
doping which is similar to the hole-doped case:

D̃a ≤
ℏ2

4Ω

X
km;σ

jM−1
mm;aðkÞj; ðF5Þ

where now the filled bands below the CNP are excluded
from the sum. These bounds, though rigorous, are weak
because they involve jM−1j and only very general con-
straints on nðkÞ.
The second (approximate) approach was to simply use a

T ¼ 0 (noninteracting) band theory estimate. We thus use
Eq. (E4) to obtain

D̃a ≃
ℏ2

4Ω

X
km;σ

M−1
mm;aðkÞΘ(μ − ϵmðkÞ); ðF6Þ

with the chemical potential μ determined by the density.
We found that D̃x and D̃y calculated from the tight-binding
model of Ref. [17] differ by less than a percent. The
resulting density-dependent D̃ is shown in Fig. 1 of the
main paper.
We note that there are many different tight-binding

models for describing the narrow bands in MA TBG,
and our Tc bounds depend on this input. We focused
above on the results based on Ref. [17] with an electronic
structure that has separate charge conservation at the K and
K0 valleys. A rather different model without valley-charge
conservation was derived [18] using only time-reversal and
point-group symmetry. We compare in Fig. 4(a) the band
structures of Ref. [17] in black and that of Ref. [18] in red.
The corresponding integrated spectral weights D̃ are shown
in Fig. 4(b) using the same color convention. The maxi-
mum Tc based on the band structure of Ref. [18] is 15 K,
which is 2.5 times larger than that estimated from Ref. [17].

APPENDIX G: ATTRACTIVE HUBBARD
MODEL

It is interesting to ask how our bound on SC Tc in
2D depends on interactions. We use the attractive
Hubbard model on a square lattice as a concrete example
to understand these trends, and to compare our bound
with estimates of Tc from sign-problem-free quantum
Monte Carlo simulations.
Our bound is kBTc ≤ π=ð8ΩÞPk;σ½∂2

kx
ϵðkÞ�nσðkÞ. This

result can be written in terms of the kinetic energy h−Kxi, as
discussed at the end of Appendix A. The interaction
dependence is contained in the momentum distribution
function nσðkÞ which, as we argue in the paper, must
become increasingly broader and flatter as jUj=t increases.
In the weak-coupling BCS limit (small jUj=t), nσðkÞ is

almost like the Fermi function at T ¼ 0, very slightly
broadened by the superconductivity. On the other hand, in
the extreme BEC limit (large jUj=t) of nearly on-site bosons,
the nσðkÞ of the constituent fermions is essentially flat.
We model this jUj=t trend in the momentum distribution

using the BCS-Leggett crossover theory expression

nσðkÞ ¼
1

2

�
1 −

ϵðkÞ − μ

EðkÞ
�
; ðG1Þ

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ − μÞ2 þ Δ2

p
is the Bogoliubov

quasiparticle energy. The chemical potential μ and the pair
potential Δ are determined self-consistently for a given
density n and attraction jUj by solving the T ¼ 0 gap and
number equations:

1

jUj ¼
1

Ω

X
k;σ

1

2EðkÞ ; ðG2Þ

n ¼ 1

Ω

X
k;σ

nσðkÞ: ðG3Þ

We see from Fig. 2 that the Tc obtained from QMC data
[30] is always lower than Tbound

c . Figure 2 also shows that
the bound is most useful in the intermediate to strong-
coupling regime, and less useful in the weak-coupling
regime where Tc is, in fact, well described by TMFT

c , the pair
breaking energy scale.

APPENDIX H: Tc BOUNDS IN SPATIALLY
ANISOTROPIC SYSTEMS

We collect here some results on the role of spatial
anisotropy focusing mainly on 2D. We note that various
quantities that we have considered are different in different
directions labeled by a ¼ x, y. We have shown that

Ds;aðTÞ ≤ D̃aðTÞ: ðH1Þ

The most conservative bound on Tc in 2D is then

kBTc ≤
π

2
maxfD̃x; D̃yg: ðH2Þ

Clearly this bound is not optimal because we expect Tc
to go to zero if either Ds;x or Ds;y goes to zero. Using BKT
theory we can show that

kBTc ¼
π

2
½Ds;xðT−

c ÞDs;yðT−
c Þ�1=2; ðH3Þ

which leads to the improved bound
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kBTc ≤
π

2
ðD̃xD̃yÞ1=2: ðH4Þ

To derive Eq. (H3) we start with the free energy for phase
fluctuations:

F ¼ 1

2

Z
dxdy½Ds;xð∂xθÞ2 þDs;yð∂yθÞ2�: ðH5Þ

We then rescale lengths using x0 ¼ ðD0=Ds;xÞ1=2x and
y0 ¼ ðD0=Ds;yÞ1=2y, where D0 is any convenient energy
scale for normalization, to obtain

F ¼ 1

2
ðDs;xDs;yÞ1=2

Z
dx0dy0½ð∂x0θÞ2 þ ð∂y0θÞ2�: ðH6Þ

This immediately leads to the generalization of the Nelson-
Kosterlitz result in Eq. (H3). We emphasize that the reason
this seemingly naive argument works is that the line of
fixed points below Tc is actually described by a Gaussian
theory and the BKT Tc is precisely when vortex-antivortex
unbinding becomes relevant at a Gaussian fixed point.
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