
 

Superconductivity near a Ferroelectric Quantum Critical Point
in Ultralow-Density Dirac Materials

Vladyslav Kozii,1,* Zhen Bi,1,* and Jonathan Ruhman2,*
1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel

(Received 14 February 2019; revised manuscript received 28 May 2019; published 12 September 2019)

The experimental observation of superconductivity in doped semimetals and semiconductors, where
the Fermi energy is comparable to or smaller than the characteristic phonon frequencies, is not captured by
the conventional theory. In this paper, we propose a mechanism for superconductivity in ultralow-density
three-dimensional Dirac materials based on the proximity to a ferroelectric quantum critical point. We
derive a low-energy theory that takes into account both the strong Coulomb interaction and the direct
coupling between the electrons and the soft phonon modes. We show that the Coulomb repulsion is
strongly screened by the lattice polarization near the critical point even in the case of a vanishing carrier
density. Using a renormalization group analysis, we demonstrate that the effective electron-electron
interaction is dominantly mediated by the transverse phonon mode. We find that the system generically
flows towards strong electron-phonon coupling. Hence, we propose a new mechanism to simultaneously
produce an attractive interaction and suppress strong Coulomb repulsion, which does not require
retardation. For comparison, we perform the same analysis for covalent crystals, where lattice polarization
is negligible. We obtain qualitatively similar results, though the screening of the Coulomb repulsion is
much weaker. We then apply our results to study superconductivity in the low-density limit. We find a
strong enhancement of the transition temperature upon approaching the quantum critical point. Finally, we
also discuss scenarios to realize a topological p-wave superconducting state in covalent crystals close to the
critical point.
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I. INTRODUCTION

A key step in the formation of a superconductor is the
pairing between electrons. In spite of the strong Coulomb
repulsion in free space, at a low energy, electrons experi-
ence an effective attraction in the presence of a lattice.
Thus, superconductivity essentially relies on a mechanism
that simultaneously reduces the Coulomb repulsion and
generates a strong attractive interaction.
In simple (elemental) metals, such an attraction origi-

nates from the interchange of longitudinal phonons, which
couple to the electronic density. To allow for this attraction
to overcome the Coulomb repulsion, however, it is essential
that the crystal vibrations are much slower than electronic
motion. In terms of energy scales, this requirement implies
that the Fermi energy is much larger than the Debye
frequency. In the intermediate frequency regime, between

these two scales, the Coulomb repulsion is logarithmically
suppressed, while the phonon interaction is unaffected
[1–3]. As a result, the net interaction between electrons
may become attractive below the Debye energy.
From this perspective, systems of low carrier concen-

tration, such as doped semimetals and semiconductors, are
not expected to exhibit superconductivity. First, they have a
low Fermi energy, which is comparable to, or even smaller
than, the typical Debye frequency and, thus, does not allow
for the dynamical screening of the repulsion. Moreover,
the superconducting transition temperature is exponentially
sensitive to the density of states, which is typically 2 orders
of magnitude smaller in doped semimetals and semicon-
ductors compared to standard metals. Thus, naively, attain-
able transition temperatures require an unphysically large
interaction strength.
Surprisingly, however, superconductivity in doped semi-

metals and semiconductors is ubiquitous. It was first
discovered in SrTiO3 [4] and later in many other materials
[5]. To the best of our knowledge [6], the lowest-density
superconductors discovered to date are Tl-doped PbTe [8],
Sr-doped Bi2Se3 [9], YPtBi [10], SrTiO3−x [11,12], and
elemental bismuth [13]. It is noteworthy that, except
for SrTiO3, all of these materials are either narrow-band
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topological insulators or topological semimetals. The
common feature they share is a near crossing of their
conduction and valence bands, for example, such as in
Dirac material. These experiments, thus, impose two
theoretical challenges: (i) How is the Coulomb repulsion
screened when the dynamical timescale of the pairing
interaction is comparable to, or even smaller than, the
electronic timescale (the so-called antiadiabatic limit)?
(ii) What is the source of attraction, which is strong enough
to deal with such a small density of states?
A variety of theoretical frameworks have been proposed

to discuss superconductivity in the limit of low density,
including polar phonons [14–18], plasmons [15,19–21],
multiband effects [22,23], soft optical phonons [24],
negative U centers [25], and instantaneous attraction
[26,27]. It is particularly important to single out the seminal
contribution of the authors of Ref. [14], who point out an
essential ingredient in any theory of low-density super-
conductivity: a long-ranged attractive interaction. When
the range of the attractive interaction is comparable to the
distance between conduction electrons, it naturally com-
petes with the small density of states and, thus, paves the
way to solve the second theoretical challenge we specify
above. This situation is similar to the phenomenon ofWigner
crystallization, where the long-ranged Coulomb interaction
dominates the kinetic energy in the dilute limit rather than at
a high density. Thus, the constraint of long-ranged attraction
narrows down the range of viable pairing mechanisms in the
extreme low-density limit. Such an interaction may result
from a dynamically screened Coulomb repulsion [14,19],
fluctuations of an order parameter close to a quantum critical
point [28–31], spin fluctuations [32,33], or Goldstone mode
fluctuations in certain types of spontaneously broken con-
tinuous symmetries [34].
It is interesting to notice that SrTiO3, PbTe, and SnTe

naturally reside close to a paraelectric (PE)-ferroelectric
(FE) phase transition [35,36], which can be tuned in various
manners. Indeed, it has been proposed theoretically that the
superconducting state in low-density SrTiO3−x results from
a pairing interaction mediated by FE fluctuations near the
quantum critical point (QCP) [37]. Following this proposal,
recent experiments report an enhancement of Tc in the
vicinity of the QCP [17,38–40]. This proposal also leads
to a number of theoretical studies discussing different
aspects of the problem [41–44]. However, an important
question that remains open is the microscopic origin of a
strong electronic coupling to the soft FE fluctuations,
which is naïvely expected to be weak [45–47] (we also
refer to a recent comment on the subject [48] and the recent
preprint [49]).
To explain the origin of the common belief concerning

weak coupling between electrons and soft FE modes in
low-density ionic crystals, we briefly review some basic
facts regarding the FE QCP. The PE-FE transition is
essentially a structural transition where the order parameter

is a vector (i.e., a lattice distortion), which spontaneously
breaks inversion and rotation symmetries in the ordered
state. As an example, we consider the diatomic ionic crystal
in Fig. 1. In the FE phase, the two ions in the unit cell are
distorted from their cubic Bravais lattice positions. Because
of a charge imbalance, the ions induce a uniform electric
polarization density. Thus, the transition is described by a
soft optical phonon mode associated with the relative
displacement of the two charged ions. This phonon mode
has three polarizations: one longitudinal optical (LO) and
two transverse optical (TO). The long-range dipolar inter-
actions between lattice distortions, however, prevent the
LO mode from softening near the transition [35,50–53].
Consequently, the soft bosonic modes associated with the
FE QCP are purely transverse. On the other hand, the
simplest coupling between the conduction electrons’ den-
sity and lattice is Fröhlich coupling, which involves only
longitudinal modes [45,47,54]. As a result, the interaction
between electrons and soft FE modes is typically consid-
ered as weak.
Despite the above discussion, the direct coupling of

gapless electrons to soft transverse phonon (ferroelectric)
modes is possible in multiorbital systems [55,56]. For time-
reversal symmetric systems with a single Fermi surface,
multiorbital effects can manifest themselves only due to the
presence of spin-orbit coupling [57,58]. In this paper, we
use this idea to explicitly derive a complete low-energy
theory capturing all gapless degrees of freedom at the FE
QCP in three-dimensional Dirac materials, a manifestly
multiorbital system with strong spin-orbit coupling, and
show how transverse modes couple to gapless electrons
in the long-wavelength limit. We use the renormalization

(a) Paraelectric (b) Ferroelectric:

FIG. 1. (a) A diatomic cubic ionic crystal in the paraelectric
phase. The two ions are represented by blue (þ) and red (−)
circles (e.g., blue for Pb and red for Te). Unless these two atoms
are identical, they will have an average charge imbalance. (b) The
ferroelectric phase (inversion breaking) is characterized by a
uniform optical phonon displacement vector u ¼ ub − ur. Be-
cause of the charge imbalance between the ions, this phase is also
characterized by a finite dipolar polarization density P ¼ Qu,
where Q is the charge.

KOZII, BI, and RUHMAN PHYS. REV. X 9, 031046 (2019)

031046-2



group (RG) approach to study the tendency of this theory
towards strong coupling close to the critical point. We find
that the proximity to the FE QCP in the low-density limit
leads to strong screening of the Coulomb repulsion
between electrons by the crystal. Concomitantly, the inter-
band transitions across the Dirac point enhance the effec-
tive coupling of electrons to the soft TO phonon modes.
Thus, the attraction mediated by TO modes generically

overcomes the Coulomb repulsion close to a FE QCP.
Interestingly, this result is valid even at a vanishing
electronic density, when the effects of Coulomb repulsion
are expected to be strong. Therefore, our theory is distinct
from the standard Tolmachev-Anderson-Morel mechanism
[1–3], since it does not require the phonon frequency to
be smaller than the Fermi energy in order to produce net
attraction at zero frequency. Finally, we analyze the
possible superconducting instabilities from the interaction
mediated by the critical phonon mode. We find a strong
enhancement of the transition temperature Tc due to the
enhancement of the electron-phonon coupling close to the
critical point.
For completeness and comparison, we perform a similar

analysis for covalent (nonionic) crystals, where both LO
and TO modes are soft at the critical point. In this case,
negligible lattice polarization does not allow for a sponta-
neous dipolar moment of the crystal, so a “ferroelectric”
phase is simply characterized by broken inversion sym-
metry. In the absence of lattice polarization the screening of
the Coulomb interaction is only lograthmic, similar to the
case without soft phonons [59,60]. We find that the
dimensionless coupling constant associated with the cou-
pling to the longitudinal mode also flows logarithmically to
zero, while the coupling to transverse modes remains
relevant, as before. Thus, our result is an example where
attraction may overcome repulsion without any require-
ment on the Fermi energy, even without screening from the
crystal. We point out that this result is potentially relevant to
other nonpolar critical modes that couple to Dirac points.
We also find that the interplay between phonon-mediated
attraction and the Coulomb repulsion in these covalent
crystals opens a possibility of topological p-wave super-
conductivity in a certain range of parameters.
Beside the fundamental theoretical importance, our

study of superconductivity from ferroelectric quantum
critical fluctuations is also motivated by a realistic system:
the ionic alloy Pb1−zSnzTe, which undergoes a FE phase
transition at z ¼ zFE ≈ 0.25 [36]. When z is further
increased above zT ≈ 0.41, the alloy undergoes a second,
topological phase transition, between a trivial insulator and
a topological crystalline insulator [61]. The topological
transition entails gapless Weyl points close to the L points
of the Brillouin zone [62]. When doped with Tl or In atoms,
this alloy becomes superconducting, and the transition
temperature exhibits a peak at some intermediate value
of z [63]. While doped Pb1−zSnzTe seems a promising

candidate for our theory, a word of caution is needed, since
certain features require further understanding. In pure
PbTe, for example, superconductivity appears only when
doped with Tl. Additionally, it is found that the super-
conducting state emerges only above a critical density,
where additional electron pockets become populated [64].
The remainder of the paper is organized as follows. We

first summarize our main results while providing intuitive
pictures in Sec. II. In Sec. III, we present a complete low-
energy theory for Dirac materials near a FE QCP. In Sec. IV,
we use the RG approach to demonstrate that the Coulomb
repulsion is strongly screened by lattice polarization, while
the coupling between electrons and soft transverse phonons
is significantly enhanced. We find qualitatively similar
results for covalent crystals, though the screening of
Coulomb repulsion in this case is much weaker because
of negligible lattice polarization. Finally, in Sec. V, we
analyze the possible superconducting instabilities from the
interaction mediated by the critical phonon (ferroelectric)
mode. We find a strong enhancement of the transition
temperature Tc due to the enhancement of the electron-
phonon coupling close to the critical point. Additionally, we
discuss scenarios for p-wave superconductivity originating
from the interplay between phonon-mediated attraction and
Coulomb repulsion in covalent crystals. We finish with a
short summary and discussion in Sec. VI.

II. SUMMARY OF MAIN RESULTS

Before moving on to the main part of the paper, where
we carefully analyze the FE QCP in a Dirac system using
the RG technique, we first present our main results at a
nontechnical level. We aim to qualitatively explain how our
findings deal with the long-standing challenge of under-
standing superconductivity in low-density systems.
As explained in the introduction, the observation of

superconductivity in extremely dilute metals poses two
questions which are the main focus of this paper.

(i) How is the Coulomb repulsion screened in a system
with a relatively small Fermi energy (the so-called
antiadiabatic limit)?

(ii) What is the source for strong attraction that can
overcome the small density of states in these
systems?

To answer these questions, we focus on a concrete
model consisting of three essential ingredients, which
are all mutually coupled (see Fig. 2). The ingredients are
fluctuations of the FE order parameter close to a FE QCP
(optical phonon distortions), gapless Dirac fermions, and
the static electric field [65].
The key new element that plays a crucial role in our

study is the direct coupling λ between electrons and optical
phonons (especially the TO modes). The coupling is
allowed in materials with strong spin-orbit coupling such
as Dirac semimetals. The intuitive picture behind this
coupling is the following: When the unit cell distorts
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due to a FE optical phonon, inversion symmetry is locally
broken. In the presence of spin-orbit coupling, this dis-
tortion induces a Rashba effect modifying the electronic
dispersion, thus coupling electrons to phonons.
Interestingly, the first question raised above, screening of

the Coulomb repulsion in the antiadiabatic limit, is naturally
dealt with in this model. In the case of ionic crystals, the
polar phonons provide the screening. The important pre-
requisite, however, is the proximity of the system to a FE
QCP. Indeed, according to the Lyddane-Sachs-Teller relation
[66], the low-energy dielectric constant behaves as ε0 ∼
ω2
L=ω

2
T [66]. At the FE QCP, the TO phonon frequency

vanishes, while the LO phonon remains gapped due to its
polar nature (see the inset in Fig. 3 for a schematic
dispersion). Consequently, ωT → 0, while ωL remains finite
near the FE QCP, so ε0 diverges, leading to the suppression
of the long-ranged Coulomb interaction. Additionally, we
find that, even in the absence of crystal screening (like in
covalent crystals that we discuss below), the interband
transitions across the Dirac dispersion also effectively screen
the Coulomb repulsion in the antiadiabatic limit.
To deal with the second question about the source of the

sufficiently strong attraction between electrons, we recall
the seminal result by Gurevich, Larkin, and Firsov [14],

who point out that the low-density SC necessarily requires
a long-ranged interaction. In our theory, there are two key
elements that provide such an interaction. First, near the FE
QCP, we have a soft (nearly gapless) TO phonon mode.
This fact itself, however, does not guarantee the long-
ranged interaction; otherwise, the acoustic phonons would
be sufficient for this purpose. The crucial element of our
theory that allows for such a long-ranged interaction is
exactly the direct coupling between electrons and optical
phonons λ that we discuss above. Indeed, this coupling
does not vanish at a small momentum transfer and is
generically present in 3D Dirac materials. Then, it is
straightforward to show that the effective attraction
between electrons mediated by TO phonons is sufficiently
long ranged, which compensates the low density of states.
Putting all the described key points together, we conclude
that the combination of a finite electron-phonon coupling
and the proximity to the FE QCP is sufficient for super-
conductivity in the low-density 3D Dirac materials. This
result is schematically summarized in Fig. 3.

FIG. 3. Schematic phase diagram of the 3D Dirac semimetal
(DSM) near a FE QCP. The FE QCP separates the inversion-
symmetric DSM and inversion-broken Weyl semimetal (WSM)
phases. Upon approaching the phase transition (controlled by ωT),
there is a region where we predict superconductivity at an ultralow
density (blue dome). Because of the long-ranged dipolar forces
between LO modes, close to the FE QCP, only the TO modes
soften, as shown in the inset (the LO-TO splitting). We consider the
direct coupling of these TO modes to the Dirac fermions through
spin-orbital effects. RG analysis shows that this coupling is a
relevant perturbation that renders the Dirac point unstable at a low
energy. We find that this type of QCP combines two ingredients
which are essential for superconductivity at a low density: (i) strong
attraction that compensates a small density of states and (ii) screen-
ing of the Coulomb repulsion between electrons by the LO modes.
The dashed line denotes the region of strong coupling in the
immediate vicinity of the critical point where our weak-coupling
analysis breaks down.

FIG. 2. The three fields participating in the low-energy effective
field theory Eq. (8) and the couplings between them. The fields
are the ferroelectric fluctuations (optical phonon distortions),
Dirac electrons, and static electric field. The coupling of the
ferroelectric mode to the electric field leads to the gapping out of
the longitudinal optical mode (LO-TO splitting) and to the well-
known Fröhlich coupling; see Eq. (12). The coupling of the
electrons to the electric field generates the Coulomb repulsion.
An important new element, which is one of the key points of the
paper, is the direct coupling λ between the optical phonon
distortions and the Dirac electrons; see Eq. (7).
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To make the above arguments more quantitative and
rigorous, we study our model using the renormalization
group technique. In particular, we find that, in the weak-
coupling regime, the dimensionless coupling constant
between electrons and TO phonons, β, is marginally
relevant [see Eqs. (17) and (27)] and, hence, gets enhanced
at small energies. The main origin of this enhancement is
the reduction of the TO phonon velocity due to a cloud of
virtual particle-hole excitations that is generated as it
propagates through the crystal. The velocity reduction
increases the TO phonon density of states at low energies,
which enhances the resulting phonon-mediated interac-
tion. The particle-hole excitations, which are responsible
for the velocity reduction, are of the interband type (i.e.,
across the Dirac node). Therefore, the nearly touching
between the conduction and valence bands, characterizing
the Dirac dispersion, is important for the enhancement
of β. This enhancement, in turn, leads to a sufficient
increase in the superconducting transition temperature Tc;
see Eqs. (35) and (36).
As a final step, we calculate the superconducting

instabilities with the renormalized parameters. We work
within the weak-coupling approximation and assume a
small but finite Fermi surface with the radius kF. We find
that the strongest superconducting instability is in the
s-wave channel, but the vector-type p wave also exhibits
weaker instability towards the Cooper pairing. For these
two channels, we compute the corresponding transition
temperatures; see Eqs. (35)–(37). As is usual for a weak-
coupling approximation, Tc is exponentially sensitive to
the renormalized dimensionless coupling β� and the square
of the ratio kF=Λr, where Λr can be viewed as the inverse
correlation length of the FE order parameter or, equiv-
alently, the range of the TO phonon-mediated attraction
between electrons. Since we find β to be a relevant operator,
both β� and kF=Λr can be made of the order of 1 near the
FE QCP, thus leading to a significantly large transition
temperature despite the low density of states. Our rough
estimates show that one can reach Tc of the order of several
Kelvin sufficiently close to the critical point even at
densities n0 ∼ 1017 cm−3.
The above discussion is relevant for ionic crystals. For

completeness, we also consider the case of covalent
crystals, where the atoms in Fig. 1 would be neutral,
and, thus, the optical phonons would be decoupled from the
electric field. In this case, the LO mode is also gapless at
the transition point, and, consequently, it no longer screens
the Coulomb interaction. Our RG analysis shows that the
same interband processes that enhance the coupling β
suppress the fine-structure constant α and the coupling
to the LO phonon β̃; see Eqs. (24) and (25). The former is
simply the interband screening of the Coulomb interaction
[59]. Consequently, the end result is qualitatively the same:
At the critical point, the TO phonon-mediated interaction is
the dominant one, and there is still a mechanism to screen

the Coulomb repulsion, which does not rely on retardation
(in this case, it is purely electronic). The crucial difference,
however, is that the screening of the Coulomb interaction is
only logarithmic and, consequently, weaker than in the case
of ionic crystals. The fact that crystal screening is not
necessary to suppress the Coulomb repulsion at scales
higher than the Fermi level also implies that our analysis for
the FE QCP can be extended to other types of critical points
in Dirac semimetals. The fact that almost all known low-
density superconductors carry semimetallic features in their
band structure raises the question of whether such an
antiadiabatic screening of the Coulomb repulsion plays
an important role in the emergence of superconductivity in
these systems.

III. MODEL

We now turn to the main part of the paper. We first
consider the low-energy effective field theory of a Dirac
semimetal near the ferroelectric transition. The Euclidean
(imaginary time) action is given by the sum

S ¼ Sψ þ Su þ Sϕ þ Sψu þ Sψϕ þ Suϕ; ð1Þ

where the first three terms describe the dynamics of the
fermions ψ , the optical phonon field u, and the Coulomb
field ϕ, respectively, while the latter three describe their
interactions. The Coulomb field ϕ should be considered as
a Hubbard-Stratonovich decomposition of the instantane-
ous Coulomb interaction. Now we specify these terms in
detail.

A. Quadratic terms

1. The electron term

The electron quadratic term (motivated by the model of
the PbTe crystal [61]) reads

Sψ ¼
XN
n¼1

Z
d4xψ̄nðγ0∂0 þ vFγj∂j þm − γ0εFÞψn; ð2Þ

where ψn is a four-component Dirac spinor, n ¼ 1;…; N
denotes different fermionic flavors (number of Dirac
nodes), summation over j ¼ x, y, z is implied (∂0 stands
for the derivative in imaginary time), and ψ̄n ≡ ψ†

nγ0.
Parameters vF, m, and εF stand for the electron velocity,
Dirac mass, and Fermi energy, respectively. We use
Hermitian gamma matrices fγ0; γ1; γ2; γ3g ¼ fσ1 ⊗ σ0;
σ2 ⊗ σ1; σ2 ⊗ σ2; σ2 ⊗ σ3g and γ5 ¼ γ0γ1γ2γ3, where σi
are usual Pauli matrices. Notice that here we assume an
isotropic dispersion by taking the same velocity vF in all
directions. The anisotropic case does not modify the main
qualitative results of this paper, and, therefore, we comment
on it in the Appendix D. For generality, we assume a nonzero
mass term m and a finite Fermi energy εF. However, we
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neglect them in our RG analysis, assuming that they are
much smaller than other relevant energy scales.
We note two important discrete symmetries of Eq. (2):

inversion symmetry P and time-reversal symmetry T . The
action of these symmetries in terms of Dirac matrices is
given by P ¼ γ0 and T ¼ γ1γ3K, respectively, where K is
the complex conjugation.

2. The phonon term

Next, we consider the dynamics of the phonon modes,
which become soft at the FE phase transition. To have an
intuitive picture in mind, we consider the scenario in which
the FE order is dominantly generated by a lattice distortion.
For simplicity, we consider a cubic ionic crystal with two
atoms in the unit cell (the rocksalt structure of the IV-VI
semiconductors; see Fig. 1). We label the two sublattices
by b and r, corresponding to the “blue” and “red” ions,
respectively which have equal in magnitude and opposite
sign charges. Each sublattice has a corresponding phonon
displacement field ur and ub. As usual, there are two
modes: a gapless acoustic mode given by the sum uac ¼
ður þ ubÞ=2 and a gapped optical branch given by the
difference u ¼ ur − ub. Near the FE transition, the acoustic
mode is irrelevant, while the optical branch becomes nearly
gapless and is described by the effective action

Su ¼
Z

d4x
1

2
uj½ð−∂2

0 þ ω2
TÞδjl − c2Tð∇2δjl − ∂j∂lÞ

− c2L∂j∂l�ul þ VðujujÞ2: ð3Þ

Here, cL and cT are the longitudinal and transverse phonon
velocities, respectively, ωT is the phonon mass, which is the
tuning parameter to the transition, and V is the lowest-order
symmetry allowed anharmonic correction to the phonon
energy (where we neglect additional anisotropic terms
allowed by the cubic symmetry [50–53]). Again, summa-
tion over j; l ¼ x, y, z is implied.

3. The Coulomb term

The third quadratic term describes the Coulomb potential:

Sϕ ¼ ε∞
8π

Z
d4xð∇ϕÞ2; ð4Þ

where ε∞ is the bare dielectric constant, which accounts for
the contribution of core electrons. This contribution is due to
the transitions between the high-energy atomic configura-
tions and does not include the contributions from the lattice
dynamics or electronic interband transitions close to the
Dirac point.

B. Coupling terms

We now consider the couplings between the fields
introduced in Eqs. (2)–(4).

1. Electron-Coulomb coupling

We start with the coupling between the Dirac electrons
and the Coulomb potential

Sψϕ ¼ ie
Z

d4xρeϕ; ð5Þ

where ρe ¼
P

n ψ̄nγ0ψn is the electronic density.

2. Phonon-Coulomb coupling

The coupling of the ferroelectric phonon modes to the
Coulomb potential follows from Eq. (5) by noting that
the deviations of the red and blue ionic density from the
average equilibrium value ρ0 in the long-wavelength limit
are given by ρr ¼ ρ0ð1 −∇urÞ and ρb ¼ ρ0ð1 −∇ubÞ,
respectively. Given that the ionic charges are of equal
magnitude and opposite signs, the coupling of the lattice to
the Coulomb field ϕ is given by

Suϕ ¼ iQ
Z

d4xðρr − ρbÞϕ ¼ iQρ0

Z
d4x∇uϕ; ð6Þ

where Q is the ionic charge on blue sites (the charge on red
sites equals −Q). For the purpose of further analysis, it is
convenient to absorb factor ρ0 by redefining Qρ0 → Q.
Notice that the form of the coupling (6) implies that only

the longitudinal phonon mode couples to the Coulomb
field. We also point out that, after integrating Eq. (6) by
parts, one gets a dot product between the polarization
density P ¼ Qu and the electric field E ¼ −i∇ϕ.
Therefore, this equation can also be viewed as the action
of a dipole moment density in an electric field. Finally, in
the case of a nonpolar covalent crystal (e.g., elemental
bismuth), all atoms in the unit cell are neutral, leading to a
vanishing coupling Q ¼ 0.

3. Electron-phonon coupling

We now consider the coupling between the Dirac
electrons and the phonon modes. We write down this
coupling from general symmetry arguments. The phonon
mode u is a time-reversal invariant vector. Inspecting all
possible local Dirac bilinears specified in Table I, we find
that the only Dirac bilinear that forms a time-reversal
symmetric vector and, thus, is allowed to couple to the
phonon displacement field is ψ̄γ0γjψ . Therefore, the
corresponding coupling is given by

Sψu ¼ λ
XN
n¼1

Z
d4xψ̄nγ0γjψnuj: ð7Þ

The microscopic origin of this coupling is a combination
of the interorbital hybridization induced by the lattice
distortion u and spin-orbit coupling. This situation is
similar to the Rashba effect, which arises when inversion
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is broken in a system with spin-orbit coupling. The analogy
is made by noting that the optical phonon distortion is
essentially an inversion-breaking field. It is also worth
noting that the form of the coupling Eq. (7) can be derived
from the action of inversion breaking on a Dirac node [67].
To estimate the magnitude of the coupling accurately,
however, an ab initio calculation is required. Finally, we
also note that in Eq. (2) we assume that the Dirac cones
occur at the inversion symmetric points in the Brillouin
zone. In the case where they do not, the coupling can also
include interflavor scattering.

We emphasize that, for simplicity, we consider a
rotationally symmetric model in the main text. We
discuss the possible effects of the cubic anisotropy in
Appendix D.

IV. RENORMALIZATION GROUP ANALYSIS
NEAR THE CRITICAL POINT

We now use the RG to analyze the theory introduced
in the previous section. Summing up Eqs. (2)–(7),
we have

S ¼
Z

d4x

�XN
n¼1

ψ̄n½Zψγ0∂0 þ vFγj∂j�ψn þ
1

2
uj½ð−Z2

u∂2
0 þ ω2

TÞδjl − c2Tð∇2δjl − ∂j∂lÞ − c2L∂j∂l�ul

þ Vðu2jÞ2 þ
ε∞
8π

ð∂jϕÞ2 þ ie
XN
n¼1

ψ̄nγ
0ψnϕþ iQϕ∂juj þ λ

XN
n¼1

ψ̄nγ0γjψnuj

�
: ð8Þ

The coefficients Zψ and Zu account for the renormalization
of the dynamical terms.
We apply the standard momentum-shell RG scheme

[68] by separating fields into short- and long-scale parts
according to ψðω; qÞ ¼ ψ>ðω; qÞ þ ψ<ðω; qÞ (analo-
gously with fields u and ϕ), followed by the integrating
out the high-energy part ψ>ðω; qÞ within an infinitesi-
mal cylindrical momentum-frequency shell Λ0e−δl <
q < Λ0, −∞ < ω < ∞. Here, Λ0 is a momentum UV
cutoff corresponding to the scale at which electron
dispersion can be considered linear, and l is “RG time.”
As the second step, we further rescale momenta,
frequencies, and the long-wavelength parts of the fields
according to

q¼e−δlq0; ω¼e−zδlω0; ψ<ðω;qÞ¼eηψδlψ 0ðω0;q0Þ;
ϕ<ðω;qÞ¼eηϕδlϕ0ðω0;q0Þ; u<ðω;qÞ¼eηuδlu0ðω0;q0Þ;

ð9Þ

to restore the UV cutoff e−δlΛ0 back to Λ0. Above, z is
the dynamical exponent, and ηψ , ηu, and ηϕ are
engineering field dimensions. This rescaling leads to
the tree-level RG flows of the couplings after coarse-
graining by the factor el (the argument l is suppressed
for brevity):

Zψ=Zψð0Þ ¼ eð2ηψ−2z−3Þl; Zu=Zuð0Þ ¼ eðηu−3z=2−3=2Þl;

cT;L=cT;Lð0Þ ¼ eðηu−z=2−5=2Þl; vF=vFð0Þ ¼ eð2ηψ−z−4Þl;

ωT=ωTð0Þ ¼ eðηu−z=2−3=2Þl; V=Vð0Þ ¼ eð4ηu−3z−9Þl;

e=eð0Þ ¼ eð2ηψþηϕ−2z−6Þl; Q=Qð0Þ ¼ eðηuþηϕ−z−4Þl;

λ=λð0Þ ¼ eð2ηψþηu−2z−6Þl; ε∞=ε∞ð0Þ ¼ eð2ηϕ−5−zÞl:

ð10Þ
It should be mentioned that the choice of dynamical and field
exponents is somewhat arbitrary here, since it does not affect
the flow of dimensionless coupling constants [69,70]. The
special choice ω2

T ¼ 0, Q ¼ e ¼ λ ¼ 0, ηψ ¼ 5=2,
ηu ¼ ηϕ ¼ 3, and z ¼ 1 makes the theory scale invariant,
which corresponds to the noninteracting fixed point.Near this
fixed point,ω2

T andQ are relevant perturbations,while e and λ
aremarginal at the tree level. Sinceω2

T is the tuning parameter
for the FE transition, we assume it to be small close to the
critical point. In what follows, we focus on two distinct cases:
the case of ionic crystals withQ ≠ 0 and the case of covalent
crystals with Q ¼ 0.

A. Ionic crystals (Q ≠ 0)

1. Fixed-point theory

Near the noninteracting fixed point introduced above, Q
is relevant and, at the tree level, obeys the following RG
equation:

TABLE I. Parity and time-reversal symmetry of the 16 (k-independent) Dirac bilinears.

Bilinear 1; γ0 fiγ1; iγ2; iγ3g; iγ5 fγ0γ1; γ0γ2; γ0γ3g; γ0γ5 fiγ0γ1γ5; iγ0γ2γ5; iγ0γ3γ5; iγ0γ1γ2; iγ0γ1γ3; iγ0γ2γ3g
P ¼ γ0 þ − − þ
T ¼ γ0γ2γ5K þ − þ −
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dQ
dl

¼ Q: ð11Þ

Thus, in the case of ionic crystals, Q grows rapidly to
strong coupling. Therefore, we should first derive the
effective low-energy theory with large coupling Q (of
the order of the UV cutoff) and then proceed to the RG
analysis of the resulting theory. We can integrate out the
Coulomb field ϕ, which generates the following terms:Z

D½ϕ�e−Sϕ−Sψϕ−Suϕ ∝ e
−
R
ω;q

L0
;

L0 ¼ 2π

ε∞q2
½e2jδρeðqÞj2 þQ2jq · uqj2 − 2eQiq · uqδρeð−qÞ�:

ð12Þ

The first term is the standard Coulomb repulsion between
electrons. The second term can be viewed as a phonon mass
generated in the longitudinal sector (note that it is inde-
pendent of the magnitude of the momentum). This mass
generation is the well-known LO-TO splitting in ionic
crystals [47]. Finally, the last term is the Fröhlich coupling
between the longitudinal phonon mode and electronic
density.
The generated mass term for the longitudinal phonon

mode equals ωL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πQ2=ε∞ þ ω2

T

p
. While the transverse

mode becomes massless near the FE transition, ωT → 0,
we see that the longitudinal mode remains massive,
since Q ≫ ωT . Consequently, the LO mode can be
further integrated out. This procedure generates the stan-
dard dynamically screened Coulomb interaction between
electrons:

SC ¼ 1

2

Z
dωd3q
ð2πÞ4

4πe2

εðω; qÞq2 jδρej
2; ð13Þ

where

εðω; qÞ ¼ ε∞
ω2 þ ω2

L þ c2Lq
2

ω2 þ ω2
T þ c2Lq

2
ð14Þ

is the dynamical dielectric constant, which manifestly
satisfies the Lyddane-Sachs-Teller relation [46,47,66].
Close to the critical point, we have ωT → 0, which

implies that the dielectric constant scales as εðω; qÞ ≈
ε∞ω

2
L=ðω2 þ c2Lq

2Þ and diverges at low energies and
momenta. (In the above estimate, we assume thatQ already
reached the RG scale at whichQ ∼ ωL ∼ cLΛ0, where Λ0 is
the UV cutoff, implying that the ω2 þ c2Lq

2 term can be
neglected compared to ω2

L.) Thus, the effective Coulomb
interaction between electrons becomes highly irrelevant
and flows quickly to zero. It means that the Coulomb
interaction is effectively screened by the longitudinal

phonon mode. Eventually, the FE critical point is controlled
by the following effective field theory:

S ¼
Z

d4x

�XN
n¼1

ψ̄nðZψγ
0∂0 þ vFγj∂jÞψn

þ 1

2
uj½−Z2

u∂2
0 þ ω2

T − c2T∇2�Pjlul þ VðujPjlulÞ2

þ λ
XN
n¼1

Pjlulψ̄nγ0γjψn

�
; ð15Þ

where

PjlðqÞ ¼ δjl − qjql=q2 ð16Þ

is the projector to the plane transverse to q. The couplings V
and λ here are weakly renormalized after integrating out the
longitudinal mode.
Before continuing, we make a remark. We present a

low-energy effective theory with the coupling between soft
polar phonons and charged fermions given by Eq. (7),
which is not a long-range Coulomb interaction. This result
is somewhat counterintuitive, as the phonon distortions
generate a huge dipolar moment that naïvely induces a
long-ranged potential. Consequently, one might expect that
the Coulomb interaction between electrons and lattice
distortions, arising from a deformation potential, is dom-
inant over the direct coupling (7). However, as we dem-
onstrate above, the Coulomb forces that lead to the strong
Fröhlich coupling between electrons and phonons [the third
term in Eq. (12)] are also responsible for the generation of
huge mass ωL ∝ Q for longitudinal phonons [the second
term in Eq. (12)] and LO-TO splitting. As a result, the
phonon mode that remains soft at the transition is precisely
the transverse one, which does not generate a dipolar
moment. This result is exact for an isotropic phonon
dispersion. In the case of an anisotropic dispersion,
there is always a finite mixture between the LO and TO
modes leading to a remnant polarization in the soft phonon
branch [41]. However, this remnant goes quickly to zero at
small q (as q2), rendering this coupling less relevant than
Eq. (7) [48].

2. One-loop RG analysis

Now, we analyze the effective field theory for ionic
crystals (15) within the one-loop RG approach. To get rid of
the exponents ηψ , ηu, and z, which, in principle, can be
chosen arbitrary, we focus on the dimensionless quantities
which are independent of these engineering dimensions
[69,70]. First, we derive coupled RG equations for the ratio
of the phonon to electron velocities ζT ≡ cTZψ=vFZu and
the dimensionless electron-phonon coupling constant
β≡ λ2=4πc2TvFZψ (the details of the calculation can be
found in Appendixes A and B):
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dζT
dl

¼ −
ζTð1þ ζTÞ2ð1þ ζ2TÞN − 8ζ2T

6πð1þ ζTÞ2
β;

dβ
dl

¼ ð1þ ζTÞ2N − 4ð1 − ζTÞζT
3πð1þ ζTÞ2

β2: ð17Þ

The most important result that can be extracted from
these equations is that the electron-phonon coupling
β flows to the strong-coupling regime; see Fig. 4.
Consequently, we conclude that the ð3þ 1ÞD ferroelectric
quantum critical point in a Dirac semimetal considered
in this paper is generically a strongly coupled problem,
even if the original UV value of the coupling constant is
small. This conclusion may be contrasted with standard
QED in (3þ 1) dimensions, where the flow of the
interaction is towards weak coupling, and the low-energy
effective theory is the noninteracting Dirac fermion with
renormalized parameters [60]. In the next section, we
discuss the possible superconducting instabilities resulting
from this flow to strong coupling.
Our RG equations are derived under the assumptions of

the zero Dirac fermion mass and zero Fermi energy, while
the one-loop approximation is valid provided the coupling
remains small. Given the flow to the strong coupling, it is
important to understand what stops the RG flows. Here, we
estimate the scale at which β becomes of the order of 1 and
defer the discussion of a finite Dirac mass or Fermi energy
to Sec. V. In realistic materials, the Fermi velocity is much
bigger than the phonon velocity; thus, one can set ζT ≈ 0 in
Eq. (17). Then, the equation for the flow of β can be readily
integrated. Completely neglecting the mass of the soft
mode, ωT ≈ 0, we find that β grows toOð1Þ at the RG scale
lβ ¼ 3π=Nβ0, which corresponds to the momentum scale

Λβ ∼ Λ0 exp

�
−

3π

Nβ0

�
: ð18Þ

Here, β0 ≪ 1 is the initial UV value of the coupling
constant at the scale Λ0.
Another natural scale that serves as a cutoff for our RG

equations is set by the flow of the (dimensionless) mass of
the transverse phonon mode r≡ ω2

T=c
2
TΛ2

0, which deter-
mines the critical region:

dr
dl

¼ r

�
2þ Nβ

3π

�
−
4Nβ

3π
þ 10γ

3π2
; ð19Þ

where γ ≡ V=c3TZu is the dimensionless phonon-phonon
interaction. Assuming that β and γ are small compared to
the UV value r0, the solution of this equation with the
exponential accuracy reads as r ∼ r0e2l. The critical regime
is determined by the condition r≲ 1, which corresponds to
the RG scale lr ≈ ð1=2Þ lnð1=jr0jÞ or, equivalently, the
momentum scale [71]

Λr ∼ Λ0 exp

�
−
1

2
lnð1=jr0jÞ

�
¼ Λ0

ffiffiffiffiffiffiffi
jr0j

p
: ð20Þ

If Λβ > Λr, the theory flows to the strong-coupling regime
before the phonon mode gets massive. Our RG equations
are applicable then only down to Λβ. In the opposite case,
Λr > Λβ, the RG flow should be stopped at Λr, where the
transverse phonon mode becomes massive and can be
integrated out. At this scale, the system leaves the critical
regime, while the coupling between phonons and fermions
still remains weak. The corresponding phase diagram is
shown in Fig. 5. We consider the latter case in more detail
in the next section in the context of superconductivity.
Finally, we discuss the flow of the dimensionless

phonon-phonon interaction γ ≡ V=c3TZu, which corre-
sponds to the anharmonicity of the lattice oscillations:

dγ
dl

¼ γ

�
Nβð3 − ζ2TÞ

6π
−
17γ

5π2

�
−
2Nβ2ζT

3
: ð21Þ

This equation, again, can be easily analyzed in the physical
case ζT ≈ 0. Then, since β is a marginally relevant
parameter, γ eventually also flows to strong coupling. It
is straightforward to show, however, that this flow does not
introduce any new cutoff, as γ can reach the order of 1 no
sooner than at Λβ given by Eq. (18); see Fig. 6. This
scenario is realized in the large-N limit, i.e., when the term
proportional to ∝ γ2 on the right-hand side of Eq. (21) can
be neglected. It is also interesting to note that sufficiently
large ζT in Eq. (21) can, in principle, drive γ negative, thus
indicating a first-order transition into the ferroelectric state.
Since we consider ζT ∼ 1 hardly realizable in real physical
systems, we do not study this possibility in detail here.
Another interesting result that can be inferred from the

RG equations is the flow of the electron and phonon
velocities (here, we fix the dynamical critical exponent
z ¼ 1):

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

FIG. 4. The RG flow of the dimensionless electron-phonon
coupling β and the velocity ratio ζT given by Eq. (17) for a
single Dirac cone (left) and for N ¼ 4 (right). In both cases, the
flow is towards strong coupling, where the one-loop RG
analysis breaks down.
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dðvF=ZψÞ
dl

¼ −
4ζTβ

3πð1þ ζTÞ2
vF
Zψ

;

dðcT=ZuÞ
dl

¼ −
ð1þ ζ2TÞβN

6π

cT
Zu

: ð22Þ

We see that one of the physical properties of the ferro-
electric critical point in Dirac materials is the reduction of

the velocities under the RG for both the transverse phonon
modes and the Dirac fermions. Furthermore, as is shown in
Fig. 4, for N ¼ 1, the velocity ratio ζT flows to one of two
possible values ζ0 ¼ 0 or ζ1 ¼ 1, depending on whether the
initial value of ζT is smaller or larger than ζm ¼ t=32=3−
2=ð31=3tÞ − 1 ≈ 0.18, respectively, with t¼ð18þ2

ffiffiffiffiffi
87

p Þ1=3.
If N > 1, the flow is always towards ζ0 ¼ 0.
So far, we consider only a rotationally symmetric model

with isotropic electron and phonon velocities. For N > 1,
however, there is no symmetry that forbids anisotropic
terms which manifest the symmetry of the underlying
lattice. Nevertheless, accounting for these terms does not
modify the main qualitative results described above. Hence,
we focus on the isotropic case for the rest of the paper, for
simplicity, and defer the discussion of possible anisotropies
to Appendix D.

B. Covalent crystals (Q= 0)

Now we perform similar RG analysis for covalent
crystals, exemplified by elemental bismuth. The “ferro-
electric” phase in these materials is characterized by broken
inversion symmetry but not by a spontaneous dipolar
moment of the lattice, because the optical phonon distortion
u generates a negligible amount of polarization in covalent
crystals.
While the main qualitative results, such as the flow to

strong coupling, in this case are the same as for ionic
crystals, certain important differences should be discussed.
In particular, the absence of lattice polarization implies that
the effective theory for covalent crystals is given by Eq. (8)
with Q ¼ 0. As a result of this important difference, the
argumentation of Sec. IVA about the screening of Coulomb
interaction bymassive longitudinal phonons no longer holds.
Instead, one should keep track of the flows of the parameters
ε∞ and e, in addition to those considered in Eq. (17).
Focusing again on dimensionless parameters that do not
depend on engineering dimensions ηψ , ηu, ηϕ, and z, we find
the following set of coupled one-loop RG equations:

dβ
dl

¼ Nβ2

3π
þ 4β2ζTðζT − 1Þ

3πð1þ ζTÞ2
−

2β2ζ2T
πζLð1þ ζLÞ2

;

dα
dl

¼ −
2ðN þ 1Þα2

3π
þ 4αβζT
3πð1þ ζTÞ2

þ 2αβζ2Tð3þ ζLÞ
3πζLð1þ ζLÞ2

;

dζT
dl

¼ −
Nβð1þ ζ2TÞζT

6π
þ 4βζ2T
3πð1þ ζTÞ2

þ 2βζ3Tð3þ ζLÞ
3πζLð1þ ζLÞ2

−
2αζT
3π

;

dζL
dl

¼ Nβζ2Tð1 − ζ2LÞ
6πζL

þ 4βζTζL
3πð1þ ζTÞ2

þ 2βζ2Tð3þ ζLÞ
3πð1þ ζLÞ2

−
2αζL
3π

; ð23Þ

FIG. 6. The RG flow of the dimensionless phonon-phonon
coupling γ and the dimensionless electron-phonon coupling β
corresponding to Eqs. (17) and (21) in the limit ζT ¼ 0. The left
represents the case of a single fermionic flavor N ¼ 1, and the
right is for N ¼ 4. The scale when γ reaches the order of 1 never
exceeds Λβ.

FIG. 5. The phase diagram of a Dirac semimetal with N ¼ 4
close to a ferroelectric quantum critical point as a function of the
bare values of the control parameter r̃0 ¼ r0 þ ð5γ0=3π2Þ −
ð2Nβ0=3πÞ and the electron-phonon coupling β0. The red dashed
line separates the two regions Λr > Λβ and Λr < Λβ, corre-
sponding to weak- and strong-coupling regimes, respectively. In
the former region, the finite mass of phonons cuts off the RG flow
before β reaches strong coupling, and the theory with renorma-
lized parameters remains weakly coupled. In the latter case, β
flows to strong coupling before the system leaves the critical
region. This regime is characterized by strong electron-phonon
coupling and requires further study. The insets in each region
schematically depict the dispersion close to the four L points.
Every Dirac cone in the paraelectric phase splits into two Weyl
points in the ferroelectric phase.
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where we define β≡ λ2=4πvFc2TZψ , α≡ e2=ε∞vFZψ ,
ζT ≡ cTZψ=vFZu, and ζL ≡ cLZψ=vFZu.
Since both the longitudinal and the transverse phonon

modes become massless at the transition in covalent
crystals, they should be treated on equal footing.
Consequently, one could, in principle, consider two (not
independent) dimensionless couplings β ¼ λ2=4πvFc2TZψ

and β̃ ¼ λ2=4πvFc2LZψ , which quantify the electron-
electron interaction strength mediated by the transverse
phonons and the longitudinal phonons, respectively. It is
straightforward to show, however, that, in the physical limit
ζT ∼ ζL ≪ 1, β̃ is marginally irrelevant, while β flows to
strong coupling. Indeed, in this limit, first two equations in
Eq. (23) take the form (assuming also that βζT ≪ α)

dβ
dl

¼ Nβ2

3π
;

dα
dl

¼ −
2ðN þ 1Þα2

3π
; ð24Þ

while the analogous equation for β̃ would read as

dβ̃
dl

¼ −
Nβ̃2

3π
: ð25Þ

We note that, in this limit, the renormalization of the fine
structure constant α is identical to that in standard QED in
(3þ 1) dimensions [59,60]. Similarly to the case of ionic
crystals, electron-phonon coupling β flows to the strong-
coupling regime, while the Coulomb interaction α becomes
suppressed under the RG. The important difference, how-
ever, is that now α is only marginally irrelevant and flows to
zero much slower. The reason for this difference is that the
Coulomb screening in covalent crystals is due to interband
(between particle and hole bands) transitions, which is
much weaker than the screening by the lattice polarization
in ionic crystals.
The flow of the phonon velocities can also be easily

studied in the limit ζT ∼ ζL ≪ 1. Analogously to ionic
crystals, ζT flows to zero in this regime. The flow of ζL,
on the other hand, is sensitive to the number of flavors N
and to the initial conditions, as well as to the scale that stops
the RG. For instance, at sufficiently large N, ζL is increased
under the RG.
Finally, the flows of the phonon-phonon coupling γ and

the phonon mass r are qualitatively similar to the case of
ionic crystals, so we do not consider them in detail here.

V. SUPERCONDUCTIVITY

In the previous section, we analyze the RG flow of the
electron-phonon coupling near a ferroelectric quantum
critical point. We find that, generically, the critical point
is unstable and flows to strong electron-phonon coupling,
while the Coulomb interaction flows to weak coupling.

As a result, we anticipate that the effective electron-electron
attraction mediated by the ferroelectric phonon modes
will become dominant over the Coulomb repulsion.
Hence, the natural next step in our work is to apply this
result to study superconductivity.
We emphasize that in our scenario, for both ionic and

covalent crystals, the enhancement of the attractive inter-
action over the Coulomb repulsion does not require a
finite electron density, in contrast to the Anderson-Morel
theory. Nonetheless, this does not imply that the super-
conducting transition temperature does not depend on the
density. At least at weak coupling, β ≲ 1, a finite density of
states is essential to obtain a finite Tc. Therefore, we now
relax our previous assumption about the Fermi energy
exactly at the Dirac point and assume a nonzero Fermi
momentum kF. As before, we separately consider the cases
of ionic and covalent crystals. We also focus on the
paraelectric side of the transition, i.e., consider systems
possessing both time-reversal and inversion symmetries in
the normal state.

A. Ionic crystals

As we show in Sec. IV, one can define two scales Λβ and
Λr given by Eqs. (18) and (20), which correspond to the
divergence of the electron-phonon coupling β and the
phonon mass r, respectively. When Λr > Λβ, r diverges
first, and the flow is terminated before β reaches strong
coupling (this regime is denoted by the shaded regions in
Fig. 5). In what follows, we consider this weak-coupling
limit, where the BCS approach is applicable, and leave the
strong-coupling scenario Λβ > Λr for a future work.
The additional scale we introduce, kF, can, in principle,

also put the flow to a halt when the running scale ΛðlÞ ¼
Λ0 expð−lÞ becomes of the order of kF. Thus, depending
on the ratio between kF and Λr, one may again consider
two cases. The first case, kF ≳ Λr, is close to the standard
Anderson-Morel scenario with the phonon-associated scale
ðωT=cTÞjl¼0 being smaller than kF, and we do not consider
it here in detail. Since we are interested in understanding
superconductivity at a very low density, we focus on the
opposite limit Λr ≳ kF. In this case, the screening of the
Coulomb repulsion by longitudinal phonons occurs well
above the Fermi scale, as discussed below Eq. (14), and we
obtain a Fermi liquid with static phonon-mediated attrac-
tion. The inequality Λr ≳ kF also implies that (at a finite
density) the system is away from the immediate vicinity of
the critical point; the behavior exactly at criticality will be
considered in a separate work.
To obtain an effective low-energy interaction, we allow

the system to flow according to the RG equations derived in
Sec. IVA until it reaches the scale Λr. We then use Eq. (15)
to integrate out the transverse phonon mode, which is
massive at this scale, with the effective propagator that can
be considered frequency and momentum independent. This
procedure results in the attractive interaction Hamiltonian
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HFE ¼ −
2πv�Fβ

�

Λ2
0

X
k;k0;q

PjlðqÞðψ†
kþqγjψkÞðψ†

k0−qγlψk0 Þ; ð26Þ

where the effective interaction constant

β� ≡ βðlrÞ ¼
β0

1 − β0N
3π log Λ0

Λr

ð27Þ

is obtained from Eq. (17) in the limit of ζT ≪ 1, and we
also define the renormalized Fermi velocity v�F ≡ vFðlrÞ.
To make the analysis similar to the conventional BCS at
this point, we write Eq. (26) in the Hamiltonian formalism
(and use ψ† instead of ψ̄). We also note that the static
interaction, Eq. (26), becomes a good approximation below
the scale Λr, where ω≲ ωT , similar to BCS theory.

1. Projection onto the Fermi level

Now we analyze the superconducting instabilities due to
interaction (26). We assume that the Fermi energy εF ¼
vFkF is much larger than the superconducting gap,
εF ≫ Δ; hence, the conventional weak-coupling BCS-like
treatment is applicable. In this case, it is convenient to
project all operators onto the band where the Fermi level
resides, thus significantly simplifying the model by reduc-
ing it from the original four-orbital to an effective two-
orbital. In the paraelectric phase, the only case we consider
in this section, both time-reversal and inversion symmetry
are present in the normal state; hence, all energy bands
remain double degenerate even in the presence of strong
spin-orbit coupling. The electron states are characterized by
a two-component spinor ck ¼ ½c1ðkÞ; c2ðkÞ�T. In the pres-
ence of spin-orbit coupling, however, components c1;2 are
not spin eigenstates anymore but rather eigenstates in some
band basis. The choice of this basis is not unique. For
concreteness, we choose the so-called manifestly covariant
Bloch basis (MCBB), in which ½c1ðkÞ; c2ðkÞ�T transforms
as an ordinary SUð2Þ spin-1=2 [57]. To find this basis, we
diagonalize the Hamiltonian which corresponds to Eq. (2)
and choose the band eigenstates to be fully spin polarized
along the z axis at the origin of the point group symmetry
operations (see also Refs. [58,72] for more details). The
eigenvectors b1ðkÞ and b2ðkÞ in the MCBB that correspond
to the states near Fermi energy are given, respectively, by

b1ðkÞ ¼
1

2

0
BBBBB@

η − k̂z

−k̂þ
ηþ k̂z

k̂þ

1
CCCCCA; b2ðkÞ ¼

1

2

0
BBBBB@

−k̂−
ηþ k̂z

k̂−
η − k̂z

1
CCCCCA; ð28Þ

where η ¼ �1 corresponds to the conduction and valence
bands, respectively, and we define k̂� ¼ ðkx � ikyÞ=k.
The mapping onto the MCBB then simply implies the

transformation ψðkÞ → b1ðkÞc1ðkÞ þ b2ðkÞc2ðkÞ and can
schematically be written as ψðkÞ ¼ QηðkÞcðkÞ, where
QηðkÞ is a projector onto the MCBB. It is straightforward
to show then that the Dirac bilinear γj, which couples to a
soft phonon mode, projects onto

Mj
p;k ¼ Q†

ηðpÞγjQηðkÞ ¼
η

2
½iðp̂j − k̂jÞ þ ðk̂l þ p̂lÞσmϵlmj�;

ð29Þ

where ϵlmj is the Levi-Civita tensor, σj here are Pauli
matrices acting in the MCBB, and we define k̂j ≡ kj=k.
The effective interaction (26) projected onto the band

with the Fermi level has the form (here, we use the notation
k̂≡ k=k)

HT
FE ≃ −

πv�Fβ
�

2Λ2
0

X
k;k0;q

PjlðqÞfc†kþq½ið dkþ q − k̂Þ

þðk̂þ dkþ qÞ × σ�jckg × fc†k0−q½ið dk0 − q − k̂0Þ
þðk̂0 þ dk0 − qÞ × σ�lck0g: ð30Þ

2. Pairing channels and transition temperature

To demonstrate the superconducting instabilities, we
now decompose interaction (30) into pairing channels,
analogously to how it is done in Ref. [58]. The time-
reversal invariant superconducting order parameter gener-
ally takes the form

F̂† ¼
X
k;αβγ

ϵβγFαβðkÞc†kαc†−kγ; ð31Þ

where, again, ϵβγ is the Levi-Civita symbol. In systems with
strong spin-orbit coupling, spin S and orbital angular
momentum L are not good quantum numbers. Instead, in
systems with Oð3Þ symmetry considered here, all possible
orders are characterized by the total angular momentum
J ¼ Lþ S. As is shown in Refs. [57,58], the form factors
FαβðkÞ up to the order of J ¼ 1 have the form shown in
Table II. L ¼ 0 state F0 corresponds to the conventional
s-wave pairing with J ¼ 0, whileL ¼ 1 states are odd-parity

TABLE II. The decomposition of the phonon-mediated inter-
actions (30) and (38) into the BCS channels Fn with total angular
momentum J ¼ 0 (a0 and a1) and J ¼ 1 (a2); see Eqs. (32) and
(40). Positive coefficients ai imply the attraction in the corre-
sponding BCS channels.

Form factor P Coefficient Transverse Longitudinal

F0ðkÞ ¼ I Even a0 1 2
F1ðkÞ ¼ k̂ · σ Odd a1 −1 −2
Fj
2ðkÞ ¼ ðk̂ × σÞj Odd a2 1=2 −3=2
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pwave and transform as a pseudoscalar (F1 with J ¼ 0) and
a vector (Fj

2 with J ¼ 1) under the symmetry operations.
Next, we restrict the effective interaction (30) to the

Cooper channel with the zero total momentum by keeping
terms with k0 ¼ −k only. Focusing on the states near
the Fermi surface, jkj ≈ jk0j ≈ jkþ qj ≈ jk0 − qj ≈ kF, it is
straightforward to decompose Eq. (30) into the pairing
channels Fn [58]:

HT
FE ≈ −

πv�Fβ
�

2Λ2
0

X2
n¼0

aTn
X
j

F̂j†
n F̂

j
n þ � � � ; ð32Þ

where coefficients aTn are listed in Table II. The ellipsis on
the right-hand side in Eq. (32) denotes terms with J > 1
[73]. The contribution from these terms is numerically
small, and we do not consider it in this paper.
Up to the order of J ¼ 1, only two channels are attractive

and lead to a superconducting instability: the scalar F̂0 with
aT0 ¼ 1 and the vector F̂j

2 with a
T
2 ¼ 1=2. We thus conclude

that pairing in the s-wave channel is the most dominant
superconducting instability.
The transition temperature Tc (for a given n) can be

estimated from Eq. (32) using the usual gap equation [74]:

δij ¼
πv�Fβ

�

2Λ2
0

aTn
X
k

tr½Fi
nðkÞFj

nðkÞ� tanhðξk=2TcÞ
ξk

: ð33Þ

In the case of the most attractive s-wave channel, it takes
the form

1 ≈
2πv�Fβ

�aT0 ν
�

Λ2
0

Z∼εF
∼Tc

dξ
ξ
; ð34Þ

where ν� ¼ k2FðlrÞ=2π2vFðlrÞ is the density of states at the
Fermi energy per one spin projection per one Dirac node,
with all quantities entering it taken at the RG scale lr. We
emphasize that the upper cutoff in Eq. (33) is not the
phonon frequency, as in the standard BCS theory, but given
by the Fermi energy. This situation is somewhat analogous
to the superfluidity in a charge-neutral Fermi liquid, studied
in Ref. [75]. We estimate the transition temperature from
Eq. (33) as

Tc ∼ εF exp
�
−

Λ2
0

2πv�Fβ
�aT0 ν

�

�

¼ εF exp

�
−
πΛ2

r

k2Fβ
�

�
¼ εF exp

�
−

πω2
T0

k2Fc
2
T0β

�

�
: ð35Þ

The parameters kF, cT0, and ωT0 in this equation are the
original (UV) values of the Fermi momentum, phonon
velocity, and phonon mass, respectively, while β� is renor-
malized according to Eq. (27), and we use kFðlÞ ¼ kFel.

In particular, kF is related to the total electron density n0
and the number of Dirac nodes N as kF ¼ ð3π2n0=NÞ1=3.
We see that the proximity to the ferroelectric critical point
leads to a significant enhancement of Tc. To emphasize this
point, we rewrite Eq. (35) in the form

Tc ∼ Tc0

�
1

r0

�
δ

≫ Tc0; δ ¼ Nω2
T0

6k2Fc
2
T0

≫ 1; ð36Þ

where Tc0 ∼ εF exp ð−πω2
T0=k

2
Fc

2
T0β0Þ is the estimate for a

transition temperature that we would obtain without taking
into account the critical nature of the ferroelectric fluctua-
tions. We see that, even within the weak-coupling approxi-
mation β0 lnðΛ0=ΛrÞ≲ 1, we obtain a huge enhancement of
the transition temperature by a factor of ð1=r0Þδ due to the
renormalization of the coupling β. This result is to some
extent similar to the enhancement of Tc by the critical
nematic fluctuations obtained in Ref. [29].
We see from Eq. (35) that the transition temperature is

exponentially sensitive to β� and kF=Λr, both of which can
be made of the order of 1 close to the FE QCP. We estimate
the magnitude of Tc given by Eq. (35) using parameters of a
realistic system, such as Pb1−xSnxTe. We assume that the
system is close enough to the QCP such that β� gets
sufficiently renormalized and becomes of the order of one
[in particular, we take β� ¼ 1, which is controlled by the
logarithmic divergence in Eq. (27)]. The phonon velocity
can be estimated as cT0 ¼ 3 × 103 m=s [76,77], and we
take a small (since we are close to the critical point) phonon
mass ωT0 ¼ 0.35 meV. The low-energy electronic struc-
ture of Pb1−xSnxTe is given by N ¼ 4 Dirac cones with a
typical Fermi velocity vF ≃ 106 m=s [78]. For the electron
density n0 ¼ 2 × 1017 cm−3, we find from Eq. (35) Tc ≈
440 mK with εF ≈ 870 K and kF=Λr ≈ 0.64. Analogously,
for n0 ¼ 4 × 1017 cm−3, we obtain Tc ≈ 9.1 K with εF ≈
1100 K and kF=Λr ≈ 0.81. Despite the fact that the values
of Tc obtained above are only very rough estimates, we
conclude that Eq. (35) may lead to a significant transition
temperature even for a very low density of electrons. The
direct electron-phonon coupling Eq. (7), which remains
finite at zero momentum, is a prerequisite for this result. It
leads to a phonon-mediated interaction with typical range
Λ−1
r , which, sufficiently close to the critical point, becomes

of the same order as the interparticle distance k−1F . This is in
perfect agreement with the result by Gurevich, Larkin, and
Firsov [14], who point out that low-density superconduc-
tivity necessarily requires a sufficiently long-ranged attrac-
tive interaction.
Finally, we estimate the temperature that would corre-

spond to a transition into the p-wave superconducting
state Tcp:
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Tcp ∼ εF exp

�
−

3Λ2
0

4πv�Fβ
�aT2 ν

�

�
¼ εF exp

�
−

3πω2
T0

k2Fc
2
T0β

�

�
:

ð37Þ

An additional factor of 3=2 in the exponent appears due to
the averaging over the directions of vector k in Eq. (33).
Tcp is exponentially smaller than Tc, and, consequently, the
p-wave superconducting phase seems unreachable within
the present scenario. However, we demonstrate in the next
section that the presence of the repulsive Coulomb inter-
action can, under certain conditions, suppress the s-wave
channel and drive a system into the odd-parity p-wave
superconducting state.

B. Covalent crystals

Our analysis of superconductivity in covalent crystals is
similar to the ionic case. There are, however, two important
differences. First, the longitudinal phonon mode also
becomes soft at a ferroelectric transition, and, consequently,
there will be an additional contribution to the effective
electron-electron interaction mediated by a longitudinal
mode. Second, the Coulomb repulsion is not screened by
the lattice polarization but only by the interband transitions.
Consequently, as we show in Sec. IV B, the correspondent
coupling constants β̃ and α are marginally irrelevant; see
Eqs. (24) and (25). They flow to zero only logarithmically
upon RG and, thus, should be taken into account in the
weak-coupling regime we are considering here. As we
show below in Sec. V B 1, the inclusion of the Coulomb
interaction allows one, upon proper tuning of the coupling
constants, to realize a p-wave superconductor.
The effective electron-electron interaction due to longi-

tudinal phonons projected onto the Fermi level has the
same form as Eq. (26), but with the substitution PijðqÞ →
δij − PijðqÞ and β� → β̃�:

HL
FE ≃ −

πv�Fβ̃
�

2Λ2
0

X
k;k0;q

½δjl − PjlðqÞ�

× fc†kþq½ið dkþ q − k̂Þ þ ðk̂þ dkþ qÞ × σ�jckg
× fc†k0−q½ið dk0 − q − k̂0Þ þ ðk̂0 þ dk0 − qÞ × σ�lck0g;

ð38Þ

where β̃� is given by [see Eq. (25)]

β̃� ≡ β̃ðlrÞ ¼
β0

1þ β0N
3π log Λ0

Λr

; ð39Þ

and, again, we use the notation k̂≡ k=k. The decomposi-
tion into the pairing channels has a form similar to Eq. (32),
with β� substituted by β̃�:

HL
FE ≈ −

πv�Fβ̃
�

2Λ2
0

X2
n¼0

aLn
X
j

F̂j†
n F̂

j
n þ � � � ; ð40Þ

and coefficients aLn are listed in Table II.
We see that the interaction mediated by the longitudinal

phonons also favors s-wave pairing; hence, its only effect
is to modify the expression for Tc accordingly. The
inclusion of the Coulomb interaction, on the other hand,
may have more dramatic consequences, leading, under
certain conditions, to the p-wave superconductivity in
covalent crystals.

1. Possibility of p-wave pairing

To demonstrate how the Coulomb repulsion may result
in the p-wave superconductivity, we generalize our analysis
for the case of a finite Dirac mass m in Eq. (2). Again,
we focus on the regime with m=vF; kF ≲ Λr, so the RG
flow is not affected by the nonzero mass or Fermi energy
and stops at the same scale Λr, while the ratio m=vFkF can
be arbitrary.
In the case of a finite mass, the eigenvectors in the

MCBB (28) are generalized as

b1ðkÞ ¼

0
BBBBB@

βþ − β−k̂z

−β−k̂þ
βþ þ β−k̂z

β−k̂þ

1
CCCCCA; b2ðkÞ ¼

0
BBBBB@

−β−k̂−
βþ þ β−k̂z

β−k̂−
βþ − β−k̂z

1
CCCCCA;

ð41Þ

where we consider only states at the Fermi surface,
jkj ¼ kF, and define β� ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m=εF
p

with εF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ v2Fk

2
F

p
. Equation (41) also assumes the Fermi

energy inside the electron band, while the expression
for the opposite case is obtained by the substitution
β− → βþ; βþ → −β−. Hereafter, all quantities entering
the equations (e.g., Fermi velocity vF, Fermi momentum
kF, mass m, Fermi energy εF, Thomas-Fermi vector qTF, or
density of states ν) are meant to be taken at the RG scale lr
(which corresponds to Λr in momentum space), and we
suppress index � for brevity, unless otherwise specified.
The effect of a finite mass on the phonon-mediated

part of the interaction is rather simple: It results in the
extra prefactor v2Fk

2
F=ε

2
F in Eqs. (30) and (38). As a

result, all coefficient aTn in Eq. (32) should be replaced
by aTn → ðv2Fk2F=ε2FÞaTn [and analogously for all coeffi-
cients aLn in Eq. (40)]. Finally, the density of states ν in
Eqs. (35) and (37) should be modified according to
ν ¼ εFkF=2π2v2F.
The decomposition of the Coulomb repulsion is more

subtle. Because of its long-range nature, the momentum
dependence of the interaction must also be taken into
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account. Taking the simple Thomas-Fermi approximation
and projecting onto the MCBB, we find

HC¼8πα�vF
X
k;p;q

1

q2þq2TF

×fc†kþq½(β2þþβ2−ð dkþq · k̂Þ)þ iβ2− dkþq× k̂ ·σ�ckg
×fc†k0−q½(β2þþβ2−ð dk0−q · k̂0Þ)þ iβ2− dk0−q× k̂0 ·σ�ck0 g;

ð42Þ

where q2TF ¼ 8πNα�νvF is the square of the Thomas-Fermi
wave vector and α� is given by

α� ≡ αðlrÞ ¼
α0

1þ 2ðNþ1Þ
3π α0 log

Λ0

Λr

: ð43Þ

Again, all quantities entering qTF here are taken at the RG
scale lr.
Focusing on the states at the Fermi surface only, we

decompose the Coulomb interaction (42) into the pairing
channels:

HC ≈
πα�vF
k2F

X2
n¼0

fn

�
qTF
kF

�X
j

F̂j†
n F̂

j
n þ � � � ; ð44Þ

where the ellipsis stands for the terms with J > 1 which we
neglect here. The expression for functions fnðxÞ are rather
cumbersome and presented in Appendix E.
Summing up contributions from the transverse and

longitudinal phonon modes, Eqs. (32) and (40), and direct
Coulomb repulsion (44), the decomposition of the total
effective electron-electron interaction into the pairing
channels has the form

HT
FE þHL

FE þHC ≈ πvF
X2
n¼0

�
−aTn

β�v2Fk
2
F

2Λ2
0ε

2
F
− aLn

β̃�v2Fk
2
F

2Λ2
0ε

2
F

þ α�

k2F
fn

�
qTF
kF

��X
j

F̂j†
n F̂

j
n þ � � � ;

ð45Þ

where coefficients aTn and aLn are presented in Table II and
functions fnðxÞ are listed in Appendix E. Equation (45) is
a direct generalization of Eq. (32) for the case of covalent
crystals and a finite Dirac mass. The expressions for Tc in
the attractive pairing channels can also be easily general-
ized for this case.
In general, functions fnðxÞ have a rather complicated

form. However, to demonstrate how the p-wave super-
conductivity may appear, it is sufficient to consider the
limit of a very low density, vFkF ≪ εF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ v2Fk

2
F

p
.

Assuming further that α� is not too small, we find

f0

�
qTF
kF

�
≈

π

4Nα�
vFkF
εF

;

f1

�
qTF
kF

�
≈

π2

24N2α�2

�
vFkF
εF

�
2

;

f2

�
qTF
kF

�
≈

π2

16N2α�2

�
vFkF
εF

�
2

: ð46Þ

It is clear from the above expression that, as long as
α�εF ≫ vFkF, the s-wave channel is much more sup-
pressed by the Coulomb repulsion than the p-wave
channel, f0 ≫ f1;2. We further assume that the coupling
constants β� and β̃� are renormalized significantly enough,
such that β� ∼ 1 and β̃� ≈ 0. It means that the system is on
the verge of entering the strong-coupling regime, while the
contribution from the interaction mediated by the longi-
tudinal phonons can be neglected. Then, the ratio between
the phonon-mediated attraction and the Coulomb repulsion
in the s-wave channel can be rudely estimated as

jHTð0Þ
FE =Hð0Þ

C j ∼ β�N
�
vFkF
εF

��
kF
Λ0

�
2

≪ 1: ð47Þ

We see that, because of the small factor vFkF=εF ≪ 1, the
Coulomb repulsion significantly exceeds the attraction due
to phonons, thus completely suppressing superconductivity
in this channel.
On the other hand, the analogous estimate for the vector-

type p-wave pairing channel Fi
2, which, according to

Table II, is also attractive if only the transverse phonons
are considered, gives

jHTð2Þ
FE =Hð2Þ

C j ∼ α�β�N2

�
kFðlrÞ
Λ0

�
2

; ð48Þ

where we explicitly restore the argument lr. We see that,
unlike the s-wave, the above expression does not have the
smallness vFkF=εF. Consequently, assuming that α�;β�∼1,
the ratio (48) can be of the order of 1 provided the
smallness kFðlrÞ=Λ0 ¼ kF=Λr ∼ kFcT0=ωT0 is compen-
sated by a large numerical prefactor and a large number
of Dirac cones N.
The prerequisites for the p-wave superconductivity in

the scenario described above impose a lot of constraints
on the parameters entering the problem. It is important to
note that the spin-orbit effects are suppressed in the limit
vFkF ≪ εF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ v2Fk

2
F

p
(the dispersion becomes

effectively Schrödinger-like), which results in the small
prefactor v2Fk

2
F=ε

2
F in the effective interactions (30) and

(38). Because of this additional density dependence in the
exponent that dictates Tc, the TO phonon-mediated mecha-
nism is not parameterically greater than the standard
acoustic phonon mechanism. Thus, the two mechanisms
must be numerically compared to dictate which one gives a
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larger Tc. Nonetheless, for low-density systems, where the
density of states is small, they are both expected to give
very small transition temperatures.

VI. CONCLUSIONS

We have studied the ferroelectric quantum critical point
in three-dimensional low-density Dirac materials. We
derived a general low-energy effective field theory that
includes the interaction between soft phonon modes and
electrons, as well as Coulomb repulsion. We showed that
the dominant interaction between electrons is mediated by
the transverse phonon mode, while the Coulomb repulsion
is screened by the lattice. Using RG analysis, we demon-
strated that the effective low-energy theory flows to a
regime with strong electron-phonon coupling. For com-
parison, we performed a similar analysis for covalent
crystals, where the “ferroelectric” transition implies the
breaking of inversion symmetry of the lattice without
generating an electrical polarization. While the main results
in this case are qualitatively the same, the screening of the
Coulomb repulsion is much weaker in covalent crystals
because of the lack of lattice polarization. We further
demonstrated that the proximity to the FE critical point
significantly enhances superconductivity. Finally, we
showed how the interplay between phonon-mediated
attraction and Coulomb repulsion in covalent crystals
can, in principle, lead to p-wave superconductivity.
It is interesting that the problem of a Dirac semimetal

undergoing a ferroelectric transition generically flows to
strong coupling even in the absence of a finite Fermi
surface. This problem can be addressed using the
determinental quantum Monte Carlo method, since it
does not suffer from a sign problem. It will be
informative to study the fate of the system in the
strong-coupling limit, for example, whether the super-
conducting transition survives, or it is destroyed by
strong critical fluctuations.

We also expect that the strong-coupling regime close to
the critical point will have experimental consequences. For
example, high-accuracy measurements of the phonon
dispersion may reveal a 2kF Kohn anomaly. Furthermore,
strong coupling will significantly enhance electron scatter-
ing, leading to a strong temperature-dependent resistivity.
Considering our results in a broader context, we expect

this mechanism to be relevant to all low-density super-
conductors that possess a near crossing of conduction and
valence bands. As explained in the introduction, this feature
applies to almost all low-density superconductors, includ-
ing bismuth, YPtBi, PbTe, SnTe, SrxBi2Se3, Ge, and
Sr3−xSnO. Of particular interest is the quadratic-band-
touching semimetal YPtBi, where a similar RG analysis
can lead to nontrivial fixed points. Finally, we suggest that
the mechanism considered in this work may be relevant to
the high-Tc low-density superconductor FeSe, which also
possesses a Dirac-like dispersion close to the M points in
the Brillouin zone.
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APPENDIX A: ONE-LOOP DIAGRAMS

Here, we list the one-loop diagrams that contribute to our
renormalization group equations. We start from the action
for the covalent crystals by including both the transverse
and longitudinal optical phonon modes. The result for the
polar case can be deduced by restricting to the diagrams
with only transverse phonons (formally, just take the
e → 0; cL → ∞ limit):

S ¼
Z

d4x

�XN
n¼1

ψ̄n½Zψγ0∂0 þ vFγj∂j�ψn þ
1

2
uj½ð−Z2

u∂2
0 þ ω2

TÞδjl − c2Tð∇2δjl − ∂j∂lÞ − c2L∂j∂l�ul

þ VðujujÞ2 þ
ε∞
8π

ð∂jϕÞ2 þ ie
XN
n¼1

ψ̄nγ
0ψnϕþ λ

XN
n¼1

ψ̄nγ0γjψnuj

�
: ðA1Þ

In this paper, we use the standard momentum-shell RG scheme, implying integrating out an infinitesimal momentum shell
Λ0e−δl < q < Λ0 and all frequencies −∞ < ω < ∞ at every RG step.

1. Fermion self-energy

Both the optical phonons and the Coulomb field contribute to the fermion self-energy. The contributions from the phonon
fields come from both the transverse phonon field and the longitudinal phonon field:
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ðA2Þ

The self-energy from the Coulomb interaction reads

ðA3Þ

2. Optical phonon self-energy

The polarization of the phonon field given by the fermion bubble diagram is

ðA4Þ

Interestingly, we notice that the fermion bubble diagram renormalizes the velocities of the transverse mode and the
longitudinal mode in opposite ways. In this sense, the fermions can make the two modes very different. When considering
the ionic crystal case, we simply omit the one-loop renormalization of the longitudinal mode, since it has a large gap.
Additionally, the self-interaction of the phonon field also generates a self-energy correction, which is given by

ðA5Þ

3. Coulomb field self-energy

ðA6Þ

4. Electron-phonon vertex correction

Each vertex correction has two contributions: one where the boson exchanged in the loop is the same boson of the vertex
and one where it is the other bosonic field. For example, the vertex correction to the electron-phonon coupling is given by
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ðA7Þ

5. Coulomb vertex correction

The correction to the Coulomb vertex equals

ðA8Þ

Note that the one-loop ∼e3 vertex correction vanishes in the case of the instantaneous Coulomb interaction.

6. Phonon interaction vertex correction

Finally, the four-phonon vertex is renormalized by the phonon bubble diagrams and by the fermion box diagram. Over
all, we find that the correction is given by

ðA9Þ
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APPENDIX B: RG EQUATIONS FOR IONIC
CRYSTALS (Q ≠ 0)

As explained in Sec. IVA, in the ionic case the, dipolar
interactions between lattice distortions generate a big
mass ωL for longitudinal phonons, which effectively screen
the Coulomb repulsion between electrons. As a result, the
Coulomb interaction and longitudinal phonons become
irrelevant for our renormalization group study. Thus, the
RG equations for the ionic case can be easily derived from the
calculations in Appendix A by setting e ¼ 0 and cL → ∞.
This limit leads to the following RG equations:

dZψ

dl
¼

�
2ηψ − 2z − 3þ λ2Zu

2π2cTðcTZψ þ vFZuÞ2
�
Zψ ; ðB1Þ

dvF
dl

¼
�
2ηψ − z − 4þ λ2Zu

6π2cTðcTZψ þ vFZuÞ2
�
vF; ðB2Þ

dZ2
u

dl
¼ ð2ηu − 3z − 3ÞZ2

u þ
Nλ2Zψ

12π2v3F
; ðB3Þ

dc2T
dl

¼ ð2ηu − z − 5Þc2T −
Nλ2

12π2ZψvF
; ðB4Þ

dω2
T

dl
¼ ð2ηu − z − 3Þω2

T −
Nλ2Λ2

0

3π2ZψvF
þ 10Λ2

0V
3π2cTZu

; ðB5Þ

dλ
dl

¼ ð2ηψ þ ηu − 2z − 6Þλþ λ3

6π2cTvFðvFZu þ cTZψÞ
;

ðB6Þ

dV
dl

¼ ð4ηu − 3z − 9ÞV −
17V2

5π2c3TZu
−

λ4N
24π2Zψv3F

: ðB7Þ

APPENDIX C: RG EQUATIONS FOR
COVALENT CRYSTALS (Q= 0)

The RG equations for the covalent case can be readily
obtained from Eqs. (A2)–(A9):

dZψ

dl
¼

�
2ηψ − 2z − 3þ λ2Zu

2π2cTðcTZψ þ vFZuÞ2

þ λ2Zu

4π2cLðcLZψ þ vFZuÞ2
�
Zψ ; ðC1Þ

dvF
dl

¼
�
2ηψ − z − 4þ λ2Zu

6π2cTðcTZψ þ vFZuÞ2

−
λ2Zuð3vFZu þ 2cLZψ Þ

12π2cLvFZuðcLZψ þ vFZuÞ2
þ 2e2

3πε∞ZψvF

�
vF;

ðC2Þ

dZ2
u

dl
¼ ð2ηu − 3z − 3ÞZ2

u þ
Nλ2Zψ

12π2v3F
; ðC3Þ

dc2T
dl

¼ ð2ηu − z − 5Þc2T −
Nλ2

12π2ZψvF
; ðC4Þ

dc2L
dl

¼ ð2ηu − z − 5Þc2L þ Nλ2

12π2ZψvF
; ðC5Þ

dω2
T

dl
¼ ð2ηu − z − 3Þω2

T −
Nλ2Λ2

0

3π2ZψvF
þ 5Λ2

0V
3π2Zu

�
2

cT
þ 1

cL

�
;

ðC6Þ

dε∞
dl

¼ ð2ηϕ − z − 5Þε∞ þ 2Ne2

3πZψvF
; ðC7Þ

dλ
dl

¼ ð2ηψ þ ηu − 2z − 6Þλþ λ3

6π2cTvFðvFZu þ cTZψÞ

−
λ3ð3vFZu þ cLZψ Þ

12π2cLvFðvFZu þ cLZψ Þ2
þ λe2

3πvFZψε∞
; ðC8Þ

de
dl

¼ ð2ηψ þ ηϕ − 2z − 6Þeþ eλ2Zu

2π2cTðvFZu þ cTZψÞ2

þ eλ2Zu

4π2cLðvFZu þ cLZψ Þ2
; ðC9Þ

dV
dl

¼ ð4ηu − 3z − 9ÞV −
λ4N

24π2Zψv3F
−

17V2

5π2Zuc3T

−
47V2

30π2Zuc3L
−

16V2

15π2ZucTcLðcT þ cLÞ
: ðC10Þ

It is worth noticing that the one-loop ∼e3 correction to
e in Eq. (C9) vanishes in the case of the instantaneous
Coulomb interaction.

APPENDIX D: COMMENTS ABOUT CRYSTAL
ANISOTROPY

In theanalysispresented in themain text,weconsidera fully
rotational invariant system. In a realistic crystal, however,
there are always anisotropies. In this Appendix, we discuss
such anisotropies in ionic crystals with cubic symmetry.
A cubic anisotropy has two important effects that are

relevant to the flow of β. First, the dispersion of the soft
modes (3) includes the anisotropy term

Sa
u ¼ −κ

Z
d4qq2ju

2
j :

We neglect this term in what follows; i.e., we assume κ ¼ 0.
We also mention a recent comment where the effect of this
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term on the polarization of the ferroelectric modes is
computed perturbatively [48].
The second effect of crystal anisotropy which we

consider appears in the electronic dispersion, which is
relevant only for N > 1. Let us consider N ¼ 4, where the
four Dirac points occur on the boundary of the BZ at the L
points. In this case, the Dirac dispersion term Eq. (2) is
modified according to [61]

Sψ ¼
XN
n¼1

Z
d4xψ̄n½γ0∂0 þ vFðγx∂x þ γy∂yÞ

þ vzγz∂z þm − γ0εF�ψn; ðD1Þ

where the z direction is defined differently for each Dirac
point. It corresponds to the line connecting the Γ point to
each of the L points. Additionally, the coupling of each of
these Dirac points to the phonons Eq. (7) is also modified:

Sψu ¼
XN
n¼1

Z
d4xψ̄n½λzγ0γzuz þ λðγ0γxux þ γ0γyuyÞ�ψn;

ðD2Þ

where λz is the coupling to a distortion along the line and λ
is the coupling transverse to it.
The RG procedure described in Sec. IV can still be

performed analytically, although the expressions become
rather lengthy. We also have two additional dimensionless
parameters vz=vF and λz=λ that flow under the RG.
The crucial point is that the main result of this paper, the

flow of β towards strong coupling, remains unchanged. To
demonstrate this point, we plot the β function for β in the
anisotropic case normalized by the β function for isotropic
case, Eq. (17), with ζT ¼ 0.1 in Fig. 7. Here, the ratio is
plotted for three different values of λz=λ as a function of
vz=vF. We find that in all cases the β function is positive.
Also note that the regimes of vz < vF and vz > vF should
not be considered on equal footing, since in the latter case

the density of states at the Dirac point is enhanced, while in
the opposite limit it is decreased. Also, note that we do not
perform a detailed study of the multidimensional flow in
the four-dimensional space of all four parameters.

APPENDIX E: DECOMPOSITION OF THE
EFFECTIVE INTERACTION INTO

PAIRING CHANNELS

In this Appendix, we briefly outline the procedure for
the decomposition of the effective interaction into the
pairing channels. As an example, we consider the
Coulomb interaction given by Eq. (42), while the decom-
position of the phonon-mediated interactions (30) and (38)
can be performed analogously. Considering only pairings
with zero total momentum, we find that Eq. (42) can be
written as

HC ≈
X
k;p

Vαβγδðk; pÞc†pαc†−pβc−kγckδ; ðE1Þ

where Vαβγδðk; pÞ is given by

Vαβγδðk; pÞ ¼ 4πα�vF

�
1

ðp − kÞ2 þ q2TF
½ðβ2þ þ β2−ðp̂ · k̂ÞÞ þ iβ2−p̂ × k̂ · σ�αδ × ½ðβ2þ þ β2−ðp̂ · k̂ÞÞ þ iβ2−p̂ × k̂ · σ�βγ

−
1

ðpþ kÞ2 þ q2TF
½ðβ2þ − β2−ðp̂ · k̂ÞÞ − iβ2−p̂ × k̂ · σ�αγ × ½ðβ2þ − β2−ðp̂ · k̂ÞÞ − iβ2−p̂ × k̂ · σ�βδ

�
; ðE2Þ

and we took into account only states near Fermi surface, jkj ≈ jpj ≈ kF. Then, this interaction can be decomposed into the
pairing channels according to

Vαβγδðk; pÞ ¼
πα�vF
k2F

X2
n¼0

fn

�
qTF
kF

�X
j

½iFj
nðp̂Þσy�αβ½iFj

nðk̂Þσy�†γδ þ � � � ; ðE3Þ

where form factors Fj
n are defined in Table II. Next, multiplying this expression by ½iFj

nðk̂Þσy�δγ, performing the summation

over spin indices γ and δ using Fierz identities, and evaluating the integral over k̂, we find

FIG. 7. The β-function for the flow of the dimensionless
coupling constant β with the anisotropies, Eqs. (D1)–(D2),
normalized by the “isotropic” β-function given by Eq. (17), as
a function of vz=vF for three different values of λz=λ.
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f0ðxÞ ¼ ðβ4þ þ β4−Þ ln
4þ x2

x2
þ β2þβ2−

�
−4þ ð2þ x2Þ ln 4þ x2

x2

�
;

f1ðxÞ ¼ 2β2þβ2− ln
4þ x2

x2
þ β4þ þ β4−

2

�
−4þ ð2þ x2Þ ln 4þ x2

x2

�
;

f2ðxÞ ¼
3β2þβ2−

4

�
−2ð2þ x2Þ þ 4þ ð2þ x2Þ2

2
ln
4þ x2

x2

�
þ 3ðβ4þ þ β4−Þ

2

�
−2þ 2þ x2

2
ln
4þ x2

x2

�
: ðE4Þ

The asymptotic behavior of these expressions in the limit
kFvF ≪ εF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2Fv

2
F

p
(which corresponds to x ≫ 1)

is presented in the main text; see Eq. (46).
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