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10 rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13, France

(Received 27 February 2019; revised manuscript received 3 June 2019; published 9 September 2019)

Combining model experiments and theory, we investigate the dense phases of polar active matter beyond
the conventional flocking picture. We show that above a critical density flocks assembled from self-
propelled colloids arrest their collective motion, lose their orientational order, and form solids that actively
rearrange their local structure while continuously melting and freezing at their boundaries. We establish that
active solidification is a first-order dynamical transition: active solids nucleate, grow, and slowly coarsen
until complete phase separation with the polar liquids with which they coexist. We then theoretically
elucidate this phase behavior by introducing a minimal hydrodynamic description of dense polar flocks and
show that the active solids originate from a motility-induced phase separation. We argue that the
suppression of collective motion in the form of solid jams is a generic feature of flocks assembled from
motile units that reduce their speed as density increases, a feature common to a broad class of active bodies,
from synthetic colloids to living creatures.
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I. INTRODUCTION

The emergence of collective motion in groups of living
creatures or synthetic motile units is now a well-established
physical process [1–6]: Self-propelled particles move
coherently along the same direction whenever velocity-
alignment interactions overcome orientational perturba-
tions favoring isotropic random motion. This minimal
picture goes back to the seminal work of Vicsek et al.
[7] and made it possible to elucidate the flocking dynamics
of systems as diverse as bird groups, polymers surfing on
motility assays, shaken grains, active colloidal fluids, and
drone fleets [6,8–13]. From a theoretical perspective, flocks
are described as flying ferromagnets where pointwise
spins move at constant speed along their spin direction
[1,3,7,14,15]. However, this simplified description fails to
capture the dynamics of dense populations where contact
interactions interfere with self-propulsion and ultimately
arrest the particle dynamics. Until now, aside from rare
theoretical exceptions [14,16–19], the consequences of
motility reduction in dense flocks has remained virtually
uncharted despite its relevance to a spectrum of active

bodies ranging from marching animals to robot fleets and
active colloids.
In this article, combining quantitative experiments and

theory, we investigate the suppression of collective motion
in high-density flocks. We show and explain how polar
assemblies of motile colloids turn into lively solid phases
that actively rearrange their amorphous structure but do
not support any directed motion. We establish that active
solidification of polar liquids is a first-order dynamical
transition: active solids nucleate, grow, and slowly coarsen
until complete phase separation. Even though they are
mostly formed of particles at rest, we show that active
solids steadily propagate through the polar liquids with
which they coexist. Using numerical simulations and
analytical theory, we elucidate all our experimental findings
and demonstrate that the solidification of colloidal flocks
provides a realization of the long-sought-after complete
motility-induced phase separation (MIPS) [5,20–28].

II. SOLIDIFICATION OF COLLOIDAL FLOCKS

Our experiments are based on the colloidal-roller system
introduced in Ref. [10]. In short, we let polystyrene colloids
sediment on a flat electrode (radius a ¼ 2.4 μm). Applying
a dc electric field E0 normal to the solid surface turns the
inert beads into self-propelled rollers. The particles then all
move at the same constant speed ν0 ¼ 1.05 mm=s when
isolated, while their rolling directions undergo rotational
diffusion with a rotational diffusivity of the order of 6.0 s−1.
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The motorization principle relies on the so-called Quincke
electrorotation phenomenon [29], which we recall in the
Appendix A. We observe the colloidal rollers propelling and
interacting in microfluidic racetracks of length L0¼ 9.8 cm
and width 2 mm; see Fig. 1(a). Both hydrodynamic and
electrostatic interactions promote alignment of the roller
velocities. As a result, the low-density phase behavior of
theQuincke rollers falls in the universality class of theVicsek
model [7,30–32]. At low density, Fig. 1(b), they form an
isotropic gas where the packing fraction ϕðr; tÞ is homo-
geneous and the local particle current Wðr; tÞ vanishes.
Increasing the average packing fraction ϕ0 above 0.02,
the rollers undergo a flocking transition; see Fig. 1(c). The
transition is first order, and polar liquid bands, where all
colloids propel on average along the same direction, coexist
with an isotropic gas [10]. Further increasingϕ0, the ordered
phase fills the entire system and forms a homogeneous polar
liquid which flows steadily and uniformly, as illustrated in
Movie 1 of SupplementalMaterial [33]. In polar liquids, both
Wðr; tÞ and ϕðr; tÞ display small (yet anomalous) fluctua-
tions, and orientational order almost saturates; see Fig. 1(d)
and Ref. [34]. This low-density behavior provides a proto-
typical example of flocking physics.
However, when ϕ0 exceeds ϕS ≃ 0.55, collective motion

is locally suppressed and flocking physics fails in explain-
ing our experimental observations. Particles stop their
collective motion and jam, as exemplified in Movies 2
and 3 of Supplemental Material [33]. The jams are active
solids that continuously melt at one end while growing
at the other end. This lively dynamics hence preserves
the shape and length (LS) of the solid which propagates

at constant speed upstream the polar-liquid flow; see the
kymograph of Fig. 2(a). Further increasing ϕ0, the solid
region grows and eventually spans the entire system; see
Fig. 1(f).
Active solids form an amorphous phase. The pair-

correlation function shown in Figs. 2(b) and 2(c) indicates
that active solids are more spatially ordered than the polar
liquid with which they coexist, but do not display any sign
of long-range translational order. We note that the location
of the first peak of gðrÞ drops from a value that is larger than
a colloid diameter in the liquid to one particle diameter in
the solid phase. This noticeable feature distinguishes the
solidification process from that reported in Ref. [35] for
self-propelled granular hard disks. The large value of the
typical interparticle distance in the densest liquid phase
reflects the repulsive dipolar interactions acting on neigh-
boring Quincke rollers [10,36–38]. But the most striking
difference between the two phases is dynamical. As clearly
seen in Movie 2 of Supplemental Material [33], the rollers
continuously move at constant speed in the polar liquid.
In contrast, in the solid phase, they spendmost of their time at
rest, thereby preventing the existence of long-range orienta-
tional order in their velocities; see Figs. 2(d) and 2(e).
We stress that the onset of active solidification corre-

sponds to an area fraction ϕS ≃ 0.55, which is much smaller
than the random close-packing limit (ϕ0 ¼ 0.84) and than
the crystallization point of self-propelled hard disks
(ϕ0 ∼ 0.71) reported in Ref. [35]. This marked difference
hints towards different physics, which we characterize and
elucidate below.
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FIG. 1. The dynamical phases of Quincke rollers. (a) Picture of a microfluidic racetrack where ∼3 × 106 Quincke rollers interact.
An active solid (dark gray) propagates through a polar liquid (light gray). Scale bar is 2 mm. (b)–(f) Top: Close-up pictures of Quincke
rollers in the racetrack. Scale bars are 250 μm. Bottom: Longitudinal component of the particle current W and density plotted as a
function of a normalized time. BothW and ϕ are averaged over an observation window of size 56 × 1120 μm2. T0 is arbitrarily chosen
to be the time taken by an active solid to circle around the race track. (b) Gas phase (ϕ0 ¼ 0.002). The density is homogeneous and
the system does not support any net particle current. (c) Coexistence between an active gas and a denser polar band (ϕ0 ¼ 0.033).
A heterogeneous polar-liquid drop propagates at constant speed through a homogeneous isotropic gas in the form of a so-called Vicsek
band. (d) Polar-liquid phase (ϕ0 ¼ 0.096). The homogeneous active fluid supports a net flow. (e) Coexistence between a polar liquid and
an amorphous active solid (ϕ0 ¼ 0.49). The high-density solid is homogeneous but, unlike the polar liquid, does not support any net
particle current. (f) Homogeneous active-solid phase (ϕ0 ¼ 0.70).
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III. EMERGENCE OF AMORPHOUS ACTIVE
SOLIDS IS A FIRST-ORDER PHASE

SEPARATION

We now establish that the formation of active solids
occurs according to a first-order phase-separation scenario.
Firstly, Figs. 3(a) and 3(b) indicate that, upon increasing ϕ0,
the extent of the solid phase has a lower bound: starting
from a homogeneous polar liquid, the solid length LS
discontinuously jumps to a finite value before increasing
linearly with ϕ0 − ϕb

L, where ϕb
L ¼ 0.55; see Fig. 3(b).

The smallest solid observed in a stationary state is as large
as LS ∼ 1.4 cm. Smaller transient solid jams do form at
local heterogeneities, but they merely propagate over a
finite distance before rapidly melting; see Movie 4 in
Supplemental Material [33]. This observation suggests

the existence of a critical nucleation radius for the solid
phase. Although the phenomenology is preserved, we note
that the minimal fraction for the formation of an active solid
is larger than that reported in Fig. 1 as we used two different
formulations of the colloid batch; see Appendix B 1. We
henceforth report measurements all performed under the
same experimental conditions.
Secondly, while the packing fraction of a polar liquid

obviously increases with ϕ0, its value saturates as it
coexists with an active solid; see Fig. 3(c). At coexistence,
the local packing fractions in the bulk of the liquid and solid
phases are independent of the average fraction ϕ0, ϕb

S ¼
0.75 and ϕb

L ¼ 0.55, which again supports a nucleation and
growth scenario. (Note that ϕb

L is hardly distinguishable
from the packing fraction at the onset of solidification ϕS in
our experiments, because the system size is much larger
than the size of the nucleated active solids.) Increasing ϕ0

leaves the inner structure of both phases unchanged and
solely increases the fraction of solid LS=L0 in the racetrack.
We find that, as in equilibrium phase separation, the length
of the solid region is accurately predicted using a lever rule
constructed from the stationary bulk densities ϕb

S and ϕb
L;

see Fig. 3(b).
Thirdly, we stress that when multiple jams nucleate in the

device, they propagate nearly at the same speed; see
Movie 4 of Supplemental Material [33]. Therefore, they
cannot catch up and coalesce. The system in fact reaches a
stationary state thanks to a slow coarsening dynamics
illustrated in Fig. 3(d), where we show the temporal
evolution of the length of two macroscopic active solids
(red symbols) and of the overall solid fraction (dark line).
This experiment corresponds to a situation where the
smallest solid jam grows at the expense of the larger.
The converse situation is also possible (see Movie 4 of
Supplemental Material [33]). In both cases coarsening
operates, leaving the overall fraction of solid constant.
All of our experiments end with complete phase separation:
a single macroscopic active solid coexists with a single
active liquid phase. The final state of the system is therefore
uniquely determined by two macroscopic control param-
eters: the average packing fraction ϕ0 and the magnitude E0

of the electric field used to power the rollers.
Finally, the most compelling argument in favor of a

genuine first-order phase separation is the bistability of
the two phases. Figure 3(b) shows that at the onset of
solidification, depending on the (uncontrolled) initial con-
ditions, the system is observed either in a homogeneous
polar liquid or at liquid-solid coexistence. The bistability of
the active material is even better evidenced when cycling
the magnitude E0 of the electric field that powers the
rollers’ motion (cycling the average density is not exper-
imentally feasible). Figure 3(e) shows the temporal varia-
tions of the active-solid fraction upon triangular modulation
of E0; see also Movie 5 of Supplemental Material [33].
When E0 increases, an active-solid nucleates and quickly
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FIG. 2. Structure and dynamics of active jams. (a) The kymo-
graph of the measured light intensity averaged over the racetrack
width shows how an active solid (dark region) propagates at
constant speed through a homogeneous polar liquid (light
region). (b),(c) Pair-correlation functions measured in the polar
liquid (gL) and in the coexisting active-solid phase (gS).
ϕ0 ¼ 0.58. Both pair-correlation functions are plotted versus
the interparticle distance r⊥ in the direction transverse to the
mean polar-liquid flow. gS displays more peaks than gL, revealing
a more ordered structure, but translational order merely persists
over a few particle diameters. The dashed lines indicate the
distance corresponding to one particle diameter. (d) Probability
density functions of the roller velocities in the polar-liquid region.
The distribution is peaked around ν0x̂k, where x̂k is the vector
tangent to the racetrack centerline. (e) Probability density
functions of the roller velocities in the active jam region. The
distribution is peaked around 0. The rollers remain mostly at rest.
(b)–(e) Average area fraction ϕ0 ¼ 0.58.
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grows. When E0 decreases, the solid continuously shrinks
and eventually vanishes at a field value smaller than the
nucleation point. Note that varying E0 changes the speed of
the particles as well as their interactions. These microscopic
changes explain the variations of the packing fractions of
the two coexisting phases, which in turn account for the
variation of the domain sizes at fixed average density. The
asymmetric dynamics of LS=L0 demonstrates the existence
of a metastable region in the phase diagram. As shown in
Fig. 3(f), the metastability of the active solid results in the
hysteretic response of LS, the hallmark of a first-order
phase transition. We also note that the continuous inter-
facial melting observed when E0 smoothly decreases
contrasts with the response to a rapid field quench; see
Movie 6 of Supplemental Material [33]. Starting with a
stationary active solid, a rapid quench deep in the coex-
istence region results in a destabilization of the solid bulk
akin to a spinodal decomposition dynamics. Finally, as
illustrated in Movie 7 of Supplemental Material [33], when
repeating the same experiments in isotropic 6-mm-wide
circular chambers, we observe the same macroscopic phase
separation into active solids and polar liquids. This obser-
vation confirms that solidification is a bulk phenomenon
which does not rely on specific geometrical parameters.

Altogether these measurements and observations establish
that the emergence of active solids results from a first-order
phase separation, which we theoretically elucidate below.

IV. MOTILITY-INDUCED PHASE SEPARATION
IN HIGH-DENSITY POLAR FLOCKS

A. Nonlinear hydrodynamic theory

As a last experimental result, we show in Fig. 4(a) how
the roller speed ν0ðϕÞ varies with the local density ϕðr; tÞ
evaluated in square regions of size 12a ∼ 29 μm. These
measurements correspond to an experiment where a solid
jam coexists with a homogeneous polar liquid. ν0ðϕÞ hardly
varies at the smallest densities and sharply drops towards
ν0ðϕÞ ¼ 0 when the local fraction ϕðr; tÞ exceeds ∼0.35.
Although we cannot positively identify the microscopic
origin of this abrupt slowing-down, we detail a possible
explanation in Appendix A. Simply put, the lubrication
interactions between nearby colloids with collinear polar-
izations result in the reduction of their rotation rate, which
ultimately vanishes at contact: near-field hydrodynamic
interactions frustrate self-propulsion. Instead of elaborating
a microscopic theory specific to colloidal rollers as in
Ref. [10], we instead adopt a generic hydrodynamic
description to account for all our experimental findings.
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FIG. 3. Active solidification is a first-order phase separation. (a) Solid jams in a racetrack at ϕ0 ¼ 0.38, 0.58, 0.65. Increasing the
average packing fraction, the extent of the active solid increases. (b) Solid fraction plotted versus the average packing fraction ϕ0. Note
the discontinuous jump and the two possible states at the onset of solidification. (c) Density of the polar-liquid phase (blue circles) and of
the active-solid phase (red circles) plotted versus ϕ0. In steady state, the liquid density increases with ϕ0 until an active solid forms, the
density in both phases then remains constant. In (b) and (c) the shaded regions indicate the coexistence between the polar-liquid and
active-solid phases. (d) Coarsening dynamics. Two solid jams coexist only over a finite time period. The larger jam (filled symbols)
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E0 values, the active-solid fraction is different when increasing or decreasing the electric field. (f) The extent of the traffic jam follows a
hysteresis loop when cycling the field amplitude.
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We start with a minimal version of the Toner-Tu equations
which proved to correctly capture the coexistence of active
gas and polar-liquid drops at the onset of collective motion
[2,39,40]. For the sake of simplicity we ignore fluctuations
transverse to the mean-flow direction and write the hydro-
dynamic equations for the one-dimensional longitudinal
current Wðx; tÞ and number-density field ρðx; tÞ:

∂tρþ ∂xW ¼ Dρ∂xxρ; ð1Þ

∂tW þ λW∂xW ¼ DW∂xxW − ∂x½pðρÞ�
þ a2ðρÞW − a4W3; ð2Þ

where Dρ, λ, DW , a4 are constant hydrodynamic coef-
ficients. a2ðρÞ is a function of ρ that changes sign and
becomes negative as ρ exceeds a critical value ρc, thereby
allowing for a flocking transition upon increasing the
particle density [39,40], and pðρÞ is the so-called pressure
term [2]. Interestingly, the slowing-down of the rollers at
high density, Fig. 4(a), can be accounted for through
specific choices of a2ðρÞ and pðρÞ, which we detail below.
Firstly, coarse graining microscopic flocking models

typically leads to a pressure term proportional to the
particle speed [1,14,31]. We therefore expect pðρÞ to
sharply decrease when ρðx; tÞ > ρ̄. Secondly, a2ðρÞ is also
expected to decay and change sign, given the loss of the
orientational order of the particle velocities in the solid
phase reported in Fig. 2(e). As the roller speed and the
suppression of orientational order happen concomitantly,
in all that follows, we conveniently choose a2ðρÞ ¼
α½ρϵðρÞ − ρc� and pðρÞ ¼ σρϵðρÞ, where the function
ϵðρÞ decreases from 1 in the low-density phases to a
vanishing value deep in the solid phase, and where α
and σ are two positive constants. In practice, we take
ϵðρÞ ¼ f1 − tanh½ðρ − ρ̄Þ=ξ�g=2. We note that Eqs. (1)
and (2) and the functional form of ϵðρÞ are here postulated
on phenomenological grounds. They could alternatively be
constructed from the explicit coarse graining of microscopic
models using well-established methods and approximations

[14,31,41,42]. The precise form of the decay of a2ðρÞ and
pðρÞ would then depend on the specifics of the microscopic
dynamics, but would leave our conclusions qualitatively
unchanged [32,39,40]. Finally, at densities larger than ρ̄, we
also expect the repulsion and contact interactions between
the particles to result in a pressure increase with the particle
density [10,41].We henceforth disregard this second regime,
which is not essential to the nucleation and propagation of
active solids.
Numerical resolutions of Eqs. (1) and (2) at increasing

densities faithfully account for the five successive phases
observed in our experiments; see Fig. 4 and Appendix B.
At low densities, we first observe the standard Vicsek
transition: a disordered gas phase is separated from a
homogeneous polar-liquid phase by a coexistence region
where ordered bands propagate through a disordered
background [15]. This phase transition occurs at very
low densities (ρ0 ∼ ρc ≪ ρ̄), in a regime where the colloidal
rollers experience no form of kinetic hindrance as they
interact; therefore, ϵðρÞ ≃ 1. In agreement with our experi-
ments, a second transition leads to the coexistence between
a polar liquid of constant density ρbL and an apolar dense
phase of constant density ρbS. This jammed phase prop-
agates backwards with respect to the flow of the polar
liquid as does the active solids we observe in our experi-
ments. This second transition shares all the signatures of the
first-order phase separation reported in Fig. 3. Figures 5(a)–
5(c) indicate that the jammed phase obeys a lever rule—its
width increases linearly with ρ0 − ρbL—while its velocity c
and the shape of the fronts remain unchanged upon
increasing ρ0. The first-order nature of the transition is
further supported by Movie 8 of Supplemental Material
[33], which shows the existence of a hysteresis loop when
ramping up and down the average density.

B. Spinodal instability of polar liquids and
domain wall propagation

Having established the predictive power of our hydro-
dynamic model, we now use it to gain physical insight
into the origin of active solidification. We focus on the
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experimentally relevant situation where the slowing-down
of the particle occurs at area fractions much larger than that
of the onset of collective motion. Given this hierarchy, at
low densities, when ρ0 ≪ ρ̄, the hydrodynamic equations
Eqs. (1) and (2) correspond to that thoroughly studied in
Refs. [39,40,43]. They correctly predict a first-order tran-
sition from an isotropic gas to a polar-liquid phase; see also
Appendix C.
The phase separation between a polar liquid and a

jammed phase also becomes clear when performing a
linear stability analysis of the homogeneous solutions of
Eqs. (1) and (2); see Appendix C where the stability of the
various phases is carefully discussed. At high density, the
stability of polar liquids where ρ ¼ ρ0 and W ¼ W0 ≠ 0 is
limited by a phenomenon that is not captured by classical
flocking models. When ρ0 ≫ ρc þ ϵ2=ð2λϵ2 þ 4a4ϵ1Þ,
polar liquids are stable with respect to the spinodal
decomposition into Vicsek bands; however, another insta-
bility sets in whenever ϵ0ðρ0Þρ0 þ ϵðρ0Þ < −W2

0K, with
K a positive constant given in Appendix C. This condition
is met when ρ approaches ρ̄, thereby leading to the
formation of active-solid jams. We learn from the stability
analysis that it ultimately relies on the decrease of the
effective pressure with density in Eq. (2) as a result of the
slowing-down of the colloids in dense environments. This
criterion is exactly analogous to the spinodal decomposition
condition in MIPS physics: the formation of active-solid
jams results from a complete motility-induced phase sepa-
ration [20].

C. Discussion

Three comments are in order. Firstly, our results provide
a novel microscopic mechanism leading to MIPS. In
classical systems such as active Brownian particles, repul-
sive interactions and persistent motion conspire to reduce
the local current when active particles undergo head-on

collisions [21,23,24]. Here we show that this microscopic
dynamics is, however, not necessary to observe phase
separation, and MIPS transitions solely rely on the reduc-
tion of the active particle current as density becomes
sufficiently high, irrespective of its microscopic origin.
In the case of colloidal rollers, particles indeed do not
experience any frontal collision when an active solid
nucleates in a polar liquid; phase separation is, however,
made possible by the slowing-down of their rolling motion.
Secondly, the coarsening dynamics clearly differ from

that reported for MIPS between a disordered gas and an
ordered liquid [23,26,27,44–46]. This is not unexpected
given the previous results on the coarsening of flocking
patterns in slender geometries [40,41], and the absence of
the very concept of surface tension, which remains to be
elucidated in active fluids.
Finally, another marked difference with the dense phases

of conventional MIPS system is the steady propagation
of the active solids through the dilute polar liquid. This
dynamics can be accounted for by our model. The two
boundaries of the active solid are two domain walls that
propagate at the same speed. The propagation of the
domain wall at the front of the solid jam relies on a
mechanism akin to actual traffic jam propagation: the
directed motion of the particles incoming from the polar
liquid causes an accumulation at the boundary with the
arrested phase, in the direction opposing the spontaneous
flow. By contrast, the propagation of the second domain
wall, at the back of the solid jam, requires arrested particles
to resume their motion. The formation of this smooth front
originates from the mass diffusion terms in Eq. (1), which
allows particles to escape the arrested solid phase and
progressively resume their collective motion when reaching
a region of sufficiently low density in the polar liquid.
This diffusive spreading, however, does not rely on thermal
diffusion. The roller diffusivity,Dm ∼ 10−13 m2=s, is indeed
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FIG. 5. Shape and dynamics of active-solid jams. (a) Density and velocity profiles computed for different value of ρ0: from 1.85 (light
colors) to 2.25 (dark colors). Numerical resolution of Eqs. (1) and (2) with the hydrodynamic parameters Dρ ¼ 5, DW ¼ 10, λ ¼ 1,
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ρ0. (d) Variations of the propagation speed c as a function of the effective diffusivity Dρ. Numerical parameters are DW ¼ 5, xi ¼ 1,
a4 ¼ 0.45, σ ¼ 0.2, ρ̄ ¼ 2, ξ ¼ 0.01, α ¼ 1, ρc ¼ 0.5, L ¼ 200, dx ¼ 0.05, dt ¼ 0.005, ρ0 ¼ 1.96.
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negligible on the timescale of the experiments. Fortunately,
other microscopic mechanisms, and in particular anisotropic
interactions, lead to diffusive contributions to the density
current [47]. A simple way to model this effect is to consider
a velocity-density relation of the form ν0ðρÞ½1 − ru ·∇ρ�,
where u is the orientation of the particle and r, which could
be density dependent, quantifies the anisotropic slowing-
down of the particles which ascend density gradients. This
anisotropic form is consistent with the polar symmetry of
the flow and electric field induced by the Quincke rotation of
the colloids. Coarse graining the dynamics of self-propelled
particles interacting via such a nonlocal quorum-sensing rule
was done in Ref. [47] and leads to an effective Fickian
contribution, ∼ − ρν0r∇ρ, to the density current in Eq. (1).
The ratio between the magnitude of this effective Fickian
flux and that of thermal diffusion is readily estimated as
ðρν0rÞ=Dm ∼ 105, assuming that r is of the order of the
colloid diameter. Anisotropic interactions are therefore
expected to strongly amplify the magnitude of Dρ. In order
to confirm the prominent role of this diffusion term in the
active-solid dynamics, we numerically measure the propa-
gation speed c of the jammed region as a function of Dρ.
In agreement with the above discussion, c is found to vanish
as Dρ → 0, Fig. 5(d), thereby confirming the requirement of
a finite diffusivity to observe stable active-solid jams. Simply
put, the steady propagation of active solids relies on the
balance between two distinct macroscopic phenomena:
motility reduction at high density, which results in the
formation of sharp interfaces with the polar liquid, and
the diffusive smoothing of the interfaces that enables
particles trapped in the arrested solid phase to resume their
motion by rejoining the polar-liquid flock.

V. CONCLUSION

In summary, combining experiments on Quincke rollers
and active-matter theory, we show that the phase behavior
of polar active units is controlled by a series of two
dynamical transitions: a Flocking transition that transforms
active gases into spontaneously flowing liquids and a
motility-induced phase separation that results in the freez-
ing of these polar fluids and the formation of active solids.
Although most of their constituents are immobile, active-
solid jams steadily propagate through the active liquid with
which they coexist due to their continuous melting and
freezing at their boundaries. Remarkably, Quincke rollers
provide a rare example of an unhindered MIPS dynamics
that is not bound to form only finite-size clusters; see
Ref. [48], and references therein. Beyond the specifics of
active rollers, we show that the freezing of flocking motion
and the emergence of active solids is a generic feature that
solely relies on polar ordering and speed reduction in dense
environments. A natural question to ask is wether suitably
tailored polar and quorum-sensing interactions could yield
ordered active solids. More generally understanding the

inner structure and dynamic of active solids is an open
challenge to active matter physicists.
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APPENDIX A: QUINCKE ROLLERS

1. Motorization

Our experiments are based on colloidal rollers [10]. We
motorize inert polystyrene colloids of radius a ¼ 2.4 μm
by taking advantage of the so-called Quincke electro-
rotation instability [29,49]. Applying a dc electric field
to an insulating body immersed in a conducting fluid results
in a surface-charge dipole P. Increasing the magnitude of
the electric field E0 above the Quincke threshold EQ

destabilizes the dipole orientation, which in turn makes
a finite angle with the electric field. A net electric torque
TE ∼ P ×E0 builds up and competes with a viscous
frictional torque TV ∼ ηΩ, where Ω is the colloid rotation
rate and η is the fluid shear viscosity. In steady state, the
two torques balance and the colloids rotate at constant
angular velocity. As sketched in Figs. 6(a) and 6(b), when
the colloids are let to sediment on a flat electrode, rotation
is readily converted into translational motion at constant
speed v0 (in the direction opposite to the charge dipole).
We stress that the direction of motion is randomly chosen
and freely diffuses as a result of the spontaneous symmetry
breaking of the surface-charge distribution. Within our
experimental conditions the rotational diffusivity of the
Quincke rollers measured from the decay of the velocity
autocorrelation function in the gas phase is 6 s−1 [36,38].

(c)(b)(a)

FIG. 6. Quincke rollers. (a) When applying a dc electric field
E0 to an insulating sphere immersed in a conducting fluid, a
charge dipole forms at the sphere surface. When E0 > EQ, the
electric dipole makes a finite angle with the electric field causing
the steady rotation of the sphere at constant angular speed Ω.
(b) The rotation is converted into translation by allowing the
sphere to sediment on one electrode. When isolated, the resulting
Quincke rotor rolls without sliding at constant speed: ν0ð0Þ ¼
aΩ. (c) When two colloids rolling in the same direction are close
to each other, the lubrication torque acting on the two spheres
separated by a distance d scales as logðd − 2aÞ and hinders their
rolling motion.
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2. Arresting Quincke rotation

We conjecture a possible microscopic mechanism to
explain the arrest of the Quincke rotation at high area
fraction: the frustration of rolling motion by lubrication
interactions; see Fig. 6(c). The viscous torque TV acting on
two nearby colloids rolling along the same direction is
chiefly set by the lubricated flow in the contact region
separating the two spheres. TV therefore increases loga-
rithmically with d − 2a, where d is the interparticle dis-
tance [50]. As there exists an upper bound to the magnitude
of the electric torque TE, torque balance requires the rolling
motion to become vanishingly slow as d − 2a goes to zero:
lubricated contacts frustrate collective motion.

APPENDIX B: EXPERIMENTAL AND
NUMERICAL METHODS

1. Experiments

The experimental setup is identical to that described in
Ref. [34]. We disperse polystyrene colloids of radius a ¼
2.4 μm (Thermo Scientific G0500) in a solution of hex-
adecane including 0.055 wt % of AOT(Dioctyl sulfosucci-
nate sodium salt) salt (only the data reported in Fig. 1
correspond to an AOT concentration of 0.040 wt % leaving
the global phenomenology modified but changing the
values of the microscopic interaction parameters). We then
inject the solution in microfluidic chambers made of two
electrodes spaced by a 110-μm-thick Scotch tape. The
electrodes are glass slides, coated with indium tin oxide
(Solems, ITOSOL30, thickness 80 nm). We apply a dc
electric field between the two electrodes ranging from 1.3
to 2.6 V=μm using a voltage amplifier. If not specified
otherwise, the data correspond to experiments performed at
1.8 V=μm, i.e., at E0=EQ ¼ 2. We confine the rollers inside
racetracks by coating the bottom electrode with an insulat-
ing pattern preventing the electric current from flowing
outside of the racetrack. To do so, we apply a 2-μm-thick
layer of insulating photoresist resin (Microposit S1818) and

pattern it by means of conventional UV lithography, as
explained in Ref. [34].
In order to keep track of the individual colloid position

and velocity, we image the system with a Nikon AZ100
microscope with a 4.8× magnification and record videos
with a CMOS camera (Basler Ace) at a frame rate up to
900 Hz. We use conventional techniques to detect and track
all particles [51–53]. When performing large-scale observa-
tions, we use a different setup composed of a 60-mm macro
lens (Nikkor f/2.8G, Nikon) mounted on an 8-megapixel,
14-bit CCD camera (Prosilica GX3300).

2. Numerics

The numerical resolution of the Toner-Tu equations
Eqs. (1) and (2) were done using a semispectral method
with a semi-implicit Euler scheme.

APPENDIX C: LINEAR STABILITY OF THE
GENERALIZED TONER-TU EQUATIONS

In this Appendix, we show how the succession of
instabilities of the homogeneous solutions of Eqs. (1) and
(2) correctly predict the full phase behavior observed in our
experiments and numerical simulations. In the experiments,
the flocking transition happens at much lower packing
fractions than the solidification, and we thus restrict our
analysis to situations where ρc ≪ ρ̄. Furthermore, we recall
that throughout this article, ϵ0ðρÞ < 0.

1. Stability of the disordered phases

We start by considering a homogeneous disordered
phase where ρ ¼ ρ0, W ¼ 0. The linearized dynamics of
a small perturbation δX ≡ ðδρ; δWÞ is given, in Fourier
space, by δ _Xk ¼ MkδXk, where the dynamical matrix Mk
is given by

Mk ¼
� −Dρk2 −ik

−ðϵþ ϵ0ρ0Þikσ a2ðρ0Þ −DWk2

�
: ðC1Þ

The eigenvalues λ� ofMk determine the stability of the gas
phase. We find

λ� ¼
−½ðDρ þDWÞk2 − a2ðρ0Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðDρ þDWÞk2 − a2ðρ0Þ�2 − 4k2σðϵþ ρ0ϵ

0Þ − 4½DWk2 − a2ðρ0Þ�Dρk2
q

2
: ðC2Þ

The gas is therefore unstable when either one of the
following conditions is satisfied:

a2ðρ0Þ > 0 ⇔ ρ0ϵ − ρc > 0; ðC3Þ

σðϵþ ρ0ϵ
0Þ < −½DWk2 − a2ðρ0Þ�Dρ: ðC4Þ

For the case at hand, the second condition is never met
in the low-density regime ρ0 ≲ ρc, as ρc ≪ ρ̄. In this

low-density regime, the first criterion is the standard
spinodal instability leading to the emergence of flocking
motion [1,43]. As density increases, the system thus
undergoes a first linear instability at ρ0 ≃ ρc, which
corresponds to the transition reported in Figs. 4(b) and 4(c).
At the other end of the density spectrum, deep in the

active-solid phase where ρ0 ≫ ρ̄, the criterion Eq. (C3)
cannot be realized since a2ðρÞ ¼ −αρc < 0. The condition
given Eq. (C4) is not realized either because ϵ0 ≃ 0. As the
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density decreases, both Eqs. (C3) and (C4) could lead to a
linear instability of the active solid. Condition Eq. (C3) is
realized at the density ρ�0 such that ρ�0ϵðρ�0Þ ¼ ρc. This
condition requires ϵðρ�0Þρ�0 ≪ ρ�0 and, hence, happens when
ρ0ϵðρ0Þ is a decreasing function of ρ0. Since, for k ¼ 0,
Eq. (C4) reduces to ½ρ0ϵðρ0Þ�0 < −Dραðρc − ρ0ϵÞ=σ, the
criterion of Eq. (C4) is already realized at ρ�0: the linear
instability of the active solid is always given by Eq. (C4), in
which one recognizes the standard form of a MIPS spinodal
instability: ϵþ ρϵ0 ≪ −K1Dρ, with K1 a positive constant
[20]. The linear instability of the active solid leading to the
transition illustrated by Figs. 4(e) and 4(f) is thus consistent
with the MIPS scenario.

2. Stability of the polar-liquid phase

Let us now consider a polar liquid where ρ ¼ ρ0, and
W ¼ W0, with a4W2

0 ¼ a2ðρ0Þ. Following the same pro-
cedure as above, the linearized dynamics of a small
perturbation δX ¼ ðδρ; δWÞ is defined by the dynamical
matrix:

Mk ¼
�

Mρρ MρW

MWρ MWW

�
; ðC5Þ

where

MρρðkÞ ¼ −Dρk2; ðC6Þ

MρWðkÞ ¼ −ik; ðC7Þ

MWρðkÞ ¼ −ðϵþ ϵ0ρ0Þðikσ −W0αÞ; ðC8Þ

MWWðkÞ ¼ −DWk2 − λikW0 − 2a4W2
0: ðC9Þ

The linear stability of the polar liquid is determined by the
sign of the real parts of the eigenvalues of Mk, Re½λ�ðkÞ�.
To be consistent with our modified Toner-Tu equations (1)
and (2) that are truncated at the second order in gradients,
we only consider λ�ðkÞ up to order k2. Only Re½λ−ðkÞ� can
become positive and lead to an instability. At order k2, it
reads:

Re½λ−ðkÞ� ¼ −
k2

8a34W
4
0

½ðϵþ ρϵ0Þ2a4W2
0ð2a4σ þ αλÞ

− α2ðϵþ ρϵ0Þ2 þ 8a34DρW4
0� þ oðk2Þ: ðC10Þ

This is a second-order polynomial in ϵþ ρϵ0, and the
polar liquid is linearly unstable whenever one of the two
following conditions is satisfied:

ϵþ ρϵ0 <
a4W2

0

α2
ðαλþ 2a4σÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a4Dρα

2

ðαλþ 2a4σÞ2

s !
;

ðC11Þ

ϵþ ρϵ0 >
a4W2

0

α2
ðαλþ 2a4σÞ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a4Dρα

2

ðαλþ 2a4σÞ2

s !
:

ðC12Þ

The first inequality Eq. (C11) can be satisfied only at high
densities, when ρ ∼ ρ̄. It is again of a standard MIPS form,
ϵþ ρϵ0 < −W2

0K2, with K2 > 0, and corresponds to the
solidification transition from Fig. 4(d) to Fig. 4(e). This
criterion defines the spinodal line shown in Movie 8 of
Supplemental Material [33] to predict the onset of the
active solidification. Both the melting of the active solid
and the solidification of the polar liquid thus correspond to
standard MIPS instability criteria. It is interesting to note
that the local order of the polar liquid merely alters the
MIPS instability scenario. Orientational order makes it
harder to phase separate through the factorW2

0 in Eq. (C11).
This result is consistent with recent results on the large
deviations of active-matter systems that show collective
motion to be an optimal strategy to avoid MIPS [54].
On the contrary, the second inequality Eq. (C12) is

realized at much lower densities, close to ρ0 ¼ ρc, when
W2

0 is small enough. It corresponds to the standard linear
instability of the polar liquid leading to the formation of
Vicsek bands, as shown in Figs. 4(c) and 4(d). UsingW2

0 ¼
αðρ0 − ρcÞ=a4 and that ϵ ¼ 1 when ρ0 ≪ ρ̄, Eq. (C12)
becomes

α

αλþ 2a4σ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a4Dρα

2

ðαλþ 2a4σÞ2

s !−1

þ ρc < ρ0:

ðC13Þ

In the limit of small Dρ relevant for our experiments [34],
we recover the usual instability criterion of a homogeneous
polar liquid discussed in Ref. [40]:

ρc þ
α

2λαþ 4a4σ
< ρ0: ðC14Þ

All in all, we have determined all the spinodal
lines governing the two phase transitions found in our
experiments:

(i) Flocking transitions between a disordered gas
and a polar liquid. The transition from Fig. 4(b) to
Fig. 4(c) corresponds to Eq. (C3), and the transition
from Fig. 4(d) to Fig. 4(c) corresponds to Eq. (C12).

(ii) MIPS-like transitions between a polar liquid and
an active solid. The transition from panels d to e in
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Fig. 4(d) to Fig. 4(e) corresponds to Eq. (C11), and
the transition from Fig. 4(f) to Fig. 4(e) corresponds
to Eq. (C4).

APPENDIX D: DESCRIPTION OF THE MOVIES

Movie 1.—Movie 1 shows a polar liquid flowing along a
microfluidic racetrack. The dimensions of the observation
window are 1.3 × 1.3 mm2. The movie is slowed down by
a factor of 3.8.
Movie 2.—Movie 2 is a close-up in the microfluidic

racetrack. We first see the polar-liquid phase and then the
compact active solid forming at one end and melting at the
other end. The dimensions of the observation window are
1.3 × 1.3 mm2 wide. The movie is slowed down by a factor
of 3.8.
Movie 3.—Movie 3 shows a typical experiment in a

racetrack where an active solid steadily propagates through
the homogeneous polar liquid with which it coexists. The
movie is sped up by a factor of 30.
Movie 4.—Movie 4 shows the coarsening dynamics of

multiple active solids. The movie is sped up by a factor 30.
Movie 5.—Hysteresis dynamics upon cycling the mag-

nitude of the electric field. This movie corresponds to the
experiments of Figs. 3(e) and 3(f) in the main text. The
movie is sped up by a factor of 30.
Movie 6.—Response to an electric-field quench. The

bulk of the active solid is destabilized at all scales. This
phenomenon is reminiscent of a spinodal decomposition
scenario. The movie is sped up by a factor 30.
Movie 7.—Emergence of an active solid phase in a

circular chamber, response to an electric field ramp.
Starting from a polar liquid flowing in the counter clock-
wise direction a sharp increase of the field result in the
emergence of a macroscopic active solid that propagates
upstream. The movie is sped up by a factor of 8. The
diameter of the micofluidic chamber is 6 mm.
Movie 8.—Numerical simulations of Eqs (1) and (2) with

the same parameters as in Figs. 5(a)–5(c), but with dx ¼
0.1 and dt ¼ 0.01 to access longer timescales. Cycling the
density ρ0 up and down shows a clear hysteresis loop.
The polar liquid is stable up to a spinodal density ρsL. After
an initial instability, the coarsening process leads the
system towards phase separation between a polar liquid
at ρbL and a solid phase, which is propagating backward.
When decreasing the density, the solid jam is seen down to
ρ0 ≃ ρbL ≪ ρsL highlighting the hysteresis loop.
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