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Preceded by the discovery of topological insulators, Dirac and Weyl semimetals have become a pivotal
direction of research in contemporary condensed matter physics. While easily accessible from a theoretical
viewpoint, these topological semimetals pose a serious challenge in terms of experimental synthesis and
analysis to allow for their unambiguous identification. In this work, we report on detailed transport
experiments on compressively strained HgTe. Because of the superior sample quality in comparison to
other topological semimetallic materials, this enables us to resolve the interplay of topological surface
states and semimetallic bulk states to an unprecedented degree of precision and complexity. As our gate
design allows us to precisely tune the Fermi level at the Weyl and Dirac points, we identify a
magnetotransport regime dominated by Weyl/Dirac bulk state conduction for small carrier densities
and by topological surface state conduction for larger carrier densities. As such, similar to topological
insulators, HgTe provides the archetypical reference for the experimental investigation of topological
semimetals.
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The discovery of topological insulators has inspired a
remarkably broad interest in materials whose band struc-
tures exhibit relativistic properties. The effects of a linear
dispersion in one-dimensional edge channels of quantum
spin Hall insulators [1], as well as in two-dimensional
surface states of three-dimensional topological insulators
[2,3], have already been extensively studied. The implica-
tions of a linear band dispersion in three-dimensional
conductors, however, have only recently begun to be
explored. Such materials, dubbed Dirac or Weyl semimet-
als, represent a condensed matter realization of the Weyl/
Dirac equations, and may provide an environment for
studying the properties of quasiparticles which have been
postulated, but not yet unambiguously demonstrated, to
exist in nature.
In many of these materials [4], the Weyl or Dirac band

crossing is caused by a band inversion, and is intimately
connected to the point group symmetry of the crystal
lattice. This lends similarities to the prototypical setup of
topological insulators. In fact, in both the alkali pnictide

[AB3, where A ¼ ðNa;K;RbÞ, B ¼ ðAs; Sb;BiÞ] and
Cd2As3 families that boast a number of important Weyl/
Dirac compounds the inversion occurs between metallic
s-like and chalcogenic p-like orbitals, a situation very
similar to that found in HgTe. The correspondence in terms
of band structure between these compounds and HgTe has
indeed been known since the 1970s [5]. The common motif
is that, for the alkali pnictides and Cd2As3, the p-like j ¼
3=2 bands (Γ8 in the Td point group) cross and yield Dirac
(or Weyl) points, while in HgTe the Γ8 bands just touch,
which derives from the higher (zinc blende) point group
symmetry of the HgTe crystal. Small crystal distortions
from the zinc blende symmetry, as present in Weyl/Dirac
semimetals, are sufficient to crucially modify the electronic
structure at low energies.
In the 1980s, Volkov and Pankratov [6] studied the

interface between two semiconductor materials with mutu-
ally inverted bands and reported a resulting band structure
as depicted in Fig. 1(a). It includes linear dispersing
massless surface states—the states that are now interpreted
as the defining property of topological insulators—and
topologically trivial massive surface states. While the latter
are currently commonly referred to as massive Volkov-
Pankratov states [7], the former are often called topological
surface states. Here, we use the historically accurate
nomenclature of referring to both types of states identified
in Ref. [6] as Volkov-Pankratov states, and differentiating
between them by qualifying them as either massless or
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massive. A generic [8,9] even though experimentally often
overlooked or neglected implication of bulk band inversion
in Dirac or Weyl materials is the concomitant creation of
these same Volkov-Pankratov states at energies even sig-
nificantly away from the bulk crossing point. As such, while
the bulk band structure of these systems exhibits a three-
dimensional linear dispersion relation, massless Volkov-
Pankratov states continue to support two-dimensional
linearly dispersive bands as well. Thus, two- and three-
dimensional conducting states coexist, and care must be
taken in transport experiments to unambiguously assign
any feature observed in the conduction profile of the sample
to its individual origin.
As an additional challenge for the experimental analysis,

Weyl and Dirac materials typically have a high carrier
density—as a consequence, they are difficult or sometimes
even impossible to gate. Moreover, because proper litho-
graphic methods and thin layer approaches have yet to be

developed, primitive contacting (such as needles and
conducting glues) and patterning methods are usually
employed, giving rise to many potential measurement
artifacts resulting from inhomogeneous current distribu-
tion, which becomes even further enhanced by the appli-
cation of magnetic fields. Such effects, sometimes
summarized by the expression current jetting [10–12],
are, for instance, known to lead to inaccurate mobility
measurements. Altogether, such concerns have cast sig-
nificant doubt on the reliability of many of the early
experiments on Dirac and Weyl materials [4].
The synoptic view of the aforementioned observations

strongly suggests that materials of higher quality and more
mature synthesis procedures are indispensable to truly
discover the enigmatic Dirac and Weyl semimetallic state.
In this paper, we report that compressively strained HgTe is
an ideal choice for such an undertaking. It can be grown
with high crystalline quality by molecular beam epitaxy
(MBE), leading to exceptionally low inherent carrier
densities. Furthermore, we can use well-established litho-
graphic techniques to precisely define a Hall-bar structure
with low resistance alloyed Ohmic contacts as well as
electrostatic gate electrodes. These good contacts and exact
device geometries ensure a well-defined homogeneous
current distribution. Most importantly, the low intrinsic
doping, together with the inclusion of a gate, allows us to
controllably adjust the level of the Fermi energy via the
carrier density within the band structure, tuning the
conductance properties between surface state and bulk
Dirac/Weyl node dominated transport. This allows us to
confidently attribute transport characteristics to either their
bulk or surface origin.
The low-energy dispersion of HgTe is given by two

quadratically dispersing Γ8 bands. For unstrained bulk
HgTe, these bands are degenerate at the Γ point, as sketched
in Fig. 1(b). Under tensile strain, this degeneracy is lifted
[13] due to lowering of the point group symmetry, and a
topological bulk gap opens [3,14]. The remaining surface
conduction stems from the massless Volkov-Pankratov
states implied by inversion of the Γ8 bands with the Γ6

band, the latter of which, for the unstrained case, is located
deep below the Fermi level at Γ.
Under compressive strain, the Γ8 degeneracy is likewise

lifted, now with the two Γ8 bands shifting in opposite
direction as for tensile strain. This leads to the formation of
linear crossing points in the band structure. The in-plane
compressive and tensile strain dependence of the bands
around Γ is visualized in Fig. 1(b), where the red domain
highlights the conduction and the blue domain the valence
regime. Experimentally, the tensely strained 3D topological
insulator phase is accomplished by growth on a CdTe
substrate [Fig. 1(b)]. While there is no commercially
available substrate with a lattice constant slightly below
that of HgTe, compressive strain is experimentally still
accessible through a superlattice virtual substrate [15] as

(a)

(b) (c)

C

M

M

T

C

FIG. 1. Panel (a) shows a schematic picture of the band
structure at an interface of two semiconductor materials with
mutually inverted bulk bands (gray) with two types of interface
states (named after the authors of Ref. [6] Volkov-Pankratov
states), the massless interface states in black and the massive ones
in dashed magenta. (b) Strain-imposed growth of HgTe. Tensile
strain is realized by a CdTe substrate, compressive strain by a
Cd0.9Zn0.1Te virtual substrate. Plotted as a function of kz, i.e.,
along the growth direction, the band structure profile changes
from quadratic band touching for unstrained HgTe to a topo-
logical bulk gap for tensile strain and a pair of linear level
crossing for compressive strain. (c) Band structure plot for the
compressive strain regime in the kz-kx momentum plane. The
bulk inversion asymmetry that would split the Dirac points into
Weyl nodes is not accounted for in the calculation.
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sketched in Fig. 1(b). The linear crossing points are further
demonstrated in Fig. 1(c) via a band structure plot along the
kz-kx plane in momentum space. It is the result of a six-
band k · p calculation of the low-energy band structure for
the compressively strained case, where the z axis denotes
the layer growth direction and the x, y axes the in-plane
coordinates.
More information on the relation between bulk Dirac

nodes and the inversion-induced surface states can be
obtained from density functional theory calculations on
a semi-infinite thick slab with a tellurium terminated
interface to vacuum of compressively strained HgTe at a
realistic value of the in-plane strain (see also Supplemental
Material [16]). Figure 2(a) shows the calculated slab
dispersion for an extended energy range centered around
the Fermi level, exhibiting sharp dispersive surface features
20 meV below and right above the Fermi level, which is
related to the inversion of the Γ6 and Γ8 bands. The
breaking of spatial inversion symmetry in the zinc blende
structure splits each Dirac node into four Weyl points [17].
For HgTe, Weyl points of opposite chirality project pairwise
onto the (001) surfaces connected by inversion. Starting
from two Dirac nodes in the unstrained zinc blende structure,
this yields four Weyl points per surface, with a Berry flux
monopole charge of �2. Figure 2(b) highlights the low-
energy dispersion for the two surface-projected Weyl points

of chirality þ2. Weyl points of opposite chirality are
connected by a Fermi arc [18]. The separation in momentum
space between theWeyl nodes is estimated to be∼0.02 nm−1.
As a consequence, zero-field experiments do not offer
sufficient resolution to resolve the small energy and momen-
tum scales at hand. As such, we hereafter consider all bulk
transport in this sample to be described by Dirac physics and
thus will refer to the energy of the crossing points as the bulk
Dirac node. From this perspective, the band structure of
compressively strained HgTe is virtually identical to that of
typical 3D Dirac semimetals such as Cd3As2.
We report experimental results on a 66-nm-thick, com-

pressively strained HgTe layer, grown on a virtual substrate
consisting of a CdTe=ZnTe multilayer produced by a
combination of MBE and atomic layer epitaxy on a Si-
doped GaAs substrate [15]. This CdTe=ZnTe multilayer
has a lattice constant between that of CdTe and ZnTe, and
can be exactly tuned by setting the Cd=Zn ratio. In the
present case, a lattice constant of 0.6442 nm is used to
impose a compressive strain of ≈0.3% on the HgTe layer
(for details, see the Supplemental Material [16]). To
increase sample quality and carrier mobility, two 10-nm-
thick protective layers of Cd0.7Hg0.3Te are grown below
and on top of the HgTe layer.
We pattern the sample using our standard Hall-bar mask

and optical lithography process into devices such as the one
shown in the inset of Fig. 3. The mask contains two sizes of
Hall bars, a larger one with a mesa having a width of
200 μm and a separation of the longitudinal voltage leads
of 600 μm, and a smaller one with a width of 10 μm and a
contact separation of 30 μm. The HgTe mesas are covered
with a 110-nm-thick SiO2=Si3N4 insulator followed by a
100-nm-thick Au gate electrode on top of a 5-nm Ti
sticking layer. Contacts are fabricated by first using a short
dry etching step to provide a clean oxide-free surface for
contacting, followed by in situ electron beam evaporation
of 50 nm AuGe and 50 nm Au. Two separate devices, each
containing Hall bars of both sizes, were investigated in this
study, all yielding consistent results with no substantial
discrepancy between either the different devices or sample
sizes. All measurements are carried out using standard low-
noise and low-frequency ac techniques and, unless other-
wise noted, are done at 2 K.
We first confirm that we can indeed efficiently adjust the

carrier density in our sample as demonstrated by the
influence of the gate voltage on the zero-field longitudinal
resistance Rxx shown in Fig. 3(a). The longitudinal resis-
tance changes by 3 orders of magnitude, from Rxx;max ¼
19.3 kΩ around Ugate ¼ 0 V to Rxxð3VÞ ¼ 95 Ω. The
associated gate-induced change of carrier density in the
sample is determined by standard Hall measurements. We
find that the density can be tuned from −10 × 1011 cm−2

(p type) for −3 V up to 10 × 1011 cm−2 (n type) for 3 V.
The maximum of Rxx coincides with the lowest total
density as well as with the change in the carrier type from

FIG. 2. (a) Band structure along the kx direction of the surface
Brillouin zone of a semi-infinite thick slab of compressively
strained HgTe (≈0.3%) from density functional theory. Spectral
features in dark red show prominent surface character, while
lighter colours display the continuum of bulk states with
relatively weaker projections onto the (001) surface. The sharp
dark lines highlight the massless Volkov-Pankratov states and
Dirac point stemming from the Γ6-Γ8 band inversion. Because of
the sharp interface and the absence of a Hartree potential in this
calculations, the massive Pankratov states are shifted to high
energies and not visible here. (b) Enlargement of (a) around the
Fermi level showing two Weyl points with the same chirality þ2.
At large momenta, i.e., far from the Weyl points low-energy
physics, the surface states originating from theWeyl nodes are the
massless Volkov-Pankratov states that disperse in the unoccupied
part of the spectrum [cf. the surface states above the Fermi level
in (a)]. The color code identifies the spectral function
Aðkx;ωÞ ¼ ð−1=πÞImGsurfðkx;ωÞ, where Gsurfðkx;ωÞ is the mo-
mentum and energy resolved surface Green’s function.
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electron to primarily hole transport. From this observation
we infer that we can precisely tune the Fermi energy to the
bulk Dirac node. Given that our Hall bars consist of three
squares, the maximum corresponds to a sheet resistivity
value of approximately 6.4 kΩ=□, and thus of the order of
magnitude expected for a diffusive Dirac system [19].
Tuning to minimal carrier density, and consequently

moving the Fermi energy to the bulk Dirac node level, the
longitudinal resistance Rxx versus a magnetic field B
applied parallel to the current I is shown in Fig. 3(b).
A significant dip is observed as a function of B, corre-
sponding to a reduction of up to≈60% of the value of Rxx at
B ¼ 0. Such a negative magnetoresistance contribution is a
defining feature implied by the chiral anomaly. Originally
conceived as a symmetry violation in quantum field theory
in comparison to its classical analogue, the chiral anomaly
was first discussed in the context of solid-state systems by
Nielsen and Ninomiya [20]. There, the emergence of a
chiral charge, i.e., an imbalance between left- and right-
moving Dirac particles, is naturally interpreted to be

implied by an external field, as both particle branches
are not independent but connected through the crystal band
structure. Weyl nodes (and magnetic field-split Dirac
nodes) can act as magnetic monopoles in momentum space
due to their Berry curvature, with a magnetic charge given
by the chirality [21]. A magnetic field parallel to the driving
electric field causes a pair of Weyl nodes with different
chirality to shift in energy with respect to each other,
causing a redistribution of carriers among the nodes. This
increases the longitudinal conductivity σxx upon increasing
magnetic field strength. A Boltzmann equation calculation
yields σxx ∝ B2 [22,23].
Experimentally, the negative magnetoresistance due to

the chiral anomaly contribution is, for certain ranges of
magnetic field, often overshadowed by other effects. For
small magnetic fields B, a minor increase of Rxx is
observed, which we attribute to weak antilocalization based
on its field and temperature dependence [24,25]. For large
magnetic fields (above ≈6 T), the chiral anomaly contri-
bution becomes overcompensated to yield a total increase
of longitudinal resistance, possibly due to impurity-
imposed classical mechanisms of magnetotransport [26].
Strong evidence connecting the negative magnetoresist-

ance phenomenon in Fig. 3(b) to the bulk Dirac nodes in the
HgTe band structure derives from the gate voltage depend-
ence of the magnetoresistance data, as presented in Fig. 4.
The data of Figs. 3(a) and 3(b) are included as the dashed
black line and the Ugate ¼ 0 V line, respectively. The
visualization unambiguously demonstrates that the nega-
tive magnetoresistance is strongest, both in absolute num-
bers and percentagewise, atUgate ≈ 0 V, corresponding to a
Fermi energy close to the bulk Dirac nodes. When the
carrier density is increased, the longitudinal resistance Rxx
at zero field, as well as the magnitude of the negative
magnetoresistance, reduces quickly in magnitude. The
reduction of the negative magnetoresistance phenomenon
with high absolute gate voltage is equivalently observed for
both positive Ugate (electron transport) and negative Ugate
(hole transport). A slight asymmetry in the negative

FIG. 4. Rxx as a function of the magnetic field applied parallel
to the current for different gate voltages. The dashed lines
represent Rxx as a function of the applied gate voltage for zero
(black) and maximum magnetic field (�14 T) (gray).

(b)

(a)

FIG. 3. (a) Longitudinal resistance Rxx as a function of the
applied gate voltage Ugate for B ¼ 0. The inset of (a) shows an
optical microscope picture of the finished sample. (b) Rxx as a
function of the applied magnetic field B along the current
direction, as indicated by the sketch in the inset, for Ugate ¼ 0 V.
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magnetoresistance decay for positive versus negative gate
voltages can be attributed to an asymmetry in the electron and
hole mobilities.
A further prototypical feature of the chiral anomaly is the

implied angular dependence on the magnetic field B, as
only the magnetic field component Bk parallel to the
driving electric field E produces an additional current.
The angle dependence for UgateðRxx;maxÞ is presented in
Fig. 5. In Fig. 5(a) the magnetic field is rotated along the
polar angle with B for ðΦ ¼ 0°Þ normal to the plane, and
ðΦ ¼ 90°Þ corresponding to BkE. Figure 5(b) shows the B
dependence of Rxx under variation of the azimuthal angle θ
(in the sample plane). The magnetic field direction is varied
from θ ¼ 0°, representing BkE, to B nearly⊥I for θ ¼ 85°.
While at higher fields, beyond which the chiral anomaly

contribution has saturated, classical positive magnetoresist-
ance contributions take over, both parts of Fig. 5 show that
the amplitude of the negative magnetoresistance depends
only on the component of B along the current direction, as
expected for the chiral anomaly. To further confirm the origin
of the negative magnetoresistance, a control experiment, on

an otherwise identical sample, but with a tensely strained
HgTe layer having a topological insulator band structure,was
performed. In that case, only positive magnetoresistance
contributions are observed.
We thus conclude that the magnetic field strength and

angle as well as gate voltage dependence of the negative
magnetoresistance phenomenon discussed so far are fully
consistent with the expected behavior driven by a chiral
anomaly scenario imposed on left- and right-moving
linearly dispersing branches, which comprises conclusive
evidence for the existence of Dirac nodes in the bulk band
structure of our compressively strained HgTe layer.
As already noted, however, the existence of bulk Dirac

nodes in no way precludes the existence of other transport
channels. To the contrary, an inverted system with bulk
Dirac nodes is generically accompanied by the massless
Volkov-Pankratov states. Whether these surfaces contribute
to the conductance of the device depends on the location of
the Fermi level and the bending of the gate voltage-induced
potential over the device [14], and the overall quality of the
sample material. The gateability of our sample allows us to
explore this coexistence.
Our devices show sharply distinct transport behavior

when the gate is used to introduce additional carriers. This
is best observed for measurements in a perpendicular
magnetic field. For illustration, Fig. 6 depicts transport
data at gate voltages of �4 V corresponding to highly n
type and highly p type. The curves show Shubnikov–
de Haas oscillations in Rxx together with quantum Hall
(QH) plateaus. QH plateaus exist only in two-dimensional
systems. Consistently, the maxima of the Shubnikov–de
Haas oscillations coincide with the transitions between QH
plateaus, suggesting that also the longitudinal resistance
Rxx is driven by the same two-dimensional transport
channel. Since the investigated sample is a three-
dimensional bulk piece, the two-dimensional character
points towards transport carried by a surface state. For
this subset of transport contribution, the p-conducting
regime [Fig. 6(b)] differs from the n-conducting regime
[Fig. 6(a)] mainly by overall lower mobility, leading
to Landau level (LL) broadening, and consequently
less pronounced QH plateaus. Mobilities of μ ≈
200 000 cm−2=Vs are observed for electrons and μ ≈
30 000 cm−2=V s for holes. These numbers are comparable
to the ones reported for tensely strained HgTe [27], which is
a topological insulator [14]. The accurate quantization of
the plateau levels, i.e., exactly equal to the von Klitzing
constant to within the experimental accuracy of about 1%,
highlights that for these gate voltages, where the surface
states are highly populated, the conduction is dominated by
surface transport, and bulk Dirac contributions are no
longer significant.
An even clearer picture of the interplay between the bulk

and surface sources of conduction contributions emerges
from the color scale plot of the gate-voltage derivative of
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FIG. 5. (a) Rxx as a function of the magnetic field B rotated
along ϕ from perpendicular to the sample plane towards parallel
to the current. In (b), Rxx as a function of in-plane rotation with
angle θ, where ðθ ¼ 0°Þ is parallel to the current and θ ¼ 85°
nearly perpendicular to the current (inset) at T ¼ 0.3 K.
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the Hall conductivity as a function of gate voltage and
magnetic field, presented in Fig. 7(b). The derivative values
of Hall conductivity (designated in color range from green
to red) represent the LL dispersion of a two-dimensional
system with respect to the magnetic field B and the gate
voltage Ugate. For holes (Ugate < 0 V), a regular pattern of
Landau levels is observed. The splitting between two
subsequent Landau levels alternates between smaller and
bigger gaps. A zero quantum Hall index is observed for low
carrier densities (Ugate ≳ 0 V) between two nearly non-
dispersive Landau levels, separating the hole and electron
regime. The electron transport regime for higher gate
voltages (Ugate > 0 V) generally shows a regular pattern
of Landau levels. The only exception is the “crossing” of
two Landau levels where the quantum Hall index with ν ¼
4 would be expected. This effect can be ascribed to the
overlap of two types of surface state LL fans: the ubiquitous
massless Volkov-Pankratov surface states and the massive
Volkov-Pankratov states that arise from the high electric
field across the HgTe=ðHg;CdÞTe interfaces [6] and which
were recently identified in HgTe-based topological insula-
tors [7,28]. A qualitative description is motivated by 6 × 6

k · p calculations (Γ8 and Γ6 bands) with hard-wall boun-
dary conditions in the growth direction, including com-
pressive strain and a bulk inversion asymmetry term from
density functional theory calculations, as well as a Hartree
potential as in Ref. [14]. Figure 7(a) shows the band
structure of a 66-nm-thick sample with an applied
Hartree potential corresponding to a gate voltage of
−2 V (n ¼ −4 × 1011 cm−2). Since the gate voltage is
applied from the top surface of the system, such a Hartree
potential [shown in the inset of Fig. 7(a)] additionally
breaks inversion symmetry. The energies of the massless
Volkov-Pankratov states (red) of the top and bottom surface
therefore split. Additionally, massive Volkov-Pankratov
states (blue) form due to the Hartree potential which
confines the bulk states, as also discussed in Ref. [7].
For negative gate voltage, the holelike massive Volkov-
Pankratov state crosses the Fermi energy (orange) and thus
has the most significant contribution to transport properties
at this gate voltage. For positive gate voltage, the massless
Volkov-Pankratov states dominate the transport behavior
since the density of the massive Volkov-Pankratov states is
negligible. These calculations allow us to assign the black
(magenta) Landau levels in Fig. 7(b) to massless (massive)
Volkov-Pankratov states. To show the evolution of the band
structure under gate voltage, we provide additional calcu-
lations for Ugate ¼ 0;þ2 V for the 66-nm-thick sample in
the Supplemental Material [16]. k · p calculations and
experimental data for a 120-nm-thick sample are presented
along with the analogous analysis in the Supplemental
Material [16].
From the above detailed analysis, we conclude that our

samples display two distinct transport regimes. First,
a narrow gate voltage window around the resistance
maximum at Ugate ≈ 0 V, where chiral anomaly-driven
negative magnetoresistance is observed (light blue
traces in Fig. 4). This effect is only expected from
odd-dimensional Dirac cones, in our case the three-
dimensional bulk Dirac cones. Second, at higher gate
voltages (i.e., for finite or high-carrier densities) a two-
dimensional transport regime is identified by an emerging
quantum Hall effect due to the topological surface state
of the band inverted material, slightly modified by
topologically trivial (massive) Volkov-Pankratov surface
states of the material [6]. Our observations provide a
simple explanation for the recent findings about a
quantum Hall effect in Cd2As3 layers [29,30] and make
it evident that extreme care is needed in claiming any
contributions from Fermi arcs in the transport properties
of Weyl semimetals in general.
To summarize, compressively strained epitaxial HgTe

layers have proven to constitute an ideal platform for
controlled and reliable transport experiments on a Weyl/
Dirac semimetal. Our experiments emphasize the crucial
role played by the inversion-induced massless Volkov-
Pankratov surface states in this class of topological

(a)

(b)

FIG. 6. Longitudinal resistance Rxx and Hall resistance Rxy as a
function of the out of plane magnetic field B for high (a) electron
and (b) hole densities at T ¼ 0.3 K.
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materials. As supported by our recent results in this
direction, compressively strained HgTe naturally suggest
themselves to be an intriguing playground for imposing
superconducting proximity effect, where it should be
worthwhile to probe the superconducting pairing mecha-
nism at Dirac and Weyl nodes.
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