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Understanding the nature of the excitation spectrum in quantum spin liquids is of fundamental
importance, in particular for the experimental detection of candidate materials. However, current theoretical
and numerical techniques have limited capabilities, especially in obtaining the dynamical structure factor,
which gives a crucial characterization of the ultimate nature of the quantum state and may be directly
assessed by inelastic neutron scattering. In this work, we investigate the low-energy properties of the
S ¼ 1=2 Heisenberg model on the triangular lattice, including both nearest-neighbor J1 and next-nearest-
neighbor J2 superexchanges, by a dynamical variational Monte Carlo approach that allows accurate results
on spin models. For J2 ¼ 0, our calculations are compatible with the existence of a well-defined magnon
in the whole Brillouin zone, with gapless excitations at K points (i.e., at the corners of the Brillouin zone).
The strong renormalization of the magnon branch (also including rotonlike minima around the M points,
i.e., midpoints of the border zone) is described by our Gutzwiller-projected state, where Abrikosov
fermions are subject to a nontrivial magnetic π flux threading half of the triangular plaquettes. When
increasing the frustrating ratio J2=J1, we detect a progressive softening of the magnon branch atM, which
eventually becomes gapless within the spin-liquid phase. This feature is captured by the band structure of
the unprojected wave function (with two Dirac points for each spin component). In addition, we observe an
intense signal at low energies around the K points, which cannot be understood within the unprojected
picture and emerges only when the Gutzwiller projection is considered, suggesting the relevance of gauge
fields for the low-energy physics of spin liquids.
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I. INTRODUCTION

The antiferromagnetic Heisenberg model for S ¼ 1=2
spins interacting on the triangular lattice represents the
simplest example in which quantum fluctuations give rise
to strong modifications of the classical picture, where the
minimum energy configuration shows 120° order. Indeed,
this was the first microscopic model that has been proposed
for the realization of the so-called resonating valence-bond
state [1,2]. Within this approach, the ground state is
described by a superposition of an exponentially large
number of singlet coverings of the lattice, generalizing the
concept of resonance introduced and developed by Rumer
[3] and Pauling [4] to describe the chemical bond. Even
though recent numerical investigations [5,6] have shown
that the ground state possesses a finite magnetization in the
thermodynamic limit, the results confirmed large deviations

from classical and semiclassical limits. In addition, small
perturbations on top of the nearest-neighbor Heisenberg
model have been shown to drive the system into magneti-
cally disordered phases [7,8]. By keeping the spin SU(2)
symmetry, a natural way to induce further magnetic
frustration is to include a next-nearest-neighbor super-
exchange coupling, leading to the following Hamiltonian:

H ¼ J1
X
hi;ji

Si · Sj þ J2
X
⟪i;j⟫

Si · Sj; ð1Þ

where h� � �i and ⟪ � � �⟫ indicate nearest-neighbor and
next-nearest-neighbor sites in the triangular lattice, Si ¼
ðSxi ; Syi ; Szi Þ is the spin-1=2 operator at the site i, and, finally,
J1 and J2 are the antiferromagnetic coupling constants.
This model has been intensively investigated in the past,
from the semiclassical approaches of the early days [9,10]
to the recent numerical approaches [11–13]. The latter ones
indicated a rather fragile 120° magnetic order, which is
melted for J2=J1 ≈ 0.07ð1Þ (a value that is in very good
agreement among these calculations). For larger values of
the frustrating ratio J2=J1, the nature of the nonmagnetic
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phase is not settled, with evidences for either a gapped
[11,12] or a gapless [13] spin liquid.
An important information about the physical properties

is given by the features of the low-energy spectrum. In
particular, the dynamical structure factor Sðq;ωÞ gives a
direct probe to assess the nature of the relevant excitations.
These can be divided into two broad classes: standard
gapless magnons (or gapped triplons), which exist in
magnetically ordered phases (or valence-bond solids), and
more exotic (gapped or gapless) spinons, which exist in
deconfined spin liquids. In addition to spinons, another
kind of excitation is present, due to the emergence of
gauge fluctuations in the low-energy effective theory of
spin liquids [14].
For the Heisenberg model with only nearest-neighbor

couplings on the triangular lattice, semiclassical approaches,
based upon the large-S expansion, suggested that the
excitation spectrum obtained within the leading order (i.e.,
within the linear spin-wave approximation) is subjected to
significant corrections when interactions between spin
waves are taken into account [15]. This fact is mainly
due to the noncollinearity of the magnetization, which allows
for three-magnon interactions. Then, despite the presence of
long-range order, the Goldstone modes are not stable, but
they may decay in a large part of the Brillouin zone (see
Fig. 1); in particular, the existence of more than one
Goldstone mode, with different velocities, immediately
implies that magnons may be kinematically unstable,
decaying into two magnons with lower energy [16,17]. A
detailed analysis, which includes interactions among spin
waves, corroborated this outcome, also showing rotonlike
minima at M ¼ ð0; 2π= ffiffiffi

3
p Þ and symmetry-related points

(i.e., midpoints of the edges of the Brillouin zone)
[16–18]. The latter aspect shares similarities with the
Heisenberg model on the square lattice, where minima of
the magnon dispersion are present around ðπ; 0Þ and
ð0; πÞ [19,20]. As far as the triangular lattice is concerned,
aspects of the strong renormalization of the magnon
dispersion at high energies have been confirmed by series
expansions [21]. Moreover, within these numerical cal-
culations, a huge downward renormalization of the one-
magnon excitations is recovered, leading to a relatively
dispersionless mode.
While there are a number of materials whose low-energy

behavior can be well described by the S ¼ 1=2 Heisenberg
model on the square lattice (among them, we just mention
La2CuO4 for its relevance to cuprate superconductors [22]),
until very recently there were no compounds that could be
well approximated by the same model on the equilateral
triangular lattice. For example, in Cs2CuCl4 the super-
exchange couplings are not isotropic in the nearest-
neighbor bonds, one out of the three being much stronger
than the other ones (thus defining weakly coupled zigzag
chains) [23]. Here, inelastic neutron scattering measure-
ments have shown the existence of a very broad continuum,

which has been associated to spin fractionalization and
spin-liquid behavior [23].
Recently, measurements on Ba3CoSb2O9 have been

reported, providing evidence that it can be described by
a S ¼ 1=2 Heisenberg model on the undistorted triangular
lattice with predominant nearest-neighbor superexchange
couplings (a small easy-plane anisotropy is present, in
addition to a small interlayer coupling) [24]. The initial
interest was aimed at the study of the magnetization curve
and the stabilization of magnetization plateaus [24,25], and
the proximity to a spin-liquid phase [26]. Later, inelastic
neutron scattering measurements were performed, in order
to clarify the nature of the magnetic excitations on top of
the ground state [27,28]. Even though Ba3CoSb2O9 pos-
sesses long-range magnetic order (with 120° ordering),
several aspects of the magnon dispersion and the multi-
magnon continuum reveal an unconventional behavior,
which can only be partially explained within semiclassical
approaches. First of all, at low energies, the magnon
dispersion is strongly renormalized with respect to the
linear spin-wave approximation; an anomalous line broad-
ening has also been detected, leading to the conclusion that
magnon decay may be plausible; finally, the continuum

FIG. 1. Upper left-hand panel: The classical spin configuration
(in the XY plane) that is determined by the fictitious magnetic
field h in the Hamiltonian Eq. (13) with Q ¼ ð2π=3; 2π= ffiffiffi

3
p Þ.

Upper right-hand panel: Pattern for the sign structure of the
nearest-neighbor hopping si;j of Eq. (13), si;j ¼ þ1 (−1) for solid
(dashed) lines; notice the amplitude for the kinetic terms is
chosen to be t > 0. Lower left-hand panel: The path in the
Brillouin zone that is used to plot the results of the dynamical
structure factor of the 30 × 30 triangular lattice (blue arrows); see
Figs. 2–4, 7, and 8. Lower right-hand panel: The path in the
Brillouin zone that is used to plot the dynamical structure factor
of the 84 × 6 cylinder (blue arrows); see Fig. 6. In both lower
panels the orange shaded area corresponds to the region of the
Brillouin zone in which magnon decay is predicted by the spin-
wave approximation [16,17], and the dashed line delimits the
magnetic Brillouin zone.
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presents unexpected dispersive features at high energies. It
should be noticed that, since neutron scattering data are
sensitive to the full dynamical spin structure factor, three
copies of the magnon dispersion (translated by the ordering
vectors) are visible in the spectrum. Experimental inves-
tigations have also been performed to infer the nature of the
magnon excitations on top of the gapped phase that is
stabilized at the one-third magnetization plateau [29]. In
this case, the situation seems to be more conventional, with
the experimental results in relatively good agreement with
theoretical predictions.
Motivated by these experimental findings, there have

been a few attempts to investigate the Heisenberg model
(also including small perturbations) with both analytical
and numerical tools [30–33]. In particular, by using
density-matrix renormalization group (DMRG) calcula-
tions, Verresen et al. [32] claimed that the magnon decay
does not take place, because of the strong coupling
interactions between quasiparticles (i.e., magnons) in the
Heisenberg model [34]. As a result of the avoided decay,
the midpoint of the edge of the magnetic Brillouin zone
(dubbed Y1) displays a minimum of the magnon dispersion,
possibly explaining the high-energy features seen around
the M point in Ref. [28].
Within this context, the discovery of YbMgGaO4 [35]

and, more recently, NaYbO2 [36] will also give a further
impetus to study (generalized) spin models on the triangu-
lar lattice. In both cases, no signatures of magnetic order
appear down to very low temperatures, suggesting the
existence of a quantum spin liquid. While both materials
host effective J ¼ 1=2 spin degrees of freedom (d.o.f.), the
actual low-energy Hamiltonian may be more complicated
than the SU(2)-invariant one of Eq. (1); still, the physical
properties can share many similarities with the ground state
of the J1 − J2 model, as suggested in Ref. [7].
In this work, we employ a dynamical variational

Monte Carlo approach [37] to compute the out-of-plane
dynamical spin structure factor for the Heisenberg model
on the triangular lattice, also in the presence of a next-
nearest-neighbor coupling J2. First, we focus our attention
on the model with J2 ¼ 0 for which we confirm huge
corrections from the linear spin-wave calculations. Our
results support the idea that the magnon excitations are
stable in the whole Brillouin zone; indeed, even though a
discrete set of excitations is obtained within our numerical
method, the lowest-energy state for each momentum q
appears to be rather well separated from the rest of the
spectrum at higher energies, suggesting the existence of a
faint continuum just above the magnon branch. The second
part of this work deals with the J1 − J2 model, to highlight
the modifications in the dynamical structure factor that
take place when entering the spin-liquid phase (which,
according to our variational approach, is gapless [13]).
Here, the spectrum shows gapless excitations at M points;
in addition, a strong signal at low energies is present at the

corners of the Brillouin zone, i.e., K ¼ ð2π=3; 2π= ffiffiffi
3

p Þ and
K0 ¼ ð4π=3; 0Þ. While the former aspect can be easily
understood by inspecting the noninteracting spinon band
structure, the latter one is a genuine feature that emerges
from the Gutzwiller projector, which includes interactions
between spinons and gauge fields. Indeed, while the
noninteracting wave function corresponds to a mean-field
approximation, in which gauge fields are completely
frozen, the Gutzwiller projection has the effect of inserting
back the temporal fluctuations of those fields [38]. In this
respect, it is worth mentioning that a recent field-theoretical
analysis indicated the existence of low-energy (triplet)
monopole excitations at the zone corners, which are
expected to contribute to the dynamical structure
factor [39].

II. DYNAMICAL VARIATIONAL
MONTE CARLO METHOD

The dynamical structure factor, which is directly mea-
sured within inelastic neutron scattering experiments, can
be used to unveil the nature of the elementary excitations of
the models and materials under investigation. In its spectral
form, this quantity reads as

Saðq;ωÞ ¼
X
α

jhϒq
αjSaqjϒ0ij2δðω − Eq

α þ E0Þ; ð2Þ

where jϒ0i and fjϒq
αigα are the ground state and the set of

all excited states with momentum q, whose corresponding
energies are E0 and fEq

αgα, respectively. In this work, we
evaluate the dynamical structure factor of the spin model
Eq. (1) by directly constructing accurate variational Ansätze
for its ground state and a few low-energy excited states.
Our variational approach is based on the so-called parton
construction, in which the spin d.o.f. of the model are
rewritten in terms of auxiliary fermionic operators [14,40].
The fermionic language constitutes a versatile framework
to define variational wave functions for both magnetically
ordered and disordered phases of matter. This section is
dedicated to the introduction of the fermionic wave
functions for spin models and to the description of the
variational Monte Carlo method employed for the calcu-
lation of the dynamical structure factor.

A. Gutzwiller-projected fermionic wave functions
for the ground state

Here, for the sake of generality, we consider a generic
SU(2) model for frustrated spin systems, which consists of
a set of spin-1=2 d.o.f. sitting on the sites of a lattice and
interacting through the Heisenberg exchange couplings Ji;j:

H ¼
X
i;j

Ji;jSi · Sj: ð3Þ
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The interplay of the different interactions can lead to the
stabilization of different phases of matter. In the absence of
frustration, i.e., when no competing couplings are present,
the ground state may develop some kind of magnetic order,
which minimizes the classical energy of the model. On the
contrary, when different interactions compete with each
other, magnetically disordered phases can arise, such as
spin liquids.
The first attempt to describe spin-liquid states dates back

to the resonating valence-bond approach, where a varia-
tional wave function is defined in terms of a linear super-
position of singlet coverings of the lattice [1]. More
recently, Wen [40] developed a general approach to classify
and construct spin-liquid states, which satisfy all the
symmetries of a given lattice model. This method is built
upon the introduction of auxiliary Abrikosov fermions,
which form a projective representation of S ¼ 1=2 spin
operators:

Si ¼
1

2

X
α;β

c†i;ασα;βci;β: ð4Þ

Here, ci;α (c†i;α) destroys (creates) a fermion with spin
α ¼ ↑;↓ on site i, and the vector σ ¼ ðσx; σy; σzÞ is the set
of Pauli matrices. The anticommutation relations among
fermions ensure that the Abrikosov representation yields
the correct commutation relations among different spin
components. Still, in order to faithfully reproduce the
Hilbert space of the original spin model, only configura-
tions with one fermion per site must be considered, which
implies that the Abrikosov fermions must satisfy the
constraint

c†i;↑ci;↑ þ c†i;↓ci;↓ ¼ 1; ð5Þ

or, equivalently,

c†i;↑c
†
i;↓ ¼ 0. ð6Þ

Besides constant terms, the Hamiltonian of Eq. (3) can
be rewritten in terms of Abrikosov fermions as follows:

H ¼ −
1

2

X
i;j

X
α;β

Ji;j

�
c†i;αcj;αc

†
j;βci;β þ

1

2
c†i;αci;αc

†
j;βcj;β

�
:

ð7Þ

At this stage, the Hamiltonian Eq. (7) with the constraints
of Eqs. (5) and (6) gives an exact representation of the
original model. In order to tackle the above interacting
fermionic system, one possibility is to perform a mean-field
decoupling [40]. For the purpose of studying spin-liquid
phases, we keep only the mean-field terms that do not break
the SU(2) symmetry of the original spins. The result is a
quadratic Hamiltonian:

H0 ¼
X
i;j

X
σ

ti;jc
†
i;σcj;σ þ

X
i;j

Δi;jc
†
i;↑c

†
j;↓ þ H:c:

þ
X
i

X
σ

μic
†
i;σci;σ þ

X
i

ζic
†
i;↑c

†
i;↓ þ H:c:; ð8Þ

which contains a hopping term ti;j and a singlet pairing
term Δi;j, which are related to the expectation values
hc†j;σci;σi and hci;σcj;−σi, respectively. In addition, the
one-fermion-per-site constraint of the parton construction
is enforced in a global fashion by including a chemical
potential μi and an on-site pairing ζi as Lagrange multi-
pliers in H0 [40]. Within the mere mean-field approach,
the parameters of H0 are computed self-consistently and
define a low-energy effective theory for the spin model
under investigation. However, the ground state of H0,
named jΦ0i, satisfies the constraints of Eqs. (5) and (6)
only on average and, therefore, does not represent a valid
wave function for spins. Within this approach, a full
treatment of the original spin model requires the inclusion
of all fluctuations of the parameters around the mean-field
solution. Since this task is in general unfeasible, an
alternative approach can be pursued, in which the
Hamiltonian H0 is exploited as a starting point for the
definition of a variational wave function for the initial spin
model. Indeed, the one-fermion-per-site constraint can be
enforced exactly by applying the Gutzwiller projector,

PG ¼
Y
i

ðni;↑ − ni;↓Þ2; ð9Þ

to the ground-state wave function ofH0. We emphasize that
in general the Gutzwiller projection cannot be treated
analytically, due to its intrinsic many-body character; how-
ever, it can be considered within Monte Carlo sampling. At
variance with the mean-field treatment, in the variational
approach the parameters of H0 are not computed self-
consistently, but are optimized in order to minimize the
energy of the Gutzwiller-projected Ansatz PGjΦ0i.
The artificial enlargement of the Hilbert space intro-

duced by the parton construction gives rise to a gauge
redundancy in the representation of the spin d.o.f.
Specifically, the mapping Eq. (4) is invariant under local
SU(2) transformations of the Abrikosov fermions
operators [40]. As a consequence, all physical properties
of the spins are independent of the gauge choice for
fermions. For example, whenever we perform SU(2) trans-
formations to the unprojected Hamiltonian H0, the varia-
tional wave function with the Gutzwiller projector remains
invariant. Exploiting this gauge redundancy, it is possible
to classify all the quadratic Hamiltonians H0 whose
Gutzwiller-projected ground states fulfill the symmetries
of the lattice model. This procedure, known as projective
symmetry group analysis [40], provides a recipe to con-
struct all the distinct spin-liquid Ansätze for a given spin
model. From a variational point of view, the spin-liquid
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wave function with the lowest variational energy is the one
which better describes the true ground state of the model.
In general, the variational Ansätze defined by Gutzwiller

projecting the ground state of Eq. (8) do not display any
magnetic order [41]. For the purpose of defining suitable
wave functions for magnetically ordered phases, an addi-
tional term can be added to H0:

H0 ↦ H0 þ h
X
i

�
eiQ·Ric†i;↑ci;↓ þ e−iQ·Ri c†i;↓ci;↑

�
: ð10Þ

Here, h is a fictitious magnetic field which lies in the XY
plane and displays a periodic pattern defined by the pitch
vector Q. Since the ground-state wave function of the
Hamiltonian Eq. (10) tends to overestimate the magnetic
order [42], further transverse quantum fluctuations are
added through the application of a spin-spin Jastrow factor,

J s ¼ exp

�
1

2

X
i;j

vi;jS
z
i S

z
j

�
; ð11Þ

to the Gutzwiller-projected state. Specifically, the complete
form of the variational wave functions employed in this
work is

jΨ0i ¼ PSzJ sPGjΦ0i; ð12Þ

where, in addition to the Gutzwiller projection and the
Jastrow factor, we apply a projector enforcing zero value
for the z component of the total spin (PSz).
By using this approach, the variational phase diagram

for the J1 − J2 model on the triangular lattice has been
obtained in Ref. [13]: the system undergoes a phase
transition between a magnetically ordered phase to a
gapless spin liquid at J2=J1 ≈ 0.08. For this model, the
optimal variational wave functions are obtained by con-
sidering only a hopping term (no pairing) and the fictitious
magnetic field in the quadratic Hamiltonian:

H0 ¼ t
X
hi;ji

si;jc
†
i;σcj;σ

þ h
X
i

�
eiQ·Ric†i;↑ci;↓ þ e−iQ·Ric†i;↓ci;↑

�
: ð13Þ

Here, t is a first-neighbor hopping with a nontrivial sign
structure (si;j ¼ �1) which generates a pattern of alternat-
ing 0 and π fluxes through the triangular plaquettes of the
lattice, see Fig. 1, and h is a fictitious magnetic field which
displays the classical 120° order withQ ¼ ð2π=3; 2π= ffiffiffi

3
p Þ,

see Fig. 1 [considering Q ¼ ð4π=3; 0Þ would not change
the physical content of the ground state wave function]. All
the parameters included in H0 and the pseudopotential vi;j
(one parameter for each distance jRi −Rjj in the transla-
tional invariant lattice) entering the Jastrow factor can be

optimized to minimize the variational energy. While in
the magnetic phase of the system the optimal value for the
ratio h=t is finite, for J2=J1 ≳ 0.08 the system enters the
spin-liquid phase and the magnetic field parameter vanishes
in the thermodynamic limit [13]. The values of the fictitious
magnetic field as a function of J2=J1 can be found
in Ref. [13].
In this work, we compute the dynamical structure factor

for the J1 − J2 model on the 30 × 30 triangular lattice.
For J2 ¼ 0, we first consider the crudest approximation for
the ground state, which consists in setting the hopping term
t to zero. The resulting wave function is equivalent to the
state of Ref. [43] with only a two-body Jastrow factor.
Much more accurate results are then obtained by restoring
the hopping term in the Hamiltonian and optimizing all
the variational parameters for the cases J2 ¼ 0 and
J2=J1 ¼ 0.07. On the other hand, when the system is in
the spin-liquid regime (J2=J1 ¼ 0.09 and J2=J1 ¼ 0.125),
the fictitious magnetic field is vanishing and the Jastrow
factor is not considered, because of its negligible effects
on the variational results. According to the projective
symmetry group classification, the wave function obtained
by considering only the hopping term in H0 is a fully
symmetric U(1) spin liquid [44].

B. Dynamical structure factor

As already mentioned, the dynamical structure factor of
the J1 − J2 model is computed by constructing variational
Ansätze to approximate the low-energy excited states of
the system. Here we limit ourselves to the calculation of
the out-of-plane component Szðq;ωÞ, and we employ the
technique outlined in Refs. [37,45,46], which is briefly
summarized in the following.
First, we find the optimal variational Ansatz for the

ground state of the model, which has the form of Eq. (12),
by minimizing the variational energy. The resulting wave
function is employed as a reference state to construct a
set of projected particle-hole excitations with a given
momentum q:

jq;Ri¼PSzJ sPG
1ffiffiffiffi
N

p
X
i

X
σ

eiq·Riσc†iþR;σci;σjΦ0i: ð14Þ

These states are labeled by R, which runs over all lattice
vectors. We approximate the low-energy excited states of
the model by using linear combinations of the elements of
the basis set fjq; RigR:

jΨq
ni ¼

X
R

An;q
R jq; Ri: ð15Þ

For a certain momentum q, we consider the Schrödinger
equation for the J1 − J2 Hamiltonian restricting the form
of its eigenvectors to the one of Eq. (15), i.e., HjΨq

ni ¼
Eq
njΨq

ni. Expanding everything in terms of fjq; RigR,
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we arrive at the following generalized eigenvalue
problem,

X
R0

hq; RjHjq; R0iAn;q
R0 ¼ Eq

n

X
R0

hq; Rjq; R0iAn;q
R0 ; ð16Þ

which is solved to find the expansion coefficients An;q
R

and the energies Eq
n of the excitations. All the matrix

elements, hq; RjHjq; R0i and hq; Rjq; R0i, are evaluated
within the Monte Carlo procedure, by sampling accord-
ing to the variational ground-state wave function. Finally,
the dynamical structure factor is computed by

Szðq;ωÞ ¼
X
n

jhΨq
njSzqjΨ0ij2δðω − Eq

n þ Evar
0 Þ; ð17Þ

where Evar
0 is the variational energy of jΨ0i.

III. RESULTS

In this section, we present the numerical calculations
for the dynamical structure factor Sðq;ωÞ obtained by the
variational approach described in the previous section.
First, we discuss the case of the Heisenberg model with
only nearest-neighbor superexchange J1, also comparing
our results with recent DMRG calculations [32]. Then, we
include the next-nearest-neighbor coupling J2 to increase
frustration and melt the magnetic order. In this way, a
gapless spin-liquid regime is reached for J2=J1 ≈ 0.08 [13].

A. Nearest-neighbor model with J2 = 0

Let us start our analysis by considering the case in which
the ground-state wave function contains only the fictitious
magnetic field, i.e., t ¼ 0. In this case, the Abrikosov
fermions are completely localized (e.g., the eigenvalues
of the auxiliary Hamiltonian define flatbands) and the
wave function corresponds to the Jastrow state of Ref. [43]
with only a two-body Jastrow factor. The results for the
dynamical structure factor on the 30 × 30 cluster are shown
in Fig. 2. Here, the spectrum consists of a single mode,
which is identified as the magnon excitation (no continuum
is visible). Notice that only one magnon branch is visible,
related to the magnon dispersion ϵq, since we consider the
out-of-plane dynamical structure factor (the folded branches
ϵq�K do not contribute to the signal). Remarkably, the
dispersion of the magnon branch is possible thanks to the
Jastrow factor, since the wave function without it would give
rise to a trivially flat (gapped) excitation spectrum, reflecting
the noninteracting band structure of fermions. By contrast,
the long-range Jastrow term is able to produce a reasonable
magnon mode, which agrees fairly well with the spin-
wave calculations. In particular, the spectrum is gapless at
Γ ¼ ð0; 0Þ (with a vanishingly small weight). Instead, in
contrast to spin waves, which correctly predict gapless
magnons at K and K0 due to the coplanar 120° order, this
simple wave function leads to a gapped spectrum at the

corners of the Brillouin zone. In connection to that, the out-
of-plane static structure factor SzðqÞ ¼ R

dωSzðq;ωÞ does
not diverge at K or K0 when L → ∞, showing only a
maximum.
A much more realistic spectrum is obtained when

considering a finite fermion hopping t (with the π-flux
pattern shown in Fig. 1), as well as the optimized value of
the fictitious magnetic field h (and the Jastrow factor). The
results for the 30 × 30 lattice are reported in Fig. 3. In this
case, there are several excitations with a finite weight for
each momentum, thus reproducing the existence of a broad
continuum, which extends up to relatively large energies.
We mention that, with respect to the square lattice [46–48],
here many more excitations for each momentum possess a
visible spectral weight. Within this calculation, we identify
the lowest-energy excitation Eq

0 as the magnon peak. This
assumption is corroborated by the results shown in Fig. 4,
where the variational energies Eq

0 closely follow the
magnon branch obtained by series expansions. Instead,
identifying the lowest-energy peak as the bottom of the
continuum is not very plausible, since a much broader
signal should be present in this case. In this regard, the basis
set that is used here for the excited states is made of
particle-hole spinon excitations on top of the ground state
of the auxiliary Hamiltonian of Eq. (13), before Gutzwiller
projection. For this reason, we argue that, in general, our
approach is particularly suited to capture (i) two-spinon
excitations or (ii) bound states of spinons, e.g., magnons.
Multimagnon excitations are expected to show up with a
reduced intensity. In order to discuss the issue of magnon
decay, we apply a kinematic argument (as done both in the

FIG. 2. Dynamical structure factor of the nearest-neighbor
Heisenberg model on the triangular lattice obtained by using
the variational wave function of Eqs. (12) and (13) with t ¼ 0 on
the 30 × 30 cluster. The path along the Brillouin zone is shown in
Fig. 1. A Gaussian broadening of the spectrum has been applied
(σ ¼ 0.02J1). The spin-wave energies of the magnon branch (ϵq),
on the same cluster size, are represented by the white dots
connected with a solid line. The dashed line corresponds to the
bottom of the continuum within linear spin waves, i.e., Eq ¼
minkfϵq−k þ ϵkg. Notice that Eq < ϵq in most of the Brillouin
zone, as obtained in Refs. [16,17].

FRANCESCO FERRARI and FEDERICO BECCA PHYS. REV. X 9, 031026 (2019)

031026-6



linear spin-wave approach [16,17] and within DMRG [32])
and we consider all the possible two-magnons decays,
which fulfill the conservation of momenta, i.e., Eq ¼
minkfEq−k

0 þ Ek
0g. For this purpose, we computed the

spectrum Ek
0 for all the k vectors in the Brillouin zone

on the 30 × 30 lattice. The outcome is that the bottom of
the two-magnon continuum, defined by the kinematic
analysis, lies above the magnon branch. These results
clearly indicate an avoided decay in a large part of the
Brilloiun zone, as suggested by DMRG calculations, which
considered certain (high-energy) parts of the magnon
dispersion [32]. Still, we cannot exclude the existence of
small regions where the magnon decay may persist,
especially close to the gapless points. In this respect,
within the linear spin-wave approach, the different veloc-
ities of the excitation spectrum at Γ and K immediately lead
to an unstable magnon branch close to the Γ point [16,17].
Should this aspect be a genuine feature of the model, the
magnon would be unstable in a small part around the center
of the Brillouin zone. Unfortunately, given the finiteness of
the cluster used in our numerical calculations, we cannot
reliably estimate the slope of the magnon spectrum at Γ and
K and, therefore, make definitive statements for this issue.
Here, we would like to notice the strong renormalization

of the magnon branch with respect to spin-wave calcu-
lations; see Fig. 4. Most importantly, we emphasize that,
within this most accurate calculation, the magnon branch
shows a rotonlike minimum not only at M but also at Y1,
i.e., the midpoint of the edge of the magnetic Brillouin zone

(see also Fig. 5), as already detected by neutron scattering
measurements in Ba3CoSb2O9 [28]. This feature was not
captured by the previous series expansion calculations [21]
but, instead, has also been observed by recent DMRG
calculations on an infinitely long cylinder (with a small
circumference L ¼ 6) [32] and has been interpreted as the
hallmark for the absence of magnon decay. In order to make
a closer comparison with DMRG data, we perform the
variational calculations on a long cylinder (84 × 6) along
the same path in the Brillouin zone as the one that has been
considered in Ref. [32]. The results are shown in Fig. 6.
Here, the large number of lattice points along the cylinder

FIG. 3. The same as Fig. 2 but for the optimal variational wave
function with both hopping t and fictitious magnetic field h. The
path along the Brillouin zone is shown in Fig. 1. The dotted line
denotes the bottom of the continuum Eq ¼ minkfEq−k

0 þ Ek
0g,

where Eq
0 is the lowest energy for a given momentum q obtained

within our variational approach. Since the spectrum is gapless at
the Γ point, we exclude the cases k ¼ ð0; 0Þ and k ¼ q in the
search of the minimum, because the resulting Eq would simply
coincide with the energy of the magnon branch Eq

0 all over the
Brillouin zone. The purpose of this kinematic analysis is to
show that no magnon decay can yield an energy Eq which is
lower than the one of the magnon branch Eq

0 (in contrast to spin-
wave results).

FIG. 4. Energies of the magnon branch for the nearest-neighbor
Heisenberg model on the triangular lattice obtained with different
methods. The path along the Brillouin zone is shown in Fig. 1.
The black line corresponds to linear spin wave, the blue squares
to series expansion [21], and the orange circles to our variational
results (on the 30 × 30 cluster).

FIG. 5. Dispersion relation of the magnon branch (i.e., the
lowest-energy excitation) as obtained within our variational
approach (on the 30 × 30 cluster). The linear spin-wave results
are also reported for comparison. Dashed lines represent the
edges of the magnetic Brillouin zone. The presence of the
roton minima at the M and Y1 points in the variational spectrum
is evident.
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allows us to have a detailed resolution of the magnon
branch, which closely follows the one obtained by DMRG.
In particular, we can estimate the bottom of the continuum
by evaluating Eq ¼ minfEq−K

0 þ EK
0 ; E

qþK
0 þ E−K

0 g, where
we consider the possible decays involving a magnon at K
and −K. In doing so, we find that the lowest-energy
excitation Eq

0 is always below Eq, indicating that a well-
defined branch exists and magnon decay is avoided. We
finally remark that a roton minimum is detected along
the same path as the one studied by Verresen et al. [32],
strongly suggesting that this is a genuine feature of the
Heisenberg model.

B. J1 − J2 model

We now move to the case where also a next-nearest-
neighbor coupling J2 is present. Within our variational
approach, a gapless spin-liquid phase is stabilized for
0.08≲ J2=J1 ≲ 0.16; here, the fictitious magnetic field
vanishes in the thermodynamic limit and the best wave
function contains only fermionic hopping (with π flux
threading half of the triangular plaquettes) [13]. On a finite
size, a small value of h can be stabilized, as well as a tiny
Jastrow pseudopotential. Still, we verified that these ingre-
dients do not cause significant differences in the dynamical
structure factor. In Fig. 7, we show the results for the
30 × 30 cluster and for two values of J2=J1, which are very
close to the transition point, one still inside the magnetic
phase (J2=J1 ¼ 0.07) and the other one in the spin-liquid
region (J2=J1 ¼ 0.09). By approaching the quantum phase
transition, the major modification of the spectrum comes

from the softening of the magnon excitation at the M
points. This feature closely resembles the case of the
frustrated J1 − J2 model on the square lattice, previously
studied with the same numerical technique [46], where a
softening is clearly detected for q ¼ ðπ; 0Þ [and ð0; πÞ]. In
this latter case, this fact has been connected to the
progressive deconfinement of spinons that have gapless
(Dirac) points at q ¼ ð�π=2;�π=2Þ. We would like to
mention that the possibility to have (gapped) almost-
deconfined spinons in the unfrustrated Heisenberg model
has been suggested by a recent quantum Monte Carlo
calculation [49]; moreover, clear signatures for deconfined
spinons at the transition between an antiferromagnetically
ordered phase and a valence-bond crystal have been
reported in the so-called J −Q model [50]. On the
triangular lattice, the softening of the spectrum at the
M points is a direct consequence of the Dirac points at
q ¼ ð0;�π=

ffiffiffi
3

p Þ in the spinon band structure. Therefore,
we expect both M and K points to be gapless at the
transition (as well as Y1, which can be obtained by
combining M and K vectors). Indeed, this is necessary
for a continuous phase transition, as the one that appears in
the J1 − J2 Heisenberg model, according to ground-state
calculations [13].

FIG. 6. The dynamical structure factor for the nearest-neighbor
Heisenberg model on a cylindrical geometry (84 × 6), to make a
close comparison with DMRG calculations by Verresen et al.
[32]. We apply a Gaussian broadening to the spectrum, which is
equivalent to the one of the aforementioned DMRG result
(σ ¼ 0.077J1). The path in the Brillouin zone is shown in the
inset and in Fig. 1 [point A lies at 1=4 of the Γ − K00 line, where
K00 ¼ ð−2π=3;2π= ffiffiffi

3
p Þ, and point B lies at 1=4 of theK − K0 line].

The dashed line denotes the bottom of the continuum, which is
evaluated by taking Eq ¼ minfEq−K

0 þ EK
0 ; E

qþK
0 þ E−K

0 g, where
Eq
0 is the lowest energy for a given momentum q obtained within

our variational approach and K ¼ ð2π=3; 2π= ffiffiffi
3

p Þ.

FIG. 7. The dynamical structure factor for the J1 − J2 Heisen-
berg model on the 30 × 30 cluster with J2=J1 ¼ 0.07 (top) and
J2=J1 ¼ 0.09 (bottom). The path along the Brillouin zone is
shown in Fig. 1, and a Gaussian broadening of the spectrum has
been applied (σ ¼ 0.02J1).
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In Fig. 8, we report the dynamical structure factor
for J2=J1 ¼ 0.125. The spin-liquid state is characterized
by a broad continuum that extends up to relatively large
energies. In particular, around the M points, the magnon
rotonlike minima of the ordered phase fractionalize into
an incoherent set of excitations at low energies. This
feature is compatible with the existence of Dirac points in
the unprojected spectrum of the auxiliary Hamiltonian
H0; see Fig. 8. By contrast, a strong signal in the lowest-
energy part of the spectrum is detected around the K
points, where the unprojected spinon spectrum is instead
gapped. In this respect, the Gutzwiller projection is
fundamental to include interaction among spinons in a
nonperturbative way and give a drastic modification of
the low-energy features. This is a distinctive aspect of
the triangular lattice, since, on the square lattice, all the

low-energy (gapless) points observed in the presence of
the Gutzwiller projector [i.e., q ¼ ð0; 0Þ, ðπ; πÞ, ðπ; 0Þ,
and ð0; πÞ] already exist in the noninteracting picture
[51]; see Fig. 9. We would like to emphasize that, in
contrast to the magnetically ordered phase, where no
visible spectral weight is present right above the magnon
branch (see Fig. 3), in the spin-liquid phase the con-
tinuum is not separated from the lowest-energy excita-
tion. This outcome corroborates the fact of having
deconfined spinons in the magnetically disordered phase.
The intense signal at K points immediately implies
strong (but short-range) antiferromagnetic correlations
in the variational wave function, which are absent in the
unprojected π-flux state (by contrast, on the square
lattice, the π-flux state already has significant antiferro-
magnetic correlations built in it).

FIG. 8. The dynamical structure factor for the J1 − J2 Heisenberg model on the 30 × 30 cluster with J2=J1 ¼ 0.125. The variational
results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 of Eq. (13) with t ¼ 1 and
h ¼ 0 (right). The path along the Brillouin zone is shown in Fig. 1. We applied a Gaussian broadening of σ ¼ 0.02J1 to the variational
results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the unprojected Hamiltonian
Eq. (13), instead of J1. In addition, the broadening has been rescaled in order to account for the larger bandwidth of the spectrum.

FIG. 9. The dynamical structure factor for the J1 − J2 Heisenberg model on the square lattice (22 × 22) with J2=J1 ¼ 0.55. The
variational results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 (right), which
contains a flux-phase hopping (of strength t) and a dxy pairing (see Ref. [46] for details). We applied a Gaussian broadening of
σ ¼ 0.02J1 to the variational results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the
unprojected Hamiltonian of Ref. [46], instead of J1. In addition, the broadening has been rescaled in order to account for the larger
bandwidth of the spectrum.
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The presence of low-energy spectral weight at the
corners of the Brillouin zone could be ascribed to the
existence of critical monopole excitations, as suggested by
the analysis of Ref. [39]. In fact, the Gutzwiller projector,
which imposes single occupancy on each lattice site,
introduces temporal fluctuations of the gauge fields that
are completely frozen within the noninteracting picture
(i.e., within the unprojected wave function). Even though
we cannot exclude a more conventional picture where a
bound state of spinons is responsible for the intense signal
around K, it is plausible that this feature originates from
the existence of gauge fields, which emerge in the field-
theoretical description of spin liquids [14]. While gauge
fields are known to predominantly contribute to spectral
functions of specific Kitaev spin liquids with Z2 magnetic
fluxes [52], our calculations suggest that monopole exci-
tations may give some relevant signature in the spin-liquid
phase of the J1 − J2 Heisenberg model on the triangular
lattice. Remarkably, on the 30 × 30 cluster, the lowest-
energy excitation at K is slightly higher inside the spin-
liquid phase (i.e., for J2=J1 ¼ 0.125) than close to the
critical point (i.e., for J2=J1 ≈ 0.08); see Figs. 7 and 8. This
fact may suggest the possibility that this kind of excitation
may be slightly gapped in the spin-liquid region, while
being gapless at the critical point. We finally highlight the
existence of an unexpected high-energy dispersing mode,
which bends from the Γ point down into the continuum,
being seemingly connected to the low-energy excitation
at K. A comparison with other numerical techniques will
be needed to clarify whether this feature is a genuine
aspect of the model or an artifact of the present variational
approach.

IV. CONCLUSIONS

In this work, we performed variational Monte Carlo
calculations to estimate the dynamical structure factor of
the J1 − J2 Heisenberg model on the triangular lattice. The
results for J2 ¼ 0 are consistent with the existence of a
well-defined magnon branch in the whole Brillouin zone, in
agreement with recent DMRG calculations [32]. This
outcome contrasts the semiclassical predictions [16,17],
which suggested the presence of magnon decay in a large
portion of the Brillouin zone. When a finite J2 super-
exchange is included and the spin-liquid phase is
approached, a clear softening of the spectrum is detected
around theM points, in close similarity to what happens on
the square lattice [46]. Remarkably, the low-energy physics
of the spin-liquid phase cannot be fully described by the
unprojected spinon picture, since, besides gapless excita-
tions atM andM0, there are anomalously low-energy states
appearing around the K points. Our numerical calculations
provide indisputable evidence of the fact that the non-
interacting (i.e., unprojected) spinon spectrum is not
sufficient to fully explain the low-energy spectrum detected
by the dynamical structure factor. In light of the recent

field-theoretical analysis [39], the natural interpretation of
the spectral features around the corners of the Brillouin
zone comes from the existence of low-energy monopole
excitations. This outcome is particularly important, since
it would give a direct signature of the fact that these
theoretical approaches correctly capture the nature of the
spin-liquid phase. We hope that the present results will
motivate future investigations in this direction.
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Néel Antiferromagnetism, Phys. Rev. B 88, 060402(R)
(2013).

[52] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,
Dynamics of a Two-Dimensional Quantum Spin Liquid:
Signatures of Emergent Majorana Fermions and Fluxes,
Phys. Rev. Lett. 112, 207203 (2014).

FRANCESCO FERRARI and FEDERICO BECCA PHYS. REV. X 9, 031026 (2019)

031026-12

https://doi.org/10.1209/0295-5075/103/57002
https://doi.org/10.1103/PhysRevLett.60.2531
https://doi.org/10.1103/PhysRevB.93.165113
https://doi.org/10.1103/PhysRevB.93.165113
https://doi.org/10.1103/PhysRevB.97.235103
https://doi.org/10.1103/PhysRevB.97.235103
https://doi.org/10.1103/PhysRevB.98.100405
https://doi.org/10.1038/nphys3172
https://doi.org/10.1103/PhysRevB.98.134410
https://doi.org/10.1103/PhysRevX.7.041072
https://doi.org/10.1103/PhysRevB.98.174421
https://doi.org/10.1103/PhysRevB.98.174421
https://doi.org/10.1103/PhysRevB.88.060402
https://doi.org/10.1103/PhysRevB.88.060402
https://doi.org/10.1103/PhysRevLett.112.207203

