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In prokaryotes, the number of genes in different functional classes shows apparent universal scaling with
the total number of genes that can be approximated by a power law, with a sublinear, near-linear, or
superlinear scaling exponent. These dependences are gene class specific but hold across the entire diversity
of bacteria and archaea. Several models have been proposed to explain these universal scaling laws,
primarily based on the specifics of the respective biological functions. However, a population-genetic
theory of universal scaling is lacking. We employ a simple mathematical model for prokaryotic genome
evolution, which, together with the analysis of 34 clusters of closely related bacterial genomes, allows us to
identify the underlying factors that govern the evolution of the genome content. Evolution of the gene
content is dominated by two functional class-specific parameters: selection coefficient and genome
plasticity. The selection coefficient quantifies the fitness cost associated with deletion of a gene in a given
functional class or the advantage of successful incorporation of an additional gene. Genome plasticity
reflects both the availability of the genes of a given class in the external gene pool that is accessible to the
evolving population and the ability of microbes to accommodate these genes in the short term, that is, the
class-specific horizontal gene transfer barrier. The selection coefficient determines the gene loss rate,
whereas genome plasticity is the principal determinant of the gene gain rate.

DOI: 10.1103/PhysRevX.9.031018 Subject Areas: Biological Physics,
Interdisciplinary Physics

I. INTRODUCTION

Comparative analyses of prokaryotic genomes show that
the number of genes in different functional classes scales
differentially with the genome size [1–6]. The scaling laws
are robust under various statistical tests [5], across different
databases, and for different gene classifications [2–6]. In
the seminal analysis of scaling, van Nimwegen fitted the
scaling to a power law of the form [2]

x1 ¼ ηxγ; ð1Þ

where x1 denotes the number of genes that belong to a
specific functional class, and x is the total number of genes.
Power laws are the simplest functions that give good fits to
the gene scaling data [2,5]. Analysis of the scaling
exponents γ has shown that such exponents are (nearly)
universal for each functional class across a broad range of

microbes (notwithstanding some debate on the validity of
the exact universality [5,7]), suggesting that differences in
scaling reflect important not yet understood features of
cellular organization and its evolution. In attempts to
explain the empirical observation that power-law scaling
is a good fit to the genomic data, several theoretical models
have been proposed, as outlined below.
In the first, now classic analysis of scaling laws, van

Nimwegen grouped the functional classes of genes along
three integer exponents 0,1,2, arguing that deviations from
the integers, as demonstrated in the dataset analyzed here
(Fig. 1 and Table I), most likely reflected gene classifica-
tion ambiguities [2]. The gene classes with the 0 exponent
include information processing systems (translation, basal
transcription, and replication), those with the exponent of 1
are primarily genes for metabolic enzymes and transporters,
whereas those with the exponent of 2 encode various
regulatory proteins. The essential information processing
systems are universally conserved and remain nearly the
same in all microbes regardless of genome size; metabolic
networks expand proportionally to the genome growth, and
the complexity of regulatory circuits increases quadrati-
cally with the total number of genes (i.e., linearly with the
number of potential interactions between gene products).
To put this conceptual thinking on quantitative ground, the
toolbox model has been proposed to explain the quadratic
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scaling, whereby the number of regulators grows faster than
the number of metabolic enzymes thanks to the frequent
reuse of the latter enzymes in new pathways [8,9].
Subsequently, the toolbox model has been extended to
assume that the gene composition of prokaryotic genomes
is determined by selection for fixed proportions of genes
from different functional classes; under this assumption, the
model recapitulates both the scaling laws and the distri-
bution of gene family sizes within each functional class
[10]. The linear scaling was also obtained under a theo-
retical model with two classes of genes, internal (house-
keeping) and external (ecological), and a reproductive rate
set to be independent of the genome size [11]. Finally,
given that prokaryotic genome evolution is dominated by

extensive gene loss and horizontal gene transfer (HGT)
[12–16], it has been hypothesized that the universal
exponents are determined by distinct gene gain and loss
rates for different classes of genes and reflect the innovation
potential of these classes [17]. Clearly, regulatory genes
have the highest innovation potential, whereas information
processing systems have next to none.
Although the power laws provide good fits to the

genomic data, the origin of the observed scaling remains
obscure. Given that genome sizes barely span 2 orders of
magnitude (Fig. 1), the power-law fits should be treated as
approximations rather than firmly established quantitative
laws. More importantly, although the models surveyed
above account for the power-law fit to the genomic data,

FIG. 1. The scaling laws for all functional classes of the COGs. The number of genes in each functional class scales with the total
number of genes, and the scaling exponents substantially differ between the classes. The number of genes in a given COG category is
plotted against the total number of genes, together with a power-law fit and model fit, as given by Eq. (2). Each gray point represents one
genome from the analyzed set of 1490 genomes. The scaling is fitted to a power law which is indicated by a solid gray line. The fitted
scaling exponent is indicated in parentheses. Red points correspond to the mean values for each ATGC in the dataset, and the model fit of
Eq. (2) is shown by the solid red line.
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they stop short of a general theory of genome evolution
rooted in population genetics that would yield power laws
or even account for the observed scaling.
Here, we analyze a simple population genetics model for

prokaryotic genome evolution [18]. Genome evolution is
modeled as a stochastic process of gene gains and losses,
and we formulate an explicit model for the gene gain
and loss rates within the theory of population genetics.
In previous studies, this modeling framework was devel-
oped and utilized to analyze the evolution of prokaryotic
genome size [18,19], i.e., the number of genes. Here, we
present two substantial extensions to the model that enable
us to analyze the scaling laws and extract the underlying
evolutionary factors. First, within the same modeling
framework, we analyze the evolution of distinct functional
classes of genes. Second, we analyze, also in a class-
specific manner, the divergent evolution of genome content
which is measured by the number of orthologs shared by a
pair of genomes [20]. The scaling we obtain under this
model does not follow a power law and does not yield
integer exponents. Extraction of model parameters from the
genomic data engenders two major challenges. First, it
is essential to extract independently the factors that
dictate gain and loss rates. This is achieved by accounting
for the divergence of genome content which depends on the
loss rate only. Second, to infer the dependence of the
evolutionary factors on the genome size, it is essential to
compare different groups of microbes that evolve under
specific local influences [19]. To filter out such influences,

class-specific quantities are normalized by genomic means,
and the ratios are used to extract model parameters.
The analyses presented here show that prokaryotic

evolution is dominated by two underlying factors: selection
coefficient and genome plasticity. While the selection
coefficient is a standard quantity in population genetics,
genome plasticity is an evolutionary factor that emerged
from the analysis presented here, and it is the principle
determinant of the gene gain rate. The class-specific
genome plasticity reflects both the abundance of the genes
of a given functional class in the external gene pool from
which genes can be captured by the evolving microbial
population, and the class-specific HGT barrier, i.e., the
ability of genomes to absorb new genes from the given
class. The HGT barrier not only decreases with the number
of genes, but the reduction in the barrier height is class
specific and dictates the scaling. To illustrate these findings,
two representative genomes of different sizes are illustrated
in Fig. 2 as collections of genes [Figs. 2(a) and 2(b)]. The
reduction in the HGT-barrier height is modest in functional
classes that scale sublinearly and comprise a similar
fraction of the genome across different groups of microbes,
largely, independent of the genome size [Fig. 2(c)]. In
contrast, in the classes that scale superlinearly with the
genome size, the reduction in the HGT-barrier height is
dramatic, allowing for frequent acquisition and fast turn-
over rate of the respective genes. Thus, in this work, we
present a simple population-genetic theory that uncovers
the evolutionary factors underlying the observed universal

TABLE I. Scaling, selection, and plasticity in different functional classes of microbial genes.

Class Functions
Scaling

exponent γ
ΔS1

slope −q
Average selection
coefficient hΔS1i

Average
plasticity hp1i

Plasticity
slope b

J Translation 0.35 −1.10 × 10−2 2.68 0.005 1.54 × 10−5
L Replication and repair 0.51 −1.35 × 10−3 0.98 0.013 −9.18 × 10−5
D Cell division 0.64 −1.58 × 10−5 1.83 0.002 −3.21 × 10−5
F Nucleotide metabolism and transport 0.69 −1.75 × 10−2 2.15 0.003 3.65 × 10−5
O Post-translational modification,

protein turnover, and chaperone functions
0.83 −5.42 × 10−3 1.38 0.010 4.88 × 10−5

M Membrane and cell wall structure and biogenesis 0.88 −1.05 × 10−3 0.65 0.029 4.57 × 10−5
H Coenzyme metabolism 0.88 −4.68 × 10−3 1.51 0.011 4.62 × 10−5
V Defense 0.94 −3.72 × 10−7 −0.44 0.034 −6.68 × 10−5
C Energy production and conversion 1.00 −4.52 × 10−3 1.19 0.017 8.92 × 10−5
I Lipid metabolism 1.08 −4.86 × 10−3 0.92 0.016 1.24 × 10−4
N Secretion and motility 1.18 −7.13 × 10−8 0.27 0.014 1.07 × 10−4
X Mobilome: prophages, transposons 1.24 −2.06 × 10−4 −4.76 1.021 1.12 × 10−2
P Inorganic ion transport and metabolism 1.24 −3.76 × 10−3 0.75 0.026 1.15 × 10−4
E Amino acid metabolism and transport 1.24 −1.90 × 10−3 1.12 0.028 8.15 × 10−5
R General functional prediction only 1.26 −1.05 × 10−3 0.37 0.051 1.15 × 10−4
S Function unknown 1.27 −5.92 × 10−7 0.55 0.025 3.35 × 10−5
G Carbohydrate metabolism and transport 1.47 −1.86 × 10−3 0.46 0.041 1.65 × 10−4
T Signal transduction 1.49 −1.28 × 10−3 0.57 0.030 1.25 × 10−4
K Transcription 1.63 −1.67 × 10−3 0.27 0.058 1.81 × 10−4
Q Biosynthesis, transport, and catabolism

of secondary metabolites
1.69 −5.77 × 10−3 0.06 0.021 2.54 × 10−4
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scaling of gene functional classes with genome size in
prokaryotes.

II. RESULTS

A. Genomic data

The dataset analyzed here consists of 34 clusters of
bacterial genomes taken from the Alignable Tight Genomic
Clusters (ATGC) database [21]. Each cluster contains ten or
more genomes (see the Appendix A for details) and
represents a sample of closely related genomes, such that
the maximum evolutionary distance between pairs of
genomes in each cluster is of the order of 0.1 over the
set of core genes, in units of the mean number of
substitutions per site. All genomes in each cluster are fully
annotated, and for each genome cluster, genes are grouped
into clusters of orthologs (ATGC COGs), such that each
genome can be represented as an array indicating the
presence or absence of ATGC COGs. In addition, all
ATGC COGs are assigned to functional classes according
to the functional classification of the Clusters of
Orthologous Groups (COG) database [22]. Finally, phylo-
genetic trees for each ATGC are also available. A graphical
representation of a single ATGC in the dataset is shown in
Figs. 3(a) and 3(b).

B. The scaling laws

We analyze scaling with the genome size for 20 func-
tional classes of genes from the database of COGs [22].

For each functional class of genes, a power-law fit is
obtained and the scaling exponent is determined (Fig. 1 and
Table I). Extraction of the scaling from the genomic dataset
is depicted in Fig. 3(c), and the power-law fitting scheme is
detailed in Appendix B. The scaling exponents range from
0.35 for translation genes (J COG category) to 1.69 for
secondary biosynthesis genes (Q COG category) (Table I).
It should be noted that the transcription category has an
exponent of 1.63 (rather than the previously reported
quadratic scaling), most likely because in the COG clas-
sification, it includes both basal transcription proteins that,
in the previous analyses, show exponents close to 0
and transcription regulators with the apparent quadratic
dependence on the total number of genes [6]. The observed
values of gene-class-specific exponents show a broad range
from sublinear for the essential universal information
transmission genes to superlinear for more evolutionarily
volatile genome components, such as regulators and
secondary metabolism enzymes (Table I).
The robustness of the observed scaling exponents for

different classes is tested by bootstrap analysis (Fig. 4; see
Appendix C). Although for some of the functional classes
of genes, the distribution of the bootstrap scaling exponents
is wide [e.g., secretion and motility genes (N); Fig. 4], all
classes can be confidently partitioned into those scaling
sublinearly, near linearly, or superlinearly. This classifica-
tion is important because it captures qualitatively different
behaviors that are robust with respect to the collection of
genomes analyzed. The key question we address is what are

FIG. 2. Horizontal gene transfer barrier determines the scaling of class-specific genes. The gene-class-specific HGT barrier is high in
small genomes (a) but substantially lower in large genomes (b). The dependence of the HGT barrier height on the genome size
determines the scaling of the number of genes in each functional class (x1) with the total number of genes x (c). For functional classes
with a weak dependence of the HGT barrier height on the genome size (e.g., genes for translation system components), the scaling is
sublinear. In contrast, for those classes that show a strong dependence such that the HGT barrier is substantially lowered in larger
genomes, the scaling is superlinear (e.g., genes for transcription factors). This figure shows schematically how the HGT barrier
determines that scaling. Under our model, the class-specific HGT barrier is reflected by the genome plasticity p1.
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FIG. 3. Graphical visualization of the analysis for a single functional class. This figure illustrates the stages of the model parameters
inference scheme from the genomic data starting from the input of the genomic data (Sec. II A) to the output of the fitted model
parameters of Eqs. (18) and (19). (a) Visualization of the dataset used as the model input. A representation of four genomes from a single
cluster of genomes (ATGC) is shown. The genomic data can be represented as a table where each row corresponds to a genome and each
column corresponds to a gene. Colored entries indicate presence of a gene in a genome, and different colors indicate different functional
classes of genes. (b) The evolutionary relationships between the genomes are represented by a phylogenetic tree. (c) The total number of
genes and the number of class-specific genes are extracted for each ATGC. Each ATGC is represented by a circle, where the x1 and x
values for each ATGC are taken as the mean values for all genomes in the ATGC. (d) For each ATGC, the number of common orthologs
is counted for all genome pairs, both for all genes, and for functional classes of genes. (e) For all genome pairs, the evolutionary distance
is inferred from the phylogenetic tree shown in (b). (f) Decay constants of genome intersections with evolutionary distance k and k1 are
inferred from the genomic data by fitting the model to observed decays of I or I1 (model fits are shown by red lines). The genomic data
are shown by a heat map [see the legend to Fig. 5(a) for details]. (g) The analysis described in (f) is performed for all ATGCs to capture
the dependence of the k1=k ratio on x1. Each point in the scatter plot represents a single ATGC, where the representative x1 value for an
ATGC is taken as the mean value from all genomes in the cluster. (h) Inference of ΔS1 by fitting Eq. (21) to the data of (g). The data are
shown by circles, and the fitted analytical curve is shown by a red line. (i) Inferred ΔS1. (j) The same as (g), but the ratio ðk1x1Þ=ðkxÞ.
(k) Inference of p1 by fitting Eq. (23) to the data of (j). The data are shown by circles, and the fitted analytical curve is shown by a red
line. (l) Inferred p1.
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the fundamental differences between the evolutionary
regimes of the functional classes of genes that result in
the dramatic differences in scaling exponents?

C. The theoretical framework

We seek to uncover the evolutionary roots of the
differential scaling of the functional classes of genes within
the framework of the general theory of genome evolution
by gene gain and loss [4,23–25]. The model used here
[Eq. (3)] is identical to the genome evolution model
developed previously [18]. However, in the previous
studies [18,19], the model was utilized only to account

for the evolution of the genome size (total number of
genes). Here, we further develop the model and analyze
quantitatively the evolution of the genome functional
content, i.e., scaling of different functional classes of genes
with the genome size, within the same modeling frame-
work. The resulting scaling is given by (see Sec. II C 4 for
derivation)

x ¼ ð1=p1Þx1e−ΔS1ðx1Þ; ð2Þ

where ΔS1 and p1 are the class-specific selection coef-
ficient and genome plasticity, respectively. Both quantities

FIG. 4. Statistical support for scaling exponents calculated using bootstrap analysis. The distribution of fitted scaling exponents is
shown for each class, for 1000 bootstrap samplings (see Appendix C). The mean of the distributions is indicated by a vertical dashed
blue line, and the fitted scaling exponent for the original dataset is indicated by a vertical solid red line.
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(ΔS1 and p1) are approximated by the first-order expansion
and are extracted from the genomic data as detailed in
Sec. II D.
In addition, the modeling framework is extended to

account for the divergence of gene repertoires in evolving
prokaryotes (Sec. II C 5). All model parameters, including
their relations and relevant equations numbers are summa-
rized in Table II, and all modeling assumptions are listed in
Table III.

1. Modeling prokaryotic genome evolution

The simplest model for genome size dynamics describes
genome evolution as a succession of stochastic gain and
loss events [18]. The dynamics of the total number of genes
in the genome x is therefore determined by the per-genome
gain and loss rates (Pþ and P−), respectively,

dx=dt ¼ Pþ − P−: ð3Þ

In the general case, the gain and loss rates Pþ and P−

depend on the genome size x. A steady-state distribution is
formed around the equilibrium genome size [18],

Pþ ¼ P−: ð4Þ
Throughout the analysis hereafter, it is assumed that the
genome size is approximately constant; that is, the genomes
evolve under a long-term equilibrium with respect to gene
gain and loss such that Eq. (4) holds. The equilibrium
approximation is widely accepted for prokaryotic genome
evolution modeling [20,26–29].
To account for the dynamics of distinct functional classes

of genes, we define class-specific gain and loss rates. Like
the complete genome, each functional class (x1) is subject
to stochastic gains and losses of genes that occur with rates
Pþ
1 and P−

1 , respectively,

dx1=dt ¼ Pþ
1 − P−

1 ; ð5Þ

TABLE II. Model variables and parameters.

Quantity Description Expressed by Equations

x Number of genes (3)
x1 Number of class-specific genes (5)
Pþ Complete genome gain rate α and S0 (3), (8)
P− Complete genome loss rate β and S0 (3), (9)
Pþ
1 Class-specific gain rate p1, α, and S1 (5), (11)

P−
1 Class-specific loss rate x, x1, β, and S1 (5), (10)

F Fixation probability S0 (7)
α Acquisition rate (8)
β Deletion rate (9)
S0 Complete genome selection coefficient x (22)
S1 Class-specific selection coefficient S0, ΔS1 (13)
I Complete genome pairwise intersection (14)
k Complete genome pairwise intersection

decay constant
x and P− (15)

I1 Class-specific pairwise intersection (16)
k1 Class-specific pairwise intersection

decay constant
x1 and P−

1 (17)

ΔS1 Class-specific selection coefficient q, ξ1, and x1 (18)
p1 Genome plasticity x1, a, and b (11), (19)
q ΔS1 slope (18)
ξ1 ΔS1 offset (18)
a Genome plasticity intercept (19)
b Genome plasticity slope (19)

TABLE III. Summary of model assumptions.

Assumption Model quantities Equations

1 Genome evolution is dominated by gene loss and HGT dx=dt, dx1=dt (3), (5)
2 Mutations appear and get fixed sequentially Pþ, P−, Pþ

1 , P
−
1 (8)–(11)

3 Genome size is in equilibrium x, x1, I, I1 (2), (4), (6), (14), (16)
4 Infinite gene pool L ≫ x I, k, I1, k1 (14)–(17)
5 Class-specific selection landscape and genome

plasticity are similar across all genomes
Pþ
1 , P

−
1 (10), (11)
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with an equilibrium value x1 that satisfies

Pþ
1 ¼ P−

1 : ð6Þ

In the next subsection, we express gain and loss rates
explicitly and show how class-specific rates are related to
the overall genome gain and loss rates.

2. Explicit formulation for gene gain
and loss rates for finite population

Assuming a finite effective population size under the
weak genome dynamics limit (acquisition and deletion
rates are low enough such that acquisitions and deletions
occur and get fixed sequentially), the gene gain and loss
rates can be expressed as the product of the mutation rate
and the probability for the mutation to get fixed in the
population F [18]. The fixation probability depends on S0,
the genomic mean of the selection coefficient normalized
by effective population size [30] (see Appendix D)

FðS0Þ ¼
S0

1 − e−S0
: ð7Þ

Following the seminal genome size analyses by Lynch and
Conery [31], we further assume that the organisms’ fitness
can be expressed as a function of the number of genes. This
assumption implies symmetry of the selective effects with
respect to gain and loss of a single gene: The benefit (or
cost) is of equal magnitude for gain and loss events but with
opposite signs [18,19]. Formally, if acquisition of a gene is
associated with a selection coefficient S0, deletion of the
same gene is associated with a selection coefficient −S0.
Denoting acquisition and deletion rates by α and β,
respectively, the gain and loss rates are

Pþ ¼ αðxÞFðS0Þ; ð8Þ

P− ¼ βðxÞFð−S0Þ: ð9Þ

The S0 value can be regarded as the mean selective
benefit (or cost) associated with the acquisition or loss of a
random gene. In principle, the mean value of S0 could be
obtained by measuring the selective effect that is associated
with a deletion of one gene at a time and averaged over all
gene deletions in all genomes and their respective envi-
ronments. As we explain above, there is symmetry between
gain and loss events with respect to the selective effect.
However, a closer examination of the gene acquisition
process reveals a more complicated picture that involves
two distinct timescales. Even genetic material that is
beneficial on a large timescale appears to be measurably
deleterious initially so that fitness is recovered only after a
transient time period of several hundred generations [32].
In contrast, the coefficient S0 is inferred from extant
genomes and thus reflects the average cost (or benefit)

of gene deletion, and accordingly, the long-term average
benefit (or cost) carried by a gene already incorporated in
the genome. Within this framework, the short timescale,
that is, the transient phase of gene acquisition, is incorpo-
rated into the gain rate of Eq. (8) through the acquisition
rate α. Specifically, α represents the combined effect of the
DNA insertion rate and HGT barrier, that is, the probability
that the acquired gene is not eliminated from the population
within the short timescale.
Gain and loss rates for genes that belong to a specific

functional class can be expressed following reasoning
similar to that used for the complete genome gain and
loss rates of Eqs. (8) and (9). The class-specific selection
coefficient that determines the fixation probability term can
differ from the mean selection coefficient of the complete
genome. Under the assumption that deletions occur at
random loci across the genome, the class-specific loss rate
is given by the complete genome deletion rate β multiplied
by the fraction of the genome that is comprised of the genes
of a given functional class. Together with the fixation
probability of a deletion event that depends on the class-
specific mean selection coefficient S1, this multiplication
gives

P−
1 ¼ x1

x
βðxÞFð−S1Þ: ð10Þ

The acquisition rate for class-specific genes is given by
the product of the global acquisition rate α, fixation
probability that depends on the class-specific mean selec-
tion coefficient S1, and the class-specific genome plasticity
p1,

Pþ
1 ¼ p1αðxÞFðS1Þ: ð11Þ

Here, p1 is a modifier for the genomewide acquisition rate
that determines the rate for the given gene class. As in the
complete genome case, this formulation implies symmetry
between class-specific gain and loss, with respect to the
selective effect: The selective benefit (or cost) is of equal
magnitude for both events but with opposite signs.
Accordingly, S1 quantifies the long-term benefit or cost.
If the short-term behavior is similar across all genes, the
probability of a successful uptake of a gene is taken into
account in the class-specific gain rate by α [Eq. (11)]. In
this case, the class-specific acquisition rate is given by the
product of α and the fraction of class-specific genes in the
external gene pool, so that p1 simply reflects the class-
specific availability of genes. However, as we describe in
detail below, an analysis of the scaling laws, together with
the pairwise intersection of the gene sets, shows that p1 is
genome-size dependent and does not fit the assumption of a
uniform HGT barrier across all classes of genes. The
coefficient p1 therefore quantifies not only the availability
of class-specific genes but also the class-specific ability of
the microbial cell to tolerate additional genes of the given
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functional class within the short timescale. Hence, we
denote p1 as class-specific genome plasticity.

3. Selection-drift balance in the evolution of genome size

The relation between the selection coefficient S0 and the
deletion bias β=α under the assumption of a steady state can
be obtained by substituting the explicit expressions for Pþ
and P− of Eqs. (8) and (9) into Eq. (4)

eS0 ¼ βðxÞ=αðxÞ: ð12Þ

Equation (12) quantifies the selection-drift balance with
respect to the evolution of the genome size. When gene
gain is beneficial and is associated with a positive selection
coefficient S0, equilibrium is possible only when gene
deletion is more frequent than acquisition ðβ > αÞ, such
that the selective pressure towards genome growth is
balanced by the intrinsic deletion bias. Similarly, equilib-
rium in the case when genome growth is counterselected,
i.e., S0 < 0, is only possible when acquisitions occur more
frequently than deletions (β < α). Finally, in the special
case when acquisition and deletion rates are equal (β ¼ α),
equilibrium is possible only in the strictly neutral case
ðS0 ¼ 0Þ. As demonstrated by our previous analysis, on
average, S0 > 0, which requires a deletion bias to reach
equilibrium in genome evolution [18,19]. Indeed, intrinsic
deletion bias had been consistently detected for diverse
genomes [33–35]. As we show in the following subsection,
the relation of Eq. (12) is also useful to relate x and x1, that
is, to obtain the model formulation for the scaling laws.

4. Model prediction for scaling of class-specific
genes with genome size

The relation between the number of class-specific genes
x1 and the genome size x [Fig. 5(a)] of Eq. (2) can be
obtained by substituting the explicit expressions for Pþ

1 and
P−
1 of Eqs. (10) and (11) into Eq. (6), together with the

relation for S0 and β=α of Eq. (12). The coefficient ΔS1 in
Eq. (2) is the mean selective (dis)advantage of a gene in the
given functional class with respect to a random gene

ΔS1 ¼ S1 − S0: ð13Þ

The scaling depends on two factors, class-specific genome
plasticity p1 and class-specific selection coefficient ΔS1,
and can be interpreted as follows. If p1 is constant, the
scaling is determined by ΔS1 [Fig. 5(b)]. For a constant
(that is, independent of the number of genes in the class)
ΔS1, the scaling is linear. Sublinear or superlinear scaling
emerges when ΔS1 depends on the number of genes
ΔS1 ¼ ΔS1ðx1Þ. Specifically, the scaling is sublinear when
ΔS1 decreases with x1 and superlinear when ΔS1 increases
with x1 [Fig. 5(c)].

5. Model of genome content evolution

One of the key observable measures of microbial
genome evolution is the pairwise intersection between
genomes (I), that is, the number of orthologous genes
shared by a pair of genomes. Importantly, in this study we
extend the modeling framework to account for the evolu-
tion of the genome content, and not only the number of
genes. As we show below, the model analysis demonstrates
that the pairwise intersection decays exponentially with
the evolutionary distances, which is incorporated into the
modeling framework. Accounting for the evolution of the
genome content is a crucial extension of the model with
respect to previous studies [18,19] that allows inference of
the class-specific selection coefficient from the genomic
data, as we explain in detail in the next section.
Both the number of genes in a genome and the pairwise

intersections between gene complements result from the
same evolutionary processes of stochastic gene gain and
loss events. A complete theoretical description of genome
evolution should therefore account for both of these
quantities. The stochastic gain and loss of genes entail a
decay in pairwise genomes similarity through the course of
evolution, even when the total number of genes remains
approximately constant. As a first-order approximation,
given an infinite external gene pool [26], the pairwise
genome intersections decay exponentially with the tree
distance d (see Appendix E for derivation)

IðdÞ ¼ xe−kd: ð14Þ

The rate of pairwise genome similarity decay is determined
solely by the gene loss rate, with the decay constant k
proportional to the per-gene loss rate

k ¼ t0ðP−=xÞ; ð15Þ

where t0 is a conversion constant from tree distance units to
time units. This model fits comparative genomic observa-
tions on the pairwise genome similarity decay with evolu-
tionary distance in archaea, bacteria, and bacteriophages
[20,36,37]. We test these observations on the ATGC set
analyzed in the present work and confirm the close
agreement of the model with the data [Fig. 6(a)].
Extraction of the decay constants from the genomic dataset
is depicted in Figs. 3(d)–3(f), and the fitting scheme is
detailed in Appendix B.
With respect to the genome content, all quantities can be

defined for genomic subsets that include only genes from a
specific functional class. Similar to its complete genome
analog, the class-specific pairwise intersection I1 (i.e., the
number of genes of class 1 shared between the pair of
genomes) decays exponentially with evolutionary distance
[Figs. 6(b) and 6(c)]

I1ðdÞ ¼ x1e−k1d; ð16Þ
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where the decay constant k1 is proportional to the class-
specific per-gene loss rate

k1 ¼ t0ðP−
1 =x1Þ: ð17Þ

Empirically, gene classes with sublinear exponents are
characterized by slow decay of pairwise intergenome
similarity, whereas those with superlinear exponents show
fast decay [Fig. 6(d)].

D. Extraction of model parameters from genomic data

After establishing the modeling framework, the next step
is to infer the two factors of Eq. (2) that dictate the relation
of x1 and x, that is, the class-specific selection coefficient
ΔS1 and the genome plasticity p1. Because the scaling laws
are robust with respect to local effects and are (nearly)

universal across all prokaryotes (see Fig. 1), the evolu-
tionary forces underlying scaling ΔS1 and p1 are likely to
be universal as well. In particular, nonlinear scaling (γ ≠ 1)
suggests that at least one of these factors depends on the
number of genes [see Eq. (2)], and we aim to extract from
the genomic data a first-order approximation of these
dependences. However, the extraction of model parameters
involves two major challenges that require construction of a
subtle fitting scheme.
First, the selection coefficient determines the class-

specific loss rate, whereas the genome plasticity is the
principal determinant of the class-specific gain rate.
Because the genome size is affected by both gene gain
and gene loss, considering merely the number of genes, or
the scaling laws for that matter, makes it impossible to infer
p1 without making any assumption on ΔS1 and vice versa.

FIG. 5. Visual representation of model scaling according to Eq. (2). The figure presents an outline of the model analysis demonstrating
the emergence of genome plasticity. The class-specific selection coefficient ΔS1, which is inferred from the genomic data, implies class-
specific genome plasticity that depends on the number of genes in the given class p1 ¼ p1ðx1Þ. (a) An illustration of the scaling of the
number of genes in functional classes with the total genome size. Three representative cases are illustrated: sublinear, near-linear, and
superlinear scaling. (b) For constant genome plasticity, the scaling is determined by the selection coefficient. Three selection coefficients
corresponding to the three scaling exponents in (a) are shown. The sign of q [see Eq. (18)] is indicated for each case. (c) Schematic
illustration of the dependence of the scaling exponent γ on q, as implied by Eq. (2). For the constant selection coefficient, the scaling is
linear (γ ¼ 1). The value of q that corresponds to (e) is indicated by a dashed line. (d) For all functional classes, q is positive such that the
selection coefficient decreases with x1. (e) Schematic illustration of the dependence of the scaling exponent γ on the plasticity slope b
[see Eq. (19)] under a positive q value [see (c)]. For b ¼ 0, the scaling is sublinear, with a γ value identical to the value indicated by a
dashed line in (c). For large enough b values, the scaling turns from sublinear to superlinear (indicated by black lines). (f) Illustration of
the inferred class-specific selection coefficients and genome plasticity. For all functional classes, the selection coefficient decreases with
the genome size, whereas genome plasticity increases with the genome size for the majority of the classes.
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We therefore incorporate into the analysis the pairwise
genome intersections that are independent of genome
plasticity [see Eqs. (15) and (17)] and allow inference of
the class-specific selection coefficient. Thus, the genome
intersection is a crucial ingredient in the analysis that
allows us to disentangle the class-specific selection coef-
ficient and class-specific genome plasticity.
Second, to extract the dependence of either ΔS1 or p1 on

genome size, it is essential to compare different taxa of
different genome sizes. Recently, we have shown that
genome evolution is subject to local effects and is governed
by taxon-specific factors [19] in addition to the universal
factors. To circumvent this taxon specificity represented
here by the genomewide acquisition and deletion rates α
and β, we normalize the class-specific quantities by the
genomic mean quantities for each ATGC separately. This
normalization cancels out the ATGC-specific factors and
allows us to infer the universal evolutionary factors.
To minimize the number of assumptions and parameters

in the model, ΔS1ðx1Þ and p1ðx1Þ are approximated by
linear functions that can be regarded as first-order expan-
sions of the actual functions

ΔS1ðx1Þ ¼ −qðx1 − ξ1Þ; ð18Þ

p1ðx1Þ ¼ aþ bx1: ð19Þ

Our main objective is to infer from the genomic data the
four parameters (q, ξ1, a, and b) for each functional
category. All the inference scheme stages starting from
the genomic data to the extraction of model parameters of
Eqs. (18) and (19) are shown graphically in Fig. 3.

1. Functional class-specific selection coefficients

The class-specific selection coefficient ΔS1 is inferred
from the ratio between the class-specific decay constant k1
and the genomic mean k. This ratio can be expressed by
class-specific and complete genome loss rates using
Eqs. (15) and (17)

k1=k ¼ ðx=x1ÞðP−
1 =P

−Þ: ð20Þ
By substituting the explicit expressions for the loss rates of
Eqs. (9) and (10) into Eq. (20), we obtain the relation
between the k1=k ratio and ΔS1,

k1=k ¼ F½−ðΔS1 þ S0Þ�=Fð−S0Þ: ð21Þ
Equation (21) is used to infer from the genomic data the
class-specific selection coefficient ΔS1. The inference

FIG. 6. Decay of prokaryotic gene content similarity with tree distance. The figure illustrates the agreement between the model
prediction of the exponential decay of the pairwise intersections between genomes with the evolutionary distance with the genomic data.
(a) The pairwise intersection between genomes I plotted against the tree distance d for complete genomes of E. coli. Intersections are
calculated across all pairs of genomes in the ATGC, and the colors represent the point density where each pair of genomes is represented
by a point (n ¼ 93, 096). The exponential decay fit of Eq. (14) is shown by the red solid line. (b) Pairwise intersections between
genomes for translation genes (J) from the E. coli genomes. Intersections are calculated for all pairs of genomes in the ATGC, and the
colors represent the point density where each pair of genomes is represented by a point. The exponential decay fit of Eq. (16) is shown by
the red solid line. (c) Same as (b) for transcription genes (K). (d) Scatter plot showing the class-specific decay constant normalized by the
genomewide decay constant vs the scaling exponents of the different functional classes. A linear fit is shown by the red line. Defense
genes (V) and the mobilome (X) deviate from the typical values and are excluded from the plot.
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stages are depicted in Figs. 3(g)–3(i), and technical details
of the optimization procedure are given in Appendix F. The
genomewide selection coefficient S0 is determined based
on our previous results [19], where we found that the
complete genome selection coefficient S0 is related to the
total number of genes x by

S0 ¼ ln ð0.7x0.06Þ: ð22Þ

Given that we consider the ratio k1=k, the taxon-specific
deletion rate β and the conversion constant t0 cancel out,
such that the ratio depends only on global factors, allowing
an unbiased comparison among the ATGCs. The interpre-
tation of the relation between the ratio k1=k and the selection
coefficients above is that genes that are associated with
larger selection coefficients are exchanged less frequently
than those that are subject to a weaker selection. For
example, amino acid metabolism genes (E) show a k1=k
ratio that increases with the number of genes [Fig. 7(a)],
suggesting that the fitness cost of deletion of genes in this
class drops for larger genomes. This behavior is typical and
common to most functional classes, with the notable
exception of defense genes (V) and the mobilome (X; the
entirety of integrated mobile genetic elements [38]) that
show k1=k greater than 1 for all genome sizes, implying

ΔS1 < 0 for all ATGCs. Accordingly, inferred ΔS1
decreases with the class-specific number of genes x1
[Fig. 7(b)]. However, as explained above and illustrated
in Figs. 5(b) and 5(c), constant plasticity combinedwithΔS1
that decreases with the genome size results in a sublinear
scaling [see Eq. (2)]. The only way to reconcile the
decreasing selection coefficient and superlinear scaling is
to introduce genome-size-dependent class-specific genome
plasticity p1 ¼ p1ðx1Þ, as illustrated in Fig. 5(e).

2. Functional class-specific genome plasticity

Similar to the inference of ΔS1 above, to express p1 by
measurable quantities, we use the ratio of k1 and k. Relying
on the equilibrium assumptions of Eqs. (4) and (6), we
substitute the loss rates in Eq. (20) for gain rates. Next, we
substitute the explicit expressions for gain rates of Eqs. (8)
and (11) to obtain

ðk1x1Þ=ðkxÞ ¼ p1F½ðΔS1 þ S0Þ�=FðS0Þ: ð23Þ

Similar to Eq. (21), which is used to infer ΔS1, local
influences [19] cancel out. Equation (23) is used to infer the
class-specific genome plasticity p1. The inference stages
are depicted in Figs. 3(j)–3(l), and the technical details of
the optimization procedure are given in Appendix F.

E. Inferred model parameters

To better understand how the number of genes in each
class is determined by the selection coefficient and genome
plasticity, it is useful to compare different classes in some
detail. For example, for amino acid metabolism genes (E),
the k1=k ratio is below unity [Fig. 7(a)], and accordingly,
the fitted ΔS1 is positive even for larger genomes
[Fig. 7(b)]. For this gene class, the inferred plasticity
increases with the genome size, leading to the observed
moderate superlinear scaling, despite the decrease in ΔS1
with x1 [see Fig. 5(e)]. In contrast, the relative abundance of
transcription genes (K), primarily, regulators, grows with
the genome size such that the k1=k ratio becomes greater
than unity [Fig. 7(c)], which correspond to the fitted ΔS1
turning negative [Fig. 7(d)]. The higher abundance and
the superlinear scaling of transcription genes (K) is
therefore attributed to the genome plasticity of this class,
which is twice as high as that for amino acid metabolism
genes (E) (see Table I). This trade-off between the selection
coefficient and genome plasticity is common to all gene
classes, and consequently, there is a strong negative
correlation between the mean values of inferred ΔS1
and genome plasticity [Fig. 8; Spearman correlation coef-
ficient ρ ¼ −0.79; pval < 10−3 for all functional classes;
Spearman correlation coefficient ρ ¼ −0.77; pval < 10−3

when omitting the mobilome (X) that demonstrates a
significantly higher plasticity than all other functional
classes].

FIG. 7. Inferred selection coefficients for two functional classes
of prokaryotic genes. The figure shows the comparison of two
functional classes, demonstrating how different pairwise genome
similarity decay rates translate into different class-specific se-
lection coefficients. (a) Decay constant ratio k1=k is plotted
against the number of genes in the functional class x1 for amino
acid metabolism genes (E). Each point corresponds to an ATGC
from the dataset. The model fit is shown by the solid red line [see
Fig. 3(h) for details]. (b) Inferred ΔS1 for amino acid metabolism
genes (E) resulting from the fit shown in (a). (c) Same as (a) but
for transcription genes (K). (d) Same as (b) but for transcription
genes (K).
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Finally, we test the model consistency by reconstructing
the scaling laws using the fitted selection coefficients and
genome plasticity. Specifically, for each gene class, the
fitted selection coefficient and genome plasticity are sub-
stituted into Eq. (2) (Fig. 1). For most classes, the fit quality
of our model is comparable to, albeit slightly worse than,
that of the power-law fit (Table S1 in the Supplemental
Material [39]). The immediate sources of errors in model
fitting are the linear approximations for ΔS1 and p1 of
Eqs. (18) and (19). It should be noted that the fitted scaling
is obtained from a population-genetics model rather than as
a fit of an arbitrary function. Moreover, model parameters
are inferred not only from the number of genes but from the
combination of the genomewide or class-specific number
of genes and the pairwise gene content similarity decay
rates in ATGCs [Eqs. (21) and (23); see Figs. 3(h)–3(l)]
which carry complementary information and allow one to
extract the selection coefficients. Both the numbers of
genes in a complete genome and in each functional class
and the pairwise similarity decay rates are readily meas-
urable quantities that characterize genome evolution. For
all functional classes, with the exception of the defense
systems (V) and the mobilome (X), the relative selection
coefficient is positive and decreases with the genome size
[Fig. 5(f), Table I]. For all except three functional classes
(L, replication and repair; D, cell division; V, defense),
genome plasticity increases with the number of genes
[Fig. 5(f), Table I]; that is, the larger the genome, the
higher the probability that an additional gene can be
incorporated into the corresponding functional networks.

Both the plasticity slope and the mean plasticity strongly
positively correlate with the scaling exponent with the
respective Spearman correlation coefficients ρ ¼ 0.81
ðpval < 10−3Þ and ρ ¼ 0.74 ðpval < 10−3Þ (Fig. 9). This
strong correlation suggests that genome plasticity, together
with the selection coefficient, shape the evolution of
genome content.

III. DISCUSSION

In this work, we develop a general theoretical model
explaining the universal scaling of the functional classes of
genes in prokaryotes (Fig. 2). The scaling that we obtain
from this simple model does not follow a power law exactly
but gives a comparable quality of fit within the range of
available data, even if slightly inferior to direct power-law
fits. However, it should be stressed that the model param-
eters’ inference does not rely only on the number of genes
but incorporate additional information derived from pair-
wise similarity in gene content, which is a crucial ingre-
dient that allows inference of the selection coefficient,
without any assumptions on genome plasticity. The model
does not include any assumptions on specific relationships
between different functional classes as postulated in the
previous models [10]. Instead, we introduce an additional
class-specific parameter, which we denote genome plas-
ticity, that is distinct from the selection coefficient and,
together with the latter evolutionary factor, governs gene
gain and loss processes. Genome plasticity reflects the
availability of the genes of the given functional class, which
itself depends on their abundance in the external gene pool,
as well as the strength of purifying selection, on the short
timescale, against horizontally acquired genes that has been
previously described as the HGT barrier [40]. The

FIG. 8. Correlation between the gene-class-specific selection
coefficient and genome plasticity values. The mean inferred ΔS1
is plotted against the mean inferred plasticity p1 for all functional
classes. The mean values are calculated by averaging over all
ATGCs. For all functional classes, ΔS1 decreases with x1.
However, whereas genes of low-plasticity classes are difficult
to acquire and losses of these genes are rare and incur a large
selective cost, genes of high-plasticity classes are acquired
frequently, and conversely, the loss of these genes typically incur
only a low cost. Consequently, a strong negative correlation
between the mean selection coefficient and genome plasticity is
observed across the functional classes of genes [Spearman
correlation coefficient ρ ¼ −0.79; pval < 10−3 for all functional
classes; Spearman correlation coefficient ρ ¼ −0.77; pval < 10−3

when omitting the mobilome (X) that demonstrates extreme
values of genome plasticity and selection coefficient].

FIG. 9. Correlation between scaling exponents and genome
plasticity values for different functional classes of genes. The
scaling exponent strongly correlates with the genome plasticity,
implying that, to a large extent, genome plasticity dominates
prokaryotic genome evolution. (a) Mean plasticity across all
ATGCs is plotted against the scaling exponent. Each point
corresponds to a functional class of genes. The mobilome is
associated with genome plasticity that is an order of magnitude
greater than those of the other gene classes and is excluded from
the plot. (b) The plasticity slope is plotted against the scaling
exponent. Similar to (a), each point corresponds to a functional
class of genes, and the mobilome is excluded from the plot.
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difference from the selection coefficient is that the selective
component of genome plasticity corresponds to short-term
selection, whereas the selection coefficient applies to
substantially longer timescales. Optimization of the model
parameters in our previous study indicated that the depend-
ence of the deletion bias on the genome size is weak,
β=α ∝ x0.06 [19]. This finding implies that the dependence
of the gene acquisition rate on genome size is similar to that
of the deletion rate on genome size, which is often taken as
linear [26,28].
Our current results provide a biologically plausible

explanation for the dependence of the gene acquisition
rate on the genome size, namely, that the genome size
increase enhances genomic plasticity, such that the HGT
barrier is lowered. Our analysis shows that genes from
different functional classes are acquired at widely different
rates, with distinct dependences on genome size. Accor-
dingly, inferred genome plasticity differs across different
functional classes, which correlates with the scaling expo-
nents (Fig. 9) and implies class-specific HGT barriers. This
finding relates previous observations that genes of different
functional classes undergo HGT at different rates [41–43]
to the scaling laws.
The biological explanation of the differences in plasticity

among functional classes of genes, at least, in part, could lie
in the so-called complexity hypothesis [44]. This hypoth-
esis postulates that genes encoding components of com-
plex, interconnected functional systems are less likely to be
transferred horizontally than genes coding for proteins that
function in comparative isolation. Indeed it has been shown
that HGT rates show negative correlation with the number
of protein interactions [41,45]. It is therefore plausible that
genome plasticity is strongly affected by the connectivity of
the genes in each functional class. More generally, plas-
ticity can be considered one of the forms of evolvability,
a much debated concept [46–50] that, however, becomes
the key factor shaping genome evolution in our model. It
should be emphasized that genome plasticity, as introduced
in the present model, endows evolvability with a precise
mathematical form. Functional classes of genes with high
plasticity, and accordingly, superlinear scaling exponents,
are evolutionarily flexible and can be thought of as the
microbial adaptation resource. The biological features of
these classes appear compatible with this interpretation.
Indeed, the four gene classes with the highest scaling
exponents, namely, secondary metabolism (Q), transcrip-
tion (K), signal transduction (T), and carbohydrate metabo-
lism (G), are involved in the response of bacteria to rapidly
changing environmental cues, including various biological
conflicts (many of genes in the Q class are involved in
antibiotic production and resistance). These classes have
high (G and K) or moderate (Q and T) plasticity and
accordingly can accumulate in genomes to the point that the
class-specific relative selection coefficient ΔS1 becomes
negative so that these genes incur a non-negligible fitness

cost on the organism. The genome similarity decay con-
stant ratio k1=k for these functional classes is unity or
greater in the majority of the ATGCs; that is, these genes
are also lost at rates similar to or higher than the average
gene, resulting in their overall dynamic evolution. Notably,
the gene classes with only a general functional prediction
(R) and without any prediction (S) also show superlinear
scaling (albeit less pronounced than the above four classes)
and high plasticity, suggesting that at least some of these
genes contribute to adaptive processes. In agreement with
previous results [51], we find that defense systems and the
mobilome incur a fitness cost on prokaryotes, and the
relative cost of the mobile elements is an order of
magnitude greater than that of defense systems. Not
surprisingly, the genome plasticity of the mobilome also
stands out, being at least an order of magnitude greater than
those of all other classes (Table I). Conversely, for sublinear
classes, plasticity is low, so that incorporation of additional
genes is unlikely, albeit becoming more accessible in larger
genomes. The genes in these classes are responsible for
housekeeping functions that contribute less to short-term
adaptation than the superlinear gene classes.
Several simplifying assumptions are made throughout

the derivation to allow the theoretical analysis and to keep
the model tractable (Table III). In particular, the class-
specific selection coefficient represents the average over all
genes of the given class in all genomes and over long
evolutionary spans. This is an obvious simplification, and
indeed, although for 15 of the 20 functional classes of
genes, the optimal set of parameters is found to be highly
robust; for the remaining five classes, optimization fails to
converge on a single set of optimal parameters (Fig. S1 in
the Supplemental Material [39]). This instability might
reflect the functional heterogeneity of these classes of
genes (which is apparent, for example, in the case of the
mobilome) as well as complex patterns of gene gain and
loss which could reflect changes of the selection coefficient
with time and/or environment fluctuations. Regarding the
gene acquisition process, it is assumed that genes are
gained one at a time and from an infinite gene pool (that is,
no repeated gene gain). Furthermore, it is assumed that
genomes are in stochastic equilibrium in terms of the
genome size. These simplifying assumptions notwithstand-
ing, nonequilibrium reacquisitions of the same genes or
gain of more than one gene at a time cannot explain the
different acquisition rates that are observed for different
functional classes. Under our model, the differences in gene
gain rates are determined by the class-specific genome
plasticity, a key parameter of genome evolution that has not
been explicitly introduced previously.
As a characteristic of the evolution of gene classes

that can be directly determined from genome compari-
son and does not depend on any model of evolution, we
analyze the class-specific core genomes and pangenomes
[52–54] (Fig. 10). The normalized core genome size for the
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individual functional classes of genes correlates with
the scaling exponent significantly and negatively
(Spearman correlation coefficient coefficients ρ ¼ −0.55;
pval ¼ 0.007). In contrast, the normalized class-specific
pangenome size correlates with the scaling exponent
significantly and positively, with Spearman correlation
coefficient coefficients ρ ¼ 0.56 ðpval ¼ 0.005Þ. Thus, as
expected, the sublinear classes have large relative core
genomes and small relative pangenomes, in contrast with
the superlinear classes that make the principal contribution
to the pangenome expansion. The results presented here
indicate that class-specific genome plasticity is the princi-
pal determinant of gene gain and, accordingly, the evolu-
tionary factor that shapes the dynamics and architecture of
microbial pangenomes and the process of rapid adaptation
in microbes.
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APPENDIX A: GENOMIC DATASET

Clusters of closely related species from the ATGC
database [21] that contain ten or more genomes each are
used in the analyses. The database includes fully annotated
genomes and a phylogenetic tree for each cluster. The
phylogenetic trees’ branch length units are substitutions per

site, and trees are inferred from a concatenation of
nucleotide sequence alignment of core genes in each
ATGC (see Ref. [21] for more details). Within each cluster
of genomes, genes are grouped into clusters of orthologs
(ATGC COGs). Out of all genome clusters that contain ten
genomes or more, we select the 36 genome clusters that
match the following criteria: (i) maximum pairwise tree
distance is at least 0.1, and (ii) the ATGC is not composed
of two groups of tightly related genomes, such that pairwise
tree distances are centered around more than two typical
values (see Fig. S2 in the Supplemental Material [39]). Two
of the 36 genome clusters are identified as outliers and are
excluded from the dataset (see Fig. S2 and Table S2 in the
Supplemental Material [39]). The 34 genome clusters
analyzed in this study are listed in Table S3 in the
Supplemental Material [39]. The ATGC COGs are assigned
to functional categories as defined in the COG database
[22]. It should be stressed that COGs and ATGC COGs
represent two different extreme cases: Whereas the COG
dataset is constructed for a broad prokaryotic diversity
(large phyletic depth), the ATGC COGs in each ATGC
are constructed for closely related genomes (small phyletic
depth). The genome sizes and sizes of the functional
classes of genes are given by the number of ATGC
COGs that are present in each genome and belong to the
respective classes. Multiple genes from a single genome
that belong to the same ATGC COG are counted once. The
behavior of the genes without orthologs in other genomes
(ORFans) deviates from the genomic mean, in particular,
due to their extremely high turnover rate [20]. Therefore,
ORFans are excluded from the present analyses. A genome
content analysis is performed for 20 COG categories.
Functional classes of genes that are analyzed are listed
in Table I.

APPENDIX B: DATA FITTING AND
OPTIMIZATION OF MODEL PARAMETERS

The numbers of genes in each class are discrete counts
that typically span about 1 order of magnitude. Because the
data span a large range and there is no justification to
assume homoscedasticity of errors, the fitting cannot be
performed by optimizing the coefficient of determination,
which assumes that errors follow a normal distribution.
It is therefore assumed that the errors follow a negative
binomial distribution, which accounts for different
error dispersions. Specifically, fitting is performed by
optimizing model parameters together with the negative
binomial distribution dispersion parameter, such that the
log-likelihood is maximal.

1. Inference of scaling exponent

Power-law scaling exponents are obtained by fitting
the genomic data to the power law of Eq. (1). For
each functional class, parameters η and γ together with

FIG. 10. Scaling exponents for different functional classes of
genes, core genomes, and pangenomes. The class-specific pan-

genome G1 (a) and core genome IðNÞ
1 (b) are plotted against the

scaling exponent for E. coli. Each point corresponds to a
functional class of genes. To allow comparison between classes,
pangenomes and core genomes are normalized by the number of
genes in each class. The plots show that the scaling exponent
strongly and positively correlates with the class-specific pange-
nome size but strongly and negatively correlates with the class-
specific core genome size. Thus, for the sublinear classes, such as
translation, the difference between the pangenome and the core
genome is minimal, whereas for the superlinear classes, such as
transcription, the pangenome dramatically exceeds the core
genome, reflecting high plasticity.
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the negative binomial distribution dispersion parameter are
optimized by maximizing the log-likelihood for all
genomes in the dataset. Genomes that do not contain genes
that belong to the respective class are excluded from the
analysis. The resulting fits are shown in Fig. 1, and the fit
Akaike information criterion values are listed in Table S1 of
the Supplemental Material [39].

2. Inference of pairwise intersection decay constants

The pairwise intersections decay constants k and k1 are
inferred by fitting Eqs. (14) and (16) separately for each
ATGC to the genomic data. Since ORFans are omitted from
the dataset, the intercept is set to the mean number of genes
(x for complete genomes and x1 for class-specific genes),
such that the decay constant and the negative binomial
dispersion parameter are optimized by maximizing the log-
likelihood. Genomes that do not contain genes that belong
to the respective class are excluded from the analysis.

APPENDIX C: STATISTICAL ANALYSIS OF
SCALING EXPONENTS

For each functional class, a power law is fitted to a
collection of genes generated by bootstrapping the original
dataset. Specifically, the sampled dataset is generated by
sampling with replacement the ATGCs and collecting all
genomes in sampled ATGCs. Sampling is performed over
ATGCs and not directly at the level of genomes in order to
avoid sampling bias due to the different number of
genomes in each ATGC. The distribution of the fitted
scaling exponents is shown for each class for 1000 boot-
strap samplings in Fig. 4. For each pair of classes, the
distribution overlap C is calculated and shown in Table S4
of the Supplemental Material [39]. Specifically, for cat-
egories X and Y, with scaling exponents γX ≤ γY for the
original dataset and bootstrap exponents γXi and γYj , the
overlap is given by

CXY ¼
�X1000

i¼1

X1000
j¼1

cXYij

�
=10002 ðC1Þ

with

cXYij ¼
�
1 for γXi > γYj ;

0 else:
ðC2Þ

Given that, for the original dataset, the scaling exponent of
class X is smaller than that of class Y, the overlap CXY
indicates the probability of a bootstrap exponent of class X
to be greater than the bootstrap exponent of class Y.
Accordingly, CXX ¼ 1=2.

APPENDIX D: POPULATION-SIZE-
NORMALIZED SELECTION COEFFICIENT

Scaling the time by the effective population size Ne
allows us to express gain and loss rates through S0 ¼ Nes0,
where s0 is the genomewide average of the selection
coefficient. Substituting into the genome size dynamics
of Eq. (3) the gain and loss rates of Eqs. (8) and (9), we get
the explicit form

dx=dt ¼ αðxÞFðS0Þ − βðxÞFð−S0Þ; ðD1Þ

where F denotes the fixation probability of Eq. (7).

APPENDIX E: PAIRWISE GENOME
INTERSECTIONS

To account for the genome content similarity, each
genome is represented by a vector X with elements that
assume values of 1 or 0. Each entry represents an ATGC
COG, where 1 or 0 indicate the presence or absence,
respectively, of that ATGC COG in the genome. Genome
size x is then given by the sum of all elements in X. The
number of common genes I is defined as

IðtÞ ¼ hX · Yi; ðE1Þ

where X and Y are two vectors that represent the two
genomes, the angled brackets indicate averaging over all
possible pairs of genomes, and the dot operation stands
for a scalar product. The pairwise genomes intersection
dynamic is given by

dI=dt ¼ 2hðdX=dtÞ · Yi; ðE2Þ

where we use the fact that both averages are equal
hðdX=dtÞ · Yi ¼ hX · ðdY=dtÞi. For a finite gene pool of
size L (the limit of an infinite gene pool, which is used in
the Results section, is calculated below), we have

ðdX=dtÞ · Yi ¼ −P− L
L − x

IðtÞ=xþ P− x
L − x

; ðE3Þ

where the last approximation relies on the steady-state
assumption Pþ ≈ P−. Substituting the relation above into
the equation for the pairwise genome similarity time
derivative of Eq. (E2) and solving the differential equation,
we obtain the exponential decay of the pairwise genome
intersection to an asymptote x2=L,

IðtÞ ¼ ½Ið0Þ − x2=L�e−νt þ x2=L ðE4Þ

with decay constant

ν ¼ 2P−

x
L

L − x
: ðE5Þ
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The asymptote x2=L can be obtained using a simple
intuitive derivation. The two intersecting genomes are
regarded as two independent random samples of x genes
from a pool of L genes. The probability that a sample from
the second genome includes a gene that was already
sampled in the first genome is x=L. To obtain the number
of intersecting genes, this probability is multiplied by the
number of trials, that is, the number of genes x, giving the
intersection asymptote x2=L. Assuming a clock with
respect to loss events, the time t can be translated into
the tree pairwise distance as d ¼ 2t=t0. Further assuming
that the gene pool is much larger than the mean genome
size L ≫ x (formally equivalent to the assumption of an
infinite gene pool [26]), we get for I the exponential decay
of Eq. (14), with the decay constant of Eq. (15).
Finally, it is possible to consider pairwise genome

intersections with respect to a subset of genes. The
derivation presented in Eqs. (E1)–(E5) can be repeated
for genes that belong to a specific functional class, resulting
in an exponential decay of the class-specific pairwise
intersections I1 of Eq. (16), with the decay constant k1
of Eq. (17).

APPENDIX F: OPTIMIZATION OF MODEL
PARAMETERS

For each functional class, four model parameters q, ξ1, a,
and b of Eqs. (18) and (19) are optimized using the mean
numbers of genes and decay constants for each ATGC x, x1,
k, and k1. Specifically, all four model parameters are
optimized simultaneously using Eqs. (20) and (22),
together with S0 of Eq. (21), by maximizing the goodness
of fit R2 for both equations. The model parameters are
optimized by maximizing a goal function that is given by
the sum of goodness-of-fit values for both equations. In
principle, four-dimensional optimization can converge at a
local minimum or else it could have substantially different
nearly optimal solutions. To ensure that optimal parameters
are picked and to demonstrate the robustness of the optimal
solution, the following procedure is applied. In the first
stage, optimization is performed for each functional class
starting from an arbitrary point in the parameter space

a ¼ meanðx1=xÞ;
b ¼ 0;

q ¼ 0.01;

ξ1 ¼ maxðx1Þ: ðF1Þ

The outcome of this optimization, including both the
optimized parameters and the goal function values, is set
as a benchmark, where each functional class is associated
with different values. Further optimizations are performed
starting from random points in the parameter space, and we
keep the results of 100 optimizations with goal function

values equal to or greater than the benchmark valueG0. For
each functional class, the differences in the parameters’
values in each of the 100 optimizations and the benchmark
optimization are calculated. The difference D is calculated
for each model parameter as

D ¼
���� z0 − zi

z0

����; ðF2Þ

where z0 denotes the benchmark value of a model param-
eter, and zi is an optimal model parameter value obtained
when starting the optimization from a random point in the
parameter space. For all but five functional classes (cell
division D, defense V, secretion N, mobilome X, and
function unknown S), optimizations converge consistently,
with negligible D, as shown in Fig. S1 of the Supplemental
Material [39]. The large differences observed for five
classes imply that there are two or more local maxima
with goal function values equal to or larger than G0.
In the next stage, we find the global maximum.

A procedure similar to the one described above is applied,
but instead of setting the benchmark based on an arbitrary
starting point, the benchmark goal function value is taken
as the maximum value of 100 optimizations that start from
random points in the parameter space. Optimizations are
then performed starting from random points in the param-
eter space until 100 solutions with the goal function value
equal to or greater than the benchmark value are obtained.
In this case, each of the 20 functional classes converge to a
single-class-specific point in the parameter space, as shown
in Fig. S3 of the Supplemental Material [39]. All five
categories (D, V, N, X, and S) that previously showed large
differences between the optimal and near-optimal param-
eter values converge to a solution with a negative q
[positive slope of the class-specific selection coefficient;
see Eq. (18)]. For these five classes, we apply the constraint
q > 0 and repeat the search. The differences for the optimal
and near-optimal solutions with q > 0 are shown in Fig. S4
of the Supplemental Material [39]. The genome plasticity
can be determined, but different starting points converge at
different selection coefficients. The solution with the
largest goal function value is taken as the optimal solution,
and comparison of the selection coefficients and genome
plasticities for optimal solutions with q > 0 and q < 0 are
shown in Fig. S5 of the Supplemental Material [39].
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