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The delay-bandwidth limit implies a stringent trade-off between the time delay, bandwidth, and
propagation distance of an electromagnetic signal. Here, we show that temporal modulation can overcome
this constraint, enabling extremely broadband wave propagation with close-to-zero group velocity
dispersion in switched multipath electronic networks. Contrary to time-invariant waveguides, in which
wave propagation implies a delicate balance between electric and magnetic stored energies, in such
modulated networks the stored energy is largely electrostatic in nature. We show that in this case the phase
and group velocities become independent of the properties of their constituent elements, and they are
controlled only by the modulation scheme. Based on these findings, we provide practical designs of deeply
subwavelength CMOS-compatible reciprocal and nonreciprocal microwave components, such as delay
lines, phase shifters, couplers, and circulators. The obtained results also explicitly show that temporally
modulated systems are not bound by constraints of time-invariant systems and can achieve arbitrarily large
delay-bandwidth products.
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I. INTRODUCTION

Spatial modulation and periodicity offer exciting oppor-
tunities for modern engineering, allowing one to rely less
on the intrinsic properties of natural media and, instead,
obtain synthetic collective responses by combining several
materials with distinct properties in judicially engineered
structures. In electromagnetics, the use of spatial modula-
tion enables a large degree of control over the phase and
group velocities, polarization, and amplitude of traveling
waves. Examples of such manipulation include extreme
light traveling regimes, such as propagation with ultralow
(vg ≪ c) and superluminal (vg > c) group velocities [1–5].
Based on these principles, it has been shown that it is
possible to bring a light pulse to a near standstill [6–8].

Such dramatic modifications of group velocity are typically
accompanied by strongly enhanced light-matter interactions
which are critically important for electronics, nanophotonics,
optical communications, quantum information processing,
light harvesting, and sensing.At the same time,manyof these
applications require that light pulses are not only trapped
for prolonged times, but also released without amplitude
and phase distortions. This requirement is a key difference
between structures aimed at light trapping and those operat-
ing as photonic buffers. For instance, light trapping can be
obtained by leveraging nonresonant and thus extremely
wideband wedge states at the end of adiabatically tapered
reciprocal or nonreciprocal waveguides [9,10]. The lifetime
and bandwidth of such trapped states are determined only by
their aggregated outcoupling, radiative and intrinsic loss rate
[11]. In turn, to obtain pulse delays significantly larger than
those provided by the waveguide dispersion, time-invariant
slow-light structures employ resonant cavities which intro-
duce additional groupdelays in thevicinity of their resonance
frequencies. Arranging such cavities in periodic and quasi-
periodic lattices enables increased bandwidths and provides
better control over the guided mode dispersion. In particular,
adiabatically varying (“chirped”) structures can be used to

*To whom correspondence should be addressed.
aalu@gc.cuny.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 031015 (2019)

2160-3308=19=9(3)=031015(16) 031015-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.031015&domain=pdf&date_stamp=2019-07-31
https://doi.org/10.1103/PhysRevX.9.031015
https://doi.org/10.1103/PhysRevX.9.031015
https://doi.org/10.1103/PhysRevX.9.031015
https://doi.org/10.1103/PhysRevX.9.031015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


flatten the dispersion over a certain range of frequencies and
obtain distortion-free pulse delays [2]. Still, due to their
intrinsically resonant nature, all time-invariant slow-wave
structures face a stringent trade-off between the pulse delay
Δt ¼ L=vg, where L is the propagation length and vg is the
group velocity, and the available bandwidth Δf: For a fixed
footprint, the larger the group delay, the smaller the band-
width. This trade-off can be easily understood if we consider
a waveguide at its cutoff: The group velocity approaches
zero, leading to an infinitely large delay Δt, but this process
happens essentially at a single frequency, i.e.,Δf → 0. It can
be also shown that the group velocity achievable in a time-
invariant system is directly proportional to its bandwidth,
vg ∝ Δf [12]. Thus, the delay-bandwidth product (DBP)
Δt · Δf of any time-invariant system is always finite, since it
inherently determines how many pulses (or bits) the system
can store. The DBP is commonly used as a figure of merit
to benchmark and compare the performance of slow-wave
structures [13].
All these considerations also apply to time-invariant

electronic systems and circuits, except that lumped LC
tanks or micromechanical resonators are typically used
instead of optical resonators. Wideband electronic delay
elements, often called true time delays (TTDs), which are
the primary subject of this work, are critical components in
the design of analog finite impulse response filters, which
find widespread application in equalizers [14], wideband
beam formers [15], and interference cancellers [16].
However, in electronic systems the physical size and low
quality factor of inductors impose additional constraints
on practically attainable group delays. Moreover, since the
inductance of a resonant LC circuit grows proportionally to
the inverse of the resonance frequency squared, the
problem of realizing TTDs is dramatically amplified at
frequencies below a few gigahertz.
Breaking time invariance is a powerful method to gain

additional control over wave propagation. In time-modulated
optical systems, slow- and fast-light regimes can be realized
by inducing coherent population oscillations in absorbing
media [5], via stimulated Brillouin scattering from a trav-
eling acoustic wave [5,17–19], as well as Raman scattering
[20,21], in order to obtain a narrow frequency window with
strong refractive index dispersion. Even though these sys-
tems suffer from bandwidth limitations, they possess a
valuable advantage of being dynamically controllable and
reconfigurable. Another interesting method to obtain a slow-
wave regime and achieve optical buffering is by adiabatically
tuning certain properties of the system, such as the resonance
frequency of an array of optical cavities or their coupling to
bus waveguides, as the pulse enters and exits the system.
This approach enables adiabatic compression of the spectral
width of the incoming pulse and its coherent storage in
an array of high-Q resonators, with subsequent adiabatic
decompression and release [12,22]. A more traditional
technique is to trap the pulse in a looped waveguide

resonator having a round trip which is much larger than
the pulse duration and allow the pulse to exit after an integer
number of round trips [23–28]. In this case, the evolution of
the system is nonadiabatic, since it occurs on timescales
much shorter than the periodicity of the field in the resonator.
Similarly, trapping of a narrow-band optical pulse in a
photonic crystal nanocavity has also been demonstrated [29].
Importantly, the pulse storage time in such systems is limited
only by the lifetime of photons in optical cavities, and thus
they are not bound by the DBP limit of time-invariant
systems. The downside of both approaches, adiabatic and
nonadiabatic, is the fact that the catch-and-release process
must be performed synchronously with the incoming pulse,
which in practice requires a part of the pulse energy to be
used for control and synchronization of the tuning network.
In addition, dynamic catch-and-release imposes a constraint
on spacing between subsequent pulses, which cannot be
made smaller than the pulse storage time, implying another
limitation on the system bandwidth. Nevertheless, these
works clearly show that temporal modulation provides a
practical way to overcome the DBP limit of time-invariant
systems [30].
Inspired by all these interesting developments, in this

paper, we show that synchronized spatial and temporal
periodic modulation may be used to fundamentally over-
come the delay-bandwidth limit of time-invariant systems
by breaking the dependence of phase and group velocities
on the properties of the constituent elements. Over the past
few years, spatiotemporal modulation has gained significant
attention, in particular, due to the possibility of realizing
miniaturized nonreciprocal components enabling the reali-
zation of magnet-free isolators [31–34], phase shifters [35],
miniaturized radio frequency gyrators, and circulators
[36–44]—important breakthroughs on the way towards
integrated communication systems. However, all these
nonreciprocal devices, as well as many reciprocal ones,
rely on large delays that provide the necessary phase shifts
among their constituent subunits, fundamentally limiting
their further miniaturization. In the following, we use a
specific form of nonadiabatic spatiotemporal modulation—
switching—in multipath electronic networks to realize
deeply subwavelength reciprocal and nonreciprocal delay
lines exhibiting near-zero group velocity dispersion over
extremely broad bandwidths. We also show that, instead of
being functions of the impedance of the involved circuit
elements, the phase and group velocities in these networks
are inherently defined by the modulation scheme, enabling
dynamic delay-bandwidth reconfiguration, well beyond the
limits of static schemes. These highly unusual properties
stem from the fact that, while conventional delay lines and
resonators are bound to store nearly equal amounts of electric
and magnetic energy, the proposed switched networks store
energy mostly electrostatically, opening a new regime of
electromagnetic wave propagation. Building upon these
findings, we present realistic designs of miniaturized
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reciprocal and nonreciprocal devices that can successfully
replace arbitrarily long delay line sections within extremely
compact footprints, as well as synthesize various phase-
nonreciprocal responses. This opens exciting prospects for
the realization of deeply subwavelength and fully integrable
reciprocal and nonreciprocal electronic devices and systems
based on spatiotemporal modulation.

II. COMMUTATED NETWORKS AS CAPACITIVE
PHASE SHIFTERS

Consider a network consisting of a periodic ladder of
identical linear time-invariant (LTI) banks, each of which is
connected to the input and output ports through frequency
mixers or modulators, for example, switches [45,46].
Figure 1(a) shows an example of such a two-port network
consisting of N branches, each containing a shunt capaci-
tance C connected to the ports through two switches. We
assume the input and output port impedances to be Z0. The
two sets of switches are commutated in a staggered fashion,
periodically connecting and disconnecting each capacitor.
On either side of the network, only one switch is closed

at any moment in time, and it remains closed over a time
interval Ts=N, where Ts is the switching period.
Additionally, due to the staggering, the two switches on
the same path never close at the same time; i.e., the output
set of switches lags the input set by a time delay
ΔT ¼ ½1; 2;…; N − 1� × Ts=N, corresponding to a com-
mutation phase shift γ ¼ −2πΔT=Ts.
The properties of the network at each frequency are

defined by the charge or discharge time constant τ ¼ Z0C,
switching frequency fs ¼ 1=Ts, and the number of
paths N. Depending on these parameters, the network
can exhibit remarkably different behaviors. When the time
interval over which each switch is closed is much smaller
than the time constant of the shunt capacitor τ ≫ Ts=N,
such a network synthesizes the response of a high-Q
comb filter commonly referred to as an N-path filter which
exhibits a series of narrow transmission peaks centered at
f ¼ mfs, where m ¼ 0; 1; 2;… [45,46,48]. Conventional
time-invariant bandpass filters require the use of inductors,
leading to large footprints, difficult integration, poor
efficiency, and lowQ factors, especially at low frequencies.
In turn, the width of transmission peaks of N-path filters
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FIG. 1. (a) Schematic of an electronic circuit withN identical paths containing switched shunt capacitances. Each switch is closed over
the interval Ts=N, where Ts is the switching period, and the input and output set of switches are operated in a revolving fashion. The
output set lags the input set by time ΔT corresponding to a phase shift γ ¼ −2πΔT=Ts. (b),(c) Magnitude and phase of the scattering
parameters of the network in (a) with N ¼ 16, C ¼ 15 pF, fs ¼ 1 GHz, and Z0 ¼ 50 Ω, leading to τ ≫ Ts=N (here, τ ¼ Z0C),
which allows it to operate as an N-path filter. The phase response is computed for ΔT ¼ Ts=2 (phase-reciprocal case) and ΔT ¼ Ts=4
(phase-nonreciprocal case). For both cases, the magnitudes of scattering parameters are identical. (d) Schematic of a circuit operating as
a wideband phase shifter, comprised of a commutated network with small series inductances on both sides. (e),(f) The same as (b),(c),
but with C ¼ 0.68 pF, leading to τ ∼ Ts=N, which allows the network to operate as a wideband phase shifter. Dashed lines and solid
lines show the response with and without small matching inductances L ¼ 0.75 nH, respectively. (f) Corresponding phase response.
Results in (b), (c), (e), and (f) are obtained by means of the method outlined in the Appendix. The light gray “shadow” curves in (b) and
(e) indicate simulation results obtained using Cadence Spectre RF (PSS solver) [47].
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depends inversely on τ: The larger the time constant, the
narrower the transmission peaks. For this reason, N-path
filters have become attractive alternatives to conventional
filters for high-Q applications, with the additional inher-
ent advantages of reconfigurability and full compatibility
with CMOS integrated circuit technology. Recently, it
has been shown that N-path filters can also exhibit both
reciprocal and nonreciprocal phase responses depending
on the delay ΔT between the two sets of switches [40,45].
To illustrate this aspect, in Figs. 1(b) and 1(c), we show
amplitudes and phases of scattering parameters Sij ¼
jSijjejϕij of an N-path filter for two different switching
delays, ΔT ¼ Ts=4 and ΔT ¼ Ts=2, corresponding to
commutation phase shifts γ ¼ −π=2 and γ ¼ −π, respec-
tively. It is seen that the transmission phases are generally
nonreciprocal: At ω ¼ mωs (here, ω ¼ 2πf is the angular
frequency), the corresponding phases are ϕ21ðmωsÞ ¼ mγ
and ϕ12ðmωsÞ ¼ −mð2π þ γÞ. For ΔT ¼ Ts=2, the net-
work is fully reciprocal, as seen in Fig. 1(c) [49]. It is
important to stress that the transmission peaks and phase
shifts depend solely on fs and γ; i.e., such commutated
networks break the dependence of the phase delay on the
constituent elements, in this case the time constant. This
property makes commutated networks interesting candi-
dates to obtain large phase shifts in small footprints. Their
small bandwidths, however, limit their use as conventional
delay lines.
In the opposite limit, τ ≪ Ts=N, such commutated net-

work operates as a track-and-hold circuit. When the input
switch is closed, the capacitor voltage tracks the input voltage
and stores its final value. Then, when the output switch is
closed, this value is released to the output port in the form of
a Dirac delta-function-like voltage spike. Such track-and-
hold functionality is routinely employed in analog-to-digital
converters [50].
In this work, we employ an unexplored regime of

commutated network operation, τ ∼ Ts=N. Contrary to the
filtering functionality achieved when τ ≫ Ts=N and the
sampling functionality obtained for τ ≪ Ts=N, in this
case, the network operates as an extremely wideband
phase shifter with low insertion loss. To improve imped-
ance matching to Z0, we add two small inductances L
on either side of the network, as shown in Fig. 1(d). In
Fig. 1(e), we plot the magnitude of the scattering param-
eters with N ¼ 16, C ¼ 0.68 pF, with and without the
presence of small series inductances L ¼ 0.75 nH. The
addition of small inductances improves the insertion loss
by approximately 2 dB and return loss by approximately
10 dB. The corresponding phases ϕ21ðωÞ and ϕ12ðωÞ are
plotted in Fig. 1(f). It is seen that the phase response
is ideally linear over an extremely broad bandwidth, and
the phase slopes depend only on the commutation phase
shift γ as

ϕ21ðωÞ ¼ γ
ω

ωs
; ð1Þ

ϕ12ðωÞ ¼ −ð2π þ γÞ ω
ωs

: ð2Þ

To fully understand the nature of such a drastic change
of the network response, we perform time- and frequency-
domain analyses of the signal transmission. In the fre-
quency domain, each switch operates periodically with
frequency fs (in what follows, fs ¼ 1 GHz) and acts as
a frequency mixer converting the monochromatic input
signal at some frequency f0 into a sum of discrete
harmonics oscillating at frequencies f0 þ nfs with n ¼
0;�1;�2;…. The shunt capacitance C in each branch is a
low-pass filter, whose bandwidth is determined by the RC
constant τ ¼ Z0C. In Fig. 2, we plot its scattering param-
eters for the two cases discussed in Fig. 1, i.e., C ¼ 15 pF
and C ¼ 0.68 pF (for both cases, Z0 ¼ 50 Ω). From
Fig. 2(a), it is seen that for C ¼ 15 pF the shunt capacitor
filters all positive- and negative-frequency harmonics
impinging from port 1 except, possibly, the one near dc.
This leads to a series of narrow peaks in the transmission
of the commutated network at frequencies mfs, m ¼
0; 1; 2;… [see Fig. 1(b)], which correspond to transmission
of the harmonics n ¼ 0;−1;−2;…, respectively. From
Fig. 2(b), it is seen that the phase ϕ21 in this case exhibits
a rapid variation, owing to the proximity of the pole ωpole ¼
jτ−1 to the origin of the complex frequency plane, leading
to a staircase phase profile of the commutated network, see
Fig. 1(c). On the other hand, for C ¼ 0.68 pF (see dashed
lines in Fig. 2), the pole moves further away from the
origin, allowing multiple harmonics to be transmitted at
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FIG. 2. (a) Amplitude of the scattering parameters of the shunt
capacitance C shown in the inset as a function of the frequency
(with negative frequencies included). The reference impedance is
Z0 ¼ 50 Ω. The inset shows the shunt capacitor network being
excited by a multitone signal containing only a discrete set of
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port 2, hence resulting in a nearly flat phase response. This
property leads to a wideband transmission of the commu-
tated network and linearization of its phase profile.
In Fig. 3, we plot the temporal evolution of the voltage in

one of the capacitors vCðtÞ, when the network is excited by
a Gaussian pulse with the center frequency f0 ¼ fs. When
the shunt capacitance is large, τ ≫ Ts=N [see Fig. 3(a)], we
are in the filtering regime in which vC cannot faithfully
follow the input voltage, because the charging time of the
capacitor is much longer than the time over which the
switch is closed. For the same reason, it cannot discharge
fast enough to recreate the input signal at the output
port. The signal is transmitted only for f ¼ mfs with
m ¼ 1; 2;…, because only at these frequencies does the
input signal share the same period as the clock signal,
allowing each capacitor to sample the same input voltage at
every cycle.
On the other hand, when τ ∼ Ts=N [see Fig. 3(b)], the

capacitor voltage vC almost reaches the input voltage during
the time over which the input switch is closed. Similarly,
when the output switch is closed, the capacitor has enough
time to discharge. The staggered storage and release of
portions of the signals in each capacitive branch allows
imparting very large time delays, independent of the
frequency of operation. Therefore, such a regime enables
extremely large bandwidths and allows the pulse to propa-
gate without distortion. The insertion loss is explained by
the excitation of intermodulation products caused by large
voltage sweeps in each branch when the switches are closed,
which are reflected as small spikes visible in the transmitted
pulse but which do not distort its envelope. The transmission
properties gradually deteriorate as the frequency increases,

as seen in Fig. 1(e), consistent with the Nyquist-Shannon
theorem [52] which establishes the relation between the
sampling frequency and the highest frequency fmax beyond
which the aliasing and frequency folding will occur. In our
case, the sampling frequency is Nfs corresponding to
fmax < Nfs=2, which is about 8 GHz in the current
example, in agreement with Fig. 1(e). The available band-
width can be straightforwardly broadened by increasing the
number of paths in the commutated network.
Finally, in Fig. 3(c), we plot the capacitor voltage when

the network is in the sampling regime τ ≪ Ts=N. In this
case, for most of the time v1ðtÞ ≈ vinðtÞ;i.e., the network is
an open circuit reflecting the input signal back to the
source, because almost no net current is flowing through
the source resistance. In turn, the output voltage comprises
a series of narrow delta-function-like voltage spikes whose
amplitudes are determined by the capacitor voltage
immediately before the corresponding input switch opens
(thus, the name “track-and-hold” circuit).
The transition of the spectral response of the network

between filtering, analog delay, and sampling regimes is
summarized in Fig. 4, in which we plot the insertion and
return loss versus the frequency and time constant τ. We
also indicate the three representative values of τ corre-
sponding to each of the three cases discussed in Fig. 3. It is
seen that, with a decrease of τ, the network experiences a
gradual transition from filtering to the low-loss wideband
delay functionality of interest here. We also note that, due
to this smooth transition, there is no well-defined optimal
value of τ. In loose terms, it is the value for which the peaks
in S11 and S21 disappear and the corresponding phases
become linear. With a further decrease in τ, the network
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FIG. 3. Temporal evolution of the voltage across the capacitance, vCðtÞ, in one branch of a commutated multipath network with
N ¼ 16, fs ¼ 1 GHz, and ΔT ¼ Ts=2, excited by a Gaussian pulse with the center frequency f0 ¼ 1 GHz and a duration of 4 ns. The
tree cases shown correspond to (a) C ¼ 5 pF, at which the network operates as a high-Q filter, (b) C ¼ 0.5 pF, when the network acts as
a broadband delay element, and (c) C ¼ 0.1 pF, for which the circuit operates a sampling network. Green and pink bars indicate time
intervals when the input and output switches, respectively, in the first branch are closed. The analysis is performed using Keysight
ADS [51].
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enters the sampling regime, also wideband, but with a much
higher insertion and return loss.

III. WAVE PROPAGATION IN PERIODIC
NETWORKS OF COMMUTATED

CAPACITORS

Having introduced the operation principles of a single
commutated multipath network, here we study wave
propagation through a cascade of such networks. It is
well known that time-invariant periodic networks con-
sisting of static L and C support passbands and stop
bands. Their cutoff frequencies and phase and group
velocities are defined by the values of L and C and the
spatial periodicity. On the contrary, here we show that
periodic networks of commutated capacitors fundamen-
tally break this dependence and that their phase and group
velocities depend only on the commutation phase shift γ
and modulation frequency fs, opening exciting oppor-
tunities to realize electrically small slow-wave structures
with unbounded DBPs.
Consider an infinite cascade of commutated wideband

phase-shifting networks. Since the insertion loss and
intermodulation products are fairly small, we can approxi-
mate the response of a unit cell by the scattering matrix of a
lossless nonreciprocal time-invariant phase shifter:

S ≈
�

0 ejϕ12

ejϕ21 0

�
: ð3Þ

The two solutions for Bloch phase shifts [53] over a
single unit cell, ka ∈ ½−π; π� (k and a denote, respectively,
the Bloch wave number and the unit-cell size), can be found
using Eqs. (1) and (2):

k1ðωÞa ¼ −ϕ21ðωÞ ¼ −γ ω

ωs
; ð4Þ

k2ðωÞa ¼ ϕ12ðωÞ ¼ −ð2π þ γÞ ω
ωs

: ð5Þ

To verify this result, we compare it against rigorous
numerical solutions of a multifrequency periodic problem
(see the Appendix) in the two cases: reciprocal,ΔT ¼ Ts=2
(γ ¼ −π), shown in Fig. 5(a), and nonreciprocal, ΔT ¼
ðN − 1ÞTs=N corresponding to γ ¼ −2πðN − 1Þ=N,
shown in Fig. 5(b). It is seen that in both cases analytical
and numerical solutions closely agree, showing a linear and
gapless dispersion. Small discrepancies between the results
stem from the small inductances L, which, however, do not
introduce significant changes to the network dispersion.
Nevertheless, including these small inductances between
commutated networks is required to sustain signal propa-
gation: Through these inductances, the capacitors can
charge and discharge, and they enable improved impedance
matching to Z0.
In Figs. 5(a) and 5(b), the networks have identical

bandwidths, but in the reciprocal case the group velocity
vg ¼ ∂ω=∂k is the same in both directions,

v�g ¼ � 2afs; ð6Þ

while in the nonreciprocal case

vþg ¼ N
N − 1

afs; ð7Þ

v−g ¼ −aNfs: ð8Þ

Given the number of paths N and the commutation
frequency fs, Eqs. (7) and (8) provide the lower and upper
bounds for group velocity achievable in such commutated
networks. From these expressions, it is evident that the
group velocity can be made arbitrarily small by simply
reducing the commutation frequency fs. The bandwidth

Insertion loss, IL (dB) Return loss, RL (dB)

Filter

Delay

Sampler

Filter

Delay

Sampler

(a) (b)

FIG. 4. (a) Insertion loss IL ¼ −20log10jS21j dB and (b) return loss RL ¼ −10log10ð1 − jS11j2Þ dB of the commutated capacitor
network shown in Fig. 1(a) versus the normalized frequency f=fs (fs is the modulation frequency) and the RC time constant τ ¼ Z0C
normalized by the time Ts=N over which each switch remains closed. The three dashed horizontal lines indicate the three representative
values of τ for C ¼ 5 pF, C ¼ 0.5 pF, and C ¼ 0.1 pF corresponding to network operating, respectively, as a filter, a delay element, and
a sampler. All other parameters are the same as in Fig. 1.
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Δf is independent of the group velocity, and it is limited
only by the Nyquist-Shannon theorem: Δf < Nfs=2.
To further emphasize the broadband slow-wave effect

enabled by commutation, it is instructive to compare the
band diagrams of time-varying and time-invariant net-
works. In Figs. 5(a) and 5(b), we plot the band diagrams
of time-invariant transmission lines composed of LCL
sections with the same values of L and C as a single
branch of the commutated network (see the dashed dark
blue lines). This comparison is reasonable, since at any
instant of time the signal sees just one of the branches of
the multipath network, while all other switches are open.
It is seen that in this case the group velocity is much
larger, while only a small phase shift is accumulated over
one unit cell. The latter also represents the minimal phase
shift that can be obtained in the commutated multipath
network; i.e., it is the “light cone” of the system. In both
panels, we also plot the dispersion of a “high-index”
LCL-transmission line with the capacitance C×16 ¼ 16C,

i.e., with the total L and C equal to those of the
commutated network when all switches are permanently
closed, so that all the capacitances become connected in
parallel. The group velocity in this case is lower than in
the single branch case, as expected, at the expense of a
significantly diminished bandwidth. Very interestingly,
the group velocity of the commutated network is still
much smaller than that of the high-index transmission
line, and it has essentially no dispersion over the entire
frequency range. In addition, it can be made larger or
smaller than the one of a high-index transmission line by
simply changing the modulation frequency fs and the
switching delay ΔT. By increasing the number of paths N
for a fixed modulation frequency, we obtain smaller and
smaller required C to maintain the relation Z0C ∼ Ts=N
and also smaller L required to achieve good impedance
matching to Z0, potentially allowing for an arbitrarily
large contrast between the effective indexes of static and
commutated networks.

FIG. 5. (a) Band diagram of cascaded commutated networks shown in Figs. 1(d)–1(f) computed for ΔT ¼ Ts=2, for which the
network is reciprocal at all frequencies [all other parameters are taken to be the same as in Figs. 1(d)–1(f) with matching inductors
included]. Numerical results (bold lines) are obtained using the method outlined in the Appendix. Thin lines with markers indicate an
idealized nonreciprocal phase shifter response computed by means of Eqs. (4) and (5). A small discrepancy arises from the additional
phase shift provided by the small inductances. Dark blue solid and dashed lines indicate Bloch phase shifts of time-invariant periodic LC
transmission lines with per-period capacitance C ¼ 0.68 pF and C×16 ¼ 16C, respectively. (b) The same as in (a), but for ΔT ¼
15Ts=16 corresponding to maximum phase nonreciprocity. (c) Comparison between the scattering parameters of eight cascaded unit
cells of the commutated network and a time-invariant LC delay line. Each unit cell of the LC delay line has the same total inductance 2L
and capacitance C×16 as the commutated network. (d) Total stored electric and magnetic energy at 1.5 GHz (steady state) in eight
cascaded commutated networks (solid lines) and LC delay line (dashed lines) with equal total capacitance and inductance.
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In Fig. 5(c), we plot the scattering parameters of a
commutated network comprising K ¼ 8 unit cells. Such a
network accumulates a total insertion loss of about 3 dB
with good impedance matching to Z0 over a very large
bandwidth. Expectedly, the transmission properties deterio-
rate close to 8 GHz, in agreement with the Nyquist-
Shannon theorem. In the same panel, we also plot the
scattering parameters of a time-invariant high-index trans-
mission line composed of the same number of cascaded
LCL segments. As one may expect, besides the appearance
of a band gap at about 2.5 GHz, the high-index line is
not matched to Z0, resulting in a series of narrow trans-
mission peaks.
At the core of the remarkable differences between a

conventional high-index line and our commutated network
is the inherent imbalance between electric and magnetic
stored energy in the system. While any time-invariant
waveguide supports wave propagation by exchanging in
time and space equal amounts of energy stored in electric
and magnetic forms, wave propagation in our commutated
network is quasielectrostatic in nature, residing for the
most part in the capacitive banks at any instant in time. In
fact, it is possible to achieve an arbitrarily large ratio
between stored electric and magnetic energy by simply
increasing the number of paths N. To better illustrate this
property, Fig. 5(d) shows the temporal evolution of the total
electric and magnetic energies stored in the eight-unit-cell
commutated and high-index time-invariant networks in
Fig. 5(c) in a steady state at f ¼ 1.5 GHz for which both
networks are matched to the source and load impedance Z0.
In contrast to the static network, which exhibits periodic
oscillations of equal amounts of electric and magnetic
stored energies we and wm, respectively, it is seen that in the
commutated network we ≫ wm. We also notice a much
larger total stored energy in the commutated network,
which is consistent with the ultrabroadband slowdown of
the power flow along the waveguide. Clearly, the commu-
tated network unveils a new form of wave propagation,
which enables uniquely broadband dispersion-free slow-
wave propagation beyond the typical delay-bandwidth
trade-off.
In comparison, another well-known delay system that

stores energy in a purely electrostatic form is a distributed
RC delay line formed by a ladder of RC filters whose time
constant is chosen to be small enough to obtain an ideally
linear and broadband phase shift, much like the commu-
tated network presented here but without temporal mod-
ulations. Because of their extremely compact footprint, RC
delay lines are compatible with on-chip integration [54].
However, the dynamic of RC delay lines is governed by
the diffusion equation [55]; i.e., they do not sustain wave
propagation, translating into very high insertion loss and
impedance mismatch. In this paper, we show that suitable
temporal modulation allows overcoming this issue by
restoring wave propagation while preserving the wideband

linear phase response, with the additional benefit of
dynamic reconfigurability.
Since the bandwidth of the commutated network is

limited only by the Nyquist-Shannon sampling theorem
Δf ∼ Nfs=2, we can estimate the maximal achievable
DBP in a network with K unit cells. In the reciprocal
case, from Eq. (6) we obtain

Δt · Δf ∼
Ka
2afs

·
Nfs
2

¼ K
N
4
: ð9Þ

In turn, the largest DBP for transmission from port 1 to
port 2 is obtained from the condition for maximum phase
nonreciprocity (7):

Δt21 · Δf ∼
KaðN − 1Þ

aNfs
·
Nfs
2

¼ K
N − 1

2
; ð10Þ

while in the reverse direction it is

Δt12 · Δf ∼
Ka
aNfs

·
Nfs
2

¼ K
2
: ð11Þ

For all cases, the DBP for the round trip is ðΔt21 þ Δt12Þ ·
Δf ∼ KN=2 [48]. From Eqs. (9) and (10), it is seen that,
by increasing the number of paths, it is possible to achieve
an arbitrarily large DBP within a limited footprint, thanks
to the fact that most of the energy is stored in electric form
in capacitor banks, which are amenable to extremely com-
pact integration in CMOS technology.
It is also instructive to compare the DBP of the

commutated network with the DBP of a time-invariant
LCL delay line with the same number of unit cells K.
Assuming no impedance mismatch, the available band-
width Δf can be roughly estimated as Δf ∼ 2vg=a, where
a is the physical length of the unit cell (assuming one
single-mode resonator per cell) [12]. For the group delay,
we have Δτ ∼ Ka=vg. Thus, the DBP of a time-invariant
LCL line is Δτ · Δf ∼ 2K, clearly showing that the com-
mutated network can overcome this limit. This result opens
truly remarkable opportunities to achieve ultrabroadband
slow-wave regimes in a platform compatible with modern
integrated circuits. We stress that the unit cells considered
here can be directly implemented in CMOS integrated
circuits by simply using the well-established N-path filter
technology and modifying the switching strategy.
In this context, another important advantage of the

proposed commutated network consists in the fact that,
in contrast to other spatiotemporally modulated systems
that require accurate and coherent modulation of the
local properties of carrier media or spatially distinct
elements, here the modulation is applied locally in each
cell and, thus, only switches within the same unit cell must
be operated synchronously, which can be easily achieved
by embedding an independent clock generator within each
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element. In addition, these networks employ only two
states of switches, ON and OFF, leading to significantly
enhanced linearity to the amplitude of the input signal [40]—
another important advantage over harmonically modulated
systems that generally require the modulation signal to be
much stronger than the input signal.
The fact that commutated networks can operate as TTDs

(i.e., analog signal buffers) can be appreciated in Fig. 6,
where we show three wideband pulses with different center
frequencies f0 propagating through a commutated network
comprising eight unit cells with a switching delay ΔT ¼
ðN − 1ÞTs=N ¼ 15Ts=16. All three pulses have the same
relative FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
f−10 . It is seen that their widths

remain unchanged, due to the near-zero group velocity
dispersion. The temporal delay for propagation from port 1
to port 2 is also the same, Δt21 ¼ KΔT ¼ 7.5 ns, while in
the reversed directionΔt12 ¼ KðTs − ΔTÞ ¼ 0.5 ns, yield-
ing an extremely broadband nonreciprocal delay. As dis-
cussed above, insertion loss and amplitude reduction are
primarily associated with the excitation of high-frequency
intermodulation products manifested by the spikes present
in the transmitted pulses. It is worth noting, however, that
these intermodulation products occur only at high frequen-
cies f0 þmNfs, m ¼ 1; 2; 3;… [40,45], which can be
filtered out. This property is confirmed in Fig. 6, in which,

despite the spikes, the overall shape of the pulses is fully
preserved.

IV. APPLICATION TO PRACTICAL DEVICES

Having established the principles of slow-wave propa-
gation in time-modulated multipath networks, in this
section we apply them to design highly miniaturized
reciprocal and nonreciprocal microwave devices of prac-
tical relevance. When γ ¼ −π, the switching scheme is
symmetric. Hence, the commutated networks are inherently
reciprocal over the entire frequency range, ϕ21ðωÞ ¼
ϕ12ðωÞ ¼ −πω=ωs. This regime can be used to realize
reciprocal phase shifters with arbitrarily large delay-band-
width products. For example, a phase shift ϕ21 ¼ ϕ12 ¼−mπ=2 with m ¼ 1; 2; 3;… is achieved at frequencies
f0 ¼ mfs=2. From Eqs. (1) and (2), it also follows that
the same reciprocal phase shifts can be achieved at
frequencies f0 ¼ ðmþ 2nÞfs=2 with n ¼ 0; 1; 2;… if
we use γ ¼ −mπ=ðmþ 2nÞ, which corresponds to an
asymmetric commutation scheme yet provides a reciprocal
response.
Nonreciprocal phase responses are obtained with asym-

metric phase shifts. For instance, ϕ21 ¼ −mπ=2 and ϕ12 ¼−ð2π −mπ=2Þ can be realized at frequencies f0 ¼ mfs,
where m ¼ 1; 2; 3;…. The available phase response of
a standalone commutated network is summarized in Fig. 7,
in which red and green markers indicate, respectively,
nonreciprocal and reciprocal phase delays which are integer
multiples of −π=2. The shaded area indicates the range of
phases accessiblewithin the same device by simply changing
the modulation scheme. Nonreciprocal markers appear
in pairs: If the phase in one direction corresponds to one of
the two red markers, its counterpart indicates the phase in
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FIG. 6. Propagation of pulses with center frequency f0 ¼ 0.5,
1.0, and 1.5 GHz through an eight-unit-cell cascaded commutated
network with N ¼ 16, C ¼ 0.68 pF, L ¼ 0.75 nH, and switch-
ing delay ΔT ¼ 15Ts=16. The FWHM duration of each input
pulse (yellow lines) is 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
f−10 . For pulses sent from port 1 to

port 2 (red lines), the accumulated time delay is Δt21 ¼ 8ΔT. For
pulses sent from port 2 to port 1 (blue lines), the time delay is
Δt12 ¼ 8Ts − Δt21. The width of the forward and reverse pulses
remains unchanged due to nearly zero group velocity dispersion.
The analysis is performed using Keysight ADS (time-domain
analysis) [51].
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the achievable phase response.
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the opposite direction. Solid green lines show the relation
between γ and fs when the phases in the two directions
match, leading to a reciprocal response. As an example, by
selecting the commutation phase shift γ ¼ −π=2, we obtain
ϕ21 ¼ −π=2 and ϕ12 ¼ −3π=2 at f ¼ fs, ϕ21 ¼ ϕ12 ¼ −π
at f ¼ 2fs, ϕ21 ¼ −3π=2 and ϕ12 ¼ −π=2 at f ¼ 3fs, and
so on. Thus, it is seen that commutated networks exhibit an
impressively rich response which can be dynamically recon-
figured by simply changing fs and γ. Thanks to the large
bandwidth, the commutation frequency can be substantially
lower than f0, as long as fs > 2f0=N.

A. Miniaturized rat-race coupler

Using Fig. 7, we can envision several realistic devices
based on a single piece of hardware, just reconfiguring the
commutation scheme. First, we target the design of a
four-port rat-race (RR) coupler [53] operating at f0 ¼
2.5 GHz and comprising three −π=2 and one −3π=2
reciprocal phase shifting segments with characteristic
impedance

ffiffiffi
2

p
Z0 connected in a ring, as shown in

Fig. 8(a). The functionality of this device implies that a
signal sent from port 1 splits equally between ports 2 and 4,
while port 3 remains isolated. Typically, phase-shifting
sections in these couplers are realized with transmission
lines of appropriate lengths or using lumped LC banks with

L ∼ 7–10 nH. On-chip realization, therefore, is largely
impractical due to the large occupied area and high loss
of integrated inductors. On the contrary, our commutated
networks require very little inductance, making these
devices fully integrable.
From Fig. 7, it is seen that the two reciprocal phase shifts

can be simultaneously achieved at f0 ¼ ð2mþ 1Þfs=2
with m ¼ 1; 2; 3;…. To reduce power consumption and
minimize the effects of timing errors, we choose m ¼ 2,
which corresponds to fs ¼ 1 GHz. To obtain −π=2 and
−3π=2 phase shifts, we choose γ ¼ −π and γ ¼ −3π=5,
respectively. We stress the fact that the only difference
between the −π=2 and −3π=2 sections is the commutation
phase shift, while all the circuitry is identical, making the
practical implementation very appealing and reconfigurable
in real time. The scattering parameters of the resulting
network are shown in Fig. 8(b). It is seen that the proposed
rat-race coupler provides a nearly perfect splitting of the
signal incoming through port 1 between ports 2 and 4 and
approximately 40 dB isolation at port 3. The insertion loss
of the coupler at the center frequency is 4.8 dB, which is
sufficiently close to the 3 dB insertion loss of an ideal
lossless RR coupler. The 1.8 dB increase in the insertion
loss is associated with the excitation of intermodulation
products [41,56]. Impressively, the whole circuit is nearly
inductorless and can be implemented on chip in a deeply
subwavelength footprint [40]. Another unique feature of
the proposed device is that any of the four commutated
networks can be dynamically reconfigured to provide a
−π=2 or −3π=2 phase shift by only changing γ, so that any
of the four ports can be dynamically configured to be an
isolated port.
It is important to emphasize that, similar to conventional

rat-race couplers, the bandwidth here is limited only by the
different phase slopes of −π=2 and −3π=2 sections. Since
these phase shifts can be controlled through the commu-
tation frequency, the latter can be used to dynamically tune
the operation frequency. Figures 8(c) and 8(d) show the
scattering parameters for the same device, but with fs ¼
0.92 GHz and fs ¼ 1.08 GHz, corresponding to f0 ¼
2.3 GHz and f0 ¼ 2.7 GHz, respectively. It is seen that
all key metrics remain essentially the same. The only
restriction on such reconfigurability comes from the fact
that, far away from the initially designed fs, the condition
τ ∼ Ts=N is not satisfied for the same value of capacitance.
However, this issue can be also overcome if the value
of the capacitance is retuned, for instance, using variable
capacitors.

B. Miniaturized circulator

The fact that commutated networks provide nonrecip-
rocal phase shifts has been successfully employed to
realize a variety of magnetless nonreciprocal devices,
such as circulators, gyrators, and isolators [40–44]. All
these designs, however, rely on transmission-line sections
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FIG. 8. (a) Schematic of a rat-race coupler aimed at
f0 ¼ 2.5 GHz, comprised of four commutated networks as in
Fig. 1, with N ¼ 16, fs ¼ 1 GHz, C ¼ 0.47 pF, and L ¼ 1 nH,
connected in a ring. Three of the four sections are configured to
provide a reciprocal phase shift ϕ21 ¼ ϕ12 ¼ −π=2 at f ¼ f0 by
choosing the switching delay ΔT ¼ Ts=2 (γ ¼ −π). The fourth
section has ΔT ¼ 3Ts=10 (γ ¼ −3π=5), leading to ϕ21 ¼ ϕ12 ¼−3π=2 at f ¼ f0. (b) Corresponding scattering parameters
computed using the numerical approach described in the Ap-
pendix. (c),(d) Scattering parameters for fs ¼ 0.92 GHz and
fs ¼ 1.08 GHz, respectively, with all other parameters un-
changed.
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or LC tanks operating as delay lines to obtain required
reciprocal phase shifts. Here, we propose the design of a
miniaturized three-port circulator aimed at f0 ¼ 2.5 GHz
employing commutated networks to replace both recip-
rocal and nonreciprocal sections. The circuit schematic is
shown in Fig. 9(a): Two −π=2 sections with the character-
istic impedance Z0 are wrapped around a gyrator provid-
ing a −π phase shift in one direction. From Fig. 7, we find
that the required phases can be achieved at ð2mþ 1Þfs=2
withm ¼ 1; 2; 3;…. Again, we choosem ¼ 2 correspond-
ing to the modulation frequency fs ¼ 1 GHz. As in the
case of a rat-race coupler, here we use γ ¼ −π for
reciprocal −π=2 sections. To obtain a gyrator, we choose
γ ¼ −2π=5, which leads to ϕ21 ¼ −π and ϕ12 ¼ −2π at
f ¼ f0. The resulting scattering parameters are shown
in Fig. 9(b): The proposed network provides clockwise
transmission and strong isolation in the counterclockwise
direction. In principle, it is also possible to configure any
of the three sections to act as a gyrator; however, the
scattering parameters are already nearly symmetrical. At
the center frequency, the circulator exhibits the insertion
loss of around 2.5 dB, on par with other magnetless
circulator topologies [38–44], while being electrically a
much smaller device. Similar to the rat-race coupler, the
circulator bandwidth is limited only by different slopes of
the phase profiles of reciprocal sections and the gyrator,
and, therefore, the center frequency can be dynamically
tuned by changing fs.

V. ADVANTAGES AND CHALLENGES OF
PRACTICAL IMPLEMENTATION

Throughout this work, the results are computed under
the assumption of idealized switches having zero and
infinite resistance in the ON and OFF state, respectively,
a negligible parasitic capacitance, and zero rise and fall

times for the modulation signals. In practice, in modern
semiconductor technology, the ON switch resistance is on
the order a few Ohms, and the rise and fall times are of the
order of tens of picoseconds. Nonzero ON resistance and
parasitic capacitance lead to a somewhat larger insertion
loss but do not affect other key metrics of the network such
as a large temporal delay and frequency-flat dispersion. The
rise and fall times are typically small enough to not impact
the performance at gigahertz-range modulation speeds
discussed in this paper.
The use of switches provides significant advantages in

terms of linearity and power handling, since switches tend
to be more linear than analog varactors (variable capacitors,
another commonly used approach for temporal modulation)
and active approaches, such as active inductors [57]. Here,
it is important to note that the ON resistance and linearity
trade linearly with the power consumption in the modu-
lation path: Larger switches with lower on resistance
and, consequently, better linearity lead to linearly larger
modulation power consumption. However, importantly, this
trade-off improveswith semiconductor technology scaling—
as semiconductor processes scale to finer dimensions, the
parasitic capacitance and associated modulation power con-
sumption reduce for a given ON resistance, improving loss
and linearity without an increase in power consumption.
This property stands in contrast to passive LC circuits that
exploit the metallization of semiconductor processes, the
performance of which does not improve with technology
scaling, and active approaches [57].
In our simulations, we also assume that the switch timing

is ideal. For commutated multipath networks, it means that
the only nonzero intermodulation products (higher-order
harmonics) are those with n ¼ kN, where k ¼ �1;�2;…
and N is the number of paths [48]. In practice, small timing
errors among the switches lead to all harmonics being
nonzero and introducing some additional noise to the
transmitted signal. However, this issue is common to all
commutated networks, including N-path filters, which
typically can achieve sufficiently low timing errors, on
the order of a few percent at frequencies up to several
gigahertz. Furthermore, timing errors can be corrected
using calibration circuitry in the modulation path, as is
commonly done in communication applications.
A small part of the noise at the signal frequency also

converts to higher-order harmonics with n ¼ kN, and noise
at harmonic frequencies with n ¼ kN is converted back to
the signal frequency. Noise folding from harmonic frequen-
cies degrades the signal-to-noise ratio (SNR) of the input
signal, and, as a result, the degradation in the SNR is larger
than the insertion loss, unlike a conventional delay element
realized using inductances and capacitance. However, this
degradation can also be avoided by passing the input signal
through a low pass filter with a cutoff frequency equal to
the sampling frequency Nfs to filter the noise at frequen-
cies above the sampling frequency (commonly called an
antialiasing filter). Also, the phase noise of the modulation
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FIG. 9. (a) Schematic of a circulator operated at f0 ¼ 2.5 GHz,
comprised of three commutated networks as in Fig. 1, with
N ¼ 16, fs ¼ 1 GHz, C ¼ 0.65 pF, and L ¼ 1 nH. Two of them
are configured to provide a reciprocal phase shift ϕ21 ¼ ϕ12 ¼−π=2 at f ¼ f0 by choosing the switching delay ΔT ¼ Ts=2
(γ ¼ −π). The third network has ΔT ¼ Ts=5 (γ ¼ −2π=5),
leading to a gyrator response ϕ21 ¼ −π and ϕ12 ¼ −2π at
f ¼ f0. (b) Corresponding scattering parameters computed using
the numerical approach described in the Appendix.
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signal can also affect the SNR of the input signal.
Nevertheless, past implementations of commutated net-
works [42,43] show that clocking circuits can be realized
with very small phase noise such that it has very little
impact on the overall SNR of the input signal.
To quantitatively assess the influence of nonidealities,

in Fig. 10, we compute the scattering parameters of the
commutate network, the rat-race coupler, and the circulator
discussed earlier, for the case of a nonzero on switch
resistance, finite rise and fall times, and in the presence of
clocking noise which affects the time over which each
switch is closed. It is seen that for all devices the insertion
loss is increased by only about 1–1.5 dB. For the rat-race
coupler and circulator, the reduction of isolation is the most
noticeable effect, but for both devices more than 20 dB
isolation is still achieved. It turns out, however, that this
isolation reduction can be partially recouped by retuning
the device parameters such as the capacitance, inductance,
and commutation frequency. Most importantly, it is seen
that the presence of nonidealities does not affect the trans-
mission properties of all devices, meaning that the linear
phase profile of commutated networks remains intact.

VI. CONCLUSIONS AND OUTLOOK

In this work, we introduced the concept of quasielec-
trostatic wave propagation in time-modulated circuits
that support extremely broadband slow-wave propagation
overcoming the delay-bandwidth product bounds of linear
time-invariant devices. Our findings leverage the existing
framework of N-path filters in integrated electronics and
address important needs in the field of communications
and computing in overcoming the delay-bandwidth prod-
uct of time-invariant systems. The commutated multipath
networks implementing this concept provide reconfigur-
able reciprocal and nonreciprocal phase shifts and group
delays that depend solely on the modulation frequency

and commutation phase shift. We have shown that such
networks exhibit nearly uniform ultrawideband transmis-
sion with near-zero group velocity dispersion. Using these
findings, we demonstrated novel topologies for fully
integrable reciprocal and nonreciprocal devices, largely
reconfigurable in real time. The fact that commutated
multipath networks can provide large reciprocal and
nonreciprocal phase shifts without the use of large
inductors offers unprecedented opportunities for minia-
turization and on-chip integration of a wide range of
electronic devices.
Finally, this work shows that temporal modulation not

only allows overcoming the delay-bandwidth product of
time-invariant systems, but also reveals that the achievable
DBP in time-modulated systems does not have a funda-
mental upper bound. In view of this property, even though a
direct translation of the approach presented in this work to
optical systems operating at hundreds of terahertz is not
straightforward, we envision that our work may inspire
interesting developments in slow-light photonic systems
employing novel spatiotemporal modulation schemes and
multipath topologies.

ACKNOWLEDGMENTS

This work was supported by the DARPA SPAR program
and the Air Force Office of Scientific Research with MURI
Grant No. FA9550-18-1-0379.

APPENDIX: LTP SYSTEMS ANALYSIS USING
FLOQUET SCATTERING MATRICES

Theoretical and numerical analyses of a complex linear
time-periodic (LTP) electronic and photonic system is
nontrivial. Even for relatively simple systems such as
electronic circuits, the complexity of the problem grows
dramatically with the increase of the number of circuit
nodes and frequency harmonics included in the analysis.
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(c) circulator shown in Figs. 1(d) and 8(a), and 9(a), respectively. The on switch resistance is set to be 3 Ω, and the rise and fall times are
10 ps. We also include a random clocking error with a normal distribution of the time over which each switch is closed, with a mean
equal to tON ¼ 42.5 ps (tON ¼ Ts=N − 20 ps with N ¼ 16 paths) and a standard deviation of 3 ps. For comparison, along with realistic
scattering parameters plotted in color, we also plot their idealized counterparts as light gray shadow curves [see Figs. 1(e) and 8(b),
and 9(b)].
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Additionally, while there are several commercial packages
able to accurately treat LTP networks, none of them offer a
straightforward and rigorous way to analyze the properties
of an infinite cascade of LTP unit cells. Here, we show a
rigorous divide-and-conquer method employing Floquet
scattering matrices for the analysis of standalone and
cascaded LTP networks which can be applied to both
electronic and photonic systems. The main advantage of
this method is the possibility to analyze each subnetwork
independently and then gradually assemble the final circuit
connecting only few elements at a time, that allowed us to
keep the computational cost low.
Consider a two-port LTI network, the response of which

can be fully characterized through its scattering matrix Sij
in the frequency domain:

�
a−1
a−2

�
¼

�
S11 S12
S21 S22

��
aþ1
aþ2

�
; ðA1Þ

where aþi and a−i are power wave phasors for incoming and
outgoing signals from the ith port [58], respectively. If the
system is modulated in time with an angular frequency
ωs ¼ 2π=Ts, these signals become time dependent, and
they can be presented as a superposition of Floquet states
(sometimes called tones) with frequencies ωþ nωs:

a�i ðtÞ ¼
X∞
n¼−∞

a�i;ne
jðωþnωsÞt; ðA2Þ

where ai;n are the corresponding Fourier amplitudes.
Similarly to the static case, we can follow the definition
of power waves [58] and introduce generalized Floquet
scattering parameters Sij;mn ¼ a−i;m=aþj;n, where i; j denote
the port numbers and m; n are the corresponding harmon-
ics. For simplicity, we assume that input and output ports
have the same real impedance Z0. Arranging the coeffi-
cients into vectors, a�i ¼ð:::;a�i;−2;a�i;−1;a�i;0;a�i;1;a�i;2; :::ÞT ,
the system (A1) can be presented in a block-matrix form:

�
a−1
a−2

�
¼

�
S11 S12

S21 S22

��
aþ1
aþ2

�
; ðA3Þ

where, for example, S11 is a square Floquet scattering
matrix (FSM) containing reflection coefficients from the
nth to the mth harmonic at port 1, S11;mn. For simple
elements such as inductors, capacitors, resistances, etc., the
corresponding FSMs can be evaluated analytically through
their conversion matrices Hij;mn [59], which are related to
Floquet scattering parameters as

Sij;mn ¼ 2Hij;mn − δijδmn; ðA4Þ

where δij is a Dirac delta function. As an example, we show
the evaluation of the transfer function of a periodically

modulated resistance which we used in this paper to model
a switch.
Consider a network depicted in Fig. 11, with a voltage

source connected to port 1. Applying KCL in the time
domain, we find

vin − v1
Z0

¼ v1 − v2
R

¼ v2
Z0

; ðA5Þ

vin ¼ v1 þ v2: ðA6Þ
Combining these two equations, we derive

v2 ¼
Z0

2Z0 þ RðtÞ vin ¼ h21vin; ðA7Þ

v1 ¼
Z0 þ RðtÞ
2Z0 þ RðtÞ vin ¼ h11vin: ðA8Þ

We may now expand the time-dependent transfer functions
into a Fourier series:

hijðtÞ ¼
X∞

m¼−∞
Hij;mejmωst; ðA9Þ

with

Hij;m ¼ 1

Ts

ZTs=2

−Ts=2

hijðtÞe−jmωstdt: ðA10Þ

Substituting Eqs. (A2) and (A9) into Eqs. (A7) and (A8)
and invoking the Cauchy convolution rule, we obtain

V2;m ¼ H21;mnV in1;n; ðA11Þ
V1;m ¼ H11;mnV in1;n; ðA12Þ

where Hij;mn ≡Hij;m−n is a Toeplitz matrix composed
of Fourier coefficients. Because of network symmetry,
H12;mn ¼ H21;mn and H22;mn ¼ H11;mn, and, having all
elements of Hij;mn, the Floquet scattering matrix can be
easily evaluated through Eq. (A4). Representation (A3)
fully describes the time-varying behavior of the network
at all frequencies. It also becomes evident that any LTP
system can be treated as a time-invariant network with an

FIG. 11. Schematic of a time-varying resistance used to model a
switch, connected to a voltage source through the impedance Z0.
The load impedance is also Z0.
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infinite number of virtual frequency ports per each physical
port. Similarly, FSMs can be derived for time-modulated
systems having more than two physical ports.
It is now possible to derive a composite FSM of a

complex network using, for example, a standard star-
product cascading procedure [60], given that the FSMs
of the system’s components are calculated in the same
frequency basis. Instead of cascading, however, here we use
another method enabling us to connect multiple FSMs
simultaneously. Aggregating FSMs relating all incoming
and outgoing waves existing within the system, we can
generally write

a−i ¼
X
j

Sija
þ
j : ðA13Þ

The port indexes in Eq. (A13) can be split into two subsets
corresponding to inner ports further denoted with small
letters p, q and outer ports denoted with capital letters P,Q.
Accordingly, we can split Eq. (A13) as

a−p ¼
X
q

Spqaþq þ
X
Q

SpQa
þ
Q;

a−P ¼
X
q

SPqaþq þ
X
Q

SPQa
þ
Q: ðA14Þ

The fact that the inner ports are interconnected gives us
another equation:

a−p ¼
X
q

Fpqaþq ; ðA15Þ

where F is a highly sparse matrix defining the relations
among the modes at inner ports and nodes. For example,
if port 2 is connected to an impedance-matched port 3,
we should enforce a−2 ¼ aþ3 and a−3 ¼ aþ2 , leading to
F23 ¼ F32 ¼ I, where I is a unitary matrix. Combining
the system (A14) and Eq. (A15), we can find a composite
FSM, S̃PQ, relating only the outer ports, a−P ¼ P

Q S̃PQa
þ
Q:

S̃PQ ¼ SPQ þ
X
q

SPq

X
p

½Fpq − Spq�−1qpSpQ; ðA16Þ

where ½:�−1 denotes an inverted matrix. Throughout this
work, we use Eq. (A16) with 64 harmonics (m; n ∈
½−64;…; 0;…; 64�) for the analysis of all LTP circuits.
Now, we can proceed to analyzing the properties of a

cascaded network of LTP subnetworks, each of which is
characterized by its composite FSM (A16). The conven-
tional method of analysis of periodic networks through
their transfer matrixes [53] is not applicable in this case,
because it involves an inverse of S21 block matrix, which is
not guaranteed to exist. Instead, let us rearrange Eq. (A3) as

�−I S11

S21

��
a−1
aþ1

�
¼

�−S12

−S22 I

��
aþ2
a−2

�
: ðA17Þ

Applying the Bloch theorem, we can also write

�
aþ2
a−2

�
¼ ejψB

�
a−1
aþ1

�
; ðA18Þ

where ψB is a Bloch phase accumulated after propagation
over each unit cell. Substituting Eq. (A18) into (A17), we
can pose an eigenvalue problem:

�−S12

−S22 I

�−1�−I S11

S21

��
a−1
aþ1

�
¼ ejψB

�
a−1
aþ1

�
; ðA19Þ

which yields a complete set of all possible Bloch phase
shifts, time-varying power wave amplitudes, and Bloch
impedances of the network.
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