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Machine-learning algorithms can be fooled by small well-designed adversarial perturbations. This is
reminiscent of cellular decision-making where ligands (called antagonists) prevent correct signaling, like
in early immune recognition. We draw a formal analogy between neural networks used in machine
learning and models of cellular decision-making (adaptive proofreading). We apply attacks from
machine learning to simple decision-making models and show explicitly the correspondence to
antagonism by weakly bound ligands. Such antagonism is absent in more nonlinear models, which
inspires us to implement a biomimetic defense in neural networks filtering out adversarial perturbations.
We then apply a gradient-descent approach from machine learning to different cellular decision-making
models, and we reveal the existence of two regimes characterized by the presence or absence of a critical
point for the gradient. This critical point causes the strongest antagonists to lie close to the decision
boundary. This is validated in the loss landscapes of robust neural networks and cellular decision-
making models, and observed experimentally for immune cells. For both regimes, we explain how
associated defense mechanisms shape the geometry of the loss landscape and why different adversarial
attacks are effective in different regimes. Our work connects evolved cellular decision-making to
machine learning and motivates the design of a general theory of adversarial perturbations, both for
in vivo and in silico systems.
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I. INTRODUCTION

Machine learning is becoming increasingly popular with
major advances coming from deep neural networks [1].
Deep learning has improved the state of the art in automated
tasks like image processing [2], speech recognition [3], and
machine translation [4], and has already seen a wide range
of applications in research and industry. Despite their
success, neural networks suffer from blind spots: Small
perturbations added to unambiguous samples may lead to
misclassification [5]. Such adversarial examples are most
obvious in image recognition; for example, a panda is
misclassified as a gibbon or a handwritten 3 as a 7 [6].
Real-world scenarios exist, like adversarial road signs fool-
ing computer vision algorithms [Fig. 1(a)] [7] or adversarial
perturbations on medical images triggering incorrect diag-
nosis [8]. Worse, adversarial examples are often transferable
across algorithms (see Ref. [9] for a recent review), and
certain universal perturbations fool any algorithm [10].

Categorization and inference are also tasks found in
cellular decision-making [11]. For instance, T cells
have to discriminate between foreign and self-ligands,
which is challenging since foreign ligands might not be
very different biochemically from self-ligands [12,13].
Decision-making in an immune context is equally prone to
detrimental perturbations in a phenomenon called ligand
antagonism [14]. Antagonism appears to be a general
feature of cellular decision-makers: It has been observed
in T cells [15], mast cells [16], and other recognition
processes like olfactory sensing [17,18].
There is a natural analogy to draw between decision-

making in machine learning and in biology. In machine-
learning terms, cellular decision-making is similar to a
classifier. Furthermore, in both artificial and cellular
decision-making, targeted perturbations lead to faulty
decisions even in the presence of a clear ground-truth
signal. As a consequence, arms races are observed in both
systems. Mutating agents might systematically explore
ways to fool the immune cells via antagonism, as has
been proposed in the HIV case [19–21]. Recent examples
might include neoantigens in cancer [22,23], which are
implicated in tumor immunoediting and escape from the
immune system. These medical examples are reminiscent
of how adversaries could generate black-box attacks aimed
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to fool neural networks [7]. Strategies for provable defenses
or robust detection of adversarial examples [24,25] are
currently developed in machine learning, but we are still far
from a general solution.
In the following, we draw a formal correspondence

between biophysical models of cellular decision-making
displaying antagonism on the one hand, and adversarial
examples in machine learning on the other hand. We show
how simple attacks in machine learning mathematically
correspond to antagonism by many weakly bound ligands
in cellular decision-making. Inspired by kinetic proof-
reading in cellular decision-making, we implement a
biomimetic defense for digit classifiers, and we demon-
strate how these robust classifiers exhibit similar behavior
to the nonlinear adaptive proofreading models. Finally,
we explore the geometry of the decision boundary for
adaptive proofreading and observe how a critical point
in the gradient dynamics emerges in networks robust to
adversarial perturbations. Recent findings in machine
learning [26] confirm the existence of two regimes, which
are separated by a large nonlinearity in the activation

function. This inspires us to define two categories of attack
(high dimensional, small amplitude, and low dimensional,
large amplitude) both for models of cellular decision-
making and neural networks. Our work suggests the
existence of a unified theory of adversarial perturbations
for both evolved and artificial decision-makers.

A. Adaptive proofreading for cellular
decision-making

Cellular decision-making in our context refers to classi-
fication of biological ligands in two categories, e.g., “self vs
nonself” in immunology or “agonist vs nonagonist” in
physiology [13,27,28]. For most of those cases, qualitative
distinctions rely on differences in a continuously varying
property (typically a biochemical parameter). Thus, it is
convenient to rank different ligands based on a parameter
(notation τ) that we call quality. Mathematically, a cell needs
to decide if it is exposed to ligands with quality τ > τd,
where τd is the quality at the decision threshold. Such
ligands’ triggering responses are called agonists. A general
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FIG. 1. Ligand discrimination and digit recognition tasks. (a) Adversarial examples on digits and road signs. Reproduced from
Ref. [7], Courtesy of Nicolas Papernot. Left column displays original images with categories recognized by machine-learning
algorithms, right column displays images containing targeted perturbations leading to misclassification. (b) Schematics of ligand-
binding events showing typical receptor occupancy through some observed time during cellular decision-making using T-cell
terminology (self vs nonself). The colored bars correspond to self (green), antagonist (orange), and nonself (blue) ligands binding to
receptors. Their lengths are indicative of the binding time τi, whereas their rate of binding measures the on rate koni . (c) Different ligand
distributions give different response. The vertical dotted line indicates quality τd. Decision should be to activate if one observes ligands
with τ > τd, so on the right of the dotted line. In an immune context, T cells respond to ligand distributions of agonists alone and
agonists in the presence of nonagonists (with very small binding times τ), while the T cell fails to respond if there are too many ligands
just below threshold τd.
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problem then is to consider cellular decision-making based
on ligand quality irrespective of ligand quantity (notation L).
An example can be found in immune recognition with the
lifetime dogma [13], where it is assumed that a T cell
discriminates ligands based on their characteristic binding
time τ to T-cell receptors (this is of course an approximation,
and other parameters might also play a role in defining
quality; see Refs. [29–31]). Ligand discrimination is a
nontrivial problem for the cell, which does not measure
single-binding events but has access only to global quantities
such as the total number of bound receptors [Fig. 1(b)]. The
challenge is to ignore many subthreshold ligands (τ < τd)
while responding to few agonist ligands with τ > τd
[13,15,32]. In particular, it is known experimentally in many
different contexts that the addition of antagonistic subthresh-
old ligands can impair proper decision-making [Fig. 1(c)]
[15–17].
To model cellular decision-making, we use the general

class of “adaptive sorting” or “adaptive proofreading”
models, which account for many aspects of immune
recognition [14,33] and can be shown to capture all relevant
features of such cellular decision-making close to a
decision threshold [34]. An example of such a model is
displayed in Fig. 2(a). Importantly, we have shown pre-
viously that many other biochemical models present similar
properties for the steady-state response as a function of the
input ligand distribution [35]. In the following, we sum-
marize the most important mathematical properties of such
models. An analysis of the detailed biochemical kinetics of
the model of Fig. 2(a) is presented in the Appendix A.
We assume an idealized situation where a given receptor

i upon ligand binding (on rate koni , binding time τi) can exist
in N biochemical states (corresponding to phosphorylation
stages of the receptor tails in the immune context [36,37]).
Those states allow the receptor to effectively compute
different quantities such as cin ¼ koni τni , 0 ≤ n ≤ N, which
can be done with kinetic proofreading [36,38,39]. In
particular, ligands with larger τ give a relatively larger
value of ciN due to the geometric amplification associated
with proofreading steps. We assume that receptors are
identical, so that any downstream receptor processing by
the cell must be done on the sum(s) Cn ¼

P
i c

i
n ¼P

i k
on
i τni . We also consider a quenched situation in which

only one ligand is locally available for binding to every
receptor. In reality, there is a constant motion of ligands,
such that koni and τi are functions of time and stochastic
treatments are required [11,40,41], but on the timescale of
primary decision-making, it is reasonable to assume that
the ligand distribution does not change much [15].
Adaptive proofreading models rely on an incoherent

feed-forward loop, where an output is at the same time
activated and repressed by bound ligands via two different
branches in a biochemical network [Fig. 2(a)]. An explicit
biochemical example is shown in the right panel of
Fig. 2(a). Here, activation occurs through a kinetic

proofreading cascade (green arrow or box) and repression
through the inactivation of a kinase by the same cascade
(red arrow or box). The branches engage in a tug of war,
which we describe below.
For simplicity, let us first assume that only one type of

ligand with binding time τ and on rate kon is presented. We
call L the quantity of ligands. Then, in the absence of
saturation, the total number of nth complex Cn of the
proofreading cascade along the activation branch will be
proportional to konLτn. This branch is the activation part of
the network where the response is activated.
We now assume that the mth complex of the cascades

is inactivating a kinase K specific to Cm, so that K ∝
ðkonLτmÞ−1 for L big enough. This branch is the repression
part of the network. K is assumed to diffuse freely and
rapidly between receptors so that it effectively integrates
information all over the cell (recent work quantified how
this cross talk can indeed improve detection [42]). m is an
important parameter that we vary to compare different
models. K then catalyzes the phosphorylation of the final
complex of the cascade so that we have for the total
number CN,

_CN ¼ KCN−1 − τ−1CN; ð1Þ

and at steady state,

CN ∝
konLτN

konLτm
¼ τN−m: ð2Þ

The L dependence cancels, and CN is a function of τ
alone. From this, it is clear that ligand classification can be
done purely based on CN , the total number of complexes,
which is a measure of ligand quality. In this situation, it is
easy to define a threshold τN−m

d that governs cell activation
ðCN > τN−m

d Þ or quiescence ðCN < τN−m
d Þ. Biochemically,

this can be done via the digital activation of another kinase
shared among all receptors [15,33].
This model can be easily generalized to a mixture of

ligands with different qualities. To do so, in the previous
derivations all quantities accounting for the total complex
Cn of the form konLτn can be replaced by

P
i k

on
i Liτ

n
i ,

calling Li the quantity of ligands with identical koni , τi.
We then define the generalized output of the biochemical
network as

TN;m ¼
P

ik
on
i Liτ

N
iP

ik
on
i Liτ

m
i
: ð3Þ

Similar equations for an output TN;m can be derived for
many types of networks, as described in Ref. [35]. For this
reason we focus in the following on the properties of TN;m,
forgetting about the internal biochemistry giving rise to this
behavior. Notice here that by construction N > m > 1, but
other cases are possible with different biochemistry; for
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instance, examples in olfaction correspond to the case
N ¼ 1, m ¼ 0 [17] (see also another example in Ref. [34]).
Also notice that if kinetic parameters of the ligands are not
identical, the dependence on Li does not cancel out, which
will be the origin of most of the key phenomena that we
describe below.
Figure 2(b) shows theoretical and experimental curves of

a realistic adaptive proofreading model (including mini-
mum concentration for repression of kinase K, etc.;
see Appendix B for the full model and parameter values).

We choose ðN;mÞ ¼ ð4; 2Þ so that the qualitative features of
the theoretical curves match the experimental curves best.
Adaptive proofreading models give dose-response curves
plateauing at different values as a function of parameter τ,
allowing to perform sensitive and specific measurement of
this parameter. For small τ (e.g., τ ¼ 3 s), one never reaches
the detection threshold [dotted line on Fig. 2(b), left panel]
even for many ligands. For slightly bigger τ ¼ 10 s > τd,
the curve is shifted up so that detection is made even for a
small concentration of agonists.

(a)

(b)

(c)

Biochemical principle Biochemical example

FIG. 2. Adaptive proofreading and neural network. (a) Left: Adaptive proofreading networks have an activating and repressing branch
with different weights on τ. Right: Detailed adaptive proofreading network adapted from Ref. [34]. Ligand L binds to receptor R to form
unphosphorylated complex C0. The receptor chain is iteratively phosphorylated until reaching state CN along the activating branch
(green). At every stage Ci, the ligand can unbind from the receptor with ligand-specific rate τ−1. At Cm, the repressing branch (red) splits
by inhibiting the kinase K, which mediates the feed-forward mechanism. (b) Dose-response curves for pure ligand types and mixtures in
both adaptive proofreading models and experiments on T cells (redrawn from Ref. [32]). Details on the models and parameters used are
given in Appendix B. For experiments, OVA are agonist ligands, G4 and E1 are ligands known to be below threshold but showing clear
antagonistic properties. (c) Schematic of the neural network used for digit recognition. We explicitly show the four weight vectors Wi
learned in one instance of the training, the activation function J, and an adversarially perturbed sample xadv.
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Nontrivial effects appear if we consider mixtures of
ligands with different qualities. Then, the respective com-
putation made by the activation and repression branch of
the network depends in different ways on the distribution of
the presented ligand binding times. For instance, if we
now add La antagonists with lower binding time τa < τ
and equal on rate kon, we have TN;m ¼ ½ðLτN þ Laτ

N
a Þ=

ðLτm þ Laτ
m
a Þ�, which is smaller than the response τN−m

for a single type of ligand, corresponding to ligand
antagonism [Fig. 2(b), middle panel] [14,15,43,44]. In
the presence of many ligands below the threshold of
detection, the dose-response curve is simultaneously
moved to the right but with a higher starting point
(compared to the reference curve for “agonist alone”), as
observed experimentally [Fig. 2(b), right panel, data
redrawn from Ref. [32] ]. Different models have different
antagonistic properties based on the strength of the acti-
vation branch (N) relative to the repression branch (m).
More mathematical details on these models can be found in
Refs. [14,33,34].

B. Neural networks for artificial decision-making

We compare cellular decision-making to decision-
making in machine-learning algorithms. We constrain
our analysis to binary decision-making (which is of
practical relevance, for instance, in medical applications
[8]), using as a case study image classification from two
types of digits. These images are taken fromMNIST [45], a
standard database with 70 000 pictures of handwritten
digits. Even for such a simple task, designing a good
classifier is not trivial, since it should be able to classify
irrespective of subtle changes in shapes, intensity, and
writing style (i.e., with or without a central bar for a 7).
A simple machine-learning algorithm is logistic regres-

sion. Here, the inner product of the input and a learned
weight vector determines the class of the input. Another
class of machine-learning algorithm is feed-forward neural
networks: interconnected groups of nodes processing
information layerwise. We choose to work with neural
networks for several reasons. First, logistic regression is a
limiting case of a neural network without hidden layers.
Second, a neural network with one hidden layer more
closely imitates information processing in cellular net-
works, i.e., in the summation over multiple phosphoryla-
tion states of the receptor-ligand complex (nodes) in a
biochemical network. Third, such an architecture repro-
duces classical results on adversarial perturbations such as
the ones described in Ref. [6]. Figure 2(c) introduces the
iterative matrix multiplication inside a neural network.
Each neuron i computes wi · x; i ∈ ½0; 3�, adds bias bi,
and transforms the result with an activation function fðxÞ.
We choose to use a rectified linear unit, which returns 0
when its input is negative and the input itself otherwise. The
resulting fðwi · xþ biÞ is multiplied by another weight
vector with elements ai summed up with a bias defining a

scalar quantity x ¼ P
i aifðwi · xþ biÞ þ b0. Finally, we

obtain the score JðxÞ (a probability between 0 and 1 for
the input to belong to a class) by transforming x with the
logistic function σðxÞ. Parameters of such networks are
optimized using classical stochastic gradient descent
within a scikit implementation [46]; see Appendix B.
As an example, in Fig. 2(c), a 7 is correctly classified
by the neural network [JðxÞ > 0.5], while the adversarial 7
is classified as a 3 [JðxadvÞ < 0.5].

II. RESULTS

We first summarize the general approach followed to
draw the parallel between machine learning and cellular
decision-making. We limit ourselves to simple classifi-
cations where a single decision is made, such as “agonist
present vs no agonist present” in biology or “3 vs 7” in
digit recognition. As input samples, we consider pictures
in machine learning and ligand distributions in biology.
We define a ligand distribution as the set of concen-
trations with which the ligands with unique binding times
are present. This ligand distribution corresponds to a
picture that is presented as a histogram of pixel values;
the spatial correlation between pixels is lost, but their
magnitude remains preserved. Decision-making on a
sample is then done via a scoring function (or score).
This score is computed either directly by the machine-
learning algorithm (score J) or by the biochemical net-
work via the concentration of a given species (score
TN;m). For simple classifications, the decision is then
based on the relative value of the score above or below
some threshold (typically, 0.5 for neural networks where
the decision is based on sigmoidal functions, or some
fixed value related to the decision time τd for biochemical
networks).
The overall performance of a given classifier depends on

the behavior of the score in the space of possible samples
(i.e., the space of all possible pictures or the space of all
possible ligand distributions). Both spaces have high dimen-
sions: For instance, the dimension in the MNIST picture
corresponds to number of pixels 28 × 28 ¼ 784, while in
immunology, ligands can bind to roughly 30 000 receptors
[15]. The score can thus be thought of as a nonlinear
projection of this high-dimensional space in one dimension.
We study how the score behaves in relevant directions in the
sample space and how to change the corresponding geom-
etry and position of decision boundaries (defined as the
samples where the score is equal to the classification
threshold). We show that similar properties are observed
both close to typical samples and to the decision boundary. It
is important to notice at this stage that the above consid-
erations are completely generic on the biology side and are
not necessary limited to, say, immune recognition. However,
we show that adaptive proofreading presents many features
reminiscent of what is observed in machine learning.
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A. Fast gradient sign method recovers
antagonism by weakly binding ligands

In this framework, from a given sample, an adversarial
perturbation is a small perturbation in sample space giving
a change in score reaching (or crossing) the decision
boundary. We start by mathematically connecting the
simplest class of adversarial examples in machine learning
to antagonism in adaptive proofreading models. We follow
the original fast gradient sign method (FGSM) proposed by
Ref. [6]. The FGSM computes the local maximum adver-
sarial perturbation η ¼ ϵ sgnð∇xJÞ (where sign is taken
elementwise). ∇xJ represents the gradient of the scoring
function categorizing images in two different categories
(such as 3 and 7 in Ref. [6]). Its elementwise sign defines an
image that is added to the initial batch of images with small
weight ϵ. Examples of such perturbations are shown in
Fig. 2(c) (bottom left) and Fig. 6(a) for the 3- vs 7-digit
classification problem. While to the human observer, the
perturbation is weak and changes only the background,
naive machine-learning algorithms are completely fooled
by the perturbation and systematically misclassify the digit.
Coming back to adaptive proofreading models, we apply

FGSM for the computation of a maximally antagonistic
perturbation. To do so, we need to specify the equivalent of
pixels in adaptive proofreading models. A natural choice is
to consider parameters associated with each pair (index i)
of receptor or ligands, namely, koni (corresponding to the
rate at which ligands bind to receptors, also called on rate
[47]) and τi (corresponding to quality). If a receptor i is
unoccupied, we set its ki and τi to 0 [48]. We then compute
gradients with respect to these parameters.
As a simple example, we start with the case ðN;mÞ ¼

ð1; 0Þ, which also corresponds to a recently proposed
model for antagonism in olfaction [17], with the role of
kon played by inverse affinity κ−1, the role of τ played by
efficiency η, and the spiking rate of the olfactory receptor
neurons is JðTN;mÞ, which can be interpreted as a scoring
function in the machine-learning sense. In this case, T1;0

simply computes the average quality τav of ligands pre-
sented weighted by koni (models with N > m > 0 give less
intuitive results as we show in the following). It should be
noted that while this computation is formally simple,
biochemically it requires elaborated internal interactions
because a cell cannot easily disentangle influence of
individual receptors; see Refs. [14,17] for explicit
examples.
Starting from the computation of ∇xJ with respect to

parameters koni and τi, the FGSM perturbation is

η ¼ ϵ sgn

� ∂τiJ

∂koni
J

�
¼ ϵ sgnðAÞsgn

�
koni

τi − T1;0

�
; ð4Þ

where A ¼ f½J0ðT1;0Þ�=ð
P

koni Þg > 0. Notice in the above
expression that since derivatives act on different

parameters, an ϵ-sized perturbation of a given parameter
is expressed in its corresponding unit. For simplicity, we do
not explicitly write the conversion factor between units
(this is for mathematical convenience and does not impact
our results). From the above expression, we find that an
equivalent maximum adversarial perturbation is given by
three simple rules [Fig. 3(a)]:

(i) decrease all τi by ϵ.
(ii) decrease koni by ϵ for ligands with τi > T1;0.
(iii) increase koni by ϵ for ligands with τi < T1;0.
The key relation to adversarial examples from Ref. [6]

comes from considering what happens to the unbound
receptors for which both koni and τi are initially 0. Let us
consider a situation with L identical bound ligands with
(kon ¼ 1, binding time τ) giving response Tbefore

1;0 ¼ τ,
where τ itself is of order 1 [i.e., much bigger than the
ϵ-sized perturbation on the binding time considered in
Eq. (4)]. The three rules above imply that we are to decrease
the binding time by ϵ and that all R previously unbound
receptors are now to be bound by ligands with kon ¼ ϵ, with
small binding time ϵ. We compute the new response to be

Tafter
1;0 ¼ Lðτ − ϵÞ þ ϵRϵ

Lþ ϵR
¼ τ − ϵþ ϵR

L ϵ

1þ ϵR
L

: ð5Þ

If there are many receptors compared to initial ligands, and
assuming ϵ ≪ τ, the relative change

Tafter
1;0 − Tbefore

1;0

Tbefore
1;0

≃ −
ϵR
L

1þ ϵR
L

ð6Þ

is of order 1 when ϵR ∼ L, giving a decrease comparable to
the original response instead of being of order ϵ as we
naturally expect from small perturbations to all parameters.
Thus, if a detection process is based on thresholding
variable T1;0, a significant decrease can happen with such
a perturbation, potentially shutting down response.
Biologically, the limit where ϵR is big corresponds to a
strong antagonistic effect of many weakly bound ligands.
Examples can be found in mast cell receptors for immu-
noglobin: Weakly binding ligands have been suggested to
impinge a critical kinase, thus, preventing high-affinity
ligands to trigger response [16], a so-called “dog in the
manger” effect. Another example is likely found in detec-
tion by Natural Killer cells [27]. A similar effect called
“competitive antagonism” is also observed in olfaction
where ligands with strong inverse affinity can impinge
action of other ligands [17]. One difference in olfaction is
that for competitive antagonism, the concentration C is of
order 1 while the affinity κ−1 is big; conversely, here the
concentration R is big while kon is low. Since we consider
the product of both terms, both situations lead to similar
effects, but our focus on a small change of kon makes the
comparison with machine learning more direct.
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Schematics of FGSM applied to immune recognition. (a) We compute how to lower the response for the receptor occupancy
through a given period of time by changing koni and τi. Bottom left: Increasing koni for ligands with τi < τd and decreasing koni for ligands
with τi > τd reduces the weighted average T1;0 (change in frequency of the colored bars). Bottom right: Decreasing τi for all ligands
decreases T1;0 (change in length of the colored bars). (b) Response to nonself-ligands is lowered from Tbefore

1;0 to Tafter
1;0 upon addition of R

ligands with small binding time ϵ. (c) Interpolated digits with and without adversarial perturbation along the interpolation axis between
7⃗ (f ¼ 0) and 3⃗ (f ¼ 1). Adversarial perturbations are computed via the FGSM with ϵ ¼ 0.2. For the biomimetic defense ϕðN; θÞ, we
choose N ¼ 5 and θ ¼ 0.5. (d) Scoring function JðxÞ on pictures of (c) without (left) and with (right) the biomimetic defense. The
classification threshold is indicated by the dashed green line at J ¼ 0. Samples with J > 0 are classified as 7, otherwise 3.
(e) Interpolated ligand mixtures with and without self-ligands along the interpolation axis between agonist (f ¼ 0) and antagonist
(f ¼ 1). Here, ðLag; τagÞ ¼ ð100; 6Þ; ðLa; τaÞ ¼ ð100; 1Þ; ðLself ; τselfÞ ¼ ð1000; 0.1Þ. (f) Scoring function on ligand mixtures of (e) for a
naive immune classifier ðN;mÞ ¼ ð1; 0Þ (left) and a robust immune classifier ðN;mÞ ¼ ð2; 1Þ (right). The threshold is indicated by a
dashed green line at TN;m=τd − 1 ¼ 0. TN;m=τd − 1 > 0 corresponds to the detection of agonists and below corresponds to no detection.
In both digit recognition and ligand discrimination, the naive networks interpolate the score linearly and are sensitive to adversarial
perturbations, while the score for robust networks is flatter, closer to the initial samples for longer, thus, more resistant to perturbation.
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B. Behavior across boundaries in sample
space and adversarial perturbations

To further illustrate the correspondence, we compare the
behavior of a trained neural network classifying 30 s and
70 s with the adaptive proofreading model ðN;mÞ ¼ ð1; 0Þ
for more general samples. We build linear interpolations
between two samples on either side of the decision
boundary for both cases [Figs. 3(c)–3(f), linear inter-
polation factor f varying between 0 and 1]. This inter-
polation is the most direct way in sample spaces to
connect objects in two different categories. The neural
network classifies linearly interpolated digits, while the
adaptive proofreading model classifies gradually chang-
ing ligand distributions.
We plot the output of the neural network x just before

taking the sigmoid function σ defined in Fig. 2(c), and
similarly, we plot TN;m=τd − 1 for adaptive proofreading
models. In both cases, the decision is thus based on the
sign of the considered quantity. In the absence of
adversarial or antagonistic perturbations, for both cases,
we see that the score of the system almost linearly
interpolates between values on either side of the classi-
fication boundary [top panels of Figs. 3(d) and 3(f), blue
curves]. However, in the presence of adversarial or
antagonistic perturbations, the entire response is shifted
way below the decision boundary [top panels of Figs. 3(d)
and 3(f), red curves], so that, in particular, the initial
samples at f ¼ 0 (image of 7 or ligand distribution above
threshold) are strongly misclassified.
Goodfellow et al. [6] proposed the linearity hypothesis

as an explanation for this adversarial effect: Adding η ¼
ϵ sgnð∇xJÞ to the image leads to a significant perturbation
on the scoring function J of order ϵd, with d the usually
high dimensionality of the input space. Thus, many weakly
lit-up background pixels in the initial image can conspire to
fool the classifier, explaining the significant shift in the
scoring function in Fig. 3(d) top panel. The linearity
hypothesis is consistent with the linearity we observe on
the interpolation line, even without adversarial perturba-
tions. A more quantitative explanation based on averaging
is given in Ref. [49] on a toy model that we reproduce
below to further articulate the analogy: After defining a
label y ∈ f−1;þ1g, a fixed probability p, and a constant η,
one can create a (dþ 1)-dimensional feature vector x,

y ∈ f−1;þ1g; x1 ∼
�þy; w:p:p;
−y; w:p:1 − p;

x2;…; xdþ1 ∈ N ðηy; 1Þ: ð7Þ

From this, Tsipras et al. build a 100% accurate classifier
in the limit of d → ∞ by averaging out the weakly
correlated features x2;…; xd, which gives the score
fav ¼ N ½ηy; ð1=dÞ�. Taking the sign of fav will coincide

with the label y with 99% confidence for η ≥ 3=
ffiffiffi
d

p
. But

such a classification can be easily fooled by adding a small
perturbation ϵ ¼ −2ηy to every component of the features,
since it will shift the average by the same quantity −2ηy,
which can still be small if we take η ¼ Oð1= ffiffiffi

d
p Þ [49].

We observe a very similar effect in the simplest adaptive
proofreading model. The strong shift of the average T1;0 in
Eq. (5) is due to weakly bound receptors ϵR, which play the
same role as the weak features (components x2;…; xdþ1

above), hiding the ground truth given by ligands of binding
time τ (equivalent to x1 above) to fool the classifier. We also
see a similar linearity on the interpolation in Fig. 3(f) top
panel. There is thus a direct intuitive correspondence
between adversarial examples in machine learning and
many weakly bound ligands. In both cases, the change of
scoring function (and corresponding misclassification) can
be large despite the small amplitude ϵ of the perturbation.
Once this perturbation is added, the system in Fig. 3 still
interpolates between the two scores in a linear way but with
a strong shift due to the added perturbation.

C. Biomimetic defense for digit classification
inspired by adaptive sorting

Kinetic proofreading, famously known as the error-
correcting mechanism in DNA replication [38,39], has
been proposed as a mechanism for ligand discrimination
[36]. In the adaptive proofreading models we study here,
kinetic proofreading allows the encoding of distinct τ
dependences in the activation or repression branches
[33]. The primary effect of kinetic proofreading is to
nonlinearly decrease the relative weight of weakly bound
ligands with small binding times, thus, ensuring defense
against antagonism by weakly bound ligands. Inspired by
this idea, we implement a simple defense for digit classi-
fication. Before feeding a picture to the neural network, we
transform individual pixel values xi of image x with a Hill
function as

xi ← ϕN;θðxiÞ ¼
xNi

xNi þ θN
; ð8Þ

where N (coefficient inspired by kinetic proofreading) and
θ ∈ ½0; 1� are parameters we choose. Similar to the defense
of adaptive proofreading where ligands with small τ are
filtered out, this transformation squashes grayish pixels
with values below threshold θ to black pixels; see Fig. 3(c)
bottom panels.
In Fig. 3(d), bottom panel, we show the improved

robustness of the neural network armed with this defense.
Here, the adversarial perturbation is filtered out efficiently.
Strikingly, with or without adversarial perturbation, the
score now behaves nonlinearly along the interpolation line
in sample space: It stays flatter over a broad range of f until
suddenly crossing the boundary when the digit switches
identity (even for a human observer) at f ¼ 0.5. Similarly,
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for adaptive sorting with ðN;mÞ ¼ ð2; 1Þ, antagonism is
removed, and the score exhibits the same behavior of
flatness followed by a sudden decrease on the interpolation
line. Thus, similar defense displays similar robust behavior
of the score in sample space.

D. Gradient dynamics identify two different regimes

The dynamics of the score along a trajectory in sample
space can thus vary a lot as a function of the model
considered. This motivates a more general study of a worst-
case scenario, i.e., gradient descent towards the decision
boundary for different models. Krotov and Hopfield
studied a similar problem for a MNIST digit classifier
encoded with generalized rectified polynomials of variable
degrees n [50] (reminiscent of the iterative FGSM intro-
duced in Ref. [51]). The general idea is to find out how to
most efficiently reach the decision boundary and how this
depends on the architecture of the decision algorithm.
Krotov and Hopfield identified a qualitative change with
increasing n, accompanied by a better resistance to adver-
sarial perturbations [26,50].
We consider the same problem for adaptive proofreading

models and study the potential-derived dynamics of bind-
ing times for a ligand mixture with identical kon when
following the gradient of TN;m (akin to a potential in
physics). The adversarial goal is to fool the classifier with a
minimal change in a given example (or in biological terms,
how to best antagonize it). We iteratively change the
binding time of nonagonist ligands τ < τd to

τ ← τ − ϵ
∂TN;m

∂τ ð9Þ

while keeping the distribution of agonist ligands with
τ > τd constant. In the immune context, these dynamics
can be thought of as a foreign agent selected by evolution
to antagonize the immune system. Some biological con-
straints will force ligands to stay above threshold, so the
only possible evolutionary strategy is to mutate and gen-
erate antagonists ligands to mask its nonself part. Such
antagonistic phenomena have been proposed as a mecha-
nism for HIV escape [19,20] and associated vaccine failure
[21]. Similar mechanisms might also be implicated in the
process of tumor immunoediting [23].
From a given ligand mixture with few ligands above

threshold and many ligands below threshold, we follow the
dynamics of Eq. (9) and display the ligand distribution at
the decision boundary for different values of N, m as well
as the number of steps to reach the decision boundary in the
descent defined by Eq. (9) (Fig. 4; see also Fig. 5 for
another example with a visual interpretation). We observe
two qualitatively different dynamics. For m < 2, we
observe strong adversarial effects, as the boundary is
almost immediately reached and the ligand distribution

barely changes. As m increases, in Fig. 4(a) the ligands in
the distribution concentrate around one peak. For m ¼ 2, a
qualitative change occurs: The ligands suddenly spread
over a broad range of binding times, and the number of
iterations in the gradient dynamics to reach the boundary
drastically increases. For m > 2, the ligand distribution
becomes bimodal, and the ligands close to τ ¼ 0 barely
change, while a subpopulation of ligands peaks closer to
the boundary. Consistent with this, the number of ϵ-sized
steps to reach the boundary is 3 to 4 orders of magnitude
higher for m > 2 as it is for m < 2.

E. Qualitative change in dynamics is due
to a critical point for the gradient

The qualitative change of behavior observed at m ¼ 2
can be understood by studying the contribution to the
potential TN;m of ligands with very small binding times
τϵ ∼ 0. Assuming without loss of generality that only
two types of ligands are present (agonists τag > τd and
spurious τspurious ¼ τϵ), an expansion in τϵ gives, up to a
constant, TN;m ∝ −τmϵ for small τϵ [see Fig. 4(b) for a
representation of this potential and Appendix C for this
calculation]. In particular, for 0 < m < 1, ½ð∂TN;mÞ=
ð∂τϵÞ� ∝ −τm−1

ϵ diverges as τϵ → 0. This corresponds to
a steep gradient of TN;m so that the system quickly reaches
the boundary in this direction. The ligands close to τϵ ∼ 0
then quickly localize close to the minimum of this
potential [unimodal distribution of ligand for small m
in Figs. 4(a) and 4(b)].
The potential close to τϵ ∼ 0 flattens for 1 < m < 2, but

it is only at m ¼ 2 that a critical point for the gradient
[i.e., characterized by ∂2TN;m=ð∂τϵÞ2 ¼ 0] appears at
τϵ ¼ 0. The critical point qualitatively modifies the dynam-
ics defined by Eq. (9). For m ≥ 2, due to the new local
flatness of this gradient, ligands at τ ¼ 0, the dynamical
critical point of Eq. (9), are pinned by the dynamics. By
continuity, the dynamics of the ligands slightly above
τϵ ¼ 0 are critically slowed down, making it much more
difficult for them to reach the boundary. This explains both
the sudden broadening of the ligand distribution and the
associated increase in the number of steps to reach the
decision boundary. Conversely, an inflexion point (square)
appears in between the minimum (circle) and τϵ ¼ 0
[Fig. 4(b)]. Ligands close to the inflexion point separate
and move more quickly towards the minimum of potential,
explaining the bimodality at the boundary (if we continue
the dynamics past the boundary, all ligands with nonzero
binding times will collapse to the minimum of the poten-
tial). For both larger N and larger m, we obtain flatter
potentials and a larger number of iterations. In Appendix D,
we further describe the consequence of adding proof-
reading steps on the position of the boundary itself, using
another concept of machine learning called “boundary
tilting” [52] (Fig. 6 and Table I).
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F. Categorization of attacks

The transition at m ¼ 2 is strongly reminiscent of the
transition observed by Krotov and Hopfield in their study
of gradient dynamics similar to Eq. (9) [50]. In both our
works, we see that there are (at least) two kinds of attacks
that can bring samples to the decision boundary. The
FGSM corresponds to small perturbations to the input in
terms of L∞ norm leading to modifications of many
background pixels in Ref. [50] or many weakly bound
ligands for the adaptive proofreading case, also similar to
the meaningless changes in x2;…; xd described above in
Eq. (7) [49].
Defense against the FGSM perturbation is implemented

through a higher degree n of the rectified polynomials in
Ref. [50], while in adaptive proofreading, this is done
through critical slowing down of the dynamics of Eq. (9)
for m > 2. The latter models are nevertheless sensitive to
another kind of attack with many fewer perturbations of the

inputs but with bigger magnitude. This attack corresponds
to digits at the boundary where few well-chosen pixels are
turned on in Ref. [50]. For adaptive proofreading models,
this attack leads to the ligand distribution becoming
bimodal at the decision boundary. Three important features
are noteworthy. First, the latter perturbations are difficult to
find through gradient descent [as illustrated by the many
steps to reach the boundary in Fig. 4(a)]. Second, the
perturbations appear to be meaningful: They correspond to
interpretable features and interfere with the original sample.
These perturbations make it difficult or even impossible to
recover the ground truth by inspecting the sample at the
decision boundary. Digits at the boundary for Ref. [50]
appear indeed ambiguous to a human observer, and ligand
distribution peaking just below threshold is potentially
misinterpreted biologically due to inherent noise. This
ambiguity has actually been observed experimentally in
T cells, where strong antagonists are also weak agonists

Initial distribution

ControlInitial Final Mean-filter

Antagonism potential(a) (b)

Adversarial 

FIG. 4. Characterization of the decision boundary following gradient-descent dynamics. (a) Ligand distribution at the decision
boundary by applying iterative gradient descent (top right of the panel) to an initial distribution (top left). For various cases ðN;mÞ, we
change the binding time of self-ligands along the steepest gradient until reaching the decision boundary. niter indicates the number of
iterations needed to reach the decision boundary. We identify the adversarial regime (red), the ambiguous regime (green), and a
transition (black) depending on m. (b) TN;m for mixtures of ligands at τd and ligands at τ, as a function of τ for various ðN;mÞ.
Antagonism strength is maximal when TN;m is minimal. Minima and inflexion points are indicated with a circle and square. (c) Few-
pixel attack as a way of circumventing proofreading or local contrast defense, while creating ambiguous digits. We add a 3 × 3 mean
filter to demonstrate the ambiguity of digits at the decision boundary. The control image is the mean-filtered initial digit combined with
the locally contrasted average target digit. Note that also the control is lacking a clear ground truth.
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[15,32], meaning that T cells do not take reliable decisions
in this regime. Lastly, in Ref. [26] it has been observed in
machine learning that memory capacity considerably
increases for high n due to the local flattening of the
landscape close to memories (ensuring that random fluc-
tuations do not change memory recovery). A similar effect
in our case is observed: The antagonism potential is
flattened out with increasing N, m so that any spurious
antagonism becomes at the same time less important and
lies closer to the decision boundary.

G. Biomimetic defenses against few-pixel attacks

It is then worth testing the sensitivity to localized
stronger attacks of digit classifiers, helped again with
biomimetic defenses. The natural analogy is to implement
attacks based on strong modification of a few pixels [53].
For this problem, we choose to implement a two-tier

biomimetic defense: We implement first the transformation
defined in Eq. (8) that will remove influence of the FGSM
types of perturbations by flattening the local landscape as in
Fig. 3(d). In addition, we choose to add a second layer of
defense where we simply average out pixel values locally.
This can be interpreted biologically as a process of receptor
clustering or time averaging. Time averaging has been
shown to be necessary in a stochastic version of adaptive
proofreading [32,33], where temporal intrinsic noise would
otherwise make the system cross the boundary back and
forth endlessly. In the machine-learning context, local
averaging has been recently proposed as a way to defend
against few-pixel attacks [54], which thus can be consid-
ered as analogous to defending against biochemical noise.
We then train multiple classifiers between different pairs

of handwritten digits. Following the approach of the “one-
pixel” attack [53], we consider digits classified in the
presence of this two-tier defense, then we sequentially fully
turn pixels on or off ranked by their impact on the scoring
function until we reach the decision boundary. Details on
the procedure are described in Appendix E. A good defense
would manifest itself similarly to the Krotov-Hopfield case
[50], where no recognizable (or ambiguous) digits are
observed at the boundary.
Representative results of such few-pixel attacks with

biomimetic defenses are illustrated in Fig. 4(c). The “final”
column shows the misclassified digits after the attack and
the “mean filter” column shows the local average of the
final digits for further comparison, with other examples
shown in Fig. 7 and details on the behavior of scoring
functions in Fig. 8. Clearly, the attacked samples at the
boundaries hide the ground truth of the initial digit, and as
such cannot be considered as typical adversarial perturba-
tions. Samples at the boundary are out of distribution but
preserve structure comparable to written characters (e.g.,
attacks from 0 to 1 typically look like a greek ϕ; see Fig. 7).
This makes them impossible to classify as arabic digits
even for a human observer. This is consistent with the

ambiguous digits observed for big n by Krotov and
Hopfield [50]. In other cases, samples at the boundary
between two digits actually look like a third digit: For
instance, we see that the sample at the boundary between a
6 and a 9 looks like a 5 (or a Japanese ). This observation
is consistent with previous work attempting to interpolate
in latent space between digits [55], where at the boundary a
third digit corresponding to another category may appear.
We also compare in Fig. 4(c) the sample seen by the
classifier at the boundary after the biomimetic defenses
with a “control” corresponding to the average between the
initial digit and the target of the attack [corresponding to the
interpolation factor f ¼ 0.5 in Figs. 3(c) and 3(d)]. It is
then quite clear that the sample generated by the attack is
rather close to this control boundary image. This, combined
with the fact that samples at the boundary still look like
printed characters without clear ground truth indicate that
the few-pixel attacks implemented here actually select for
meaningful features. The existence of meaningful features
in the direction of the gradient have been identified as a
characteristic of networks robust to adversarial perturbation
[49] similar to the results of Ref. [50] and our observation
for adaptive proofreading models above.

III. DISCUSSION

Complex systems (in vivo or in silico) integrate sophis-
ticated decision-making processes. Our work illustrates
common features between neural networks and a general
class of adaptive proofreading models, especially with
regard to mechanisms of defense against targeted attacks.
Parallels can be drawn between these past approaches since
the models of adaptive proofreading presented here were
first generated with in silico evolution aimed to design
immune classifiers [33]. Strong antagonism naturally
appeared in the simplest simulations and required modifi-
cation of objective functions very similar to adversarial
training [6].
Through our analogy with adaptive proofreading, we are

able to identify the presence of a critical point in the
gradient of response as the crucial mediator of robust
adversarial defense. This critical point emerges due to
kinetic proofreading for a cellular decision network and
essentially removes the spurious adversarial directions.
Another layer of defense can be added with local averaging.
This is in line with current research on adversarial robust-
ness in machine learning, showing that robust networks
exhibit a flat loss landscape near each training sample [56].
Other current explorations include new biomimetic learn-
ing algorithms, giving rise to prototypelike classification
[57]. Adversarial defense strategies including nonlocal
computation and nonlinearities in the neural network are
also currently under study [54]. The mathematical origin of
the effectiveness of those defenses is not yet entirely clear,
and identification of critical points in the gradient might
provide theoretical insights into it.
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More precisely, an interesting by-product of local flat-
ness, where both the gradient and second derivative of the
score are equal to zero, is the appearance of an inflexion
point in the score and thus a region of maximal gradient.
The effect of an inflexion point is visible in Figs. 3(d) and
3(f): While the score of nonrobust classifiers is linear when
moving towards the decision boundary, the scoring func-
tion of classifiers resistant to adversarial perturbations is
flat at f ¼ 0 and significantly changes only when the input
becomes ambiguous near the inflexion point. The reason
why this effect is important in general is that a combination
of local flatness and an inflexion point is bound to strongly
influence any gradient-descent dynamics. For instance, for
adaptive proofreading models, the ligand distribution
following the dynamics of Eq. (9) changes from unimodal
to bimodal at the boundary, creating ambiguous samples.
For a robust classifier, such samples are thus expected to
appear close to the decision boundary since they coincide
with the larger gradients of the scoring function. As such,
they could correspond to meaningful features (contrasting
the adversarial perturbations), as we show in Fig. 4(c) with
our digit classifier with biomimetic defense. Examples in
image classification might include the meaningful adver-
sarial transformations between samples found in Ref. [49]
or the perturbed animal pictures fooling humans [58] with
chimeric images that combine different animal parts (such
as spider and snake), leading to ambiguous classifications.
Similar properties have been observed experimentally for
ambiguous samples in immune recognition: Maximally
antagonizing ligands have a binding time just below the
decision threshold [15]. We interpret this property as a
consequence of the flat landscape far from the decision
threshold leading to a steeper gradient close to it [32,34].
We use machine-learning classification and implement

biomimetic defense by relying on a single direction, since
that is what emerges in the most simple version of adaptive
proofreading models that we consider here. In general,
however, the space of inputs in machine learning is much
more complex, and there are more than two categories,
even in digit classification. One possible solution is to
break down multilabel classification into a set of binary
classification problems, but this might not always be
appropriate. Instead, the algorithm effectively has to learn
representations, such as pixel statistics and spatial corre-
lations in images [2]. With a nonlinear transformation to a
low-dimensional manifold description, one could still
combine information on a global level in ways similar to
parameter τ. The theory we present here could then apply
once the mapping of the data from the full-dimensional
space to such a latent space is discovered.
Case in point, Tsipras et al. proposed a distinction in

machine learning between a robust but probabilistic feature
[x1 in Eq. (7)] and weakly correlated features [x2;…; xd in
Eq. (7)] [49], both defining a single direction in latent
space. They then observed a robustness-accuracy trade-off

due to the fact that an extremely accurate classifier would
mostly use a distribution of many weakly correlated
features (instead of the robust but randomized feature) to
improve accuracy. The weight to put in the decision on
either feature (robust or weak) would depend on the
training. Our work shows the natural connection between
weak features in this theory and weak ligands in the
biological models [see discussion below Eq. (7)]. In the
biological context, the standard situation is that all ligands
are treated equally. Then, one can showmathematically that
for such networks performing quality sensing irrespective
of quantity, antagonism necessarily ensues [34], as we
further identify here using the FGSM transformation. This
latter result can be reformulated in terms of machine
learning [49] in the following compact way: Perfectly
robust classification (i.e., with no antagonism) is impos-
sible in biology if all receptors are equivalent. But biology
also provides evidence that robustness can nevertheless be
improved by applying local nonlinear transformation such
as the biomimetic defense of Eq. (8). Elaborating on the
distinction between robust and weak features proposed in
Ref. [49], nonlinear transformations should specifically
target weak correlated features. Explorations of generalized
nonlinear transformations in image feature space [26,50]
might lead to further insights into the possible nonlinear
transformations defending against adversarial perturba-
tions. We learn in particular from biology that the major
effect of nonlinearity is to change the position of maximally
adversarial perturbations in sample space. Perfect robust-
ness might be impossible in general, yet similar to cellular
decision-making the most effective perturbations may shift
from a pile of apparently unstructured features for naive
classifiers to a combination of meaningful features for
robust classifiers, giving ambiguous patterns at the decision
boundary (allowing us to further distinguish between
ambiguous and adversarial perturbations).
From the biology standpoint, new insights may come

from the general study of computational systems built via
machine learning. In particular, systematic search and
application of adversarial perturbations in both theoretical
models and experiments might reveal new biology. For
instance, our study of Fig. 4, inspired by gradient descent in
machine learning [50], establishes that cellular decision-
makers exist in two qualitatively distinct regimes. The
difference between these regimes is geometric by nature
through the presence or absence of a dynamical critical
point in the gradient. The case m < 2 with a steep gradient
could be more relevant in signaling contexts to separate
mixtures of inputs, so that every weak perturbation should
be detected [42]. For olfaction, it has been suggested that
strong antagonism allows for a rescaling of the distri-
bution of typical odor molecules, ensuring a broad range
of detection irrespective of the quantity of molecules
presented [17]. The case m ≥ 2 is much more resistant
to adversarial perturbations and could be most relevant in
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an immune context where T cells filter out antagonistic
perturbations. This might be relevant for the pathology of
HIV infections [19–21] or, more generally, it could provide
explanations of the diversity of altered peptide ligands [59].
We also expect similar classification problems to occur at
the population level, e.g., when T cells interact with each
other to refine individual immune decision-making [60,61].
Interestingly, there might be a trade-off between resistance
to such perturbations (in particular, to self antagonism,
pushing towards higher m in our model) and the process of
thymic selection which relies on the fact that there should
be sensitivity to some self-ligands [62] (pushing towards
lower m in our model).
Our correspondence could also be useful for the theo-

retical modeling and understanding of cancer immuno-
therapy [22]. So-called neoantigens corresponding to
mutated ligands are produced by tumors. It has been
observed that in the presence of low-fitness neoantigens,
the blocking of negative signals on T cells (via checkpoint
inhibitor blockade) increases the success of therapy [63].
This suggests that those neoantigens are ambiguous
ligands: weak agonists acting in the antagonistic regime.
Without treatment, negative signals prevent their detection
(corresponding to an adversarial attack), but upon check-
point inhibitor blockade, those ligands are suddenly visible
to the immune system, which can now eliminate the tumor.
Importantly, differential responses are present depending
on the type of cancer, environmental factors, and tumor
microenvironment [23]. This corresponds to different
background ligand distributions in our framework, and one
can envision that cancer cells adapt their corresponding
adversarial strategies to escape the immune system. Under-
standing and categorizing possible adversarial attacks
might thus be important in predicting the success of
personalized immunotherapy [64].
We connect machine-learning algorithms to models of

cellular decision-making, and in particular, their defense
strategies against adversarial attacks. More defenses against
adversarial examples might be found in the real world, for
instance, in biofilm forming in bacteria [65], in size
estimation of animals [66], or they might be needed for
proper detection of physical 3D objects [67] and road signs
[68]. Understanding the whole range of possible antago-
nistic perturbations may also prove crucial for describing
immune defects, including immune escape of cancer cells.
It is thus important to further clarify possible scenarios for
fooling classification systems in both cell biology and
machine learning.
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APPENDIX A: MATHEMATICAL DETAILS OF
THE ADAPTIVE PROOFREADING MODELS

Appendix A 1 contains more details on the derivation of
adaptive proofreading models referred to in Sec. I A in the
main text. In Appendix B 1, we give the parameters and
equations that are used to draw Fig. 2(b) in the main text.

1. Biochemical kinetics

The kinetics for the biochemical network in Fig. 2(b) in
the simplest form [ðN;mÞ ¼ ð2; 1Þ] are given by

_C1 ¼ konRL − ðϕK þ τ−1ÞC1;

_C2 ¼ ϕKC1 − τ−1C2;

_K ¼ βðKT − KÞ − αC1K: ðA1Þ

Here, we assume the T cell has R receptors to which L
ligands are bound to form ligand-receptor complexes C1

and C2. The parameters kon and τ−1 denote ligand-specific
rates, which correspond to an average number of events
happening per second (mean of a Poisson-distributed
variable). ϕ is the phosphorylation rate for the reaction
C1 → C2 (activation branch), which is activated by variable
K, and which we call a generic kinase. K itself is inhibited
by C1 (repression branch) with rate α. KT here is the total
number of kinases, and KT − K the number of inactive
kinases. This kinase is shared among all receptors and
assumed to diffuse freely and rapidly, so that since K is
inactivated by C1, (in)activity of K is a measure of the total
number of receptors bound. Lastly, β is the activation rate
of K. In the steady state, we can solve exactly for C2 and
find

C2 ¼ ϕKC1τ ¼
Lτ

β=αþ L
≃
Lτ
L

¼ τ: ðA2Þ

Here, K ¼ ½ðKTβ=αÞ=ðβ=αþ C1Þ�, and as long as L ≫
β=α the first-order approximation is exact, and the ligand
dependence in the nominator and denominator cancels.
Without loss of generality, we set ½ðϕKTβÞ=α� ¼ 1.
When we consider an environment containing two ligand

types with binding times τag (agonists) and τa (antagonists)
at concentrations Lag and La, two types of ligand-receptor
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complexes can be formed. We call them Ci for agonists and
Di for antagonists. Full equations in the case of ðN;mÞ ¼
ð2; 1Þ are given by

_C1 ¼ konRLag − ðϕK þ τ−1ag ÞC1;

_C2 ¼ ϕKC1 − τ−1ag C2; ðA3Þ

_D1 ¼ konRLa − ðϕK þ τ−1a ÞD1;

_D2 ¼ ϕKD1 − τ−1a D2;

_K ¼ βðKT − KÞ − αðC1 þD1ÞK; ðA4Þ

where we assume that kon is equal for both agonist and
antagonist ligands. The main difference here is that variable
K integrates global information from both ligand com-
plexes, which results in the steady state in K ¼ ½ðKTβ=αÞ=
ðβ=αþ C1 þD1Þ�. Moreover, K acts locally on the phos-
phorylation of both C1 and D1. Finally, the output is given
by T2;1 ¼ C2 þD2.
We can generalize this case by assuming that inhibition

of the variable K occurs not at the first complex C1, but
further downstream a kinetic proofreading cascade, namely,
at the mth complex Cm ¼ Lagτ

m
ag and Dm ¼ Laτ

m
a . The

output variable is then given by TN;m ¼ CN þDN. Figure 2
(a) shows how information from a single ligand passes
through the repression branch (red arrow and box) via K
and through the activation branch (green arrow and box) via
CN . The global variable K integrates local information as
K ¼ ½ðKTβ=αÞ=ðβ=αþ Cm þDmÞ� ∝ ðLagτ

m
ag þ Laτ

m
a Þ−1

and catalyzes the phosphorylation of CN−1 ¼ Lagτ
N−1
ag and

DN−1 ¼ Laτ
N−1
a to final complex CN and DN as

_CN ¼ KCN−1 − τ−1ag CN; ðA5Þ

_DN ¼ KDN−1 − τ−1a DN: ðA6Þ

In the steady state, the solution for TN;m is then

TN;m ¼ CN þDN ¼ Lagτ
N
ag þ Laτ

N
a

Lagτ
m
ag þ Laτ

m
a
: ðA7Þ

This expression for two types of ligands with same kon can
be clearly generalized to any type of ligand, giving Eq. (3)
in the main text.

APPENDIX B: MATERIALS AND METHODS

In this Appendix, we give the parameters and equations
that are used to draw Fig. 2(b) in the main text, and we give
the hyperparameters used for training the neural networks
classifying 3’s and 7’s. We refer to the latter in Sec. I B in
the main text.

1. Parameters for Fig. 2(b)

The curves in Fig. 2(b), left panel, come from the model
given by

T4;2ðLÞ ¼
1

τ2d

Lτ4

C� þ Lτ2
; ðB1Þ

with parameter values C� ¼ β=α ¼ 3000, τd ¼ 4s, and τ as
in the legend. The curves in the middle panel of Fig. 2(b)
come from

T4;2ðLÞ ¼
1

τ2d

Lτ4 þ Laτ
4
a

C� þ Lτ2 þ Laτ
2
a
; ðB2Þ

with again C� ¼ 3000, τd ¼ 4s, and τ ¼ 10s. For blue
“agonists alone,” La ¼ 0, for orange “þ antagonists”
La ¼ 104 and τa ¼ 3s, and for green “þ self” La ¼ 104

and τa ¼ 1s.

2. Hyperparameters for training neural network

We choose our hyperparameters as follows: one hidden
layer with four neurons feeding into an output neuron, a
random 80=20 training or test split with a 10% validation
split. The cross-entropy loss function is minimized via
stochastic gradient descent in maximal 300 iterations with a
batch size of 200 and an adaptive learning rate initiated at
0.001. The tolerance is 10−4 and the regularization rate is
0.1. Most of these parameters are set to their default value,
but we find that the training procedure is largely insensitive
to the specific choice of hyperparameters.

APPENDIX C: LIGAND DISTRIBUTION
AT THE DECISION BOUNDARY

In Appendix C 1, we describe in detail the methods
used in the gradient dynamics of changing a ligand
distribution to the decision boundary, we provide additional
results when adding spatial correlation to the ligand
distribution in Appendix C 2, and we calculate the leading
order in small binding time τϵ of the gradient ðdTN;mÞ=dτϵ
in Appendix C 6. We refer to Appendix C in the main text
in Secs. II D and II E, and in Fig. 3(a).

1. Methods

Adaptive proofreading is well suited to characterize the
decision boundary between two classes because we can
work with an analytical description. We want to know how
to most efficiently change the binding time of the spurious
binding ligand (with small τ) to cause the model to reach
the decision boundary. We take inspiration from Ref. [50]
and adapt our approach from the iterative FGSM [51]. At
first, we sample the binding times τself for Lself ¼ 7000

self-ligands from a half-normal distribution jN ð0; 1
3
Þj and

τag for Lag ¼ 3000 agonist ligands from a narrowly peaked
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normal distribution jN ð7
2
; 1
10
Þj just above τd ¼ 3. We fix the

agonist ligand distribution, the signal in the immune
picture. Next, we bin ligands in M equally spaced bins
with center binding time τb; b ∈ 1;…;M, and we compute
the gradient for bins for which τb < τd,

∂TN;m

∂τb ¼ NτN−1
b Lb −mTN;mτ

m−1
b LbP

M
i¼1 τ

m
i Li

; ðC1Þ

where Lb is the number of ligands in the bth bin. We
subtract this value multiplied by a small number ϵ from
the exact binding times, as in Eq. (6) in the main text, and
we compute a new output TN;m. We repeat this procedure
until TN;m dips just below the response threshold τN−m

d . We
then display the ligand distributions. We bin ligands and
compute the gradient in batches to prevent the gradient
from becoming negligibly small. If we compute the
gradient for each ligand with an individual binding time,
there will be exactly one ligand with that specific binding
time, and because the gradient scales with L, we need to go
through many more iterations. Decreasing the bin size and
step size ϵ may enhance the resolution, but it is not
required. We find good results by considering bins with
a bin size of 0.2s and ϵ ¼ 0.2.

2. MTL pictures

We can visually recast immune recognition as an image
recognition problem by placing pixels on a grid and
coloring them based on their binding time with a given
scale. We choose to let white pixels correspond to not self
(τ > τd), gray pixels to antagonist ligands (τa < τ < τd),

and black pixels to self-ligands τ ≪ τa. We are free to
introduce any kind of spatial correlation to create “immune
pictures” from a ligand distribution. This results in what we
term Montreal pictures or “MTL pictures” (Fig. 5). The
initial ligand distribution, MTL picture, and scale are given
on the left. We perform iterative gradient descent like in the
main text and plot the ligand distribution and the corre-
sponding immune pictures at the boundary for various
ðN;mÞ. The results are striking. For a T cell operating in
the adversarial regime, the signal MTL is unaltered at the
decision boundary. At the transition m ¼ 2, we see a slight
change of color, while in the ambiguous regime, the signal
actually changes from MTL to ML, where ML is short
for machine learning. As we desire for a robust decision-
maker, the response should switch when the signal
becomes significantly different. From this, we conclude
the only in the robust regime can Montreal turn fully into
the city of machine learning.
For the MTL pictures in Fig. 5, we distribute the

pixels in the 179 × 431 frame—equal to R, the number of
receptors—as Lself¼0.60R, La¼0.12R, and Lag¼0.28R.
We sample τself from jN ð0; 1

3
Þj, τa from τd − jN ð0; 13Þj, τag

from τd þN ð1
2
; 1
100

Þ, and we set τd ¼ 3. The picture is
engineered such that the agonist ligands fill the M and the
L, and the antagonists fill the T (which is why the T is
slightly darker than the M and L). The self-ligands fill the
area around the letters M, T, and L, such that the self
ligands with highest binding time surround the T. We
choose this example to make the effect of proofreading
explicit (and of course because we are based in Montreal
and study machine learning). This result is generic, and the

Ambiguous regimeAdversarial regime Transition

τcτ0

τc

MTL pictures at the boundary

FIG. 5. MTL pictures. Explanation is found in the text.
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ambiguity of instances at the decision boundary of a robust
model can be visualized with any well-designed image [69].

3. Behavior for small binding times

Consider a mixture with Lag ligands at τag > τd and L
ligands with small binding time τspurious ¼ τϵ ≪ τag. To
understand the behavior of TN;m as a function of τϵ, we
expand TN;m in small variable ϵ ¼ ½ðτϵÞ=ðτagÞ� as

TN;mðfLag; τag;L; τϵgÞ ¼
τNagLag þ τNϵ L

τmagLag þ τmϵ L

¼
1þ ϵN L

Lag

1þ ϵm L
Lag

τN−m
ag

≃
�
1þ ϵN

L
Lag

��
1 − ϵm

L
Lag

�
τN−m
ag

≃ τN−m
ag − τN−m

ag
L
Lag

ϵm þOðϵNÞ;

which confirms that up to a constant TN;m ∝ −ϵm ∝ −τmϵ
for m ≥ 1 and τϵ ≪ τag, as well as that

dTN;m

dτϵ
≃ −mτN−m−1

ag
L
Lag

ϵm−1 ∝ −τm−1
ϵ : ðC2Þ

APPENDIX D: BOUNDARY TILTING

To further draw the connection between machine learn-
ing and adaptive proofreading models, we study a frame-
work to interpret adversarial examples called boundary
tilting [52]. We first illustrate this effect on the discrimi-
nation of the original MNIST 3 vs 7 problem MNIST from
Ref. [6]) (Appendix D 1), after which we interpret boun-
dary tilting via proofreading in ligand discrimination
(Appendix D 2), and finally, we derive how the addition
of a subthreshold ligand at the decision boundary changes
the output (Appendix D 3). We refer to these results in the
main text at the end of Sec. II E.

1. Digit classification

A typical 3 and 7 (i), the averages 3̄ and 7̄ (ii), and the
corresponding adversarial examples (iii, iv) are shown in
Fig. 6(a). Tanay and Griffin [52] pointed out that the
adversarial perturbation generated with the FGSM pro-
posed in Ref. [6] can also be found via D ¼ signð3̄ − 7̄Þ,
Fig. 6(a) (v). Note the similarity to the adversarial pertur-
bation from the FGSM sgnðwÞ ¼ sgnð∇xJÞ [Fig. 6(a) (vi)].
To reveal the linearity of binary digit discrimination, we
compute the principal components (PCs) of the traditional
training set of 3’s and 7’s, and project all digits in the test
set on PC1 and PC2 [Fig. 6(b)]. With a linear support
vector classifier (ordinary linear regression) trained on the
transformed coordinates PC1 and PC2 of the training set, we

achieve over 95% accuracy in the test set. While such an
accuracy is far from the state of the art in digit recognition,
it is much higher than typical detection accuracy for single
cells (e.g., T cells present false negative rates of 10% for
strong antagonists [15]). The red and blue stars in Fig. 6(s)
denote the average digit 3̄; 7̄.
Next, we transform the test set as 3 → 30 ¼ 3 − ϵtestD,

7 → 70 ¼ 7þ ϵtestD, where ϵtest ¼ 0.4 is the strength of the
adversarial perturbation [Fig. 6(a) (iii)]. 3̄0 and 7̄0 move closer
in Fig. 6(b), orthogonal to the decision boundary and along
the line between the initial averages. This adversarial
perturbation moves the digits in what we call an adversarial
direction perpendicular to the decision boundary and reduces
the accuracy of the linear regression model to a mere 69%.
Goodfellow et al. proposed adversarial training as a

method to mitigate adversarial effects by FGSM. We
implement adversarial training by adding the adversarial
perturbation ϵtrainDtrain ¼ ϵtrainð3̄train − 7̄trainÞ to the images
in the training set, computing the new PCs and training the
linear regression model. Such adversarial training effec-
tively “tilts” the decision boundary, while preserving
95% accuracy. In the presence of the original adversarial
perturbations, we see the effect of the tilted boundary: The
perturbation moves digits parallel along the decision
boundary, which results in good robust accuracy. This is
an illustrative example of the more general phenomenon
studied in Ref. [52].

2. Boundary tilting and categorizing perturbations

We consider the change in TN;m for arbitrary N, m upon
addition of many spurious ligands. Generalizing Eq. (2) in
the main text gives

Tafter
N;m ¼ Lðτ − ϵÞN þ ϵRϵN

Lτm þ ϵRϵm
¼ ðτ − ϵÞN þ ϵNþ1R

L

τm þ ϵmþ1R
L

: ðD1Þ

From this expression, we note that TN;m is changing
significantly with respect to its initial value upon addition
of many weakly bound ligands as soon as ϵmþ1R is of order
L. Thus, the effect described in the main text for weighted
averages where ðN;mÞ ¼ ð1; 0Þ also holds for nonlinear
computations as long as m is small. It appears that the
general strategy to defend against this adversarial pertur-
bation is by increasing m, as previously observed in
Ref. [33]. Biochemically, this is done with kinetic proof-
reading [15,32,36]; i.e., we take an output TN;m with
N > m ≥ 1. Here, the output is no longer sensitive to
the addition of many weakly bound self-ligands, yielding
an inversion of the antagonistic hierarchy where the
strongest antagonizing ligands exist closer to threshold
[34]. An extreme case has been proposed for immune
recognition where the strongest antagonists are found just
below the threshold of activation [15].
We numerically compute how the decision boundary

changes when Lself ligands at τself are added to the initial
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Lag agonist ligands at τag; i.e., we compute the manifold
so that

TN;mðfLag; τag;Lself ; τselfgÞ ¼
τNagLag þ τNselfLself

τmagLag þ τmselfLself
ðD2Þ

is equal to TN;mðfLag; τdgÞ ¼ τN−m
d . We represent this

boundary for fixed τself and variable Lag, Lself , τag in
Fig. 6(c). Boundary tilting is studied with respect to the
reference Lself ¼ 0 plane corresponding to the situation of
pure Lag ligands at τag, where the boundary is the line
τag ¼ τd. The case ðN;mÞ ¼ ð1; 0Þ [Fig. 6(c) left panel]

corresponds to a very tilted boundary, close to the plane
Lself ¼ 0, and a strong antagonistic case. In this situation,
assuming τag ≃ τd, each new ligand added with τself close
to 0 gives a reduction of T1;0 proportional to τd=Lag in the
limit of small Lself (see next section, Ref. [14]), which is
again of the order of the response T1;0 ¼ τag ≃ τd in the
plane Lself ¼ 0. This response is clearly not infinitesimal,
corresponding to a steep gradient of T1;0 in the Lself

direction. We call the perturbation in this case adversarial.
This should be contrasted to the case for higher m
[Fig. 6(c), middle left) where the boundary is vertical,
independent of Lself , such that decision-making is based
only on the initially present Lag ligands at τag. Here, the
change of response induced by the addition of each ligand
with small binding time τself is τmself due to proofreading a
very small number when τself ≃ 0 [14]. Contrary to the
previous case, the gradient of TN;m with respect to this
vertical direction is almost flat and very small compared to
the response in the Lself ¼ 0 plane. We call the perturbation
in this case nonadversarial.

)b()a(

iii

viiii

viv

Adversarial Nonadversarial suougibmAsuougibmA

3’s 7’s

SS

(c)

FIG. 6. Boundary tilting in one-dimensional digit classification. (a) (i) Typical 3 and 7 fromMNIST. (ii) Average 3, 7 of the traditional
test set, (iii, iv) with adversarial perturbation found by (v) subtracting the sign of 3̄ from 7̄, which corresponds to (vi), the perturbation
found with FGSM. (b) Projection of the digits on the first principal components. The classes are separated by a linear support vector
classifier (blue), and the average of the classes with and without adversarial perturbation is shown by the triangle and star. We cycle
through permutations of adversarial training and/or adversarial testing. Note how the boundary tilts in the right panels and how the
triangle moves parallel to the decision boundary. (c) Decision boundary of the immune model. The region under the surface is the
response regime, and the region above is the no-response regime. The classifier with a single proofreading step ðN;mÞ ¼ ð1; 0Þ fails to
observe agonists in three of the four marked mixtures, while the robust classifier ðN;mÞ ¼ ð5; 3Þ correctly responds to each indicated
mixture.

TABLE I. Categories of perturbations.

Boundary
tilting

Gradient when adding
one antagonistic ligand

Adversarial Yes Steep [Oð1Þ]
Nonadversarial No Almost flat [OðϵmÞ]
Ambiguous Yes Weak [OðϵÞ]

ATTACK AND DEFENSE IN CELLULAR DECISION-MAKING: … PHYS. REV. X 9, 031012 (2019)

031012-17



Tilting of the boundary occurs only when τself gets
sufficiently close to the threshold binding time τd [Fig. 6(c),
right panels]. In this regime, each new ligand added with
quality τself ¼ τd − ϵ contributes an infinitesimal change
of TN;m proportional to ½ðτd − τselfÞ=Lag� ¼ ϵ=Lag, which
gives a weak gradient in the direction Lself . But even with
such small perturbations one can easily cross the boundary
because of the proximity of τself to τd, which explains
the tilting. The cases where the boundary is tilted and the
gradient is weak are of a different nature compared to the
adversarial case of Fig. 6(c), left panel. Here, the boundary
is tilted as well, but the gradient is steep, not weak. For this
reason, we term the cases in the right panels ambiguous.
Similar ambiguity is observed experimentally: It is well
known that antagonists (ligands close to thresholds) also
weakly agonize an immune response [15]. Our categori-
zation of perturbations is presented in Table I [70].

3. Gradient in the L2 direction

We recall results from Ref. [34] to show how the addition
of subthreshold ligands one at a time changes the output.
We first consider fL; τdg threshold ligands with output

TN;mðL; τdÞ ¼ τN−m
d : ðD3Þ

The main result of Ref. [34] is the linear response of
TN;mðL; τdÞ to the addition of fLa; τd − ϵg subthreshold
ligands,

TN;mðfL; τd;La; τd − ϵgÞ ¼ TðLþ La; τdÞ
− ϵLaAðLþ La; τdÞ ðD4Þ

¼ τN−m
d − ϵ

La

Lþ La

d
dτ

TN;mðLþ La; τÞjτ¼τd
; ðD5Þ

where we use the definition

AðL; τdÞ ¼
1

L
d
dτ

TN;mðL; τÞjτ¼τd
ðD6Þ

for the coefficient in a mean-field description. As the
derivative ½d=ðdτÞ�TN;mðL; τÞjτ¼τd

> 0 and ϵ ¼ τa − τd,
each additional subthreshold ligand at τa decreases the
output with a value proportional to

τd − τa
L

: ðD7Þ

In the case ðN;mÞ ¼ ð1; 0Þ, the mean-field approximation
is exact; i.e., the first derivative of ðdTÞ=ðdτÞ is the only
nonzero derivative given by

AðL; τdÞ ¼
1

L
d
dτ

τ

����
τ¼τd

¼ 1

L
: ðD8Þ

With the addition of a single subthreshold ligand τa ≃ 0,
so that ϵ ≃ τd, the output is maximally reduced by
½τd=ðLþ 1Þ� ≃ ðτd=LÞ, a finite quantity, as we describe
in the main text. For higher m, the linear approximation
holds only for ligands at τa close to threshold.

APPENDIX E: FEW-PIXEL ATTACK

In this Appendix, we describe in detail the procedure for
the few-pixel attack. We use this to come to our conclusion
in Sec. II G and Fig. 4(c) in the main text.
The few-pixel attack connects to ligand antagonism in

the sense that few pixels are needed to cause misclassifi-
cation, corresponding to the addition of few maximally
antagonizing ligands to a mixture fooling robust adaptive
proofreading models. It is not the most efficient attack
against a classifier without biomimetic defense, but it is the
most efficient attack against classifiers with biomimetic
defense, equivalent to adaptive proofreading models with
m > 1. For these adaptive proofreading models, there
exists a unique maximally antagonistic binding time
defined as the binding time that maximally reduces TN;m.
With this idea in mind, we decide to make pixels black

or white in a controlled manner until the neural network
classifies the perturbed initial digit as the target class.
In the following, we refer to several stages of the few-pixel
attack using Fig. 7. We first compute what we term pixel
maps. Pixel maps contain the change of score when
making a pixel white or black. In Fig. 7, blue colors
correspond to pixels that will lower the score when turned
white or black, while red colors are for pixels that will
increase the score for the same operation. A gray color
means the score is unchanged when whitening or blacking
the pixel. The pixel maps are scaled to the maximum
change in score. We proceed in merging and sorting the
pixel maps from maximum to minimum change in score
towards the target class, iteratively following the sorted
list to decide which pixels in our digit to turn white or
black. We do this until we reach the decision boundary
(first iteration in which the digit is misclassified). The
final digits in the row above the red rectangle in Fig. 7 are
the resulting boundary digits. They already contain
perturbations corresponding to real features but have an
air of artificiality to them which allows us to fairly easily
distill the ground truth. We further apply mean filtering
[54], which is a 3 × 3 convolutional block that computes
mean pixel values as

yi;j ¼
1

9

X1
k;l¼−1

xiþk;jþl: ðE1Þ

Biologically, mean filtering is pure receptor clustering,
where a perturbation to a single receptor locally affects
other ligands. Such digits are truly ambiguous digits that
are tough to classify even as humans. These are the type of
digits we expect to find on the decision boundary. Finally,
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we compare the mean-filtered digit at the decision
boundary to the control: The sum of the initial digit
and the hill function of Eq. (8) (N ¼ 3; θ ¼ 0.5) on the
average of all digits in the target class, then mean filter
(Fig. 7 for a step-by-step composition). We apply the
mean filter to the control to again remove the artificiality
of a digit plus an average and make the comparison
between boundary digit and control digit fairer. The
similarity between the mean-filtered boundary digit and

control digit confirms our intuition that we are actually
operating in the space between both classes when mis-
classification occurs.
We can also apply the mean filter to the initial digit

before generating the pixel maps, and during the pro-
cedure, check the score on the mean-filtered perturbed
image. This gives similar results, as we see by following
the trajectory of the score for boundary null and boundary
mean. We show the score explicitly in Fig. 8 for the digits

h = Hill( ave )

Control =

boundary )

Boundary = 
(initial  + h ) / 2

C
om

po
si

tio
n 

co
nt

ro
l d

ig
it

Ave = mean ( 
target class )

Control

Mean filter

Final

B
ou

nd
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P
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s

 Black

Initial

Target

White

C
la

ss
es

1

0

–1

FIG. 7. Method of few-pixel attack. Each column shows how a few-pixel attack causes misclassification of an initial digit to a target
class. The important result is the prefiltered boundary digits and the control in the red rectangle. Pixel maps determine which pixels
increase (red) or decrease (blue) the score when turning an individual pixel in the initial digit white or black. We merge the pixel maps,
sort this list of pixels, and go through it from maximum to minimum change in score until misclassification occurs, resulting in the
prefiltered digit. We apply a mean filter to make them look more like real digits, and indeed, these mean-filtered boundary digits closely
resemble our control digits at the boundary. The control digits are composed of the mean-filtered initial digit plus locally contrasted
[with hill function (N ¼ 3; θ ¼ 0.5)] average digit of the target class.
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in Fig. 7. The behavior of the score is remarkably similar
to the interpolation between ligand mixtures [Fig. 3(f),
bottom panel in the main text]. A nonlinear filtering
method proposed in Ref. [54] is the median filter, but this
one works less well for black and white pixels.
We show examples that are generated when we select

for instances where the number of iterations is large
enough (20 suffice, we still consider this to be a few-
pixel attack, keeping in mind that digits have 784
individual pixels). The authors of Ref. [53] specifically

searched for single-pixel attacks. Examples of single-pixel
misclassification exist in our neural networks trained on
two types of digits in MNIST too, but these we find
noninformative. In cellular decision-making, this case
corresponds to adding a single antagonist ligand to a
ligand mixture to cause misclassification. This is possible
only if the ligand mixture is already very close to the
boundary. For such samples, we do not expect ambiguity
to appear. Remember that near the boundary, the score
landscape is steep, and small additions have a large effect.

0 1 2 4

2 7 3 9

9 3 9 6

FIG. 8. Trajectory of the scoring functions of the attacks in Fig. 7. The blue, orange, and green lines correspond to various digits
(actual digit, mean-filtered digit, median-filtered digit) for which we check the score and terminate when reaching the boundary. The
trajectory of the score for the null digit and the mean-filtered digit is generally the same. Moreover, the behavior of the score looks
similar to the behavior of TN;m upon addition of maximally antagonizing ligands to a mixture of only agonist ligands in Fig. 3(d) in the
main text.
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