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Power laws in nature are considered to be signatures of complexity. The theory of self-organized
criticality (SOC) was proposed to explain their origins. A long-standing principle of SOC is the separation
of timescales axiom. It dictates that external input is delivered to the system at a much slower rate compared
to the timescale of internal dynamics. The statistics of neural avalanches in the brain was demonstrated to
follow a power law, indicating closeness to a critical state. Moreover, criticality was shown to be a
beneficial state for various computations leading to the hypothesis that the brain is a SOC system. However,
for neuronal systems that are constantly bombarded by incoming signals, the separation of timescales
assumption is unnatural. Recently, it was experimentally demonstrated that a proper correction of the
avalanche detection algorithm to account for the increased drive during task performance leads to a change
of the power-law exponent from 1.5 to approximately 1.3, but there is so far no theoretical explanation for
this change. Here, we investigate the importance of timescale separation, by partly abandoning it in various
models. We achieve it by allowing for an external input during the avalanche, without compromising the
separation of avalanches. We develop an analytic treatment and provide numerical simulations of a simple
neuronal model. If the input strength scales as one over the network size, we call it a moderate input regime.
In this regime, a scale-free behavior is observed; i.e., the avalanche size follows a 1.25 power law,
independent of the exact size of the input. For a perfectly timescale separated system, an exponent of 1.5 is
observed. Thus, the universality class of the system is changed by the external input, and the change of the
exponent is in good agreement with experimental observations from nonhuman primates. We confirm our
analytical findings by simulations of the more realistic branching network model.
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I. INTRODUCTION

A variety of natural systems provide observations that
follow power-law statistics, possibly with an exponential
cutoff [1–3]. For example, a power-law distribution for
activity propagation cascades (so-called neuronal ava-
lanches) is reported in numerous neuronal systems in vitro
and in vivo and at various spatial and temporal scales [3–8].
In many cases, the appearance of power-law statistics is
connected with closeness to the critical point of a second-
order (continuous) phase transition. For the brain, the claim
that a power-law observation points to a closeness to critical

states is additionally supported by the observation of stable
exponent relations [9], finite-size scaling [10], and shape
collapse [9]. Models of criticality therefore began being
used for studying the brain. Additional reasoning for this
connection comes from observations that criticality brings
about optimal computational capabilities [11,12], optimal
transmission and storage of information [13], and sensi-
tivity to sensory stimuli [14,15]. In spite of these reasons
for real systems to be close to criticality, there are many
ongoing debates about models and data-analysis techniques
[16] used to demonstrate this fact [17,18].
The concept of self-organized criticality (SOC) was

proposed [19] as a unified mechanism for positioning
and keeping systems close to criticality. SOC models have
emerged as the flagship vehicle for modeling criticality as
an operational state of the brain network, because they
eliminate the necessity to endogenously tune parameters.
For a system consisting of many interacting nonlinear units,
the general theory prescribes conditions necessary for
exhibiting self-organized criticality. First, it should obey
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local energy-conservation rules [20], and, second, the
timescale of the external drive should be separated from
the timescale of interactions. It implies that no external input
is delivered to the system before it reaches a stable configu-
ration. The intuition behind the timescale separation con-
dition can be summarized as follows: Consider that there is a
macroscopic scale atwhich the external energy is applied and
a microscopic scale for activity propagation through the
interacting units. When the two scales are comparable, the
frequency of the drive becomes a factor that can be tuned by
some moderating party. In the limit, as the frequency of
macroscopic events implodes to zero, global supervision
ceases, and a self-organized system emerges [21–24].
Theoretical studies of avalanchelike propagation in net-

works were initiated before the first experimental results.
The initial models were simple [25–29]; later, following
experimental findings, more biologically realistic models
were developed [30–34]. A detailed review of studies of
criticality in biological systems through experiments and
models may be found in Ref. [35].
Most current models and evaluation techniques of

experimental results rely on the binning procedure for
the definition of avalanches. Namely, the total time of a real
or digital experiment is split into short intervals (bins).
Empty bins are considered to be pauses between ava-
lanches, which span bins containing at least one active unit.
A rare exception is the leaky integrate-and-fire neuronal
model byMillman et al. [36]. There, the avalanche is defined
by following the time course of activity propagation on the
known network.However, recently it was demonstrated [37]
that the classical procedure of binning will not reveal any
critical statistics for this model, and a neutral theory could
explain the observed power laws without necessitating
an SOC model. The usage of binning for data analysis
from neuronal recordings [3,38] implicitly relies on the
assumption of timescale separation. Otherwise, the bin size
would be a stiff [39] control parameter for a data analysis that
can change the outcome of the evaluation. However, in
neuronal systems, inputs are constantly present, and there is
no chance for a strict separation of external input from the
internal dynamics.
We investigate here the effects of relaxing the timescale

separation condition by implementation of an input process
during avalanches and observing the consequent avalanche-
size distribution. Our emphasis here is on models that, on the
one hand, present signatures of criticality even when the
drive is absent and, on the other hand, try to mechanistically
explain the power-law generation in activity propagation.
Without this restriction, a power-law statistics is observed in
driven stochastic processes [40–42]. In avalanching models,
additional input to the system generally has two effects:
First, the avalanches increase due to the input and follow-up
firing; second, the avalanches are “glued together”; namely,
the input connects avalanches that would have otherwise
occurred separately. For the systems that are driven by a

constant input, the definition of criticality is possible by the
estimation of the branching ratio [43]. However, in this case,
a typical binning-based avalanche analysis might not reveal a
critical state, because both aforementioned effects are present
simultaneously and separating the avalanches becomes
impossible. A recent study [44] numerically demonstrated
that changing the binning according to the firing rate reveals
critical dynamics during task performance, when additional
input on top of ongoing activity is expected. Here, we
investigate analytically how criticality can be preserved even
if an external drive is added to the system.
As a first step towards the understanding of timescale

separation, we allow for external input during avalanches
without compromising their separation. We develop an
analytic treatment and provide numerical simulations for a
simple neuronal model. We show that the power-law
scaling feature is preserved; however, evenmoderate external
input leads to a change in the slope of the avalanche-size
distribution. The same critical exponents are persistent
throughout a range of values of the input. Therefore, we
prove that the rate of input is not taking the role of a tuning
parameter. The analytic results are reproduced when simu-
lating more realistic branching models, where input is added
at a constant rate.

II. MODELS

We use the following two models. The branching model
(BM) [15,45] is a standard model to study an abstract signal
propagation that serves as a simplified model for neuronal
avalanches. For our studies, we equip the standard BMwith
an input process. Unfortunately, the BM does not allow for
a complete analytic description. To overcome this diffi-
culty, we first introduce a simpler levels model (LM). We
carry out a rigorous mathematical study of the LM and then
verify through simulations that similar results also hold for
the BM. In the limit, as the system size grows to infinity,
both the LM and the BM are well approximated by
branching processes [46,47].

A. The levels model

The LM without input is inspired by the simple network
model of perfect integrators [29]. The neuronal avalanches
produced by the model are shown to exhibit critical,
subcritical, and supracritical behavior depending on the
control parameter, similar to experimental observations in
cortical slices and cultures [3]. The different modifications
of the LM were extensively studied mathematically
[47–50]. The version used here was introduced in the
context of dynamical systems to prove ergodicity of
avalanche transformations [50] (see the Appendix A).
The main difference between the original biophysical
model [29] and the LM is that the latter does not allow
self-connections. However, when parameters are rescaled

ANIRBAN DAS and ANNA LEVINA PHYS. REV. X 9, 021062 (2019)

021062-2



to accommodate for changed connectivity, distributions of
avalanche sizes and durations are the same in both models.
The LM consists of a fully connected network ofN units,

where each unit j is described by its energy level
Ej ∈ f1;…;Mg. Connections are defined such that receiv-
ing one input changes the energy level by 1. In the language
of neuronal modeling, Ej is the membrane potential and the
connection strength is set to 1. If neuron j reaches threshold
level M, it fires a spike, and then we reset it: Ej ↦ 1. All
neurons k that are connected to j such that Ek < M are
updated: Ek ↦ Ek þ 1. After firing the spike, a neuron is
set to be refractory until activity propagation is over. We
initialize the model by randomly choosing energy levels of
all neurons from independent copies of a uniform distri-
bution on ½1;M�.
After initialization, all neurons in the energy level M

spike, which increases the energy levels of connected
neurons. If, as a result, more neurons reach the level M,
then they are in turn discharged and so on, until the activity
stops. This propagation of activity we call an avalanche,
and the number of neurons fired is its size. The progression
of the avalanche in a system with N ¼ 6 and M ¼ 7 is
demonstrated in Fig. 1.
We introduce the external input to be proportional to the

size of the activity propagation that would take place in the
timescale-separated regime, i.e., without input. As before,
each neuron is initialized at a random energy level. Then
activity propagates deterministically until none of the
neurons can fire, which concludes the initial stage of the
avalanche. Afterwards, we determine the number of addi-
tional inputs to be added to the system. This number is
chosen at random, depending on the size of the avalanche in
the initial stage. The additional inputs allow the avalanche
to continue further. If o is the number of neurons fired in an
avalanche, we additionally activate r among the remaining
N − o neurons. Here, r is a random number drawn from a
binomial distribution Bðo;ϕÞ. The parameter ϕ ∈ ½0; 1Þ
represents the rate of the external input; i.e., ϕ is the
average number of inputs delivered during an avalanche of
size 1. After these r additional firings, more neurons may
reach the energy level M, resulting in a second cascade of
firings. We constrain the neurons to fire only once and then
go into the refractory period until the next avalanche. Thus,
the process stops after a maximum of N discharges. We
study the dependence of the avalanche-size distribution on

the strength of the input. We use AN;ϕ to denote the random
variable that counts the avalanche size. When ϕ ¼ 0, we
have the no-external-input regime. Our model without input
possesses an Abelian property [51]; namely, the size of
avalanches does not dependon theorder inwhich neurons are
discharged. After the delivery of the input, the resting
dynamics is also Abelian. This version of the LM also
proves to be mathematically tractable (see Appendix B).

B. The branching model

The BM consists of N neurons connected as an Erdős-
Rényi random graph with probability of connection pconn.
This model is used to understand criticality [45] and its
benefits [15] in neural systems and is also employed in
many modeling investigations of neuronal avalanches
[4,14,52]. Every edge in the network is assigned a weight
pij ¼ σ=ðpconnNÞ. As a result, the average sum of all
outgoing weights equals σ. Each node denotes a neuron that
can be in one of n states, and ciðtÞ denotes the state of the ith
node at time t: ci ¼ 0 indicates a resting state, ci ¼ 1 is the
active state, and ci ¼ 2;…; n − 1 are the refractory states.
All states except for the active state are attained by
the deterministic dynamics: If 0 < ciðtÞ < n − 1, then
ciðtþ1Þ¼ciðtÞþ1, and if ciðtÞ ¼ n − 1, then ciðtþ1Þ¼ 0.
For every node i, the excited state ciðtÞ ¼ 1 can be

reached only from the resting state [i.e., ciðt − 1Þ ¼ 0] in
one of the following circumstances: (i) If a neighbor j is
active at time t − 1, then, with probability pji, i will get
activated at time t; (ii) if i receives an external stimulus, the
probability of this is ϕ=N. We initiate the network with all
nodes in a silent state, and then an external stimulus can
trigger the activity propagation (avalanche). If at a par-
ticular time step no units are in the active state, the
avalanche is considered to have terminated. We record
the distribution of avalanche sizes (measured in the number
of activations during one avalanche) and durations (mea-
sured as the time steps taken until activity dies out).
It was shown [15,45] that, in the model without input, a

network can exhibit different dynamical regimes depending
on the value of the parameter σ (called the branching
parameter): When σ < 1, the activity dies out exponentially
fast; for σ > 1, there is a possibility for indefinite activity
propagation. In the critical regime, obtained for σ ¼ 1,
activity propagation size s is distributed as a power law
with an exponent of 1.5. An external input applied to a
sparsely connected branching network with Boltzmann
distribution of synaptic strength is demonstrated to exhibit
quasicriticality [53]. Here, we consider a uniformly con-
nected random network and demonstrate how additional
input changes scaling in the avalanche-size distribution.

III. RESULTS AND INTERPRETATION

A. Input impact in LM

In the “no-external-input regime,” critical behavior is
observed when M ¼ N. In this case, the avalanche-size

FIG. 1. Schematic representation of the levels model without
external input, for N ¼ 6 neurons withM ¼ 7 energy levels. The
avalanche size is 4, and the avalanche duration is 3.
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probability scales as a power law, i.e.,PðAN;0 ¼ kÞ∼C1k−1.5

[50]. For the rest of the article, we consider M ¼ N, which
still serves as the critical value of the parameter in the
“driven” case, with ϕ > 0.
We let o denote the size of the avalanche that would have

been observed without an external drive, and then there will
be on average o × ϕ inputs. When ϕ ¼ oð1=NÞ, we can
show analytically that PðAN;ϕ ¼ kÞ ∼ C2k−1.5. This is the
small input regime; the perturbation of the system is not
strong enough to induce significant changes in the dynam-
ics. This result demonstrates the stability of the classical
models. At the other end of the spectrum, we could force a
fraction of the neurons to fire as a result of the external
input. Thus, ϕ ¼ ΘðNÞ, where Θ is taken as in the
Bachmann-Landau notation [54]. In such a case, we can
show that AN;ϕ converges in distribution to a normal
variable, as N → ∞ (see Appendix C). Essentially, the
immense external input in this regime (named the large
input regime) reduces the neuronal activity to “noise.”
The most interesting case is the moderate input regime,

where ϕ ¼ Θð1Þ. In this case, we can mathematically
derive (see Theorem B2) the following result as k grows
to infinity:

PðAN;ϕ ¼ kÞ ∼ C3k−1.25: ð1Þ

We verified Eq. (1) by simulating a finite LM with
N ¼ 105 neurons and inputs of varying strength. As
expected, the approximate 1.5 power law (here, it is
1.45, and it approaches 1.5 in the limit of large systems)
is transformed by the input into the 1.25 power law (see
Fig. 2). Also, we numerically test the avalanche duration
distribution, i.e., the number of time steps during an

avalanche. Both observables deviate from the power law
in the very tail because of the finite system size and the
restriction on double activation. Except for these devia-
tions, the numerical simulations support analytic results.
In the moderate input regime, in spite of the input during

avalanches, power-law scaling is preserved for both
avalanche size and duration distributions. However, the
power-law exponent is changed. Surprisingly, as long as
ϕ ¼ Θð1Þ, the power-law scaling is preserved, and the
limiting exponent remains equal to 1.25. This result means
ϕ does not need to be externally tuned to achieve criticality.

B. Finite-size effects and numerical results for LM

A scaling relationship given by Eq. (1) is valid for any
given ϕ if N and k are both large enough and k=N is small
enough. To define a more precise parameter relationship
that allows us to test results in simulations, we devise a
sufficient but not necessary condition for Eq. (1) to hold.
We require k to satisfy

N ≥ k2: ð2Þ

And we require ϕ to satisfy, for some positive δ,

e−½ϕ logðNÞ�2 ≤ N−0.5−δ: ð3Þ

For any N and ϕ satisfying Eq. (3) if k is small, we get
PðAN;p ¼ kÞ ∼ C4k−1.5 (the same as for no-input systems),
and as k grows larger we get PðAN;p ¼ kÞ ∼ C3k−1.25,
indicating multifractal behavior [55]; see Fig. 2, inset.
Approximating the stochastic input by its average, we show
that as long as k ≤ ϕ−2 we have PðAN;p ¼ kÞ ∼ C4k−1.5.
The simple intuition behind the multifractal behavior is
that, for very small avalanches, there is a substantial
probability not to receive any external inputs. Thus, the
1.5 power law characteristic of traditional models with a
separation of timescales is still visible.
We simulate the LM for different input strengths and

observe a good agreement with our analytic results (Fig. 5,
solid lines). Aberrant behavior for large avalanche sizes is
due to the finite size of the system and the imposed
condition that no avalanche can be larger than the system
size. The theoretical prediction for the onset of the 1.25
power-law scaling is indicated by the magenta line, which
too is in good agreement with numerical observations.

C. Branching model with input

A BMwithout external input corresponds to the situation
where ϕ ¼ 0; in such a scenario, the probability distribu-
tion for avalanches follows a 1.5 power law [15]. Here, we
discuss the changes in the avalanche-size distribution upon
adding a moderate input. A useful characteristic of the LM
is that the avalanche can be separated into two stages: an
original avalanche (preavalanche) and the aftershock
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FIG. 2. Avalanche-size (s) distributions in the LM with various
input strengths. The lower inset shows the corresponding dura-
tion (d) distributions which also change their exponent. The
upper inset shows an enlargement of the distribution for ϕ ¼ 0.2
multiplied with s1.25 to flatten the distribution and both power-
law fits. Input strength ϕ and the power-law exponents (γ) of the
lines are indicated in the legend. N ¼ M ¼ 105.
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avalanche that is triggered by external inputs. Although this
feature makes the LM analytically tractable, it also makes
its construction seem contrived. In contrast, in the BM,
external input is added at a fixed rate throughout the entire
simulation time (see Fig. 3).
In the moderate input regime of the BM, for any suitable

strength of the external signal, the exponent changes from
1.5 to 1.25 (Fig. 4). For large avalanches, finite-size effects
observed previously in the LM are enhanced by the
possibility for the system to get additional external input
during the aftershock.
For the BM, the input is delivered at a constant rate, and,

thus, the number of external inputs during an avalanche is
proportional to the duration of the avalanche, while in the
LM the input is proportional to the size of the preavalanche.
However, both systems show very similar avalanche-size
distributions for various input intensities (Fig. 5). Let tr

denote the transition time between the power law with
exponent 1.5 and the power law with exponent 1.25. We
observe that tr for the BM is roughly the same as for the
LM, where we have analytic arguments showing tr ≈ ϕ−2

(Fig. 5). As our results for the BM rely on a statistical
evaluation of the closeness to the 1.25 power law, we check
whether the alternative models, such as the truncated log-
normal [56], exponential [57], log-polynomial [58,59],
or thresholded Ornstein-Uhlenbeck process [60], better
describe the data. To this end, we perform a maximum-
likelihood optimization for parameters of both truncated
power-law and log-normal fit to the same interval of the
avalanche-size distribution. In all cases, the power-law
model has a larger likelihood, and in most cases we cannot
reject a power-law hypothesis [61,62]. For a more detailed
discussion of the statistical method, see Appendix E.

IV. CONCLUSION

Models exhibiting criticality are classified into univer-
sality classes based on power-law exponents. Quantitative
characteristics of various emergent properties in critical
systems belonging to the same universality class are found
to be similar (see Ref. [63]). By introducing external input
to models from the 1.5 exponent universality class, we have
changed them to models with characteristic power-law
exponent 1.25. Although a 1.25 exponent is more seldom
than the ubiquitous 1.5 exponent, the former has been
observed in several models, for example, in models for slow
crack growth in heterogeneous materials [64], driven elastic
manifolds in disordered media [65], fracturing processes
under annealed disorder [66], mesomodels of amorphous
plasticity [67], and randomly growing networks [68].
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A recent experimental study [44] has shown that task-
related cortical activity is comprised of neuronal avalanches
with an exponent very close to our prediction. By carefully
accounting for the increase in the firing rate during task
performance, the power law was observed to change from
1.5 to 1.3. The observed increase in the firing rate and
nLFP rate in the premotor cortex during the task perfor-
mance can be attributed to the increased input from the
sensory and higher areas needed for motor planning. There
is a significant difference between models we consider and
data analysis from the recordings. Whereas in our case the
ground truth about splitting the activity into avalanches is
known, for the recorded data the binning procedure
influences the split significantly. However, the closeness
of exponents obtained from the interpretation of exper-
imental recordings to our analytic results suggests that the
adaptive binning procedure is the right choice to capture
underlying dynamics.
We demonstrated that for an input-driven system a

multifractal characteristics of the avalanche-size distribu-
tion can be expected. Indeed, analytic approximations show
that the 1.5 power-law exponent known from the analysis
of spontaneous activity persists when k ≤ ϕ−2. This per-
sistence was not seen in Ref. [44], where the data collapsed
to a single power law. On one hand, this discrepancy could
come from the difference in avalanche detection mecha-
nisms. On the other hand, it is possible that a large input
during the task shifts the transition point between different
scalings towards small avalanche sizes. Thus, an onset of
the 1.25 power-law scaling is very close to 1, making it
undetectable in the data. This hypothesis can be tested
in experiments on stimulated cortical slices [14] by
varying the stimulation strength and detection algorithm.
The fact that the same critical exponents persist
throughout the moderate input regime suggests that the
values of the critical exponents are not determined by the
nature of the task. We predict the same exponent inde-
pendently on the involvement of the animal and difficulty
of the task.
There are many open questions related to the present

investigation. The most important one is: How does the full
elimination of timescale separation change the avalanche
statistics? In the present contribution, we did not allow for
avalanches to be mixed and run parallel to each other. With
simultaneous avalanches, there is no clear understanding
of how one should attribute each event to any particular
avalanche. Information-theoretical measures were proposed
to distinguish spikes from different avalanches [69]. So far,
the most established way to study a possible “melange of
avalanches” [38,43] is to use binning and identify empty bins
to determine pauses between the avalanches. This procedure
results in different power-law exponents for different bin
sizes [3], unless the system exhibits a true timescale
separation [4].

Abandoning timescale separation introduces the depend-
ence of avalanche distribution on a binning procedure. The
logical hypothesis is that input during the avalanches
should result in smaller power-law exponents, as larger
events now become more probable. Although the direction
of the exponent change is easily predictable, the fact that
input preserves the power-law scaling is still surprising.
Here, we demonstrated this effect analytically for the levels
model and numerically for a branching network, but the
general direction of changewill remain the same for models
from other universality classes. If we additionally allow for
gluing of avalanches together, it might lead to selecting a
smaller bin size than is suggested by the activity propa-
gation timescale. This selection, in turn, will result in the
cutting of avalanches into smaller pieces and increasing the
power-law exponent, which might be a reason behind
the observation of exponents above 1.5 and even around
2 for neuronal spiking data [9] and LFP in ex vivo turtle
recordings [70]. Here, we consider a fully connected or
sparse randomly connected networks. However, it has been
shown [71] that network topology has an effect on power
laws. Thus, driven models with specifically structured
connections can produce distributions with exponents
significantly larger than 1.25. Our result is a first step
towards understanding the diversity of power-law expo-
nents reported in the neuronal data.
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APPENDIX A: MATHEMATICAL SETUP

In this section, we build a mathematical formalization for
the LM that allows us to derive strict results for the
avalanche-size distribution with input. We introduce the
ðN;pÞ BB space as follows.
Definition A1.—Given positive integers N and M, with

M > N, define p ¼ ð1=MÞ. The set ðN; pÞ BB consists of
(0,1) matrices of dimension M × N. A (0,1) matrix ω
belongs to the set ðN; pÞ BB if and only if, for all
j ∈ f1; 2;…Ng, P

M
i¼1 ωi;j ¼ 1, where ωi;j denotes the

ði; jÞth entry of ω.
The set ðN; pÞ BB equipped with course sigma algebra is

called the ðN; pÞ BB space. The elements of the set ðN; pÞ
BB are referred to as configurations and typically denoted
by ω;ω0.
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The ðN; pÞ BB space is constructed to model neuronal
networks. We interpret configuration ω as a record of the
energy levels of all N neurons at some moment of time.
Each neuron occupies one of M energy levels; if ωi;j ¼ 1,
then the neuron j is at the ith energy level. Notice that, for
all j ∈ f1; 2;…Ng, there is a unique i such that ωi;j ¼ 1;
thus, we ensure that at any instant a neuron has one unique
energy level. For j ∈ f1; 2;…Ng, EjðωÞ ≔ infifωi;j ¼ 1g
(¼ supifωi;j ¼ 1g). EjðωÞ documents the energy level of
the jth neuron. There is a linear ordering of the M possible
energy levels, which means EjðωÞ ¼ M indicates that
neuron j is at the highest energy level.
For all i ∈ f1; 2;…Mg, the number of neurons at the

energy level i is given by YiðwÞ ≔
P

N
j¼1 ωi;j. We define the

random variable AN;p that represents the avalanche size in
the LM model. It is easy to see [50] that

AN;p ≔ inf

�
iji ≥ 0;

XM
j¼M−i

Yj ≤ i

�
: ðA1Þ

We say that a configuration ω has generated AN;pðωÞ
firings. The sets of all neurons fired during the avalanche F
can be constructed from a configuration ω as

F ðωÞ ¼ fjjωi;j ¼ 1 for some i ≥ M − AN;pðωÞg:

The set of not-fired neurons NF ðωÞ can be found as

NF ðωÞ ¼ fjjωi;j ¼ 0; ∀ i ≥ M − AN;pðωÞg:

We first equip ðN; pÞ BB space with the uniform
measure, denoted by P. Intuitively, with the uniform
measure every neuron has an equal probability of occupy-
ing any of the energy levels; also, there is no correlation
between the energy levels of different neurons. It is
defined as follows: UM is a uniformly distributed random
variable taking values in f1; 2;…;Mg, are UM

j ,
j ∈ f1; 2;…; Ng, iid copies of UM defined on some
probability space Ω�. The map CU∶Ω� → ðN; pÞ BB,
θ ↦ ω is defined by ωi;jðθÞ ¼ 1i(UM

j ðθÞ), where 1 is
the indicator function. P is the push forward measure of CU
on ðN; pÞ BB. It was shown in Ref. [50] that

PðAN;p¼kÞ¼
�
N
k

�
pk½1−ðkþ1Þp�N−kðkþ1Þk−1: ðA2Þ

The next result enumerates the number of configurations
satisfying a given property; it is used to prove results in
later sections. It requires information about the number of
labeled trees on k vertices where a particular vertex has a
neighbors [72] (see Supplemental Material [73] for more
details).

Theorem A1.—Define the set of configurations
as

Then .

APPENDIX B: MODERATE INPUTS
DURING AVALANCHE

Now we construct the model for an avalanche with an
input. Call the real number ϕ satisfying 0 < ϕ ≤ 1 the input
strength. Let ω ∈ ðN; pÞ BB, and AN;pðωÞ ¼ o. We define
τϕ∶ðN; pÞBB → ðN;pÞBB, ω ↦ ω0 ¼ τϕðωÞ. To define
the function τϕ we first construct the set of neurons
EF ðω;ϕÞ that will be additionally firing due to the input.
If N − o ≥ oϕ, then EF ðω;ϕÞ is a random subset of size
⌈o × ϕ⌉ of NF ðωÞ. If N − o < ⌈o × ϕ⌉, then
EF ðωÞ ¼ NF ðωÞ. Now we can define ω0 ¼ τϕðωÞ as
follows: If j ∈ EF ðω;ϕÞ, then ω0

M;j ¼ 1 and ω0
i;j ¼ 0,

∀ i < M. If j ∉ EF ðω;ϕÞ, then ω0
i;j ¼ ωi;j, ∀ i.

PE;med
ϕ is the push-forward measure of P by τϕ. Using

Theorem A1, we can show the following.
Theorem B1.—Let AN;p be the avalanche random

variable on the ðN; pÞ BB space, and ϕ and τϕ are
as above. For any positive integers k, o satisfying
k ≥ oþ ⌈o × ϕ⌉, and for p̂ ¼ ðp × N=N − oÞ, we have

P

�
AN;p(τϕðωÞ) ¼ kjAN;pðωÞ ¼ o

�

¼ ð⌈o × ϕ⌉Þ
�
N − ⌈o × ϕ⌉ − o
k − ⌈o × ϕ⌉ − o

�
p̂k−⌈o×ϕ⌉−o

× ½1 − ðk − oþ 1Þp̂�N−kðk − oÞk−1−⌈o×ϕ⌉−o:

We consider the above distribution asN, k → ∞,N ≫ k.
We take ϕ > 0 to be a constant; i.e., we consider ϕN → ∞.
Thus, derived results are not expected to apply for the no-
input regime with the measure P even if one directly sets
ϕ ¼ 0. The following theorem is the central result of our
study, demonstrating the 1.25 scaling (the proof is pre-
sented in Supplemental Material [73]).
Theorem B2.—We assume that ðN;ϕ; kÞ satisfies
(i) ϕ > ½1=logðkÞ:5� and
(ii) N ≥ k2.

Then there exist positive constantsD1 andD2 depending on
ϕ, such that

D2 ≤ lim
k→∞

PE;med
ϕ

�
AN;p(τϕðωÞ) ¼ k

�

k−1.25
≤ D1: ðB1Þ

Remark.—The conditions enforced on ðN;ϕ; kÞ in
Theorem 2 are sufficient but not necessary. For example,
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the condition N > k2 is used to ensure terms like
eðoϕ=N−o−1Þ are equal to 1 in the limit N → ∞. The milder
condition N > o2 suffices for this.

APPENDIX C: SMALL AND LARGE INPUTS
DURING AVALANCHE

Consider λ ≤ N an integer parameter. Letω ∈ ðN;pÞBB,
and we define ω0 ∈ ðN; pÞ BB such that, if j ≤ λ, ω0

M;j ¼ 1

and ω0
M;j ¼ 0, ∀ i < M; if j > λ, ω0

i;j ¼ ωi;j; ∀ i. Define
XN;p;λðωÞ ¼ AN;pðω0Þ − λ. We can derive the following.
Theorem C1.—PðXN;p;λ ¼ kÞ ¼ ðN−λ

k Þpkðλþ 1Þðkþ λþ
1Þk−1½1− ðkþ λþ 1Þp�N−λ−k.
If λ ¼ λ0, where λ0 is some constant independent of N,

we have a small input case. Using Theorem C1 and
Stirling’s formula, we show that, as N and k grow to
infinity with k=N → 0, PðXN;p;λ ¼ kÞ ¼ Θðk−1.5Þ.
For the large input case, we put λ ¼ λ̂N ¼ λ0 × N,

λ0 < 1. We also demand that α × ð1þ λ0Þ < 1, which
implies that there is massive external input during firing,
which forces a proportion of the system to fire sponta-
neously. Now observe that XN;p;λ̂N

has the distribution of a
quasibinomial 1 distribution [74]. As N → ∞, a quasibi-
nomial 1 distribution approaches the generalized Poisson
distribution [75], which is a type of Lagrangian distribution
[76,77]. It has further been established that Lagrangian
random variables approach the standard normal distribution
under certain conditions [78]. Hence, we see that XN;p;λ̂N
converges in the weak sense to a normal distribution.

APPENDIX D: ADDITIONAL FIGURES

APPENDIX E: STATISTICAL ANALYSIS OF
POWER LAWS

Here, we introduce rigorous statistical hypothesis testing
and model selection for the scaling of avalanche-size
distributions. The task of testing for power laws in the
observed data is generally rather delicate, which is espe-
cially true in the present setting, where the theory suggests
the avalanche-size distribution shows multifractal behavior.
We benefit from the mathematical analysis of the LM that
provides estimates for the intervals of each exponent
prevalence. The power law with an exponent of approx-
imately 1.5 is observed at small values of the avalanche
size s. At s ≈ ϕ−2, there is an onset of the 1.25 exponent
power law that lasts at least until s ¼ ffiffiffiffi

N
p

, where N is the
system size and ϕ is the input intensity. The upper bound of
s ¼ ffiffiffiffi

N
p

is not a mathematically tight bound. To clarify
Fig. 3: We are not claiming that there is a power law for s
close to the cutoff (we add more explanation of it to the text
preceding Fig. 3). The reason for it is twofold: First, the
analytic treatment omitted finite-size effects, and, second,
in the BM there is a possibility for multiple inputs also
during the “aftershock” that leads to a disproportional
number of large avalanches.
For the BM simulations carried out with ϕ ¼ 0.2 and

N ¼ 105, we examine avalanches between 170 and 1700.
From different realizations of the network, we generate ten
datasets of 5 × 105 avalanches each. We follow the
approach suggested in Ref. [61] and perform both a
goodness of fit testing and a comparison against alternative
models.
For all ten datasets, and for the dataset formed by

combining the whole data, we find the best-fit power-
law model using the maximum likelihood approach
[61,62]; the best-fit exponents are close to the infinite
system theoretical limit of 1.25 from Eq. (1)—see the
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FIG. 6. Avalanche-size distributions in the branching model
with various input strengths. Input strength ϕ and the model type
are indicated in the legend. The magenta line indicates the
analytic prediction for the onset of the power law with exponent
−1.25. System size N ¼ 105. To improve visibility, the distri-
butions are shifted by multiplication with cϕ ¼ 10−10ϕþ1.
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FIG. 7. Avalanche-size distributions in the levels model with
various input strengths. Input strength ϕ and the model type are
indicated in the legend. The magenta line indicates the analytic
prediction for the onset of the power law with exponent −1.25.
System size N ¼ 105. To improve visibility, the distributions are
shifted by multiplication with cϕ ¼ 10−10ϕþ1.
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second column in Table I. We measure the Kolmogorov-
Smirnov distance and perform the test for a rejection of the
power-law hypothesis based on surrogate data [61]. We
cannot reject the power-law hypothesis for all but the eighth
dataset (see the third column in Table I). We compare the
best-fit power law with the best-fit truncated log-normal
[56], which is usually the strongest alternative model. The
likelihood ratio test, Akaike criteria, and Bayesian infor-
mation criteria show that the power law is a more plausible
model than the truncated log-normal for all datasets; see
Table I. We consider additional possibilities for model
comparison: exponential distribution, which is shown to be
a suitable alternative model [57], and other models inves-
tigated for a model comparison against power laws [58,59].
We compare the models using the Akaike rela-
tive likelihood parameter [79]. As a different type of alter-
native model, we also consider excursion statistics above
thresholds for certain Ornstein-Uhlenbeck processes. It is
observed [60] that such excursions not only resemble
neuronal signals, but also produce power-law-like distri-
butions with the exponent related to the chosen threshold.
We present comparison results for the most significant or
most widely used models in Table II. In all the cases
studied, the power law proved to be a much more probable
choice.
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