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Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems
exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. To
address this problem, we study the morphology and genetic spatial structure of microbial colonies growing
on the surface of a nutrient-laden fluid 104 to 105 times more viscous than water in Petri dishes; the extreme
but finite viscosity inhibits undesired thermal convection and allows populations to effectively live at the
air-liquid interface due to capillary forces. We discover that S. cerevisiae (baker’s yeast) growing on a
viscous liquid behave like “active matter”: They metabolically generate fluid flows many times larger than
their unperturbed colony expansion speed, and that flow, in turn, can dramatically impact their colony
morphology and spatial population genetics. We show that yeast cells generate fluid flows by consuming
surrounding nutrients and decreasing the local substrate density, leading to misaligned fluid pressure and
density contours, which ultimately generates vorticity via a thresholdless baroclinic instability. Numerical
simulations with experimentally measured parameters demonstrate that an intense vortex ring is produced
below the colony’s edge. As the viscosity of the substrate is lowered and the self-induced flow intensifies,
we observe three distinct morphologies: At the highest viscosity, cell proliferation and movement produces
compact circular colonies with, however, a stretched regime of exponential expansion; intermediate
viscosities give rise to compact colonies with “fingers” that are usually monoclonal and then break into
smaller cell clusters; at the lowest viscosity, the expanding colony fractures into many genetically diverse,
mutually repelling, islandlike fragments that can colonize an entire 94-mm-diameter Petri dish within
36 hours. We propose a simple phenomenological model that predicts the early colony dynamics. Our
results provide rich opportunities to study the interplay between fluid flow and spatial population genetics
for future investigations.
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I. INTRODUCTION

The transport of living organisms by fluid flows plays an
important part in the natural world. Hydrodynamic trans-
port shapes and reorganizes populations across all scales
[1], mixing populations to uniformity or leading to the
formation of spatial structures. For instance, turbulent
mixing near the surface of oceans and lakes can cluster
phytoplankton blooms into patchy, fractal-like spatial

structures [2,3] that lead to ecological niches and genetic
heterogeneity [4–6].
Microbial populations expanding into unoccupied

territory on agar plates, or range expansions, have been
used as a model system to investigate how population
spatial structure impacts evolution [7]. Range expansions
develop spatial structure because a thin layer of cells at the
population front divide and generate genetically similar
daughters who are not pushed very far away before they
themselves divide. As a result of this linear population
bottleneck at the frontier, the colony loses genetic diversity
as the expansion progresses and quickly segregates into
large monoclonal sectors that reveal the evolutionary
history of the colony in a process often referred to as
“genetic demixing” [7]. Simplified stepping stone models
with radial inflation have been used to describe the
evolutionary dynamics of this process [8]. Microbial range
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expansions revealed how various evolutionary forces,
including selection [9–11], mutualism [12], competitive
exclusion [13,14], and irreversible mutation [15], impact
the dynamics of spatially structured populations.
Microorganisms growing on agar plates cannot be

advected because the underlying substrate is a solid,
mimicking range expansions on land. Although investi-
gated theoretically [16–19], few laboratory systems exist to
systematically study the interplay between the transport by
fluid flow and spatial population dynamics. In this paper,
we introduce a novel experimental system to grow micro-
bial range expansions on the surface of a nutrient-rich fluid
104 to 105 times more viscous than water. The extreme
viscosity of the liquid substrate enables capillary forces to
confine the cells over a macroscopic, quiescent air-liquid
interface, and typical settling velocities of isolated cells
that leave the surface are less than a cell width per day.
This unique system allows us to investigate microbial
population morphology and genetic segregation patterns
on liquid interfaces.
To our surprise, even in the absence of externally

imposed flows [20], our experiments reveal that colonies
of the budding yeast Saccharomyces cerevisiae induces
strong outwards fluid flows in the surrounding substrate
many times larger than the colony’s natural expansion
velocity. Remarkably, these flows arise from nonmotile
organisms, which do not possess, e.g., the flagellar-induced
motility of bacteria [21–23]. In this paper, we show how
the induced fluid flow impacts colony morphology and
genetic segregation patterns as the viscosity of the under-
lying substrate varies and investigate the origin of the
induced flow.
Section II summarizes our most important experimental

observations about the morphology and spatial population
genetics of expanding yeast colonies on liquid substrates
and identifies three regimes: colonies behave as compact
circular colonies, circular colonies with fingers, or many
solidlike repelling yeast fragments as the substrate viscosity
is varied from high to low. In Sec. III, we describe our
measurements of fluid flows generated near the surface of
growing colonies and identify two distinct regimes. The
experiments in Sec. IV argue that the fluid flow is not
generated by surface-tension gradients (Marangoni flows),
but is instead it is triggered when yeast metabolism
decreases the density of the surrounding fluid, generating
buoyant fluid flows via a baroclinic instability due to the
pressure and density contours crossing each other at an
angle in the vicinity of the colony. Fluid-mechanics
simulations calibrated to experiment in Sec. V provide
further evidence that the buoyancy-driven baroclinic insta-
bility is the source of the fluid flow, as the simulations
can quantitatively predict experimental results. Finally, in
Sec. VI, we present a simple phenomenological model in
the spirit of the lubrication approximation that combines
colony growth, expansion, and thinning to predict the

critical magenta metabolically induced radial flow velocity
at which colonies cease being circular. We compare the
predictions from the model to a phase diagram of yeast
colony morphology over time as a function of viscosity.
The model displays a conventional Fisher population wave
in the absence of flow but predicts exponential growth of
the colony radius in the presence of a flow. When this radial
flow is too strong, we find a “thinning catastrophe,” such
that the colony thickness tends to zero and breaks apart.
Our work suggests many interesting avenues for future
exploration discussed in Sec. VII.

II. RANGE EXPANSIONS ON LIQUID
SUBSTRATES

To ensure a macroscopic quiescent liquid surface, we
perform experiments with fluids 104–105 times more
viscous than water. The viscosity of the fluid is controlled
by adding 2-hydroxyethyl cellulose, a long chain polymer,
to YPD [yeast extract, peptone, dextrose (glucose)] micro-
bial growth medium; see the Appendix A for additional
experimental details. Characteristic polymer concentrations
used in our experiments and corresponding substrate
viscosities are given in Table I. Although the fluid has
shear-thinning properties for shear rates _γ ≳ 10−1 s−1 [24],
as we discuss in Appendix B, the flow’s typical shear rate
is of the order of _γ ¼ u=H ∼ 10−6–10−5 s−1, where u is the
characteristic surface flow velocity, and H ∼ 1 cm is the
substrate fluid height, such that non-Newtonian effects are
negligible in our experiment. In contrast to plates filled with
hard agar which form a gel substrate with a shear modulus,
cellulose polymers do not form a three-dimensional mesh,
allowing the growth medium to flow.
Our large substrate viscosity prevents thermal gradients

in the environment from driving undesired convection; no
substrate fluid motion is observed due to stray thermal
gradients or other sources in the absence of a colony
growing on the surface. After deposition on the substrate,
droplets containing yeast cells spread uniformly, allowing a
dilute concentration of cells to be held at the air-liquid
interface by capillary forces. The cells rapidly aggregate
due to attractive forces: capillary forces at the interface [25]
for large distances, and van der Waals forces between the

TABLE I. Newtonian approximation to the liquid substrate’s
viscosity at a shear rate of _γ ∼ 10−4 s−1 (Appendix B) at various
concentrations 24 h after mixing it with 2-hydroxyethyl cellulose.

Polymer % (w/v) η (Pa s)

2.0 54� 8
2.2 86� 13
2.4 140� 20
2.6 300� 45
2.8 450� 70
3.0 600� 90
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cells for short distances, in a process resembling spinodal
decomposition or nucleation and growth [26]; see Fig. 12
and the Supplemental Material Video 0 [72]. Capillary
forces are large enough to keep the cells on the surface of
the fluid despite their slightly higher density than the
media, allowing the colony to grow at the air-liquid
interface over the typical several-day timescale of our
experiments. The large substrate viscosity also leads to
extremely slow sedimentation velocities of any small
clumps of cells that break through the surface.
We follow the segregation of two selective neutral S.

cerevisiae strains, genetically identical except for consti-
tutively expressing different fluorescent proteins. The
experiments are initiated by depositing cells in a 2-μL
droplet of saturated overnight culture at the center of a
94-mm-diameter circular Petri dish filled with 40 mL of our
viscous medium. The resulting colony expansion is then
monitored over five days with a stereoscope (Appendix A).
Shortly after cell growth and division begin, the micro-
organisms exhibit dramatically different growth dynamics
relative to the well-studied hard agar plates and display a
rich variety of morphologies depending on the media
viscosity. We systematically vary the polymer concentra-
tion in the medium, allowing us to investigate the microbial
population behavior over a range of dynamic viscosities η
from 54� 8 to 600� 90 Pa s (corresponding from 2% to
3% w/v polymer; Table I). Figure 1 shows examples of
yeast colonies after 72 hours of growth on a hard agar gel
plate, compared to growth on liquid substrates for three
different viscosities.

At the highest viscosity studied, η ¼ 600� 90 Pa s, the
yeast cells form a single compact circular colony that
expands radially over time (see Supplemental Material
Video 1 [72]). However, unlike colonies on solid media
where genetic drift dominates very close to the original
frontier of the inoculation [7], colonies on the substrate
have a stretched central region with genetic diversity (two
colors are mixed together); demixing occurs only at a much
larger colony radius, as displayed in Figs. 1(a) and 1(b)
where the size of the initial inoculum is shown as a black
dashed circle. Genetic domain walls with neutral strains
impinge at right angles to a colony’s front and are driven by
interfacial undulations [7]. Yeast cells grown on the viscous
liquid present much rougher colony fronts than on hard
agar plates, leading to more irregular domain walls after the
onset of genetic demixing. As the viscosity decreases to
η ≈ 450 Pa s, the initially circular colony forms numerous
smaller microbial assemblies at its periphery on the media’s
surface. The front of the originally circular colony becomes
unstable, and fingerlike structures form within the first
24 hours of growth. A large fingering colony spanning an
entire Petri dish after 84 hours of growth can be seen in
Fig. 1(c) and Supplemental Material Video 2 [72]; a high-
magnification picture of a finger is shown in Fig. 1(e).
These fingers form after demixing occurs, typically leading
to monoclonal aggregates that grow and break up into
small clusters, somewhat reminiscent of a Plateau-Rayleigh
instability [27,28]. However, our system is complicated by
active cell divisions and a colony-generated radial velocity
field (see Sec. III). Below η ¼ 300� 45 Pa s, the initial

FIG. 1. Selected yeast colony morphologies on (a) a hard agar plate after 72 h of growth and on the surface of the viscous substrate
with decreasing viscosities: (b) for η ¼ 600� 90 Pa s after 72 h of growth, (c) η ¼ 450� 70 Pa s after 84 h of growth,
(d) η ¼ 300� 45 Pa s after 36 h of growth, and (e) magnification of a single representative finger from regime (c). Qualitatively
similar morphologies are observed in the range of viscosities indicated in (b)–(d). The figure shows merged bright-field and fluorescent
images White, transmitted bright field; red, YFP strains; cyan, mCherry strains. The scale bars in (a) and b) correspond to 5 mm, the
scale bars in (c) and (d) to 10 mm, and to 2 mm in (e).
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colony fractures into irregular pieces within the first
12 hours of expansion, behaving as if they have a shear
modulus on our experimental timescales, and forms highly
fragmented colonies as seen in Fig. 1(d) and Supplemental
Material Video 3 [72]. Colonies in this regime break apart
before genetic demixing occurs, resulting in genetically
diverse growing fragments. The regularly interspersed
fragments repel each other as they continue to grow,
suggesting the existence of an underlying repelling flow.
At the lowest studied viscosity η ¼ 54� 8 Pa s, these
clusters of yeast cells propel themselves across an entire
Petri dish within 36 hours, dispersing more than 1 order of
magnitude faster than the same yeast strains growing on 2%
hard agar plates (see Fig. 2 for the radial growth of our
strains on agar and liquid substrates over time).

III. COLONY-GENERATED FLOW

In this section, we focus, for simplicity, on the high-
viscosity regime 450≲ η≲ 600 Pa s, where yeast cells
form a single approximately circular colony to investigate
the coupling between its growth and the three-dimensional
fluid flows generated in its vicinity. We image yeast

colonies growing during the first 48 hours after inoculation
and in parallel extract the fluid velocity near the substrate’s
surface with particle image velocimetry (PIV). The fluid is
seeded with a dilute concentration of ð10–20Þ-μm fluores-
cent, neutrally buoyant polyethylene beads, and horizontal
slices of the flow are followed at the desired height by
varying the focal plane at which the beads’ motion is
tracked; see more details in Appendix A. Figure 2 displays
the expanding colony average radius RðtÞ, velocity vðtÞ,
and two-dimensional front profile over time extracted from
bright-field images.
In contrast to yeast cells growing on hard agar plates

which expand with approximately constant radial velocity
[7,9,10,12], two distinct growth regimes with a crossover at a
characteristic time t� ≈ 600 min can be identified on liquid
substrates. At early times for t < t�, the colony radius
expands superlinearly with time and reaches a maximum
horizontal growth velocity of v ≃ 7.5� 0.8 mm=day, while
for t > t� the expansion rate gradually slows down to v ≃
0.5� 0.05 mm=day over the rest of the experiment as
shown in Fig. 2(b). This first, approximately exponential,
growth regime when t < t� suggests that cells dividing
throughout the entire colony contribute to its surface-area
expansion, in contrast to growth on hard agar where only
cells dividing near the front of the colony contribute to its
expansion [7]. A comparison of the expansion rate of the
colony with the spatial distribution of the strains reveals
that genetically demixed sectors appear only after the front
propagation slows down to v ≲ 2 mm=day, as shown in
Fig. 2(c), when only those regions exhibiting demixing at
the edge of the colony are growing; see Supplemental
Material Video 4 [72].
PIV measurements carried out in the same experiment

near the surface of the fluid reveal an outward radial flow
centered around the colony which begins soon after the first
cell divisions occur; two-dimensional snapshots of the
velocity field are displayed in Figs. 3(a)–3(c) for t < t�,
t > t�, and t ≫ t�, respectively, while Figs. 3(d)–3(f)
display the evolution of the azimuthal average of the
velocity field urðr; tÞ≡ uðr; tÞ over time. The flow is
radially symmetric, reflecting the circular colony shape
at high viscosity, and its overall magnitude increases
within 24 hours after inoculation (Supplemental Material
Video 5 [72]). Two distinct regimes can be identified. At
early times, for t < t�, the radial velocity profile exhibits a
maximum near the edge of the growing colony, whose
value increases in time and peaks at u ¼ 6� 0.8 mm=day
for t ≃ 560 min after inoculation and rapidly decreases
away from the colony. The similar values and variation
exhibited by the colony front propagation velocity vðtÞ for
t < t� and displayed in Fig. 2(b) suggest that the fluid is
radially pushed outwards by the exponentially expanding
colony during this time period.
However, as the expansion slows down after t�, a

secondary peak with a smaller amplitude can be observed

(c)

(b)

(a) Hard agar

Viscous fluid

FIG. 2. (a) Azimuthally averaged yeast colony radius RðtÞ
during the first 24 h of growth on hard agar (blue circles) and
on a liquid substrate with viscosity η ¼ 600� 90 Pa s (green
squares). (b) The corresponding colony front velocity is
extracted from RðtÞ. The colony exhibits two growth regimes
on the liquid substrate: a superlinear regime for t < t� and a
slowly decaying phase for t > t�. We find that the colony front
velocity approaches vðtÞ ¼ 0.5� 0.05 mm=day at long times
(t ≫ t�) which is less than the velocity of yeast colonies
growing on 2% hard agar plates. (c) Consecutive front spatial
positions at equal 40-min intervals during the first 24 h of
growth on liquid substrate with the same viscosity as (a) and
(b), overlayed on top of a fluorescent (top) and a bright-field
(bottom) image of the colony. Note that genetic demixing
begins at the edge of the colony after the front slows down. The
scale bar corresponds to 1 mm.
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in Figs. 3(d) and 3(e). Within 48 hours, it approaches a
time-independent velocity of u ¼ 4� 0.5 mm=day shown
in Fig. 3(c) at about 1.5 colony radii away from the colony
center despite the fact that the colony expansion velocity
slows to vðtÞ≲0.5�0.05mm=day (Supplemental Material
Video 6 [72]). These observations suggest that the expand-
ing edge of the colony pushing the surrounding fluid is
not the unique origin of the observed flow, and another
mechanism is generating the flow in the surrounding media
for t ≫ t�, an idea we pursue in the next section.

IV. BAROCLINIC INSTABILITY

Plates filled with viscous media and monitored for
24 hours under conditions identical to our experiments
show no evidence of flow in the absence of growing yeast
cells, suggesting that the colony metabolism is responsible
for the flow observed at t > t�. Awide variety of microbial
organisms exploit Marangoni flows [29] to facilitate their
horizontal displacement across liquid interfaces by locally
reducing the surface tension [30–32]. Yeast cells secrete a
wide variety of molecules in their vicinity, including
ethanol and pheromones, which could potentially lower
the substrate surface tension in the colony surrounding.
Surfactant-releasing particles, such as camphor boats, can
lead to the formation of mutually repelling assemblies [33],

similar, for example, to the fragmented yeast aggregates
we observe under the experimental conditions shown in
Figs. 1(d) and 11. On the other hand, the yeast cell
metabolism could also generate large enough gradients
in the surrounding fluid’s temperature or solute concen-
tration to produce local differences in density and drive
buoyant flows in the presence of a gravitational field [34].
However, as shown in the work of Benoit et al. [35],
temperature gradients can be ruled out because heat
diffuses over 200 times faster than small-molecule solutes
(such as glucose) in water, minimizing resulting density
gradients, and because the coefficient of thermal expansion
is so much smaller than the coefficient of solute expansion;
large temperature differences (several degrees Celsius)
would be required to create the same density difference
as a small change in solute concentration (see Appendix C
for additional details).
In order to discriminate between these different sources

of flow, we conduct a series of experiments where we
anchor the colonies on a thin layer of agar to the top,
bottom, and side of sealed chambers filled with our viscous
media, as shown in Figs. 4(a) and 4(b). We find that
colonies create fluid flows similar in magnitude to experi-
ments when the air-liquid interface is present, regardless of
their position in the chamber (even when placed at the top
of the sealed chamber), and the induced fluid flows always
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FIG. 3. Experimental flow field at the viscous substrate’s surface over the first 48 h for compact yeast colony growth at a substrate
viscosity of η ¼ 600� 90 Pa s for t < t� (a), t > t� (b), and t ≫ t� (c). Each represented velocity field is averaged over 3 h. The central
gray region delineated by red dashed lines indicates the growing colony’s radius position masking the fluorescent beads; we cannot
directly measure the velocity below the colony with this experimental setup. The color map represents the flow velocity amplitude.
The azimuthal average of the velocity radial profile is plotted every 10 min for t < t� (d) and every 20 min for t > t� (e) and t ≫ t� (f).
The lines’ intensity increases chronologically with times.
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oppose the direction of gravity. For instance, colonies
entirely immersed in the liquid media and attached per-
pendicularly to the wall of the container create an upward
flow over their surface; one large vortex on each side of
the colony is partially visible in Fig. 4(c). Although these
experiments do not rule out the possibility that surface-
tension gradients generate flow when a free interface is
present, they reveal that buoyant forces primarily drive the
observed flows.
The flow thus systematically opposes the direction of

gravity regardless of the position of the colony in the sealed
chambers, suggesting that the cellular metabolism alters
the density of the substrate by depleting nutrients in the
surrounding fluid, for instance, by taking biomass from the
solute to create progeny or by converting denser solute
molecules into lighter ones (e.g., fermentation converts
glucose to ethanol and carbon dioxide which are both less
dense than glucose in water). In fact, similar behavior has
been observed from E. coli growing in sealed chambers
filled with liquid media [35]. Measuring the initial and final
density of the medium after a yeast culture grows to
saturation in YPD shows a decrease in density Δρ ¼
−0.0090� 0.0005 g=mL, where the � corresponds to
the range of density differences we measure (see
Appendix A for additional details), confirming that pro-
liferating yeast cells reduce the density of the surround-
ing media.
However, in contrast to microbes growing at the bottom

of a liquid-filled sealed container that can induce a classical
Rayleigh-Taylor instability [35–37], where less-dense fluid

near the colony rises, the cells in our experiments grow on
the surface of a liquid-air interface and cannot generate
flow with this particular instability. Instead, the yeast
produce a localized pocket of less-dense fluid on top of
a more-dense fluid. In this configuration, the resulting
density contours’ misalignment with the hydrostatic pres-
sure horizontal isobars leads to a thresholdless baroclinic
instability. This type of instability, common in stratified
fluids, generates vorticity and can be observed in atmos-
pheric and oceanic flows [34,37,38].
The physical origin of the instability can be understood

starting with the Navier-Stokes equations for the substrate
fluid:

∂u
∂t þ ðu · ∇Þu ¼ −

1

ρ
∇pþ ν∇2uþ g; ð1Þ

where u is the fluid velocity, ρ the fluid density, p the
pressure, ν ¼ η=ρ the kinematic viscosity of the liquid
medium, and g ¼ −gẑ the gravitational force. Upon taking
the curl of the fluid velocity ω ¼ ∇ × u, and neglecting
vortex advection and stretching terms due to our low
Reynolds numbers, we obtain for the vorticity

∂ω
∂t ≈

1

ρ2
ð∇ρ × ∇pÞ þ ν∇2ω: ð2Þ

The viscous term ν∇2ω simply redistributes the vorticity in
the bulk fluid. However, the term ð1=ρ2Þð∇ρ × ∇pÞ, often
called the “baroclinicity” [38], generates vorticity when-
ever the contours of constant density ρ and pressure p cross
at a finite angle. This is indeed the case in our experiments,
as we discuss in the next section.

V. HYDRODYNAMIC SIMULATIONS

A. Origin of the baroclinic instability

To better understand how yeast colonies living at a liquid
interface can trigger a baroclinic instability, we first assume
a fluid at rest and numerically investigate how baroclinicity
is created as the cells deplete the surrounding nutrient field
by examining the resulting density and pressure contours.
We assume the fluid has a density ρ which depends on the
local concentration field cðr; tÞ of a diffusing nutrient
solute such as glucose. The solute concentration is depleted
near the metabolizing yeast cells such that the mass density
of the fluid given by

ρðr; tÞ ¼ ρ0 þ δρðr; tÞ ¼ ρ0½1þ βcðr; tÞ� ð3Þ

locally decreases, where ρ0 is the fluid density without
nutrient solute, β ¼ ð1=ρ0Þ½ð∂ρÞ=ð∂cÞ� is the solute expan-
sion coefficient, and δρðr; tÞ ¼ ρ0βcðr; tÞ gives the local
increase in density due to the presence of nutrients [35].
Let c1 be the initial reference nutrient concentration before
any metabolic depletion occurs, such that, close to the

FIG. 4. Experimental setup for a yeast colony growing on a
thin layer of agar in a sealed container filled with the viscous
liquid; no liquid-air interfaces are present, removing the
possibility of Marangoni flows. (a) The colony is anchored
to the top or bottom walls of a Petri dish and (b) on the side wall
of a culture flask. Gravity points downward, and the fluid is
seeded with fluorescent PIV beads to track fluid motion.
(c) Fluid flow streamlines near the yeast colony (the dark
circular patch) in the same configuration as (b) during a time
interval of Δt ≈ 6 h obtained via maximum intensity projection.
The scale bar corresponds to 5 mm.
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metabolizing colony, there is a reduction in ρðr; tÞ and
cðr; tÞ < c1. In the absence of a flow, the momentum
equation (1) simplifies to a hydrostatic pressure balance
coupled to nutrient diffusion in the substrate fluid and
becomes

−∇pþ ρg ¼ 0; ð4Þ

∂c
∂t ¼ D∇2c; ð5Þ

where D is the diffusion constant of the nutrient solute
molecules.
We account for the colony nutrient absorption by impos-

ing a nutrient mass flux normal to the colony’s surface
jcol ¼ acn̂, where a is the mass flux rate into the colony per
unit nutrient concentration, and n̂ is the unit normal vector to
the interface, such that larger nutrient concentrations lead to
a larger nutrient absorption rate [39]. In contrast, no-nutrient-
flux boundary conditions are applied elsewhere, on the walls
of the domain away from the colonyD∇c · n̂ ¼ 0. The mass
flux due to transport and diffusion in the bulk fluid is given
by jfluid ¼ ρ0βðuc −D∇cÞ. We assume that u ¼ 0 for now,
and upon applying continuity on the solute flux across the
colony boundary ðjcolony ¼ jfluidÞjcolony, the boundary con-
dition can be rewritten as

ð∇c · n̂Þjcolony ¼
c
l

����
colony

; ð6Þ

where l ¼ ρ0βD=a ¼ 1.6� 0.8 mm acts as a characteristic
nutrient-depletion length in the fluid that captures the
interplay between nutrient diffusion and absorption by the
bottom of the yeast colony. Here, l is different from
the nutrient screening length inside the yeast colony [39],
as we discuss in Appendix D. Note that our yeast cells do not
absorb the concentration field fast enough to warrant setting
c ¼ 0 at the interface between the colony and the fluid
substrate as indicated by the dimensionless numbers that we
discuss in Appendix E.
The actual colony expansion is neglected for simplic-

ity, so we consider a colony of fixed radius R at the
surface of the viscous fluid, in a radially symmetric
Petri dish as shown in Fig. 5; the yeast colony is
represented by the thick orange line. We use
OPENFOAM 5.0 [40] to simulate Eqs. (4)–(6) using the
program diffusionPressureFoam [41] and the
measured parameters from Table II; additional details
about the numerical scheme appear in Appendix F.
Figure 5 displays the resulting density contours and
isobars. Once the cells start absorbing nutrient mass
from the fluid, a curved density gradient that conforms
to the finite size of the colony is created in its vicinity,
Fig. 16 shows an example of a corresponding simulated
concentration field. The pressure contours, on the other

hand, remain nearly horizontal over the entire domain
as the density differences due to solute depletion are so
small. The finite crossing angle of the pressure and
density contours leads to vorticity generation via the
baroclinic term ð1=ρ2Þð∇ρ × ∇pÞ in Eq. (2) below the
edge of the yeast colony, where the gradient of density is
large and nearly perpendicular to the pressure gradient.
As long as the yeast cells deplete the surrounding
nutrients, the created density difference will generate
vorticity via this thresholdless baroclinic instability.

B. Comparison with experiment

We now determine the flow produced by the baroclinic
instability in the liquid substrate by simulating the hydro-
dynamic flow equations and compare our simulations with
the experimental flow velocities. The diffusing solute field
is coupled with the incompressible Navier-Stokes equa-
tions, and in the limit of small local density variations
δρðrÞ=ρ0 ≪ 1, we can apply the Boussinesq approximation
[34,35], such that Eq. (1) becomes

∂u
∂t þ ðu · ∇Þu ¼ −

1

ρ0
∇p0 þ ν∇2uþ βcðr; tÞg; ð7Þ

where the pressure p0 ¼ p − ρ0gz is the pressure measured
relative to the hydrostatic pressure at constant density ρ0.
We now introduce rescaled variables for space r̃ ¼ r=H,
time t̃¼tD=H2, velocity ũ¼uH=D, pressure p̃¼pH2=Dη,
and nutrient concentration relative to its value c1 in the
absence of the colony c̃ ¼ c=c1, whereH is the depth of the
substrate fluid. In the creeping flow regime, appropriate to

FIG. 5. Baroclinic vorticity generation rate ∂ω=∂t ≈
ð1=ρ2Þð∇ρ × ∇pÞ normal to a radial cross section before flow
is initiated by a yeast colony fixed at the surface of the viscous
fluid in a radially symmetric Petri dish. The colony position is
indicated by the brown bar, the pressure isobars in blue, and the
density contours in gray. The isobars are near horizontal due to
small density differences originating from nutrient depletion (in
this simulation, Δρmax ∼ −0.003 g=mL). Whenever the pressure
and density contours cross at an angle, vorticity is generated via
the baroclinic term in Eq. (2).
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our experiments, inertial terms on the left-hand side of
Eq. (7) can be neglected, and the governing equations then
become (see Appendix E for details)

∂c̃
∂ t̃ þ ũ · ∇c̃ ¼ ∇2c̃; ð8Þ

∇2ũ − ∇p̃ − Rac̃ ẑ ¼ 0; ð9Þ

∇ · ũ ¼ 0: ð10Þ

In Eq. (9), the Rayleigh number Ra ¼ h3βc1g=Dν com-
pares the buoyant forces to the stabilizing effect of the
viscous forces.
We can consider again a colony with fixed radius R,

provided the characteristic eddy turnover time τeddy ∼ 1

day for the baroclinic flow is much shorter than the
characteristic radial colony growth time τgrowth ¼
RðtÞ=ðdR=dtÞ ∼ 10 days for t ≫ t�. The colony expansion
rate is slower than the induced flow velocity and starts
behaving like a solid in this regime, so we apply a no-slip
boundary condition just below the colony. We also apply a
no-slip boundary condition to the walls of the Petri dish
and a free-boundary condition to the air-substrate inter-
face such that there is no normal velocity vz ¼ 0 and
negligible shear stress ∂vr=∂z ¼ 0. We apply the same
nutrient-absorption boundary condition, from the previous
section to the diffusing nutrient field below the yeast
colony because the normal component of the fluid
velocity at the boundary with the colony vanishes, and
we also apply no-flux boundary conditions on both the
Petri dish walls and fluid surface. We use OPENFOAM 5.0

[40] to solve the governing Eqs. (8)–(10) with the
boundary conditions given by Eq. (6), using the program
stokesBuoyantSoluteFoam [41] with the experi-
mentally measured parameters in Table II; see Appendix F
for additional numerical details.
The baroclinic effect leads to an intense vortex ring

beneath the outer edge of the colony, as revealed by the
transverse section shown in Fig. 6(a). The flow geometry

and intensity on the surface of the fluid resembles the
experimental flow field shown in Fig. 3 around the colony.
As shown in Fig. 6(b), the corresponding radial velocity
profile at the fluid’s interface is in good agreement with the
experimental profile, with a strong peak at about 1.5 times
the colony radius. Figure 6(c) compares the maximum
radial velocity measured in the stationary flow regime
reached after 48 hours in the experiments, with simulations

TABLE II. Model parameters and their experimentally measured values, where appropriate. For additional details, see Appendix D.
Unless otherwise indicated, the error bars correspond to the standard deviation.

Parameter Value Units Description

ν 100–1000 cm2=s Kinematic viscosity; varies with polymer concentration
D 2.4� 0.2 × 10−6 cm2=s Diffusion coefficient of small nutrient molecules
ρ1 1.015� 0.003 g=mL Density of the viscous substrate with nutrients
βc1 0.009� 0.0005 None Product of the expansion coefficient β and c1
ac1 5� 1 pg=ðμm2hÞ Product of the mass flux into the yeast colony a and c1
H 1–10 mm Fluid height in the Petri dish (H ≈ 7 mm for 40 mL)
rPetri 43� 0.5 mm Radius of the Petri dish
jgj 9.81 m=s2 Gravitational acceleration
R 1–8 mm Average radius of a yeast colony during an experiment
l≡ ρ0βD=a 1.6� 0.8 mm Characteristic nutrient-depletion length in the fluid.

(a)

(b) (c)

FIG. 6. (a) Snapshot of the simulated flow field below the
yeast colony (brown bar) after flow is initiated, for t ≫ t�. The
simulated flow field qualitatively matches our experiments with a
vortex ring produced around the colony. (b) Azimuthal average of
the numerical flow field using the measured parameters in Table II
plotted every 12 h at the substrate fluid surface. The black circles
correspond to the experimental flow radial profile measured for
similar flow parameters after 24 h of growth and an initial
η ¼ 600� 90 Pa s. (c) Simulated and experimental peak radial
velocity determined from PIV measurements 48 h after inocu-
lation as a function of fluid height below the colony. The blue line
with circles corresponds to the simulated values using the
parameters in Table II, the black shaded region is the standard
deviation of the simulated points, and the black circles corre-
spond to experimental data.
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as the substrate fluid height H is varied. Our minimal
buoyant flow model tracks the experimental peak veloc-
ities, supporting the hypothesis of a buoyancy-driven flow
produced by a baroclinic instability in our experiments.

VI. MODEL COUPLING GROWTH WITH
DILATIONAL FLOW

In this section, we investigate how substrate viscosity
influences colony morphology and describe a simple
phenomenological model for colony growth, expansion,

and thinning in the spirit of the so-called lubrication
approximation [42]. Figure 7 displays five characteristic
colony morphologies over time growing on liquid media
for the entire range of studied viscosities (Table I), from
η ¼ 54� 8 Pa s to η ¼ 600� 90 Pa s. Our measurements
of flow velocity shown in Fig. 3 reveal that metabolically
driven buoyant flows become apparent as early as two
hours after inoculation, suggesting that yeast cells can
deplete enough mass to induce a flow even at this initial
stage of growth. The first column to the left on Fig. 7 shows
an enlargement of the colonies 12 hours after inoculation.

FIG. 7. Morphologies of yeast colonies growing on a liquid media substrate over time at a variety of viscosities. Quoted substrate
viscosities are accurate to about 10% (see Table I). The figure shows merged bright-field and fluorescent images. White, transmitted
bright field; red, YFP strains; cyan, mCherry strains. All images have the same scale, and the scale bar at the lower right corresponds to
10 mm. The left column is an enlargement of the colonies after 12 h of growth, and its scale bar corresponds to 5 mm.
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Their shape already shows a strong dependence on the
substrate viscosity, suggesting that the future morphology
of the colony is determined during its early growth.
When viscosity decreases, the amplitude of the toroidal

flow field beneath the colony increases and eventually
applies enough force to alter the initial circular morphology
of the colony. For instance, experiments performed at
η ¼ 54� 8 Pa s indicate that the flow velocity can reach
magnitudes up to 20 mm=day and apply non-negligible
stresses on the colony. Once the cell division rate falls
behind the colony’s advancing front at t ≈ t�, the bulk of the
colony ceases to behave as a liquid with internal motion due
to cell division and begins to behave more like a visco-
elastic material. Given the much faster fluid substrate
velocities outside the colony relative to the colony expan-
sion speed, the colony starts experiencing radial shear
stresses imposed by the flow. One possible explanation for
the especially intriguing colony morphology displaying
multiple elongated fingers around the colony edge close to
η ¼ 450� 70 Pa s could be a mechanism similar to viscous
fingering instabilities. Under these conditions, competition
between relaxation forces due to the attractive interaction
between cells and an outward pulling force produced by
the radial flow could drive an instability resembling those
that arise in rotating oil films [43], suitably modified to
allow for colony growth and the discreteness of the
underlying cells. However, when the viscosity drops below
η≲ 300� 45 Pa s, the radial expansion imposed by the
vortex ring under the colony starts to outcompete the
colony expansion due to cell divisions, such that growth
cannot accommodate the dilational flow during the initial
stage. This results in a rapid separation of the cells, and
holes start opening up within the center of the colony.
A complete understanding of the complex experimental

behaviors described here (exponential stretching prior to
genetic demixing, a fingering instability with fingers that
break into dropletlike clusters and fragmentation; see
Fig. 1) would require a detailed theory of the fluid
dynamics of the substrate fluid coupled to the viscoelastic
behavior of a colony of approximately 5-μm-sized cells
with both excluded volume and attractive interactions, all
while cells are actively dividing, as well as interacting with
the substrate fluid during the range expansion. We hope that
the results described here will encourage such theoretical
investigations, which might also need to account for the
discreteness of the cells in the colony and assess the impact
of the fluid mechanics on the genetic demixing observed in
our experiments.
Here, we propose instead a simple phenomenological

model that provides insight into the exponential stretching
and colony thinning during the early stages of the range
expansion when the colony maintains its circular symmetry
and behaves approximately like a two-dimensional liquid.
In analogy with treatments of colony expansions on hard
agar plates [44], we describe the dynamics of the colony

height by a generalized Fisher population dynamics equa-
tion [45] for the colony height hðr; tÞ, namely,

∂hðr; tÞ
∂t þ ∇ · ½hðr; tÞvðrÞ�

¼ Dh∇2hðr; tÞ þ μhðr; tÞ
�
1 −

hðr; tÞ
h0

�
; ð11Þ

where vðrÞ is the advecting hydrodynamic flow velocity
that acts on the colony, and μ is an effective colony vertical
growth rate when its height is small. The quantity h0 is the
steady-state colony thickness in the absence of flow and
spatial gradients of the height field, which we expect will
depend on quantities such as nutrient penetration depth
inside the colony [39] and strength of, e.g., the van der
Waals and gravitational forces that attract the cells to the
liquid substrate. The parameter Dh is a diffusion constant
that promotes an approximately uniform colony height—a
similar term appears in, e.g., the hydrodynamic equations
that describe capillary wavelike excitations in thin helium
films [46].
One source of the radially outward flows we observe

near the surface during the early stages of our range
expansions on liquid substrates is the outward pushing
by the growing quasi-two-dimensional yeast colony. To
determine the form of this contribution to the substrate
flow, we assume that, at least during the early stages of
the expansion, the colony behaves like a two-dimensional
liquid where all the cells in the colony receive enough
nutrients to actively divide. We further assume that the two-
dimensional colony viscosity can be neglected compared to
the overdamped frictional coupling to the liquid substrate.
We can then apply a simple hydrodynamic model [47–50],
which leads to

∇2p2D ¼ −γ∇ · v ¼ −γα1; ð12Þ

where p2D is an effective two-dimensional pressure field
inside the colony [50]. Here, α1 arises from cell divisions
that, as we show below, will give rise to a horizontal radial
velocity field within the quasi-two-dimensional liquid
colony averaged over the thickness of the colony. The
quantity γ is a frictional coefficient due to the motion of the
colony relative to the liquid substrate. If the liquid substrate
has a dynamical viscosity ηs and depth H, in the limit of
colony radius larger than H, we then expect γ ≈ ηs=hH
[51], where h is the thickness of the colony. We can
now exploit an electrostatic analogy, such that the two-
dimensional pressure field inside the colony satisfies a
Poisson equation and where the height-averaged growth
rate α1 determines a 2D “charge density.” The colony
velocity field (like the 2D electric field inside a charged
disk in two dimensions) that solves Eq. (12) has the radially
symmetric form:
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vðx; yÞ ¼ 1

2
α1rr̂; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
: ð13Þ

When coupled to an underlying viscous substrate fluid, this
dilational flow field within the colony will act to induce
flows in the underlying liquid, in qualitative agreement
with our PIV measurements near the surface shown in
Fig. 3(a). The development of expanding genetic patterns
during the approximately exponential growth for t < t� is
shown in Fig. 8(a). The figure highlights one particular
feature inside the black dashed square which undergoes
only a dilatation when expanding over time, as if the
genetic patterns are painted on the surface of an inflating
balloon, which is also consistent with Eq. (13). Estimates of
this dilational expansion velocity for t < t� gives values of
the order of 4–8 mm=day, the same order of magnitude as
the colony front expansion velocity observed during the
early exponential expansion regime.
The second source of the flow we need to account for is

the more vigorous motion driven by the baroclinic insta-
bility. This flow is present for t > t� and becomes dominant

at later growth stages for high substrate viscosity and at
increasingly earlier times with decreasing substrate viscos-
ity. Triggered by the metabolic uptake of nutrients, this
additional flow is potentially responsible for the fingering
and fragmentation instabilities observed when the substrate
viscosity decreases and flow amplitude becomes larger. If
we express the flow produced by cell divisions occurring
throughout a circular colony in the form v1ðrÞ ¼ 1

2
α1rr̂, we

expect then another contribution to this velocity of the form
v2ðrÞ ¼ 1

2
α2rr̂ once the baroclinic instability establishes a

vortex ring in the substrate fluid beneath the colony with a
size of order 1.5 times the colony radius (Fig. 3). A simple
model of a vortex ring submerged in substrate fluid with
an image vortex ring with opposite circulation above the
colony satisfies the requisite boundary conditions beneath
the colony (the resulting velocity field resembles the
magnetic field from a pair of anti-Helmholtz coils). This
ansatz leads to a radial velocity field at the colony height
which vanishes linearly in r for small r and falls off roughly
like 1=r4 for r large compared to the colony radius. To
check these ideas for the substrate-induced velocity field
acting on the colony, we repeat the simulations of Sec. V B
under identical conditions with, however, free instead of
no-slip boundary conditions at the interface between the
colony and the substrate fluid. We thus assume that active
cell divisions throughout a circular colony cause it to
behave like a two-dimensional liquid, with a contribution to
the in-plane colony velocity field imposed directly by the
substrate fluid. The resulting flow snapshot for the substrate
fluid velocity field below the colony displayed in Fig. 8(b)
is qualitatively similar to Fig. 6(a), indicating a submerged
vortex ring. Now, however, the absence of a no-slip
boundary condition leads to a velocity field right at the
colony-substrate interface. The azimuthal average of our
numerical flow field is shown in Fig. 8(c), again at 12-hour
time intervals. The results are similar to Fig. 6(b), except
that they clearly show a linear behavior of the velocity field
underneath the colony, consistent with the ideas in the
preceding paragraph.
With these motivations, it seems reasonable to assume

that the advecting velocity field in Eq. (11) takes the form

vðrÞ ¼ 1

2
αrr̂; ð14Þ

where α is an effective dilational flow parameter that
includes the effect of the baroclinic instability as well as
pushing generated by dividing cells within the colony. We
expect α to increase with decreasing substrate viscosity,
reflecting a stronger baroclinic instability.
With these assumptions, Eq. (11) takes the form

∂hðr; tÞ
∂t þ 1

2
αrr̂ · ∇hðr; tÞ

¼ Dh∇2hðr; tÞ þ ðμ − αÞhðr; tÞ − μh2ðr; tÞ
h0

: ð15Þ

FIG. 8. (a) Magnification of experimental demixing patterns
formed by two different yeast strains growing on a substrate with
a viscosity η ¼ 600� 90 Pa s at different time points. The first
three images have the same scale represented by the white bar
on the upper right of the images; the scale bar corresponds to
100 μm. The final picture at the bottom shows the same feature at
the larger colony scale; the scale bar now corresponds to 500 μm.
(b) Snapshot of the simulated flow field below the yeast colony
(brown bar) after flow is initiated. The simulated flow field is
very similar to the one displayed in Fig. 6(a) except with a free
boundary condition beneath the yeast colony. (c) Azimuthal
average of the numerical flow field using the measured param-
eters in Table II plotted every 12 h at the substrate fluid surface
with free boundary condition beneath the yeast colony.
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In regions where the colony height is spatially uniform,
we have for the height hðtÞ, f½∂hðr; tÞ�=ð∂tÞg ¼
ðμ − αÞhðr; tÞ − μh2ðr; tÞ=h0, and thus,

hðtÞ ¼ hð0Þeðμ−αÞt
1þ μhð0Þ=h0

μ−α ðeðμ−αÞt − 1Þ
: ð16Þ

We can now look for a radially symmetric solution with an
interpolating steplike function ΘðxÞ ¼ 1, x ≪ 0, ΘðxÞ ¼ 0,
x ≫ 0,

hðr; tÞ ¼ hðtÞΘ½ðRðtÞ − rÞ=δ�; ð17Þ

where RðtÞ defines a colony radius smeared out over an
interfacial width δ. It is easy to see from Eq. (15) that,
provided r ≫ δ and r ≫

ffiffiffiffiffiffiffiffiffiffiffi
Dh=α

p
, the colony radius grows

exponentially in time:

RðtÞ ¼ Rð0Þe1
2
αt: ð18Þ

Figure 9 shows the numerical solution of Eq. (11),
assuming radial symmetry for the colony height hðr; tÞ ¼
hðr; tÞ, at different values of α=μ using the program
forcedThinFilmFoam [52]; see Appendix F for more
details. In the absence of an advecting velocity field α ¼ 0
in Fig. 9(a), Eq. (15) has the usual Fisher wave solution of
an outwardly expanding colony front circumference with
constant velocity vF ¼ 2

ffiffiffiffiffiffiffiffiffi
Dhμ

p
whenever the colony radius

is much greater than the interfacial width lF ¼ ffiffiffiffiffiffiffiffiffiffiffi
Dh=μ

p
[45]. However, for nonzero α such that μ − α > 0 in
Fig. 9(b), we find an exponentially fast advance of the
wave: If the shoulder of the population wave in this
case occurs at x0 when t ¼ 0, then the position of the
shoulder at time t is at x0 exp ½ð1=2Þαt�, with a width δ of
order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dh=ðμ − αÞp

, consistent with our early-time obser-
vations in Fig. 2. In this regime, the colony advances but is
thinned down to a height given by the long-time limit of
Eq (16):

h� ¼ h0

�
1 −

α

μ

�
: ð19Þ

Thus, with increasing α, the flow becomes stronger, and the
exponential advance of the colony is faster but the colony
becomes progressively thinner. Interestingly, when α ¼ μ,
Eq. (16) becomes hðtÞ ¼ hð0Þ=f1þ ½hð0Þ=h0�μtg and
approaches zero as hðtÞ ≈ h0=ðμtÞ for large times. In fact,
when time is substituted with R using Eq. (18), we find that
at large times the height at the midpoint of the shoulder
behaves according to

hs½RðtÞ� ∼
h0

ln
h
RðtÞ
Rð0Þ

i ; ð20Þ

such that h decreases logarithmically with the radius,
leading to the formation of a wide plateau due to the
extremely slow decay of h over time, as can be seen in
Fig. 9(c). For sufficiently strong flows such that α > μ,
there is a thinning catastrophe, as shown in Fig. 9(d), such
that the colony population collapses at long times. In this
limit, of course, the discrete nature of the cells making up
the colony, neglected in Eqs. (11) and (15), becomes
important.
Finally, we check the qualitative agreement between this

simplified model and the experiments by determining the
colony expansion rate during the superlinear growth regime
(t < t�) as a function of substrate viscosity. A detailed
measurement of the radial expansion coefficient’s viscosity
dependence α ¼ αðηÞ would provide a more quantitative
test. Here, we explore this idea further by reproducing the
same experiments as the ones described in Sec. II for two
different substrate viscosities: By relating the above model
predictions to the early colony morphologies, one may be
able to estimate a critical viscosity below which the flow
becomes strong enough to cause a thinning catastrophe.

(a) (b)

(c) (d)

FIG. 9. Numerical solution of Eq. (11) for hðr; tÞ=h0 at
different values of μ − α and equal time intervals. The radial
coordinate r is measured in units of

ffiffiffiffiffiffiffiffiffiffiffi
Dh=μ

p
, the width of the

Fisher wave in the absence of a dilational flow. The colored dots
correspond to the prediction of h as a function of time from
Eq. (16) and show good agreement between the theoretical
prediction and simulation. (a) For α ¼ 0, the colony height
increases to h=h0 ¼ 1, and the front propagates radially with a
constant velocity vF ¼ 2

ffiffiffiffiffiffiffiffiffi
Dhμ

p
with μ ¼ 1. (b) When α < μ, the

colony front propagation velocity increases exponentially with
time, and the colony height decreases to h� ¼ h0ð1 − α=μÞ < h0.
(c) When α ¼ μ, the dilational flow is strong enough to decrease
the colony height below one cell size and hðtÞ goes to zero
logarithmically with radius. (d) For α > μ, the colony thins
exponentially fast, potentially signaling that holes open during its
early exponential growth; these holes may be responsible for the
highly fragmented colonies at later times.
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As can be seen in the first column of Fig. 7, for
η≲ 300� 45 Pa s, holes start opening up in the center
of the colonies during the early expansion, indicating that
the flow dilation rate is larger than the colony height growth
rate and corresponds to the height profile regime described
by α > μ. Assuming η ≃ 300� 45 Pa s is the highest
viscosity at which we can observe a catastrophic thinning
of the colony height in the early growth regime, our model
suggests that α ≈ μ in this experiment.
Figure 10(a) displays the colony radius RðtÞ over time

growing on two different liquid substrates with viscosity
η ¼ 600� 90 Pa s and η ¼ 300� 45 Pa s. The colony
expansion rate described by Eq. (18) can then be estimated
from an exponential fit of RðtÞ for t < t� and gives α ¼
4.2� 0.4 day−1 for the higher viscosity and a larger rate
α ¼ 7.2� 0.4 day−1 for the lower viscosity. Assuming that
the critical value of α, for which we have α ≈ μ, is close to
the colony expansion rate measured for η ¼ 300� 45 Pa s,
we estimate μ ≈ 7.2� 0.5 day−1, which gives a character-
istic division time of τ ≈ 140 min in the vertical direction
of the colony, in approximate agreement with yeast colony
growth rates on hard agar plates [50].
The dilational coefficient α in Eq. (14) is presumably a

combination of the α1 and α2 contributions that we discuss
above. Although it is difficult to determine the value of α2
for t < t�, as the metabolic velocity field is weaker at short
times, we are able to isolate the constant α1 related to the
flow contribution coming from cell divisions at a liquid
interface but without the enhanced dilational velocity due
to the metabolic flow. To determine α1, the same experi-
ments are repeated on a much thinner 1-mm-thick layer of
liquid substrate deposited on the top of a regular, nutrient-
rich gel plate. This geometry allows us to damp out the
baroclinic instability in the thin liquid layer and reveal a

nearly identical expansion rate this time, with α¼4.2�
0.3 day−1 for both η¼300�45Pas and η ¼ 600� 90 Pa s,
suggesting that α1 is independent of substrate viscosity for
300 ≤ η ≤ 600 Pa s. Note that the measured value of α1 is
similar to the expansion rate α that we find for thicker
substrates at higher viscosity, while it is significantly less
than the measured α for the substrate with lower viscosity.
This suggests that the metabolic flow does not contribute
significantly to the colony expansion for η¼600�90Pas,
while it considerably increases the colony dilation rate for
η ¼ 300� 45 Pa s even at early times for t < t�. Although
further experiments would be required to fully map out the
colony dynamics as a function of substrate thickness and
viscosity, our experimental results suggest a qualitative
agreement with Eqs. (11) and (15).

VII. DISCUSSION

We investigate the growth of yeast range expansions on
the surface of an extremely viscous nutrient-rich liquid
substrate. Capillary forces keep our yeast cells at the
surface for many days, and the extreme viscosity of the
fluid ensures that cell clumps that break the surface of
the air-liquid interface settle slowly. The large viscosity
also prevents thermal convection from mixing the media.
Previous experiments of range expansions on solid agar
media featured a thin layer of proliferating cells at the
frontier of radially expanding circular colonies [7]. We find
that colonies grown on a liquid medium, where the
substrate can flow and friction between the cells and the
medium is much lower, behave very differently.
In the early stages of these range expansions, for t < t�,

colony radii grow in a superlinear, approximately expo-
nential fashion, and the growth is dominated by active cell
divisions throughout the colony. However, for t > t�, yeast
metabolism generates fluid flows in the surrounding media
many times larger than their basal expansion velocity.
This flow dramatically alters the colony morphology,
depending on the surrounding substrate viscosity.
Compact circular colonies grow for η ≈ 600� 90 Pa s

(3.0% polymer), the largest viscosity we test, featuring a
regime of roughly exponential stretching and thinning
where strains remain mixed together and later a period
of slow, linear expansion where strains genetically demix
and resemble expansions on agar plates [7] with more
wiggly domain walls. The expansion likely slows because
of nutrient depletion.
As the viscosity of the medium decreases, hydrodynamic

forces acting on the colony are eventually sufficient to
produce fingering and fragmentation instabilities and lead
to two additional morphologies. At intermediate viscosities
between η ¼ 450� 70 Pa s and η ¼ 300� 45 Pa s (2.8%–
2.6% polymer), compact colonies develop “fingers,” a
particular morphology that allows thin streams of cells
to be ripped away from colonies resembling dendritic
crystal growth in the presence of a solute-driven buoyant
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FIG. 10. (a) Colony radius as a function of time during the
first day of growth for two different viscosities: blue circles,
η ¼ 600� 90 Pa s; green squares, η ¼ 300� 45 Pa s; black line,
exponential fit realized for t < t�. The short-time behavior is
consistent with an exponential growth of the colony radius in both
cases, but the growth is much faster at lower viscosity. (b) Same
as in (a) with experiments realized for colonies growing on a
1-mm-thin substrate liquid film on the top of a nutrient-rich gel
layer. We find that the exponential fit realized for t < t� exhibits a
similar expansion rate for both viscosities.
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flow [53] or fingering instabilities in spinning drops [43]
and Marangoni flow [54]. We attribute this liquidlike
behavior at the colony perimeter to the lubricating effect
of active cell divisions. The filaments then break into
clusters via a process reminiscent of capillary forces in
the Raleigh-Plateau instability [55,56] with, however,
differences due to actively dividing discrete cells. The
competition between the self-induced flow, diffusion of
nutrients, and the attractive forces between the cells might
trigger a selection for a characteristic finger width.
For viscosities lower than η ¼ 300� 45 Pa s, growing

colonies exhibit solidlike behavior in the interior; they
fracture into many irregularly shaped repelling islandlike
fragments. These repelling fragments can colonize an entire
Petri dish within 36 hours, presumably because each
fragment metabolically generates its own submerged vortex
ring. This conjecture about a vortex ring under each
solidlike colony fragment is consistent with the image
shown in Fig. 11, taken under experimental conditions
similar to Fig. 1(d) but with a shallower substrate fluid. As
opposed to the nearly monoclonal fingers separating from

the initial colony after demixing, islandlike fragments tend
to be genetically diverse as the entire colony breaks apart.
Our experiments and simulations provide strong evi-

dence that yeast metabolism generates fluid flow in the
surrounding media via a baroclinic instability: Yeast
colonies create a pocket of less-dense fluid on top of a
more-dense one that generates vorticity near the colony
edge when the isobars and isoclines of the underlying fluid
cross each other at an angle. Minimal buoyant fluid-flow
simulations calibrated to experiments with independently
measured parameters capture our experimentally observed
flow fields. Interestingly, as we discuss in Appendix D,
these calibrations allow us to measure the mass flux rate
into the yeast colony in rich-nutrient conditions as
ac0 ¼ 5� 1 pg=ðμm2hÞ; the authors are unaware of other
literature measuring this quantity. Furthermore, this mass
flux rate is consistent with a nutrient screening length of
about 50 μm inside yeast colonies (Appendix D), consis-
tent with that measured in prior work [39].
Furthermore, colonies always generate fluid flows

against the direction of gravity, regardless of their position
in a sealed chamber, and we find that yeast cells grown
to saturation in overnight culture decrease the surroun-
ding media’s density by Δρ ¼ −0.0090� 0.0005 g=mL
(Appendix A). We believe that surface-tension gradients
(the Marangoni effect) plays only a minor role in generating
the observed flows because yeast colonies attached to the
surface of a sealed chamber generate a fluid flow compa-
rable in magnitude and because the above arguments
suggest that buoyancy alone sufficiently explains the
phenomenon. To the best of our knowledge, this unusual
baroclinic instability, while common in oceanic or atmos-
pheric flows [34], has not been previously investigated in a
biological context.
The work we describe here suggests a number of

intriguing avenues for future work: For example, can other
microorganisms growing on or near the surface of liquids
generate buoyant flows similar to our experiments?
Preliminary experiments with immotile E. coli colonies
have exhibited similar flows when growing on the surface
of liquid substrates with comparable viscosity and have
also exhibited fascinating colony morphologies [20]. It is
intriguing to speculate that similar instabilities might occur
at much higher Reynolds numbers in the oceans, beneath
plankton blooms confined to, say, the first 50 m of depth. It
would also be interesting to experimentally test if microbial
colonies that generate buoyant flows have a selective
advantage relative to those that do not. Induced fluid flows
clearly allow more efficient redistribution of nutrients and
provide a mechanism for the more rapid dispersal of colony
fragments. Preliminary numerical investigations when vis-
cosity is lowered from infinity (i.e., modeling hard agar
substrates), increasing the Rayleigh number from 0 to 104

in our Petri dish geometry, increases the nutrient-absorption
rate of the yeast colony by a factor of about 1.5, suggesting

FIG. 11. Low-viscosity (η ¼ 300� 45 Pa s) range expansion
on a liquid substrate in the fragmentation regime. This image is
taken for t ≫ t� in a single experiment under conditions similar
to those in Fig. 1(d), except that the substrate fluid height is
H ¼ 4 mm instead of 7 mm. The more isolated cell fragments
clearly collect on the midplanes separating the larger “conti-
nents,” consistent with the downwellings associated with a vortex
ring underneath each continent, as suggested by the sketch on
the top. The scale bar corresponds to 10 mm.
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that colonies generating stronger buoyant flows could
indeed have a selective advantage (see Appendix G for
details).
Although yeast colonies might develop fluid-mechanics-

like instabilities reminiscent of classical ones in the
presence of flow [28,43,54,55], they differ in two key
ways: (1) Dividing cells cause growth over time, stressing
the need for further theoretical work to understand the
instabilities arising from the competition between flow and
growth, and (2) the discreteness of the dividing cells may
play an important role near the thinning catastrophe that
we discuss for a simple theoretical model in Sec. VI. The
transition from an approximately exponential to a slower
expansion rate, corresponding to the transition from liquid-
like to solidlike behavior of the yeast colony, could also
benefit from a fluid-mechanical perspective to model the
yeast fingering instability, assuming a liquidlike behavior
due to agitation by cell divisions at the frontier.
The origin of the quantitative differences between yeast

colony growth on the highest-viscosity substrates and on
hard agar plates such as the more wiggly genetic domain
boundaries has yet to be understood. Systematic inves-
tigations of how colony morphology and genetic patterns
vary with nutrient concentration (glucose) in addition to
viscosity, similar to the pioneering work of Wakita et al.
[44], would also be of interest. Furthermore, it is worth
noting that we model the rheology of the liquid substrate as
a Newtonian fluid despite the shear-thinning properties
measured in the media at very large polymer concentrations
as we discuss in Appendix B; future work should inves-
tigate how more pronounced non-Newtonian effects
could impact the fluid flows induced by the yeast, in the
context of microbial populations growing in mucus, for
instance [57].
Lastly, the fluid that we use in this work is viscous

enough that it can be advected at a velocity as low as
1 mm=day, matching the expansion rates of E. coli and the
baker’s yeast S. cerevisiae on agar [9,11] over an entire
9-cm Petri dish and several days of growth [20]. The
extreme viscosity of the fluid allows for the imposition of
slow controlled fluid flows at a macroscopic scale that can
advect microbial colonies and provides an alternative to
working with microfluidic devices where complications
arise when microbes stick to the walls of their enclosure
[58]. Using syringe pumps, one could impose well-defined
flows on microbial colonies and systematically repeat
previous experiments with microbial range expansions
on hard agar plates [9–15] on viscous liquid substrates
like those studied here but with additional types of
advection. Investigating for instance the evolutionary
dynamics of mutualistic strains that secrete public goods
such as leucine and tryptophan [12] could be especially
relevant because the secretions would be transported by the
fluid flow. In conclusion, our results suggest that microbial
range expansions on the surface of a highly viscous fluid

provide a versatile laboratory system to explore the inter-
play between advection and spatial population genetics.
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APPENDIX A: MATERIALS AND METHODS

1. Liquid substrate preparation

To produce our highly viscous medium, standard rich-
growth medium for yeast (YPD) consisting of 1% Bacto
Yeast extract, 2% Bacto Peptone, and 2% anhydrous
dextrose (glucose) is mixed in autoclaved water and
filtered into a sterile glass bottle using a ZapCap (Maine
Manufacturing item number 10443430) to remove con-
taminants. We then systematically increase the substrate
viscosity by adding 2-hydroxyethyl cellulose, an extremely
long-chain polymer with a viscosity-averaged molecular
weight of 1.3 × 106 (Sigma-Aldrich product number
434981), at concentrations ranging from 2.0% to 3.0%
w/v into 300-mL aliquots of the media, as shown in Table I.
We use a strong magnetic mixer (IKA RCT basic magnetic
stirrer) to rapidly stir the media with a sterile magnetic bar
until it becomes homogenously viscous over the course of
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three hours. We find that the model of the magnetic mixer is
important; the mixer needs to be able to deliver enough
torque to the stir bar so that it continues spinning as the
media becomes very viscous. Furthermore, if we use too
much media in the mixing flask (typically volumes greater
than 300 mL), the polymer will not mix evenly. The final
mixture is sterilized to avoid contaminants brought in from
the polymer. Because the extreme viscosity of our fluid
prevents it from being filtered, we sterilize it by micro-
waving it for three minutes (with a Panasonic model
number NN-SN9735 microwave). In contrast to micro-
waving, sterilization via autoclaving produces inconsistent
viscosities between replicates. We find that it is essential
to let the media cool to room temperature in the bottle
before pouring it into Petri dishes; yeast colony morphol-
ogies are not reproducible when inoculated onto substrates
prepared with different heating protocols. As we discuss in
Appendix B, the fluid’s viscosity drops almost 20% over
the first 24 hours and then slowly decreases as a function of
time. The cells are consequently always inoculated 24 hours
after pouring the media. Future work should investigate
how to make the fluid viscosity more stable.

2. Strains

We use the prototrophic (capable of synthesizing all
required amino acids) yeast strains yJHK041 and yJHK042
which are derived from the W303 background. The two
strains are virtually identical and differ only by the
expression of different fluorescent proteins under the
control of an ACT1 promoter. yJHK041 expresses
mCitrine and is colored red in our figures, while
yJHK042 expresses mCherry and is colored cyan for visual
clarity. yJHK041 has the genotype MATa bud4 can1-100
prACT1-ymCitrine-tADH1-His3MX6:prACT1-ACT1, and
yJHK042 has the same genotype except with ymCitrine
replaced with the ymCherry. The two strains have identical
growth rates in liquid culture and expand at the same rate
when deposited separately on agar plates.

3. Standard experimental setup

To prepare the saturated yeast cultures that we inoculate
on our viscous media, we follow a similar procedure used
for bacteria by Weinstein et al. [11]. We take a single
colony of yeast growing on an agar plate and inoculate it in
10 mL of YPD media in a glass tube. The tube is then
shaken overnight for roughly 16 hours at 30 °C as the yeast
grows to saturation. The next morning, we use optical
density measurements to place equal proportions of
yJHK041 and yJHK042 in an Eppendorf tube with a final
volume of 1 mL. After vortexing the Eppendorf tube, 2 μL
of saturated culture is taken from the tube and inoculated on
the surface of 40 mL of viscous fluid in a 94 × 16 mm Petri
dish (Greiner Bio-One item number 633181), leading to an
average fluid height of H ¼ 7� 0.2 mm. Throughout this
paper, we use the same fluid height and volume unless

specifically stated otherwise. Upon deposition, the cells
immediately begin to aggregate and form clusters within
15 minutes as shown in Fig. 12. The plates are then
wrapped with parafilm to inhibit drying and stored in a
warm room held at 30 °C.

4. Imaging

The microbial colonies are imaged with an incubated
Zeiss Lumar.V12 stereoscope held at 30 °C with both
fluorescent (eYFP and mCherry) and bright-field channels.
In order to image large fields of view (i.e., an entire Petri
dish), we stitch many images together and blend their
overlapping regions using AXIOVISION 4.8.2 software. Our
fluid is viscous enough that panning the microscope stage
does not adversely shake the fluid and microbes. Fluid
flows are imaged by adding fluorescent green polye-
thylene microspheres between 10 and 20 μm in diameter
(Cospheric item number UVPMS-BG-1.025 10–20
um–0.1 g) before mixing the media with the polymer. We
then image the position of the beads every 5 to 15 minutes,
depending on the mean flow rate, with the eGFP channel. By
varying the focal plane at which we observe the beads, we
can follow the flow in a horizontal slice at the desired height
from the surface of the medium to the bottom of the Petri
dish. The images are preprocessed and filtered before
analyzing them with particle image velocimetry software
(PIVLAB for MATLAB), and the resulting velocity fields are
postprocessed using the MATLAB tool PIVMAT.

(a)

(b)

FIG. 12. Upon deposition on the highly viscous substrate fluid,
yeast cells first spread uniformly in the circular inoculant region
usually called the “homeland” [7] and then clump together via a
coarsening process. (a) Distribution of cells 20 min after
inoculation on the viscous substrate and (b) enlarged view
immediately after inoculation (left) and after 20 min (right).
The initially uniform distribution of yeast segregates into large
clumps in a phase-separation process, suggestive of attractive
interactions. The bottom scale bar corresponds to 100 μm.
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5. Density measurements

To test if yeast colonies deplete the density of the
surrounding substrate as they metabolize, we compare
the density of YPD media before and after the cells grow
to saturation in it with an Anton Paar DMA 38 density
meter. To conduct this experiment, we place a control test
tube of YPD and another tube inoculated with our strains of
yeast on a shaker overnight in a 30 °C room; the yeast
culture grows to saturation. The next day, we centrifuge
both tubes, depositing the yeast on the bottom of the second
tube, and measure the supernatant density of each.
We repeat this experiment three times and find that the
average density of our control tube is ρYPD ¼ 1.0167�
0.0003 g=mL and that the density of the supernatant where
the yeast grows is ρsaturated ¼ 1.0077� 0.0003 g=mL, lead-
ing to a change in density of Δρ ¼ −0.0090�
0.0005 g=mL where the � corresponds to range of den-
sities that we measure.

APPENDIX B: LIQUID SUBSTRATE RHEOLOGY

The substrate rheology is characterized with an Anton-
Paar MCR 501 rheometer in a 50-mm disk geometry with a
1-mm gap. Figure 13(a) displays steady-state flow tests for
various polymer concentrations realized with logarithmic
sweeps of the shear rate ranging from 102 to 10−4 1=s.
Each point is averaged for several minute at 30 °C (the
yeast incubation temperature), and the measurements are

performed a day after the viscous medium is microwaved,
corresponding to the time that strains are inoculated on it.
Our viscous substrate exhibits a clear shear-thinning

behavior; i.e., the viscosity decreases with increasing shear
rate larger than _γ ≳ 10−1 s−1 but presents a plateau for
smaller shear rates. At cellulose concentrations higher than
2%, the viscosity continues to decrease with shear rate for
_γ ≲ 10−1 1=s, and we find an approximate power-law
relation between the shear stress τ and shear rate _γ;
Fig. 13(b) shows a fit to τ ¼ m_γn, in accord with the
“power-law” model of Ostwald and de Waele [59–61],
where the amplitude m is the flow consistency index,
and the exponent n corresponds to the flow behavior index.
The effective “Newtonian” viscosity of our fluid can then
be expressed as ηð_γÞ ¼ m_γn−1 [59], where n ¼ 1 describes
Newtonian fluids and n < 1 indicates shear-thinning
behavior. We determine m and n as a function of polymer
concentration by fitting the power-law behavior at shear
rates lower than 10−1 1=s as shown in Fig. 13. Our liquid
substrate exhibits increasing shear-thinning behavior
(decreasing n) with larger polymer concentration; we find
n ¼ 0.93� 0.05 at 2% polymer and n ¼ 0.82� 0.05 at
3%, suggesting a small but measurable departure from
Newtonian behavior across all polymer concentrations in
this regime.
The typical shear rate in our experiments is on the order

of 10−6 ≤ _γ ≤ 10−5 1=s estimated from the measured sur-
face flow velocity generated by the yeast colonies 1 ≤ u ≤
20 mm/day and with _γ ¼ u=H for a fluid with a typical
height H ≈ 7 mm. For simplicity, in this paper we describe
our substrate as a Newtonian fluid and determine the
viscosity from its value at a shear rate _γ ¼ 10−4 1=s (the
lowest shear rate at which the rheometer gives reproducible
results); the corresponding values as we vary the polymer
concentration are shown in Table I. The media rheology is
monitored over one week and presents a slow decrease in
viscosity as a function of time after being microwaved (less
than 10% per day) and is neglected within the three-to-five-
day timescale of our experiments. Although we did not
investigated closely the rheology of hydroxyethyl cellulose
polymer added in yeast complete synthetic media, the
viscosity of these solutions appeared to be more stable as a
function of time, and future work should consider using
alternative yeast culture media.

APPENDIX C: ORIGIN OF THE
BUOYANCY-DRIVEN FLOW

As we discuss in the main text, buoyant flows result from
differences in density in the presence of a gravitational field
[34], and, in our experiments, it could originate from
gradients in fluid temperature and solute concentration.
One possibility is that environmental temperature gradients
(i.e., in the chamber where the yeast are imaged) drive fluid
flows. As mentioned earlier, the very high viscosity of our

(a) (b)

(c) (d)

FIG. 13. (a) Shear viscosity and (b) corresponding shear stress
for different polymer concentrations measured via steady-state
flow tests. The fluid is weakly shear thinning for _γ ≲ 10−1 s−1
and reaches a Newtonian plateau at less than or equal to 2%
polymer. For other concentrations, a power law of τ ¼ m_γn

describes the shear stress for shear rates of _γ ≲ 10−1 s−1. (c) and
(d) plot m and n as a function of polymer concentration; the fluid
becomes more non-Newtonian (shear thinning) as more polymer
is added.

MICROBIAL RANGE EXPANSIONS ON LIQUID … PHYS. REV. X 9, 021058 (2019)

021058-17



liquid media substrates coupled with estimates of critical
Rayleigh numbers strongly suggest that stray thermal
gradients would be insufficient to produce convection in
our experiments [35]. In fact, plates filled with viscous media
monitored over 24 hours show no evidence of a flow in the
absence of yeast cells. The yeast colonies themselves must
induce buoyant flows by generating local gradients in the
surrounding fluid’s temperature or solute concentration.
Similar to the work of Benoit et al. [35], temperature
gradients can be ruled out because heat diffusivity Dheat
is much larger than the molecular diffusivity Dglucose of
glucose in water, minimizing resulting density gradients
caused by thermal gradients. The ratio of the heat diffusivity
and molecular diffusivity is given by the Lewis number of
our media: L ¼ Dheat=Dglucose ∼ 300 indicative of an iso-
thermal fluid. In addition, the coefficient of thermal expan-
sion is much smaller than the coefficient of solute expansion;
large temperature differences (several degrees Celsius)
would be required to create the same density difference
from a small change in solute concentration [35]. Estimates
of the yeast cell metabolic heat production seem insufficient
to produce the requisite thermal gradient. For instance,
comparing the density change induced only by the cells’
glucose uptake ΔρG, with the density decrease due to the
fluid thermal expansion caused by the heat produced during
yeast glucose fermentation ΔρT , gives an estimate of
ΔρG=ΔρT ≈ 1000. This ratio suggests that the substrate
density change is largely due to the glucose uptake rather
than the metabolic heat produced by fermentation.

APPENDIX D: CALIBRATING SIMULATION
TO EXPERIMENTS

Table II in the main text shows the values used to fit our
model to experiment (i.e., Fig. 6), and the remainder of this
appendix discusses how we obtain these values.

1. Viscous media density: ρ0
As we discuss in Appendix A 5, we find that the density

of YPD media without adding the cellulose polymer is
ρYPD ¼ 1.0167� 0.0003 g=mL. Mixing hydroxyethyl cel-
lulose with water within the range of the concentration we
use in our experiments, i.e., between 2% and 3%, does not
significantly affect the solution density [24]. Additional
density measurements of the polymer solutions when mixed
with YPD solutions [20] also do not show a significant
change in density of the substrate within experimental error.

2. Solute expansion coefficient: β

The solute expansion coefficient β enters only in our
dimensionless simulations via the combination βc1 in the
Rayleigh number,

Ra ¼ h3βc1g
Dν

;

where c1 is the initial concentration of solute in the system.
In our experiments, c1 is also the maximum concentration,
since uptake of nutrients and excretion of less-dense waste
products leads to a net depletion of the effective concen-
tration field. Hence, to estimate βc1, we simply note that
the density change when all solute is depleted is Δρ ¼
−0.0090� 0.0005 g=mL from our experiments measuring
the density of yeast overnight culture (Appendix A 5).
Because the density of our media is ρ ¼ ρ0ð1þ βcÞ, and
after a day of growth in well-mixed culture, the glucose is
completely depleted as the yeast can no longer reproduce,
we estimate Δρ ≈ −ρ0βc1, implying that βc1 ¼ −Δρ=ρ0.
After including appropriate sources of error, we thus
find βc1 ¼ 0.009� 0.0005.

3. Diffusion constant: D

Yeast colonies deplete the density of the surrounding
media in order to create more biomass. In the model used
by Benoit et al. [35], cells can absorb molecules with a
variety of sizes and with correspondingly different con-
centration fields and diffusion constants. Here, the change
in density we observe in overnight culture Δρ ¼ −0.009�
0.0005 g=mL is consistent with approximately all of the
glucose (originally 2%) in the media being depleted within
a factor of 2 [62]. For simplicity, we consequently use a
single concentration field c to model the diffusion and
absorption of glucose only.
The glucose concentration field in our liquid substrate is

difficult to track. In order to estimate the diffusion constant
in our medium, we instead track the diffusion of fluorescein
molecules as a proxy for glucose in our substrate over the
course of several days (see Ref. [20] for additional details).
A circular droplet of approximately 7 mm in diameter is
deposited on the surface of a thin 2.5-mm-thick layer of our
viscous media. We use the Zeiss Lumar stereoscope to
confirm that the concentration of fluorescein is proportional
to its fluorescent intensity at a fixed exposure time by
creating a dilution series. We then image the droplet and
extract its radially symmetric concentration profile and
repeat the process several hours later. The fluid is held at
the same temperature as our colony expansion experiments
(30 °C). The radial density profile of a diffusing concen-
tration cðr⃗; tÞ can be related to its original profile ct0 ¼
cðr; t ¼ 0Þ via an integral representation that depends on
the diffusion constant D [63]:

cðr; tÞ ¼ 1

2Dt

Z∞
0

dssct0I0

�
rs
2Dt

�
e−½ðr2þs2Þ=ð4DtÞ�; ðD1Þ

where I0 is the modified Bessel function of the first kind,
and we take the limit of the plate radius to infinity for
simplicity. We ignore diffusion in the third dimension
(towards the bottom of the plate) as the fluid layer is small
relative to the droplet diameter. We fit the fluorescein
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diffusion constant D in Eq. (D1) by inserting our
experimentally measured initial concentration field at
cðr; t ¼ 0Þ, numerically evaluating the integral, and com-
paring the predicted concentration field at later times to
our experimental measurements. We adjust the value of
D using a least-squares fit to find the best fit to our
experimental measurement.
Figure 14 displays the original radial profile of the

fluorescein, the final profile, and the predicted fit from
Eq. (D1) with the best value of D. We repeat this experi-
ment three times on media with 2.0% and 3.0% polymer
concentration and find identical diffusion constants within
experimental error, D ¼ 2.4� 0.2 × 10−6 cm2=s. These
results are consistent with the assumption that fluorescein
diffusion is dominated by motion through the gaps between
the long chains of hydroxyethyl cellulose polymer. Noting
that the diffusion constants of fluorescein and dextrose
(glucose) are similar in water at 25 °C: Dfluorescein ¼ 4.25�
0.01 × 10−6 cm2=s and Ddextrose ¼ 5.7 × 10−6 cm2=s [64].
For simplicity, we use the measured diffusion constant of
fluorescein in our simulations of the substrate fluid given
by D ¼ 2.4� 0.2 × 10−6 cm2=s.

4. Mass flux rate into the yeast colony
in rich-nutrient conditions: ac1

We fit ac1, the mass flux rate into the yeast colony in
rich-nutrient conditions by calibrating our simulation to
experiments in a situation which negates the effect of
surface tension: A yeast colony anchored on a thin agar
sheet on the bottom of a sealed Petri dish filled with our
viscous nutrient-containing fluid at η ¼ 54� 8 Pa s [see
Fig. 4(a) left]. Under these conditions, the simulated yeast
colony nutrient uptake creates a buoyant plume in the
direction opposing gravity, and the fluid flow reaches a
maximum stable magnitude after about a day of growth.

Note from the right side of Fig. 4(a) that the induced flow in
this case opposes the outward-growth-induced expansion
velocity of the colony. We adjust the product ac1 until the
simulated average flow velocity in the plume above the
colony, as shown in Fig. 15, matches the average exper-
imental velocity of tracer beads moving in the rising fluid
from the bottom to the top of the container above the
colony. The best match for vexperimental ¼ 30� 10 mm=day
results in a value of ac1 ¼ 5� 1 pg=ðμm2hÞ, where the
error limits represent the standard deviation.
We now argue that this mass flux rate is consistent with a

simple order-of-magnitude estimate and also show that it
predicts a nutrient screening length inside yeast colonies in
agreement with earlier investigations [39].

a. Order-of-magnitude estimate for ac1
A single yeast cell consumes about N ∼ 1012 glucose

molecules per cell division when fermenting at high
glucose concentrations [65], and glucose has a molar mass
of M ¼ 180.156 g=mol. Yeast divide roughly every τg ≈
90 min in rich media, have a radius of approximately
ryeast ≈ 2.5 μm, and are approximately spherical when not
actively dividing; they consequently have an area of
Ayeast ¼ 4πr2yeast. Therefore, the glucose mass flux into a
spherical yeast cell must be on the order of

jcell ¼ ayeastc ∼
MN

Ayeastτg
∼ 2.5

pg
μm2h

: ðD2Þ

In nutrient-rich conditions, we assume that the concen-
tration field is at its maximum value of c ¼ c1 just outside
the yeast cell walls, implying that jcell ¼ ayeastc1. Our
order-of-magnitude estimate of jcell allows us then to
estimate that ayeastc1 ∼ 2.5 pg=ðμm2hÞ, which is in the

FIG. 14. Fit to the fluorescein diffusion constant D in our
viscous fluid. The blue line corresponds to the measured initial
radial profile, and the green line is measured the final profile.
Black dotted line represents the profile predicted by Eq. (D1) with
the best-fit value of D

FIG. 15. Simulated average flow velocity as a function of mass
flux rate jcolony ¼ ac1 into a submerged yeast colony in rich
nutrient conditions. The velocity field is determined above the
center of the colony in the rising plume of fluid from the bottom
to the top of the domain.
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same order of magnitude as ac1, the nutrient flux into
the colony.

b. Consistency with nutrient screening length
inside a yeast colony

In the main text, we use our measured value of ac1, the
mass flux into the colony, to calculate the nutrient screening
length in the fluid l ¼ ðρ0βDÞ=a ¼ 5� 2 mm. It is also
possible to use the value of ac1 to estimate the nutrient
screening length inside the yeast colony given in [39]:

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dρsolute

_ρ

s
; ðD3Þ

where ρsolute ¼ ρ0βc1 is the characteristic density of solute,
and _ρ is the rate at which the solute is depleted. With the
volume of a yeast cell Vyeast ¼ ð4=3Þπr3yeast and the packing
fraction of spherical cells in a colony N ∼ 0.5, the value of
_ρ can then be estimated as

_ρ ∼N
jcolAyeast

Vyeast
¼ 3N ac1

ryeast
ðD4Þ

implying that the nutrient screening length inside the
colony is

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dρ0βryeast

3N a

r
∼ 90 μm; ðD5Þ

in approximate agreement with the work of Lavrentovich
et al. [39].

APPENDIX E: NONDIMENSIONALIZING THE
SET OF EQUATIONS

As we discuss in Sec. VI of the main text, after coupling
the Navier-Stokes equations with the diffusing solute field,
applying the Boussinesq approximation as the local density
variations are small in our experiments (δρ=ρ0 ≪ 1), and
including the flux boundary condition below the yeast
colony, we find

∂c
∂t þ u · ∇c ¼ D∇2c; ðE1Þ

∂u
∂t þ u · ∇u ¼ −

∇p
ρ0

þ ν∇2uþ βcg; ðE2Þ

∇ · u ¼ 0; ðE3Þ

ð∇c · n̂Þjcolony ¼
�
c
l

�����
colony

; ðE4Þ

where c is the nutrient concentration field, u the fluid
velocity, D the nutrient diffusion constant in the substrate,
ν the fluid’s kinematic viscosity, ρ0 the substrate density

without nutrient, p the fluid’s pressure, g ¼ −gẑ the
downward acceleration due to gravity, β the solute expan-
sion coefficient, n̂ the normal unit vector to the colony
interface, and l ¼ ρ0βD=a the characteristic nutrient-
depletion length in the substrate fluid.
To better understand the dynamics of our model, we

nondimensionalize Eqs. (E1)–(E4) by choosing a character-
istic length scale L ¼ H, the height of the fluid in the Petri
dish, a timescale T ¼ H2=D (the time it takes solute to
diffuse from the bottom to the top of the fluid in the Petri
dish), and the initial maximum glucose concentration c1
(the initial concentration has the maximum value before
the yeast cells deplete nutrients). The nondimensionalized
equations become

∂c̃
∂ t̃ þ ũ · ∇c̃ ¼ ∇2c̃; ðE5Þ

1

Sc

�∂ũ
∂ t̃ þ ũ · ∇ũ

�
¼ −∇p̃þ∇2ũ − Rac̃ ẑ; ðE6Þ

∇ · ũ ¼ 0; ðE7Þ

where the dimensionless concentration field is given by
c̃ ¼ c=c1, the dimensionless velocity is ũ ¼ u=ðL=TÞ ¼
u=ðD=HÞ, and the dimensionless pressure is p̃ ¼
p=ðDρ0ν=H2Þ. The nondimensional Navier-Stokes equa-
tion reveals two key dimensionless parameters: the Schmidt
number Sc ¼ ν=D, the ratio of the momentum diffusion
to solute diffusion, and the Rayleigh number Ra ¼
ðH3βc1gÞ=ðDνÞ, which quantifies the strength of the
dimensionless buoyant force [37]. Nondimensionalizing
the flux boundary condition for the concentration field at
the yeast colony’s border reveals a final key parameter; the
boundary condition becomes

ð∇c̃ · n̂Þjcolony ¼ ðGc̃Þjcolony; ðE8Þ

where the “mass flux number” G ¼ ðHaÞ=ðρ0βDÞ≡H=l
is the dimensionless ratio of the fluid height H to the
nutrient-depletion length in the fluid l.
The interplay between the Rayleigh, Schmidt, and mass

flux numbers in our simulated geometry controls the
dynamics of our model. However, the large Schmidt
number Sc ¼ ν=D ∼ 108–109 (using the parameter values
in Table II) allows us to set the inertial terms in Eq. (E6) to
zero; this simplification corresponds to the Stokes regime.
Thus, we need consider only the interplay between the
Rayleigh and mass flux numbers. For the standard fluid
height used in our experiments (40 mL of fluid in a standard
94-mm-diameter Petri dish, or H ¼ 7� 0.2 mm), the
Rayleigh number ranges from 103 to 104 as we vary the
fluid viscosity from η ¼ 54� 8 Pa s to η ¼ 600� 90 Pa s,
and the mass flux number remains constant at G ∼ 4.4. The
yeast do not deplete nutrients quickly enough to allow us to
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set c ¼ 0 on the bottom of the colony, corresponding to the
G → ∞ limit. Both quantities consequently play a role in
our experiments.

APPENDIX F: SIMULATION METHODS

In this appendix, we discuss how we utilize OPENFOAM
5.0 [40] to simulate the buoyant fluid flow created by our
yeast colonies and the early stages of yeast colony growth.
Specifically, we discuss the particular programs that we
create, how we prepare meshes and geometries for use in
OPENFOAM, and how we analyze and visualize simulation
output.

1. diffusionPressureFoam

The program diffusionPressureFoam (available
on GitHub [66]) simulates a yeast colony that absorbs a
diffusing concentration field and calculates the resulting
hydrostatic pressure. We use diffusionPressure
Foam to show how the baroclinic instability begins before
advection begins to dominate, as seen in Fig. 5.
To create diffusionPressureFoam, we modify

the standard solver packaged with OPENFOAM called
laplacianFoam, which simulates a diffusing scalar
field. At each time step, we let the concentration field
diffuse and possibly be absorbed by the yeast. We utilize
SWAK4FOAM [67], an extension of OPENFOAM, to impose
the absorption boundary condition that

ð∇c · n̂Þjcolony ¼
�

ac
ρ0βD

�����
colony

: ðF1Þ

The hydrostatic pressure inside a fluid is given by [37]

∇p ¼ ρ0ð1þ βcÞg: ðF2Þ

However, to calculate the hydrostatic pressure numerically,
we take the divergence of Eq. (F2) and solve

∇2p ¼ ∇ · ½ρ0ð1þ βcÞg�: ðF3Þ

At the free interface, we impose the boundary condition
that p ¼ patmospheric, while on other walls, we impose the
condition (again using SWAK4FOAM [67]) that

½∇p · n̂�jwalls ¼ ½ρ0ð1þ βcÞg · n̂�jwalls: ðF4Þ

We always assume radial symmetry when simulating
yeast colonies on the surface of a viscous nutrient-
containing liquid or at the bottom of a sealed Petri dish.
To create our radially symmetric geometry, we use Gmsh
3.0.5 [68] to create a two-dimensional structured mesh
spanning the Petri dish and then extrude it to form a
wedge with an angle of 2.5° which is the appropriate setup
for radially symmetric simulations in OPENFOAM. We

simulate our experiments at a resolution such that 20
simulation cells span the yeast colony radius. We wrap
the Gmsh geometry creation script in PYTHON scripts that
can automatically generate geometries, change simulation
parameters, and quickly analyze simulation output.
After running a simulation, we use PARAVIEW [69], an

open-source tool to visualize large geometrical datasets, to
visualize the results and create figures such as the con-
centration field shown in Fig. 16. To quickly analyze data
from many simulations, we use automated PYTHON scripts
to extract relevant data such as the velocity on the fluid’s
surface and the total amount of solute present in a Petri
dish. To create the baroclinicity field ð1=ρ2Þð∇ρ × ∇pÞ
seen in Fig. 5, we utilize the funkySetFields utility, a
part of SWAK4FOAM [67], which can algebraically manipu-
late the output of OPENFOAM simulations.

2. stokesBuoyantSoluteFoam

The program stokesBuoyantSoluteFoam simu-
lates how yeast depletes the density of the surrounding fluid
and calculates the resulting fluid flow. We use this program
to generate the quantitative agreement between experiment
and simulation in Fig. 6. Specifically, stokesBuoyant
SoluteFoam solves the dimensionless equations (E5)–
(E7) and the dimensionless mass flux boundary condition
below the yeast colony in Eq. (E8). It assumes that the
Schmidt number Sc ¼ ν=D is infinite (as we discuss above)
and consequently solves

∂c̃
∂ t̃ þ ũ · ∇c̃ ¼ ∇2c̃; ðF5Þ

0 ¼ −∇p̃þ∇2ũ − Rac̃ ẑ; ðF6Þ
∇ · ũ ¼ 0; ðF7Þ

ð∇c̃ · n̂Þjcolony ¼ ðGc̃Þjcolony ðF8Þ
at each time step.

FIG. 16. Radially symmetric simulation of the concentration
field c=c1 below a yeast colony (the thick brown bar) on the
surface of our viscous liquid after 48 h and at η ¼ 400� 50 Pa s.
Equally spaced contours of constant concentration are shown.
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We again utilize SWAK4FOAM [67] to implement the
concentration boundary condition at the yeast colony
boundary [Eq. (F8)]. At each time step, the solute diffuses
and is absorbed by the yeast. After diffusing, stokes
BuoyantSoluteFoam calculates the steady-state
velocity field using the same technique as buoyant
BoussinesqSimpleFoam (the SIMPLE algorithm
[70]) which is packaged with OPENFOAM. The velocity
from the previous time step is used as an initial guess for the
velocity field in the next time step to improve its con-
vergence speed. To avoid stability problems resulting
from a high Courant number [70], we adaptively change
the time step to ensure that the maximum Courant number
in the simulation remain below 0.5 and also use the implicit
Crank-Nicolson technique [70] to evolve the concentration
field. Geometry preparation and postprocessing for
stokesBuoyantSoluteFoam is the same as that for
diffusionPressureFoam.

3. forcedThinFilmFoam

forcedThinFilmFoam (available on GitHub [52])
solves Eq. (11) in the main text, or

∂hðr; tÞ
∂t þ ∇ · ½hðr; tÞvðrÞ�

¼ Dh∇2hðr; tÞ þ μhðr; tÞ
�
1 −

hðr; tÞ
h0

�
; ðF9Þ

and leads to the radial height profiles shown in Fig. 9.
Although we can simulate arbitrary velocity fields, we use
the radially symmetric field of vðrÞ ¼ ð1=2Þαrr̂, match-
ing Eq. (14).

We use Gmsh 3.0.5 [68] to create a two-dimensional
mesh in a circular domain mimicking a Petri dish as seen in
Fig. 17. We find that the choice of mesh dramatically
impacts simulation performance; using a regular Cartesian
grid leads to pronounced lattice artifacts, likely because of
the autocatalytic growth term on the right side of Eq. (F9).
We obtain the best results when we convert a Delaunay
triangular mesh to its dual polyhedral mesh using
OPENFOAM’s polyDualMesh utility, similar to other
work simulating fluid flow in radial geometries [71].
To allow for advection-dominated simulations, we use a

flux-limiting superbee scheme when calculating the diver-
gence term, or ∇ · ½hðr; tÞvðrÞ�. To prevent stability prob-
lems, we ensure that the maximum Courant number is less
than 0.1 and use the implicit Crank-Nicolson technique
[70] to evolve the height field. We again utilize PYTHON

scripts to analyze the data coupled with OPENFOAM’s
postprocessing singleGraph tool.

APPENDIX G: SIMULATED NUTRIENT
ABSORPTION VS FLOW RATE

To investigate if microbial colonies generating buoyant
flows absorb more nutrients than those that do not, we
simulate a yeast colony on the surface of our fluid (again
with a fixed colony radius for simplicity) and vary the
substrate viscosity from 10 to 100 Pa s, allowing us to
control the magnitude of the buoyant flow. We also
simulate a substrate with infinite viscosity where no flow
is allowed. We keep the rest of the simulation parameters
fixed to the values in Table II with H ¼ 7 mm and record

Total absorbed nutrients

FIG. 18. Total number of nutrient molecules absorbed by the
yeast relative to the original number of nutrient molecules in the
fluid N=N0 as the fluid viscosity is varied. The height of the fluid
is H ¼ 7 mm and the rest of the simulation parameters are set
using the values in Table II. The Rayleigh number Ra ¼
ðH3βc1gÞ=ðDνÞ varies from 0 to approximately 104 due to the
changing viscosity ν, and the mass flux number G ¼
ðHaÞ=ðρ0βDÞ≡H=l is fixed at G ≈ 4.4. Note that the stronger
advection of the substrate fluid at lower viscosities leads to an
enhanced uptake of nutrient molecules.

FIG. 17. A polyhedral dual mesh (blue cells) and correspond-
ing height field h used by the forcedThinFilmFoam
program [52].
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the nutrient uptake by the colony over time. The Rayleigh
number Ra ¼ ðH3βc1gÞ=ðDνÞ of these simulations ranges
between 0 and 104, and the mass flux number G ¼
ðHaÞ=ðρ0βDÞ≡H=l is fixed at G ≈ 4.4. As shown in
Fig. 18, the more vigorous flows associated with smaller
substrate viscosities allow yeast colonies to absorb
nutrients more efficiently; the nutrient absorption rate at
10 Pa s is about 1.5 times larger than at infinite viscosity.
It is possible that microbes growing on less viscous fluids
can induce more intense flows, enhancing this effect even
further. It thus seems plausible that colonies generating
stronger buoyant flows can indeed have a selective
advantage.
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