
 

First-Principles Theory of Spatial Dispersion: Dynamical Quadrupoles and Flexoelectricity

Miquel Royo1,* and Massimiliano Stengel1,2,†
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Density-functional perturbation theory (DFPT) is nowadays the method of choice for the accurate
computation of linear and nonlinear-response properties of materials from first principles. A notable
advantage of DFPT over alternative approaches is the possibility of treating incommensurate lattice
distortions with an arbitrary wave vector q at essentially the same computational cost as the lattice-periodic
case. Here we show that q can be formally treated as a perturbation parameter and used in conjunction with
the established results of perturbation theory (e.g., the “2nþ 1” theorem) to perform a long-wave
expansion of an arbitrary response function in powers of the wave-vector components. This procedure
provides a powerful general framework to access a wide range of spatial dispersion effects that were
formerly difficult to calculate by means of first-principles electronic structure methods. In particular, the
physical response to the spatial gradient of any external field can now be calculated at negligible cost by
using the response functions to uniform perturbations (electric, magnetic, or strain fields) as the only input.
We demonstrate our method by calculating the flexoelectric and dynamical quadrupole tensors of selected
crystalline insulators and model systems.
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I. INTRODUCTION

Spatial dispersion refers to the dependence of a material
property (e.g., permittivity, conductivity, or phonon fre-
quency) on the wave vector q at which it is probed, or
equivalently, on the gradients of the perturbation and/or the
response in real space. Its origin can be traced back to the
nonlocality of the microscopic interactions in condensed-
matter systems, where the response to an external field
(electromagnetic field or atomic displacement) typically
occurs over a neighborhood of the point where the field is
applied. While in general, such effects are weak and can
often be neglected in macroscopic theories, there are
several instances where their physical consequences are
important, both regarding their fundamental interest and
their potential for practical applications. Indeed, with the
ongoing interest in nanoscale phenomena, researchers are
increasingly facing situations where the relevant scalar,
vector, or tensor quantities (e.g., polarization or strain)

display large variations on a very small length scale; this is
precisely the regime at which gradient effects can become
strong.
Historically, spatial dispersion has been most studied in

the context of the optical response. The first-order wave-
vector dependence of the dielectric susceptibility tensor, for
example, is responsible for the natural optical activity [1,2],
which is the property of some crystals of rotating the plane
of polarization of the transmitted light. Manifestations of
spatial dispersion are, however, ubiquitous; they can
involve magnetism (the magnetoelectric effect can be
regarded as the first-order dispersion of the conductivity
[1]) or elastic degrees of freedom as well (the counterpart of
optical gyrotropy in phononics is known as acoustical
activity [3]). In the latter context, flexoelectricity [4] is
arguably the most notable example, as it has been intensely
explored both experimentally and theoretically in the past
ten years or so [5,6]. It describes the polarization response
to the gradient of the applied strain, and therefore, it can be
understood as the spatial dispersion of the piezoelectric
tensor. Being it a universal property of all insulators
regardless of crystal symmetry, it provides a tantalizing
route to novel electromechanical device concepts [7] and
opens the way to many other applications in energy and
information technology [8,9].
The long-wavelength regime also occupies a central

place in the theory of lattice dynamics in insulators. Indeed,
in the q → 0 limit, phonons in insulating crystals are
associated with macroscopic electric fields that are due
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to the long-range electrostatic interactions between atoms
[10]. Identifying and correctly treating such long-range
contributions is crucial for a meaningful calculation of the
interatomic force constants (IFCs) from first principles
[11,12]. The long-range IFCs are typically written as
electrostatic dipole-dipole terms, which are responsible
for the well-known frequency splitting between longi-
tudinal-optical and transverse-optical phonon branches. It
is important to note, however, that the dipole-dipole term
captures only the leading contribution to the long-range
IFCs (dipole-dipole terms decay as 1=d3 as a function of
the interatomic distance d). Higher orders (1=d4 and faster)
are always present but are systematically neglected as their
physical consequences are much more subtle.
The next lowest order, for example, involves dipole-

quadrupole interactions and is responsible for a nonanalytic
behavior [13] of the force-constant matrix at Oðq1Þ;
this translates into a 1=d4 decay in real space of the
corresponding contribution to the IFCs. A quadrupolar
response to an atomic displacement requires a broken-
inversion symmetry environment to be active and is always
(although not exclusively) present in piezoelectric crystals.
Interestingly, in his 1972 seminal paper, Martin [14]
predicted that the electronic contribution to the piezo-
electric tensor can be written as a sublattice sum of the
“dynamical quadrupoles,” so we expect these couplings to
be important in compounds where electromechanical
effects are strong. However, viable methods to compute
the quadrupole tensor have been lacking to date; this
quantity can be regarded as the first-order spatial dispersion
of the Born effective charge tensor and is therefore
characterized by analogous technical challenges as the
calculation of the flexoelectric tensor.
Developing a systematic quantitative theory of such

effects would be very desirable to improve their funda-
mental understanding and support the ongoing experimental
efforts. Achieving this goal, however, presents considerable
technical difficulties from the point of view of first-princi-
ples electronic structure theory due to the inherent break-
down of translational periodicity that a spatial gradient
entails. In the case of flexoelectricity [15], for example,
several routes have been explored to deal with this issue.
Initially, the flexoelectric coefficients were written as real-
space moments of the response (either the electronic charge
density or the atomic forces) to the displacement of an
isolated atom [16,17]. Later, the real-space sums were recast
as small-q expansions of the response to a monochromatic
displacement pattern at a given wave vector q [13,18,19].
Other subtleties were addressed as well, such as the
definition and implementation of the current-density
response [20], which eventually allowed for the calculation
of the bulk flexoelectric tensor within a perturbative
framework based on a primitive cell of the crystal [20].
While the strategy of Ref. [20] could be, in principle,

generalized to other physical properties, it still presents an

important drawback. Several linear-response calculations
need to be performed at different q points in the vicinity
of the Brillouin-zone center, and the second-order coef-
ficients (corresponding to the flexoelectric tensor compo-
nents) are then extracted via a numerical fit. This
requirement introduces significant computational overhead
(to repeat the same calculations at several values of q) and
is a potential source of numerical inaccuracies related to the
fit. It would be much cheaper from the computational point
of view, and convenient from the point of view of the end
user, to directly calculate the desired dispersion coefficients
as part of the intrinsic linear-response capabilities of the
code. To achieve this goal, however, one needs first to
establish a general formalism to describe the long-wave-
length limit within the context of density-functional per-
turbation theory (DFPT).
Here we provide a comprehensive solution to the above

issues by first rewriting the second-order energy at finite q
as an unconstrained minimization problem of a variational
functional of the first-order wave functions. Next, we show
that the parametric q dependence of the second-order
energy can be regarded as a small perturbation of the q ¼
0 functional; hence, one can apply the standard tools of
DFPT to perform an analytic long-wavelength expansion of
an arbitrary response property of the crystal in powers of q.
Remarkably, this strategy in combination with the “2nþ 1”
theorem enables us to write explicit formulas for first-order
dispersion coefficients that need only the uniform field
wave-function response as an input. Thus, one can take
advantage of the already implemented linear-response tools
to calculate a wide range of new materials properties, such
as flexoelectricity and the natural optical activity, at
essentially no cost and without the need for explicitly
implementing or calculating the wave-function response to
a gradient of the external field. Finally, we demonstrate our
formalism by implementing the formulas for the clamped-
ion flexoelectric coefficients and the dynamical quadrupole
tensor (the higher-order multipolar counterpart of the Born
dynamical charge tensor). The flexoelectric coefficients
that we calculate for several materials are consistent with
previously published results [19,20]. Established by Martin
in his seminal paper [14], the relationship between the
sublattice sum of the quadrupole moments and the
clamped-ion piezoelectric coefficients is numerically veri-
fied to a high degree of accuracy. Both quantities converge
with respect to the plane-wave cutoff and k-mesh density
comparably to “standard” linear-response properties (e.g.,
the macroscopic dielectric tensor) and can now be obtained
in a tiny fraction of the computational burden that was
formerly needed.
This work is organized as follows. In Sec. II, we present

our method based on the long-wavelength expansion of
DFPT and provide general formulas for dispersion proper-
ties at the lowest orders in q. In Sec. III, we discuss the
finite-q generalization of the electric field response, which
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we use to define and compute the polarization response in
the long-wavelength limit. In Secs. IV and V, we demon-
strate our long-wave approach by deriving and calculating
the dynamical quadrupole and clamped-ion flexoelectric
tensors in selected materials and model systems. Finally, in
Sec. VI, we present our conclusions and outlook, e.g.,
regarding future generalizations of our method to other
dispersion properties. The Appendixes provide additional
analytic support for the formulas reported in the main text.

II. LONG-WAVE PERTURBATION THEORY

A. Density-functional perturbation theory

Here we briefly introduce the basic principles of DFPT,
both for completeness and in order to support the formal
developments of the later sections. Consider an external
perturbation to the electronic ground state, which we
describe by assuming a parametric dependence of the
Hamiltonian operator on a small parameter λ,

ĤðλÞ ¼ Ĥð0Þ þ λĤð1Þ þ λ2Ĥð2Þ þ � � � : ð1Þ

The linear response of the wave functions to the perturba-
tion can be recast in terms of a Sternheimer equation,

Q̂ðHð0Þ − ϵð0Þm ÞQ̂jψ ð1Þ
m i ¼ −Q̂Ĥð1Þjψ ð0Þ

m i; ð2Þ

where Q̂ indicates the projector on the unoccupied band
manifold, and

Ĥð1Þ ¼ Ĥð1Þ þ V̂ð1Þ ð3Þ

contains, in addition to the external perturbation Ĥð1Þ, the
self-consistent (SCF) potential response V̂ð1Þ that depends
on the first-order electron density as

Vð1ÞðrÞ ¼
Z

d3r0KHxcðr; r0Þnð1ÞðrÞ;

nð1ÞðrÞ ¼ 2ℜ
X
m

hψ ð0Þ
m jrihrjψ ð1Þ

m i:

KHxcðr; r0Þ is the Hartree exchange and correlation (Hxc)
kernel, which is defined as the variation of the SCF
potential at r with respect to a charge-density perturbation
at r0 calculated at the ground-state density nð0Þ,

KHxcðr; r0Þ ¼
δVHxcðrÞ
δnðr0Þ

����
nð0Þ

¼ δ2EHxc

δnðrÞδnðr0Þ
����
nð0Þ

:

The second-order variation of the energy with respect to the
perturbation can then be written as

Eð2Þ ¼
X
m

hψ ð0Þ
m jĤð1Þjψ ð1Þ

m i þ 1

2

∂2E
∂λ2 ; ð4Þ

where the second term on the right-hand side does not
depend on the first-order wave functions,

1

2

∂2E
∂λ2 ¼

X
m

hψ ð0Þ
m jĤð2Þjψ ð0Þ

m i: ð5Þ

One can also recast the linear-response problem as a
variational functional of the first-order wave functions [21]

Eð2Þ ¼
X
m

hψ ð1Þ
m jðHð0Þ − ϵð0Þm Þjψ ð1Þ

m i

þ
X
m

ðhψ ð1Þ
m jHð1Þjψ ð0Þ

m i þ hψ ð0Þ
m jHð1Þjψ ð1Þ

m iÞ

þ 1

2

Z
Ω

Z
KHxcðr; r0Þnð1ÞðrÞnð1Þðr0Þd3rd3r0

þ 1

2

∂2E
∂λ2 ð6Þ

(the double integral of the third line must be taken once
over all space and once over the primitive unit cell, whose
volume is Ω) to be solved within the “parallel-transport
gauge” (i.e., under the constraint of orthonormality to the
valence manifold V),

hψ ð1Þ
j jψ ð0Þ

l i ¼ 0; j; l ∈ V:

Equations (4) and (6) manifestly coincide if the first-order
wave functions satisfy the Sternheimer equation (2); how-
ever, the latter expression has the virtue of being stationary

with respect to variations of jψ ð1Þ
m i, and such a characteristic

will have a key importance in the context of this work, as
we see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and conduc-
tion-band projectors (we already see the latter in the
previous subsection),

P̂ ¼
X
n

jψ ð0Þ
n ihψ ð0Þ

n j; Q̂ ¼ 1 − P̂: ð7Þ

We now use these definitions to write the linear-response
problem as an unconstrained variational minimum of the
following functional

Eð2Þ ¼
X
m

hψ ð1Þ
m jðĤð0Þ þ aP̂ − ϵð0Þm Þjψ ð1Þ

m i

þ
X
m

hψ ð1Þ
m jQ̂Ĥð1Þjψ ð0Þ

m i þ c:c:

þ 1

2

Z
Ω

Z
KHxcðr; r0Þnð1ÞðrÞnð1Þðr0Þd3rd3r0

þ 1

2

∂2E
∂λ2 : ð8Þ

FIRST-PRINCIPLES THEORY OF SPATIAL DISPERSION: … PHYS. REV. X 9, 021050 (2019)

021050-3



Note the explicit introduction of the band projectors in the
first and second lines and implicitly in the third line via a
redefinition of the first-order electron density,

nð1ÞðrÞ ¼
X
m

hψ ð1Þ
m jQ̂jrihrjψ ð0Þ

m i þ c:c: ð9Þ

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element in
the first line of Eq. (8), quadratic in the first-order wave
functions, is defined positive, and hence, that the functional
is stable. To see this point, consider the expectation value of
the operator in the round brackets on a valence (v) or
conduction (c) state,

hψ ð0Þ
v jðĤð0Þ þ aP̂ − ϵnÞjψ ð0Þ

v i ¼ ϵv þ a − ϵn;

hψ ð0Þ
c jðĤð0Þ þ aP̂ − ϵnÞjψ ð0Þ

c i ¼ ϵc − ϵn:

As n belongs to the valence band, the matrix element on the
conduction state is always positive. Regarding the valence
state, for the value ϵv þ a − ϵn to be guaranteed to be
positive, it suffices to set a to any positive energy that is
larger than the total valence bandwidth.
The insertion of a conduction-band projector Q̂ in both

the charge density and in the second line of Eq. (8) has the
purpose of enforcing the parallel-transport gauge, i.e., that
at the variational minimum the solutions ψ ð1Þ be strictly
orthogonal to the valence manifold. Indeed, thanks to the
projectors Q̂, the addition of a small valence component to
the trial solution ψ ð1Þ leaves the energy unaltered except for
the (quadratic) matrix element in the first line of Eq. (8).
The latter term, in turn, always provides a positive con-
tribution to the energy, whose magnitude depends on the
parameter a. Therefore, a has no influence other than
preventing the first-order wave functions from acquiring
arbitrarily large components on the valence manifold,
which will lead to runaway solutions.
Following these considerations, it is clear that the

variational solution of this unconstrained energy functional
is unique and corresponds precisely to the constrained
minimization procedure described by Gonze [22]. It also

leads, by differentiating Eq. (8) with respect to hψ ð1Þ
m j, to

the form of the Sternheimer equation proposed by Baroni
et al. [12],

ðĤð0Þ þ aP̂ − ϵð0Þm Þjψ ð1Þ
m i ¼ −Q̂Ĥð1Þjψ ð0Þ

m i: ð10Þ

Such a form clearly enforces P̂jψ ð1Þ
m i ¼ 0 and reduces to

Eq. (2) once the left-hand side is projected on the
conduction manifold.

C. Factorization of the phase

To appreciate the practical advantages of the uncon-
strained formulation of the previous subsection, we now

apply it to a monochromatic perturbation in a periodic
crystal. This can be expressed as a phase times a cell-
periodic part,

Ĥð1Þðr; r0Þ ¼ eiq·rĤð1Þ
q ðr; r0Þ: ð11Þ

As customary, we work with the cell-periodic part of the
Bloch wave functions by writing

ψmkðrÞ ¼ eik·rumkðrÞ;

which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.
For the sake of generality, we consider the mixed

derivative with respect to two distinct perturbations λ1
and λ2, whose physical nature is specified later in this
manuscript. (The functional, strictly speaking, is variational
only for λ1 ¼ λ2; yet, even in the mixed case it preserves
the stationary character with respect to small variations
in the first-order wave functions.) We implicitly assume
that the crystal under study is a time-reversal (TR)
symmetric insulator. (A generalization of the formulas to
TR-broken materials, while not difficult, will unnecessarily
complicate the notation.) The second-order energy can then
be written as

E
λ�
1
λ2

q ¼ s
Z
BZ
½d3k�

X
m

E
λ�
1
λ2

mk;q

þ 1

2

Z
Ω

Z
Kqðr; r0Þnλ1�q ðrÞnλ2q ðr0Þd3rd3r0

þ 1

2

∂2E
∂λ�1∂λ2 ; ð12Þ

where the quantity in the first line is given by

E
λ�
1
λ2

mk;q ¼ huλ1mk;qjðĤð0Þ
kþq þ aP̂kþq − ϵmkÞjuλ2mk;qi

þ huλ1mk;qjQ̂kþqĤ
λ2
k;qjuð0Þmki

þ huð0ÞmkjðĤλ1
k;qÞ†Q̂kþqjuλ2mk;qi; ð13Þ

s ¼ 2 is the spin multiplicity, and we use the following
shorthand notation for the Brillouin-zone averages,

Z
BZ
½d3k� ¼ Ω

ð2πÞ3
Z
BZ

d3k:

The last (third) line in Eq. (12) is, as usual, the nonvaria-
tional contribution to the second-order energy, while the
second line contains the self-consistent energy that depends
quadratically on the first-order electron densities [23]
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nλqðrÞ ¼ 2s
Z
BZ
½d3k�

X
m

huð0ÞmkjrihrjQ̂kþqjuλmk;qi: ð14Þ

Note that we introduce new symbols for the phase-
corrected Hxc kernel [we specialize to the local density
approximation (LDA)]

Kqðr; r0Þ ¼ KHxcðr; r0Þeiq·ðr0−rÞ;

the operators in momentum space

Ôk ¼ e−ik·rÔeik·r
0
;

and the cell-periodic part of the charge-density response

nλqðrÞ ¼ e−iq·rnλðrÞ:

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:
Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products with
ground-state valence orbitals at kþ q, the present version
is written in a manifestly gauge-invariant form; i.e., only
the operators explicitly depend on q. (The first-order wave
functions should be regarded as “trial” solutions, which
means that their q dependence is implicit: It is a conse-
quence of the stationary condition that is imposed on the
functional at each q.) This feature is a key advantage when
developing a perturbative theory in q, as the derivatives of
the operators in momentum space are well-defined math-
ematical objects and do not suffer from the phase inde-
terminacy of the Bloch states.

D. 2n+ 1 theorem

At this point, we can treat E
λ�
1
λ2

q as a new functional of

juλ1;2mk;qi, which depends parametrically on q. We can then
take advantage of the established mathematical tools of

perturbation theory to expand E
λ�
1
λ2

q in powers of q around
q ¼ 0, which has the physical interpretation of a long-wave
expansion. This procedure can be pushed, in principle, to
any order in q. In particular, in virtue of the 2nþ 1 theorem
[24], the knowledge of the q derivatives of the wave
functions up to order n is sufficient to calculate response
properties up to Oðq2nþ1Þ. As we see in the following, this
result is especially useful at the lowest orders: The
computational tools to calculate the n ¼ 0 (and, sometimes,
n ¼ 1) response functions are already available in many
public first-principles packages, which implies that many
response properties can be, in principle, extracted without
even implementing a new response function in the code. (In
the following, we illustrate this strategy at a formal level,
without specifying the physical nature of the perturbations;
practical examples are provided in Secs. IV and V.)

At first order in q, the 2nþ 1 theorem reduces to the
Hellmann-Feynman theorem and can be summarized as
follows:

E
λ�
1
λ2

γ ¼ dE
λ�
1
λ2

q

dqγ

����
q¼0

¼ ∂Eλ�
1
λ2

q

∂qγ
����
q¼0

; ð15Þ

which states that the q gradients of the response functions
juλmk;qi are not needed to access the q gradient of the
stationary second-order functional. (We specialize our
formulas to a neighborhood of q ¼ 0, as such a limit is
directly relevant for the macroscopic response properties of
the crystal.) In particular, we have

E
λ�
1
λ2

γ ¼ s
Z
BZ
½d3k�

X
m

E
λ�
1
λ2

mk;γ

þ 1

2

Z
Ω

Z
Kγðr; r0Þnλ1�ðrÞnλ2ðr0Þd3rd3r0

þ 1

2

∂
∂qγ

� ∂2E
∂λ�1∂λ2

�����
q¼0

; ð16Þ

where we use shorthand notation for the q derivative of the
Hartree and exchange-correlation kernel,

Kγðr; r0Þ ¼
∂Kqðr; r0Þ

∂qγ
����
q¼0

;

and the band-resolved contribution reads as

E
λ�
1
λ2

mk;γ ¼ huλ1mkj∂γĤ
ð0Þ
k juλ2mki

þ huλ1mkj∂γQ̂kĤ
λ2
k juð0Þmki þ huð0ÞmkjðĤλ1

k Þ†∂γQ̂kjuλ2mki
þ huλ1mkjĤλ2

k;γjuð0Þmki þ huð0ÞmkjðĤλ1
k;γÞ†juλ2mki: ð17Þ

Here we introduce new symbols for the q derivatives of the
external perturbation,

Ĥλ
k;γ ¼

∂Ĥλ
k;q

∂qγ
����
q¼0

;

and for the k derivatives of the ground-state operators
(Hamiltonian or band projectors), e.g.,

∂γĤ
ð0Þ
k ¼ ∂Ĥð0Þ

kþq

∂qγ
����
q¼0

:

Also, we remove the q subscript from those quantities
(either first-order wave functions, densities, or perturbing
operators) that are intended to be calculated at q ¼ 0,
e.g., juλmki ¼ juλmk;q¼0i.
Note that we use the symbol Ĥ introduced in Eq. (3)

in the second line of Eq. (17) to indicate that the
self-consistent (SCF) Hartree and exchange-correlation
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potential must be included in the first-order Hamiltonian at
q ¼ 0. The SCF part of Ĥλ

k comes from the Hartree and
exchange-correlation term in Eq. (12) via the partial
derivative of the first-order density with respect to qγ ,

∂nλðrÞ
∂qγ ¼ 2s

Z
BZ
½d3k�

X
m

huð0Þmkjrihrj∂γQ̂kjuλmki: ð18Þ

Crucially, the SCF potential needs to be explicitly calcu-
lated only at the level of the Oðq0Þ perturbation; the q
gradient of the perturbation, in the third line, concerns only
the external potential part Ĥ. (This result is, again, a
consequence of the 2nþ 1 theorem.) Note also that ∂γP̂k

has only cross-gap matrix elements; thus, it does not
contribute to the first line of Eq. (17), and we can omit
Q̂k from the matrix elements in the third line, as it always
appears next to a conduction-band state.
The above formulas enable the calculation of the

“d=dqγ” response with a computational workload that is
comparable to the uniform (q ¼ 0) case. Indeed, only the
q ¼ 0 first-order wave functions are needed as ingredients;
the additional burden consists of the implementation of the
new operators that appear in Eqs. (16) and (17), but once
this is done, the evaluation of the corresponding matrix
elements proceeds at essentially no cost. Most of these
“new” operators are, in fact, well known in the context of
band theory and are standard in most DFPT implementa-

tions (e.g., the velocity operator ∂γĤ
ð0Þ
k or the derivatives of

the band projectors). For example, the second line of
Eq. (17) might look unusual at first sight, but it can be
made more explicit by observing that ∂γQ̂k ¼ −∂γP̂k

and that

∂γP̂k ¼
X
n

ðjuð0Þnkih∂̃γu
ð0Þ
nk j þ j∂̃γu

ð0Þ
nkihuð0Þnk jÞ; ð19Þ

where j∂̃γu
ð0Þ
nki are the “covariant derivatives” of the

ground-state wave functions (also known as d=dkγ
response functions) and are orthogonal to the valence
manifold. Then, one immediately obtains

huλ1mkj∂γQ̂kĤ
λ2
k juð0Þmki ¼ −

X
n

huλ1mkj∂̃γu
ð0Þ
nkihuð0Þnk jĤλ2

k juð0Þmki;

ð20Þ

which is now a rather familiar expression in the context
of DFPT.
The truly new pieces in Eqs. (16) and (17) are the q

derivatives of the monochromatic perturbation and the q
derivative of the SCF kernel. We defer the discussion of the
former term, which depends on the specific perturbation, to
Secs. IV and V. The latter quantity is particularly simple to
evaluate in the framework of the LDA, where the XC kernel

is independent of q. (Adapting the formalism to other XC
functionals, e.g., in the framework of the generalized-
gradient approximation is, in any case, straightforward:
It requires calculating only the analytic q derivative of the
exchange-correlation kernel, which is well behaved in the
long-wavelength limit [25]) As we are left only with
electrostatic effects, it is most convenient to work in
reciprocal space, where the Coulomb (Hartree) kernel is
local,

KH;qðG;G0Þ ¼ 4π
δGG0

jGþ qj2 : ð21Þ

(G and G0 stand for reciprocal-lattice vectors, and δ is a
Kronecker symbol.) The q gradient (at q ¼ 0) of the above
expression is easily computed,

KγðG;G0Þ ¼ −8πGγ
δGG0

G4
: ð22Þ

The G ¼ 0 term must be, of course, excluded; this
corresponds to adopting short-circuit electrical boundary
conditions, which is the correct choice for computing
materials properties that have a tensorial nature. (A formal
justification of this point was provided in Ref. [22] for the
uniform electric field problem and in Ref. [13] for the
flexoelectric tensor.)

E. Higher orders

As we said, the 2nþ 1 theorem, in principle, provides
access to the long-wave expansion terms of a given crystal
response to any order in q. In general, the analytic formulas
for higher orders in q can become rather cumbersome to
derive, as they involve a larger number of terms; plus, they
typically require additional response functions to be imple-
mented and calculated. There is, however, an important
exception to this statement that is worth discussing, as it is
central to the topics that we present in the later sections.
Indeed, there are some notable cases where a perturbation
produces a vanishing response at q ¼ 0, and the interesting
physics occurs only at first order in q. A classic example is
that of a scalar potential perturbation: At q ¼ 0, the
perturbation is a rigid shift of the potential reference,
which has obviously no effect on the electronic structure;
at first order in q, one obtains the response to a uniform
electric field [22]. In such cases, the formula for the Oðq2Þ
response simplifies considerably and, in fact, is only
marginally more complicated than the first-order formulas,
Eqs. (16) and (17).
To be more specific, consider the following mixed

derivative,

E
λ�
1
λ2

γδ ¼ d2E
λ�
1
λ2

q

dqγdqδ

����
q¼0

;
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and assume that juλ2mk;q¼0i ¼ 0. Consistent with the above
notation, we indicate the response function to a gradient of
the perturbation λ2 as

juλ2mk;δi ¼
���� ∂u

λ2
mk;q

∂qδ
����
q¼0

�
:

Then we have

E
λ�
1
λ2

γδ ¼ Ẽ
λ�
1
λ2

γδ þ Ẽ
λ�
1
λ2

δγ ; ð23Þ

where the tilded (unsymmetrized) quantities read as

Ẽ
λ�
1
λ2

γδ ¼ s
Z
BZ
½d3k�

X
m

Ẽ
λ�
1
λ2

mk;γδ

þ 1

2

Z Z
Kγðr; r0Þnλ1�ðrÞnλ2δ ðr0Þd3rd3r0

þ 1

4

∂2

∂qγ∂qδ
� ∂2E
∂λ�1∂λ2

�����
q¼0

ð24Þ

with

Ẽ
λ�
1
λ2

mk;γδ ¼ huλ1mkj∂γĤ
ð0Þ
k juλ2mk;δi

þ 1

2
huλ1mkj∂γδQ̂kĤ

λ2
k juð0Þmki þ huλ1mkj∂γQ̂kĤ

λ2
k;δjuð0Þmki

þ huð0ÞmkjðĤλ1
k Þ†∂γQ̂kjuλ2mk;δi þ

1

2
huλ1mkjĤλ2

k;γδjuð0Þmki

þ huð0ÞmkjðĤλ1
k;γÞ†juλ2mk;δi ð25Þ

and

nλ2δ ðrÞ ¼ 2s
Z
BZ
½d3k�

X
m

huð0Þmkjrihrjuλ2mk;δi: ð26Þ

(Again, we can drop the conduction-band projector as
juλ2mk;δi belongs to the conduction band by construction.)
The resulting formulas for the second-order energy are
essentially identical to those derived in Sec. II D for the first
order in q, with three main differences: (i) the result needs
now to be symmetrized with respect to γ and δ; (ii) every
occurrence of the response functions and perturbing oper-
ators that depend on λ2 need to be replaced with their next
higher-order gradient in q; (iii) there is a new term in
Eq. (25) containing the second k gradient of the band
projector ∂γδQ̂k. The latter operator is multiplied by Ĥλ2

k ,
which we include to account for cases where the perturba-
tion λ2, while yielding a vanishing response at q ¼ 0, may
not vanish therein.
Similar considerations can be used in order to push the

expansion to Oðq3Þ whenever both perturbations λ1 and λ2
produce a vanishing response at q ¼ 0.

III. TREATMENT OF THE
POLARIZATION RESPONSE

Many materials properties (including the flexoelectric
tensor that we discuss in Sec. V) involve, in one way or
another, the polarization response to an external perturba-
tion. Correctly treating the long-wavelength limit of the
electrical polarization is far from trivial in the framework of
density-functional perturbation theory. In the presence of a
spatial modulation, the standard formulas (e.g., based on
the Berry-phase approach) are not applicable, since they are
specialized to the macroscopic response at the Brillouin-
zone center. To work around this issue, in Ref. [20] the
polarization (P) response to some monochromatic external
field λq was expressed as the current-density (J) response to
the time derivative of the field,

dPq

dλq
¼ dJq

d_λq
: ð27Þ

In a quantum-mechanical context, this can be expressed
[20,26] via the following formula,

dPq
α

dλq
¼ 2s

Ω

Z
BZ
½d3k�

X
m

huð0ÞmkjĴαk;qjδuλmk;qi; ð28Þ

where Ĵαk;q is the current-density operator at a given value
of q, jδuλmk;qi describes the adiabatic wave-function
response [20] to the perturbation velocity in the limit of
_λq → 0, and the index m runs over the occupied manifold.
In other words, if we modulate the perturbation in time with
a dynamical phase e−iωt, jδψq

i i is related to the first-order
term in the low-frequency expansion of the wave-function
response.
Unfortunately, Eq. (28) is not directly useful to our

scopes, as it is not explicitly written as a second derivative
of the total energy. To circumvent this issue, we use the
known [27] thermodynamic relationship P ¼ −∂E=∂E to
rewrite P as a mixed derivative with respect to the electric
field E and the external perturbation λ,

dPq
α

dλq
¼ −

d2E
dE−q

α dλq
: ð29Þ

This strategy recovers the established DFPT formulas [11]
for the polarization response in the q ¼ 0 case. [For
instance, if λ is an atomic displacement, Eq. (29) reduces
to the standard linear-response expression for the Born
effective charge tensor.] It presents, however, a new
complication in that we need to generalize the electric
field perturbation to finite values of q. To do that, we
express the E-field perturbation as the time derivative of the
A-field perturbation, again by means of adiabatic pertur-
bation theory. As we see shortly, this allows us to write the
polarization response in a variational form, and therefore
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apply the formalism that we develop in the previous
sections to perform its long-wave expansion.
In the following subsections, we first discuss the

response to a monochromatic vector potential at finite q,
which is the fundamental building block of our approach.
The electric field response is then defined as the frequency
derivative of the vector potential response via a first-order
expansion in the frequency. Finally, we discuss the simpler
case of the scalar potential perturbation and show that, at
first order in q, it correctly recovers the electric field
response (as defined via adiabatic perturbation theory)
at q ¼ 0.

A. Vector potential

The coupling of a generic Hamiltonian to a modulatedA
field is expressed, in the linear regime, via the current-
density operator [20]. We report its derivation, following
the guidelines of Ref. [20], in Appendix A; hereafter, we
discuss the response to such a perturbation with special
attention to the lowest orders in q.
The wave-function response can be written in terms of

the following Sternheimer equation

ðĤð0Þ
kþq þ aP̂kþq − ϵmkÞjuAα

mk;qi ¼ −Q̂kþqĤ
Aα
k;qjuð0Þmki;

ð30Þ

where ĤAα
k;q is the first-order variation of the Hamiltonian in

the presence of a modulated A field. (Note the absence of
the SCF potential contribution, as a static vector potential
field leaves the charge density of the crystal unaltered in the
linear regime by time-reversal symmetry.) In the context of
this work, we need only the zeroth and first orders in the q
expansion of juAα

mk;qi. Regarding the q ¼ 0 limit, it is easy
to show that (since we are dealing with electrons, we
assume Q ¼ −1 henceforth)

juAα
mk;q¼0i ¼ ∂αP̂kjuð0Þmki ¼ j∂̃αu

ð0Þ
mki; ð31Þ

where the “∂” sign is a shortcut for the gradient in k space,
and the tilde indicates the covariant derivation in the
language of band theory. Regarding the first order in q,
we report here the final result (we report a detailed
derivation in Appendix A)

juAβ

mk;γi ¼
���� ∂u

Aβ

mk;q¼0

∂qγ
�

¼ 1

2
ð∂2

βγP̂kjuð0Þnki

− ½∂γP̂k; ∂βP̂k�juð0Þnki þ juCGnk;βγiÞ: ð32Þ

The first term on the right-hand side is symmetric in βγ; the
second and the third terms are both antisymmetric and
describe the response to a uniform magnetic field B. In
particular, the second contribution has only valence-band
components and is related to the Berry curvature; the third

is a cross-gap (CG) contribution that obeys the following
Sternheimer equation,

ðĤk þ aP̂k − ϵnkÞjuCGnk;βγi ¼ −Q̂kðf∂γĤk; ∂αP̂kg
− f∂αĤk; ∂γP̂kgÞjuð0Þnki: ð33Þ

This corresponds precisely to the linear response of the
wave functions to a uniform B field as derived in Ref. [28].

B. Electric field

The standard treatment of the electric field perturbation
is based on the long-wavelength limit of a scalar potential
perturbation [22]. Such an approach, which we discuss in
Sec. III C, is appealing for its simplicity; however, when
pushed to higher orders in q, it has the disadvantage
of limiting the scope of the theory to the longitudinal
components of many dispersion-related tensors. (The trans-
verse components of the flexoelectric tensor, for example,
require a current-density response theory [20], while the
scalar potential is only sensitive to the charge-density
response.)
Instead, here we work in an electromagnetic gauge

where the scalar potential vanishes, and the electric field
is provided by a vector potential that is slowly varying over
time E ¼ −∂tA. To achieve this goal, we need to establish a
time-dependent framework, where the external perturbation
(in this case, the vector potential that we discuss in the
previous subsection) is applied dynamically.
The adequate formalism to attack this problem is

provided by first-order adiabatic perturbation theory, which
relates the adiabatic wave functions jδni to the static
response functions j∂λni via a Sternheimer equation,

ðĤ þ aP̂ − ϵnÞjδni ¼ ij∂λni: ð34Þ

Here, j∂λni and jδni describe the first-order response to λ

and _λ, respectively. In the context of the electric field
response, this translates into

ðĤð0Þ
kþq þ aP̂kþq − ϵmkÞjuEα

mk;qi
¼ −ijuAα

mk;qi − Q̂kþqV
Eα
q juð0Þnki; ð35Þ

where we incorporate charge self-consistency via the usual
SCF potential contribution VEα

q . Remarkably, the A-field
response functions now play the role of an external
perturbation in the context of the E-field response,

Q̂kþqĤ
Eα
k;qjuð0Þmki → jiuAα

mk;qi:

This allows us to write the mixed derivative with respect to
an electric field and a second perturbation λ as the
following stationary functional of juEαmk;qi and juλmk;qi,
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EE�αλ
q ¼ s

Z
BZ
½d3k�

X
m

EE�αλ
mk;q

þ 1

2

Z Z
Kqðr; r0ÞnEα�

q ðrÞnλqðr0Þd3rd3r0 ð36Þ

(we neglect the nonvariational term, as it is generally absent
in the case of the E-field response), where

EE�αλ
mk;q ¼ huEαmk;qjðĤð0Þ

kþq þ aP̂kþq − ϵmkÞjuλmk;qi
þ huEαmk;qjQ̂kþqHλ

k;qjuð0Þmki þ hiuAα
mk;qjuλmk;qi: ð37Þ

Note that Eq. (36) is not a variational function of the A-
field response wave functions jiuAα

mk;qi. Consequently,

when calculating the q derivatives of EE�αλ
q , one needs to

explicitly derive the functions jiuAα
mk;qi as one would do for

a standard external potential operator (e.g., corresponding
to a phonon or a “metric” [26] perturbation, as in the
flexoelectric case of Sec. V). Note also that at q ¼ 0, the
above formulas trivially reduce to the standard treatment of
the uniform electric field perturbation [11], of which they
constitute the desired generalization to arbitrary q vectors.
Before closing this subsection, it is interesting to verify

where the variational formulas derived here stand compared
to the existing treatment of the polarization response [20]
via Eq. (28). By imposing the stationary condition Eq. (35)
to Eq. (36), we obtain the following nonstationary formula
for the polarization response,

dPq
α

dλ
¼ −

2

Ω
EE�αλ
q ¼ −

2s
Ω

Z
BZ
½d3k�

X
m

hiuAα
mk;qjuλmk;qi: ð38Þ

It is not difficult to show that Eq. (38) exactly matches
Eq. (28). One just needs to recall the relationship between
the current-density operator and the vector potential per-
turbation Eq. (A5) and the sum-over-states expression of
the adiabatic wave functions [a consequence of Eq. (34)],

jδuλmk;qi ¼ i
X

n∈unocc
juð0Þnkþqi

huð0Þnkþqjuλmk;qi
ϵnkþq − ϵmk

: ð39Þ

To go from Eq. (28) to Eq. (38), it suffices then to
incorporate Eq. (39) into Eq. (28) and subsequently move
the energy denominator and the factor of i from the right (λ
response) to the left (A response) matrix element. This
derivation shows that, apart from irrelevant differences in
the notation, Eq. (28) can be regarded as the nonstationary
[11] counterpart of the variational functional, Eq. (36).

C. Scalar potential

A monochromatic scalar potential perturbation simply
involves adding φeiq·r to the local electrostatic potential;
thus, in the language of this work, the external perturbation

is the unity operator at any q, Ĥφ
q ¼ Q ¼ −1, where Q is

the electron charge. The mixed derivative functional
involving a scalar potential and a second perturbation λ
then reads as (note, as in the electric field case, the
disappearance of the nonvariational term)

Eφ�λ
q ¼ s

Z
BZ
½d3k�

X
m

Eφ�λ
mk;q

þ 1

2

Z Z
Kqðr; r0Þnφ�q ðrÞnλqðr0Þd3rd3r0; ð40Þ

where

Eφ�λ
mk;q ¼ huφmk;qjðĤð0Þ

kþq þ aP̂kþq − ϵmkÞjuλmk;qi
− huð0ÞmkjQ̂kþqjuλmk;qi þ huφmk;qjQ̂kþqĤ

λ
k;qjuð0Þmki:

ð41Þ

Differentiation with respect to juλmk;qi yields the
Sternheimer equation for the first-order wave functions,

ðĤð0Þ
kþq þ aP̂kþq − ϵmkÞjuφmk;qi ¼ −Q̂kþqð−1þ V̂φ

qÞjuð0Þmki;
ð42Þ

where V̂φ
q is, as usual, the SCF contribution to the

perturbation.
As we mentioned earlier, the scalar potential response

vanishes at q ¼ 0, and any mixed derivative involving φ
identically vanishes at q ¼ 0 as well. (Note that the
perturbation does not vanish at q ¼ 0, as it is a constant
equal to −1 at any value of the wave vector.) At first order
in q, one recovers the standard treatment of the uniform
electric field [22], with the following relationship between
the corresponding first-order wave functions,

juEδmki ¼ jiuφmk;δi: ð43Þ

Then, by combining Eq. (43) with our higher-order formula
Eq. (24), one can obtain useful information about the
dispersion of the charge-density response of the system to
an arbitrary perturbation.
To see the relationship between the scalar potential and

the first-order charge density, one can insert Eq. (42) into
Eq. (40) to obtain a nonstationary expression for the mixed
derivative,

Eφ�λ
q ¼ −s

Z
BZ
½d3k�

X
m

huð0ÞmkjQ̂kþqjuλmk;qi; ð44Þ

which provides a direct link to the electronic contribution to
the charge-density response,
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ρ̄λel;q ¼ −
1

Ω

Z
Ω
d3rnλqðrÞ ¼

2

Ω
Eφ�λ
q : ð45Þ

Note that ρ̄λel;q, the cell-averaged electronic charge density
induced by the perturbation λ, differs from the cell average
of nλqðrÞ by a minus sign, which stems from the negative
electron charge.

D. Relationship to the continuity equation

The fact that Eφ�λ
q and −EE�αλ

q correspond, respectively
(modulo a factor of 2=Ω), to the charge-density and
polarization response to the perturbation λ implies that
they must satisfy the continuity equation ∇ · P ¼ −ρ. In
reciprocal space, this means that the following must be true,

i
X
α

qαE
E�αλ
q ¼ Eφ�λ

q : ð46Þ

The correctness of this result can be, of course, verified at
the level of the finite-q functionals, respectively, Eqs. (36)
and (40). In the context of the present work, however,
it is perhaps more insightful to verify Eq. (46) in the long-
wave limit and use it as a “sanity check” of the formalism.
At the lowest orders in q, Eq. (46) leads to the following
relationships,

−EE�αλ ¼ iEφ�λ
α ; ð47aÞ

iEE�αλ
β þ iE

E�βλ
α ¼ −Eφ�λ

αβ : ð47bÞ

(We choose the prefactors in such a way that all quantities
are real numbers and that they match the sign conventions
of Ref. [13].) Equation (47a) is trivial to verify by using
Eq. (36) and the Hellmann-Feynman theorem applied to the
first q gradient of Eq. (40). Equation (47b) can be checked
by applying the higher-order formula Eq. (24) to Eq. (40)
and by using the relationship existing between the scalar
potential and the electric field response functions, Eq. (43).
In the special case of λ being an atomic displacement, one
can recognize the relationships between the multipolar
expansion of the charge-density and polarization response
as established in Ref. [13].

IV. DYNAMICAL QUADRUPOLE TENSOR

A. Theory

Following the notation of Ref. [13], we can define the
cell-integrated charge response to a monochromatic atomic
displacement as

Qq
κβ ¼ Ωρ̄τκβq ¼ −iqβZκ þ 2E

φ�τκβ
q ; ð48Þ

where Zκ is the pseudopotential charge, and 2E
φ�τκβ
q is the

mixed derivative of the energy with respect to a scalar
potential [see Sec. III C, Eq. (40) in particular] and an
atomic displacement pattern of the type

Rlκ ¼ R0
lκ þ τκe

iq·R0
lκ : ð49Þ

(l and κ are cell and sublattice indices, respectively. R0
lκ

indicates the unperturbed atomic position. Note that this
perturbation differs from the standard implementations of
DFPT [12,22] by a phase factor; see Appendix B 1 for
details.)
In the long-wave limit, Qq

κβ can be written as a multipole
expansion of the charge density induced by an atomic
displacement,

Qq
κβ ¼ −iqγQ

ð1;γÞ
κβ −

qγqδ
2

Qð2;γδÞ
κβ þ � � � ; ð50Þ

where the dots stand for higher-order terms that we do not
discuss in this work. The first-order term corresponds to the
Born effective charge tensor,

Z�
κ;βγ ¼ Qð1;γÞ

κβ ¼ δβγZκ þ ΔZκ;βγ; ð51Þ

where the electronic contribution reads as

ΔZκ;βγ ¼ ¼ 2is
Z
BZ
½d3k�

X
m

huð0Þmkj∂γP̂kjuτκβmki

¼ 2is
Z
BZ
½d3k�

X
m

h∂̃γu
ð0Þ
mkjuτκβmki

¼ −2s
Z
BZ
½d3k�

X
m

hi∂̃γu
ð0Þ
mkjuτκβmki; ð52Þ

thus, recovering the already established result [11,12]. [We
apply the Hellmann-Feynman theorem to the q derivative
of the functional of Eq. (40), combined with the fact that the
φ-response wave functions vanish at q ¼ 0.]
The quadrupole tensor elements can be written as the

second q gradients of Qq
κβ,

Qð2;γδÞ
κβ ¼ −2Eφ�τκβ

γδ : ð53Þ

By using Eq. (47b), we arrive at the following expression,

E
φ�τκβ
γδ ¼ −iEE�δτκβ

γ − iE
E�γ τκβ
δ : ð54Þ

The first q gradient of the mixed response to an electric
field and to an atomic displacement can then be calculated
by applying Eqs. (16) and (17) to Eqs. (36) and (37),
respectively,

E
E�δτκβ
γ ¼ s

Z
BZ
½d3k�

X
m

E
E�δτκβ
mk;γ

þ 1

2

Z
Ω

Z
Kγðr; r0ÞnEδðrÞnτκβðr0Þd3rd3r0; ð55Þ

with
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E
E�δτκβ
mk;γ ¼ huEδmkj∂γĤ

ð0Þ
k juτκβmki þ huEδmkj∂γQ̂kĤ

τκβ
k juð0Þmki

þ huð0ÞmkjVEδ∂γQ̂kjuτκβmki þ huEδmkjĤτκβ
k;γjuð0Þmki

þ hiuAδ
mk;γjuτκβmki: ð56Þ

Since the response functions need to be symmetrized
according to Eq. (54), we can simplify the expression of
juAδ

mk;γi, Eq. (32), and set

hiuAδ
mk;γjuτκβmki → −

i
2
huð0Þmkj∂γδP̂kjuτκβmki; ð57Þ

where ∂γδP̂k is the second k gradient of the valence-band
projector that we describe in Appendix A. [Other terms in
Eq. (32) vanish as they are antisymmetric in the two
indices.] The explicit formula for the q derivative of the
atomic displacement perturbation Ĥ

τκβ
k;γ is reported in

Appendix B 1.
Note that we can obtain the same result by directly

applying the higher-order formula Eq. (24) to Eq. (40),
instead of using Eq. (54). The above procedure has the
advantage that the intermediate quantity E

E�δτκβ
mk;γ has also a

well-defined physical meaning, as it relates to the Pð1Þ
tensors discussed in Refs. [6,13],

Pð1;γÞ
δ;κβ ¼ 2i

Ω
E
E�δτκβ
γ : ð58Þ

These quantities can be interpreted as the first spatial
moment of the polarization field induced by an atomic
displacement and are required for the calculation of the so-
called “mixed” contribution to the flexoelectric tensor.
Their in-depth discussion brings us out of our main topic,
and we defer it to a forthcoming publication.

B. Computational parameters

The computation of the quadrupole tensor is imple-
mented in the ABINIT [29] package as a postprocessing of
the DFPT response function calculations. All the numerical
results are obtained employing Troullier-Martins norm-
conserving pseudopotentials and the Perdew-Wang [30]
parametrization of the LDA. For our calculations on bulk
Si, we use the calculated cell parameter of a0 ¼ 10.102
bohr and two different crystal cells: (i) the primitive two-
atom cell sampled with a Monkhorst-Pack (MP) mesh of
12 × 12 × 12 k points, and (ii) a nonprimitive six-atom
hexagonal cell with the translation vectors oriented along
the ½011̄�, ½101̄; � and ½111� directions, sampled with a Γ-
centered 22 × 22 × 22 kmesh. We use a plane-wave cutoff
of 20 Ha in both cell types. We also perform a convergence
study by repeating our calculations at several different
values of the cutoff and k-point mesh resolution. Regarding
our calculations of ferroelectric PbTiO3, we use a tetrago-
nal five-atom unit cell, with a plane-wave cutoff of 70 Ha

and an 8 × 8 × 8 MP mesh of k points. We relax the unit
cell until the forces are smaller than 1 × 10−6 Ha=bohr,
obtaining an aspect ratio of c=a ¼ 1.046 (a ¼ 7.275 bohr)
and a spontaneous polarization PS ¼ 0.78 C=m2. These
structural data are in excellent agreement with earlier
calculations of the same system [27].

C. Numerical results

We first study bulk Si as a test case. The quadrupolar
tensor is defined by a single material constant Q via the
following expression,

Qð2;γδÞ
κβ ¼ ð−1Þκþ1Qjεβγδj; ð59Þ

where εβγδ is the Levi-Civita tensor. In order to benchmark
the formalism, we first perform a calculation of Q via an
independent real-space method, which does not rely on
Eq. (53). To this end, we calculate the charge-density
response to an atomic displacement along the ½111�
direction by using a Brillouin-zone unfolding procedure
[31] applied to the six-atom hexagonal cell. In particular,
we consider a stripe of 22 equidistant q points (q ¼ 0
included), spanning the entire Brillouin zone along the
crystallographic ½111� direction and calculate the first-order
densities associated with a phonon perturbation at each q.
(In practice, the number of independent q points reduces to
12 due to time-reversal symmetry.) After unfolding, we
readily obtain the induced charge density that corresponds
to a displacement of an isolated atom. (In practice, this
approach corresponds to studying the displacement of a
plane of atoms in a supercell where the hexagonal unit is
repeated 22 times along the [111] direction.) We report the
plane averages of the first-order density in Fig. 1, where we
also show its decomposition into the antisymmetric and
symmetric contributions. A fast decay of the induced
density is clearly observed, which allows us to calculate
the desired real-space moments with high numerical
accuracy. The dipole moment correctly reproduces the
pseudopotential charge, as expected. The second real-space
moment of the first-order charge is then related to Q via

QRS ¼
ffiffiffi
3

p

2
ϵ∞Q̄

ð2Þ
½111�; ð60Þ

where the superscript RS stands for “real space,” and ϵ∞ is
the calculated electronic dielectric constant.

Our calculated values are Q̄ð2Þ
½111� ¼1.178 and ϵ∞¼13.103,

which via Eq. (60) yield a value of QRS ¼ 13.367 e bohr.
With an equivalent choice of the computational parameters,
by using our new method, Eq. (53) and the primitive two-
atom cell, we obtain Q ¼ 13.368 e bohr. The matching
between the two approaches is essentially perfect, which
demonstrates the soundness of our implementation.
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To better illustrate the plane-wave and k-point mesh
requirements of our new method, we also perform a
convergence study, where we compare the behavior of
the quadrupole tensor components (alongside with the
flexoelectric response, which we comment on in Sec. V)
to that of a standard linear-response quantity, the electronic
dielectric constant. The numerical results are plotted in
Figs. 2(a) and 2(b) as a function of the plane-wave energy
cutoffs and the number of k points employed to sample the
Brillouin zone. One can clearly appreciate from the figure
that the quadrupoles [Fig. 2(a)] and the dielectric constant

[Fig. 2(b)] converge equally fast with respect to both
computational parameters. Moreover, the agreement
between Q and QRS becomes better and better as the
energy cutoff increases. Both observations concur to put
our new method based on Eq. (53) on very firm ground.
Note that the calculation via Eq. (53) is at least an order of
magnitude more efficient than the alternative real-space
method, as the latter requires us to calculate the phonon
response at many q points, while the present approach
requires only Γ-point response functions as prerequisites.
Next, as a more ambitious test of our method, we carry

out a numerical verification of Martin’s formula [14]

eαβγ ¼ −
1

2Ω

X
κ

ðQð2;αγÞ
κβ −Qð2;γβÞ

κα þQð2;βαÞ
κγ Þ; ð61Þ

relating the proper [32] clamped-ion piezoelectric tensor
eαβγ to the sublattice sum of the dynamical quadrupoles.
[Here, the first subscript (α) of the piezoelectric tensor on
the left-hand side indicates the polarization direction,
whereas the other two indices (βγ) refer to the strain tensor
components.] In particular, we benchmark the value of eαβγ
computed from Eq. (61) via the quadrupoles against its
value obtained as the mixed derivative of the energy with
respect to the components of the strain and the electric field.
The latter response function is a standard DFPT quantity
that we obtain by means of the metric tensor formulation by
Hamann et al. [33] as implemented in the ABINIT package.
We focus on a well-known piezoelectric system, the

tetragonal phase of PbTiO3. The quadrupole moments of
each atom in the unit cell are shown in Table I. As for the
three independent PbTiO3 piezoelectric tensor elements,
they are reported in Table II. The comparison between
the coefficients from the two methods demonstrates
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FIG. 2. Convergence of selected linear-response quantities with respect to the plane-wave cutoff and the density of the k-point mesh.
Calculated dynamic quadrupole moment (a), dielectric constant (b) and longitudinal flexoelectric coefficient (c) are shown. Red empty
circles (lines are a guide to the eye) are obtained by varying the plane-waves energy cutoff while keeping the 12 × 12 × 12 k-points grid
fixed. Empty blue squares correspond to varying the k-points mesh resolution with a fixed energy cut-off of 20 Ha. Panel (a) includes the
energy cut-off dependence of the quadrupole constant as calculated from the second moment of the induced charge density response
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FIG. 1. Electron-density response to an atomic displacement
along the [111] direction in bulk Si (solid line). Its symmetric
(dotted line) and antisymmetric (dashed line) parts are also
plotted. The first-order density is averaged in plane. The origin
of the abscissas coincides with the position of the atomic
sublattice highlighted in the inset.
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exceptionally good agreement, which improves up to the
fifth decimal digit by increasing the density of k points
to 14 × 14 × 14. Our results also qualitatively agree
with those of Ref. [34], wherein a different set of lattice
parameters, pseudopotentials, and exchange-correlation
functionals were employed.

V. FLEXOELECTRICITY

A. Theory

The flexoelectric tensor describes the macroscopic
polarization response to a strain gradient. It can be written
in two different ways [6,13] depending on how the strain-
gradient tensor is defined. The type-I form is

μIαβ;γδ ¼
dPα

dηβ;γδ
; ð62Þ

where ηβ;γδ is the second spatial gradient of the displace-
ment field. Alternatively, one can use the type-II form,

μIIαγ;βδ ¼
dPα

dεβδ;γ
; ð63Þ

where εβδ;γ is the first gradient of the symmetric strain
tensor. The two representations contain the same informa-
tion and are symmetric under permutation of the last two
indices. One can convert one into the other and vice versa
via the following relationships

μIIαγ;βδ ¼ μIαβ;γδ þ μIαδ;βγ − μIαγ;δβ; ð64aÞ

μIαβ;γδ ¼
1

2
ðμIIαγ;βδ þ μIIαδ;βγÞ: ð64bÞ

From the point of view of atomistic calculations,
flexoelectricity can be decomposed into three distinct
contributions [13]: lattice mediated, mixed, and electronic.
In principle, all three can be written by using the formalism
developed in this work in terms of a few basic ingredients.
These ingredients are the mixed response to an electric
field, atomic displacement, or metric wave perturbation
taken at first or second order in q. We defer the detailed
implementation and test of the full flexoelectric tensor to a
forthcoming publication and focus here on the purely
electronic response only.
The electronic flexoelectric tensor can be written as the

second derivative with respect to q of the current density
that is adiabatically induced by a “clamped-ion” acoustic
phonon perturbation [20], i.e., to a displacement pattern of
the type

Rlκ ¼ R0
lκ þ ueiq·R

0
lκ : ð65Þ

Note the absence of the basis index on the perturbation
parameter; this implies that all atoms in the primitive cell
should be displaced simultaneously with equal amplitude
u. Thus, a calculation of the flexoelectric tensor can be, in
principle, carried out by regarding Eq. (65) as the sublattice
sum of Eq. (49), which leads to the following practical
scheme. First, one writes the polarization response to the
displacement of an individual sublattice at finite q; then, a
second-order expansion in the wave vector q is performed;
finally, the clamped-ion flexoelectric tensor is written as a
sublattice sum of the result [13]. This was indeed the
strategy adopted in Ref. [20].
In the context of this work, however, such an approach is

impractical—the phonon perturbation of Eq. (49) does not
vanish in the q ¼ 0 limit. Therefore, Eq. (24) cannot be
directly applied to calculate expansion to second order in
q of the corresponding polarization response. To work
around this obstacle, we follow Refs. [26,35] and recast
the acoustic phonon as a “metric wave” perturbation by
operating a coordinate transformation to the curvilinear
comoving frame. We then write the polarization response to
the acoustic phonon at finite q as (following the notation of
Ref. [26])

P̄0q
α;β ¼ −

2

Ω
EE�

αðβÞ
q ; ð66Þ

where EE�αðβÞ
q refers to the mixed derivative of Eq. (36)

specialized to the case λ ¼ ðβÞ, and (β) indicates a metric
wave with the displacement field oriented along the
Cartesian direction β. (The overline implies cell averaging,

TABLE I. Quadrupole moments (in e bohr) of PbTiO3 calcu-

lated via Eq. (53). Note that Qð2;βγÞ
κα ¼ Qð2;γβÞ

κα .

κ ¼ Pb κ ¼ Ti κ ¼ O1 κ ¼ O2 κ ¼ O3

Qð2;11Þ
κ3

2.264 −3.545 2.884 −4.186 0.406

Qð2;22Þ
κ3

2.264 −3.545 −4.186 2.884 0.406

Qð2;31Þ
κ1

−0.062 −3.799 3.123 −1.115 −1.784

Qð2;32Þ
κ2

−0.062 −3.799 −1.115 3.123 −1.784

Qð2;33Þ
κ3

1.240 −0.195 2.027 2.027 6.653

TABLE II. Clamped-ion piezoelectric coefficients (in C=m2) of
PbTiO3 calculated via two different methods. “Strain”: Standard
DFPT approach relying on the strain [33] and electric field
response. “Quadrupoles”: From the quadrupole moments via
Eq. (61). Literature values from Ref. [34] are shown for
comparison.

e113 ¼ e223 e311 ¼ e322 e333

Strain 0.1547 0.3617 −0.8345
Quadrupoles 0.1548 0.3614 −0.8347
Ref. [34] 0.20 0.35 −0.88
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and the prime indicates that we implicitly discard the
magneticlike contribution from rotation gradients, follow-
ing the arguments of Refs. [20,26,35].)
It is useful at this stage to recall [26] two crucial

properties of the metric wave: (i) both the perturbation
and the response vanish at q ¼ 0,

ĤðβÞ
k;q¼0 ¼ 0; juðβÞmk;q¼0i ¼ 0; ð67Þ

(ii) at first order in q, the metric wave reduces to the
uniform strain perturbation ηβγ by Hamann et al. [33],

ĤðβÞ
k;δ ¼ iĤ

ηβδ
k ; juðβÞmk;δi ¼ ijuηβδmki: ð68Þ

As we see shortly, properties (i) and (ii) allow us to write
down a closed expression for the clamped-ion flexoelectric
tensor by using the second-order formula, Eq. (24). Before
doing that, it is useful to perform a consistency check of
Eq. (66) by showing that it correctly recovers the piezo-
electric tensor at first order in q. The clamped-ion piezo-
electric tensor can be defined as

eαβγ ¼ −i
d
dqγ

�
dPq

α

duβ

�����
q¼0

¼ i
2

Ω
EEα�ðβÞ
γ : ð69Þ

By applying the Hellmann-Feynman theorem to Eq. (36)
and by using Eqs. (67) and (68), we readily obtain

eαβγ ¼ i
2s
Ω

Z
BZ
½d3k�

X
m

huEαmkjĤðβÞ
k;γjuð0Þmki

¼ −
2s
Ω

Z
BZ
½d3k�

X
m

huEαmkjĤηβγ
k juð0Þmki; ð70Þ

which matches the established result [11,33].
The type-I clamped-ion flexoelectric tensor can now be

written in terms of the following formula,

μIαβ;γδ ¼
1

Ω
EE�αðβÞ
γδ ; ð71Þ

where the mixed derivative is, as above, taken with respect
to an electric field and the metric wave perturbation. By
taking again into account the relationships existing between
the metric (β) and the strain perturbations ηβδ, the formulas
for the second gradient, Eqs. (24) and (25), are as follows:

ẼE�αðβÞ
γδ ¼ s

Z
BZ
½d3k�

X
m

ẼE�αðβÞ
mk;γδ

þ i
2

Z
Ω

Z
Kγðr; r0ÞnEαðrÞnηβδðr0Þd3rd3r0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Telst

; ð72Þ

ẼE�αðβÞ
mk;γδ ¼ ihuEαmkj∂γĤ

ð0Þ
k juηβδmki|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T1

þ ihuEαmkj∂γQ̂kĤ
ηβδ
k juð0Þmki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T2

þ ihuð0ÞmkjV̂Eα∂γQ̂kjuηβδmki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T3

þ 1

2
huEαmkjĤðβÞ

k;γδjuð0Þmki|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T4

þ ihiuAα
mk;γjuηβδmki|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T5

: ð73Þ

Here we label, for later reference, the five different terms of
the band- and k-resolved contribution as T1–5, and the term
deriving from the self-consistent energy via the gradient of
the Coulomb kernel as Telst. Most of the symbols are self-
explanatory, as we already encounter them in the formula
for the quadrupolar response. Similar to the quadrupole
case, we use Eq. (57) to simplify T5; this is justified here
because all our tests are performed on cubic materials,
where T5 must be symmetric with respect to αγ. The

formulas for the q derivatives of metric perturbation ĤðβÞ
k;γδ

are elaborated in Appendix B 2.
In the following subsection, we present our numerical

results in type-II form by using Eq. (64a) whenever
appropriate. In practice, this transformation needs to be
performed explicitly only on T4, since all the other terms
are most naturally written in type-II form. (The explicit
formula is reported in Appendix B 2.) As we are dealing
with cubic crystals only, we adopt the shorthand notation
μL ¼ μII11;11, μT ¼ μII11;22, and μS ¼ μII12;12 for the three
independent components, respectively: longitudinal (L),
transverse (T), and shear (S). We drop the “II” superscript
and assume that the flexoelectric tensor is in type-II form
henceforth.

B. Computational parameters

The computation of the clamped-ion flexoelectric tensor
is also implemented in the ABINIT [29] package. The
numerical results are obtained with the same type of
pseudopotentials and XC functional as in Sec. IV B. For
our calculations on noble-gas atoms He, Ar, and Kr, we use
a large cell of 14 × 14 × 14 a:u:, with a plane-wave cutoff
of 90 Ha and a 2 × 2 × 2 (4 × 4 × 4) mesh of k points to
sample the Brillouin zone of He and Ar (of Kr). For our
calculations on SrTiO3, we use a cubic five-atom unit cell
with an optimized cell parameter of a0 ¼ 7.267 bohr, with
a plane-wave cutoff of 70 Ha and an 8 × 8 × 8 mesh of k
points. Regarding Si, we use the two-atom primitive cell
with the same computational parameters as we describe in
Sec. IV B. We also perform a convergence study of the
calculated Si flexoelectric tensor by varying the cutoff and
k-point mesh resolution.
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C. Numerical results

In order to test our method, we first study a simple
cubic crystal lattice consisting of isolated noble-gas atoms,
as already investigated in Refs. [6,18,20,26,35]. This toy
model presents the advantage that its flexoelectric coef-
ficients can be determined analytically, based on the
macroscopic dielectric tensor and the second real-space
moment of the unperturbed atomic charge. In particular, the
three independent flexoelectric coefficients as calculated
from a metric wave perturbation must fulfill the conditions
[26,35] μL ¼ μT and μS ¼ 0.
Table III shows the flexoelectric coefficients calculated

for He, Ar, and Kr. It is clear from the reported data that the
expected relationships are satisfied to a high degree of
accuracy, and our coefficients are in excellent agreement
with those obtained in previous works [26]. The largest
deviation is shown by Kr: Being it a larger atom, the
overlap between neighboring images is likely to be more
pronounced than in the other cases, which justifies the
discrepancies we observe with respect to the expectations
of the isolated atom model.
At this stage, it is worth emphasizing that such a test is

by no means trivial; on the contrary, it represents a very
stringent benchmark for our formalism. To demonstrate this
point, in Table IV we show a breakdown of the three
independent coefficients of the Ar-based crystal into the
contributions of the individual terms appearing in Eqs. (72)
and (73). The data in the table show a much more complex
behavior than the final results of Table III suggest. In
particular, the conditions μL ¼ μT and μS ¼ 0 are not
fulfilled by any of the individual terms (an exception is
T2, but it contributes only a tiny fraction of the final value);
instead, the cancellation of the shear component and the
equality between the transverse and longitudinal ones both
result from a subtle balance between all the terms. Since
each term involves a different combination of the input
response functions and of the perturbations, such an

accurate compensation clearly demonstrates the robustness
of the numerical implementation.
We also calculate the electronic contribution to the

flexoelectric tensor of two real materials Si and SrTiO3.
The converged values of the flexoelectric coefficients are
shown in Table V, where we also compare them to the
relevant literature data [19,20,26]. Again, the excellent
agreement with the published values is clear. Nevertheless,
we stress that our results are obtained with a small fraction
of the computational effort that was formerly needed.
Indeed, the most efficient method to calculate the flexo-
electric tensor prior to this work [26] was based on a finite-
difference implementation of the long-wave expansion.
This required several metric wave response calculations to
be performed on a mesh of q points close to Γ. As a
consequence, it implied a numerical workload that was
about 1 order of magnitude larger than the present method,
which requires only Γ-point response functions as an input.
(The response at finite q is much more costly than at Γ and
needs to be repeated for several q’s to perform the
numerical differentiations described in Ref. [26].) Also
note that, in Ref. [26], the q-mesh spacing is a further
numerical parameter that needs to be monitored and
controlled, resulting in additional overhead that is asso-
ciated with the corresponding convergence studies.
Nevertheless, the method of Ref. [26] is still orders of
magnitude more efficient than the earlier calculations of
Ref. [19], which used a supercell geometry to access the
transverse components of the bulk tensor.
As a final benchmark, we study the convergence of the

flexoelectric coefficients of Si as a function of the k-point
mesh resolution and of the plane-wave cutoff. The results
for μL are shown in Fig. 2(c). (The convergence of the two
other independent components is qualitatively similar to the
longitudinal one.) Analogous to the case of the quadru-
poles, the flexoelectric coefficients converge at the same
rate as the dielectric tensor. This means that all the spatial
dispersion properties that we calculate in this work require
a computational effort that is comparable to the study of
other standard linear-response quantities, such as the
electronic dielectric tensor.

VI. CONCLUSIONS AND OUTLOOK

We establish a general method to perform a systematic
study of spatial dispersion effects in the framework of

TABLE III. Flexoelectric coefficients (in pC/m) of noble-gas
atom systems.

μL μT μSð×10−4Þ
He −0.479 (−0.479a) −0.479 (−0.479a) −0.08 (−0.08a)
Ar −4.821 (−4.813a) −4.823 (−4.820a) −1 (−10a)
Kr −6.471 (−6.474a) −6.477 (−6.476a) −4 (−20a)

aReference [26].

TABLE V. Flexoelectric coefficients (in nC/m) of Si and
SrTiO3 along with previous values found in the literature.

μL μT μS

Si (this work) −1.4114 −1.0491 −0.1895
Ref. [26] −1.4110 −1.0493 −0.1894
SrTiO3 (this work) −0.8848 −0.8262 −0.0823
Ref. [26] −0.8851 −0.8260 −0.0823
Ref. [19] −0.883 −0.825 −0.082

TABLE IV. Contribution to the Ar flexoelectric coefficients (in
pC/m) from the different terms of Eqs. (72) and (73).

Telst T1 T2 T3 T4 T5

μL −6.472 3.512 −0.257 1.909 −9.367 5.854
μT −1.885 −2.286 −0.257 0.000 −0.395 0.000
μS −1.885 2.907 0.000 0.954 −4.903 2.926
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density-functional perturbation theory. As a practical dem-
onstration, we implement the dynamical quadrupole tensor
and the clamped-ion flexoelectric tensor in the ABINIT

package and perform extensive numerical tests. This work
opens a number of exciting avenues for future research,
which we briefly sketch hereafter.
First, we expect that the knowledge of the dynamical

quadrupoles will allow for an improved description of
the interatomic force constants, thereby enabling a more
accurate computation of the phonon band structures. This
refined processing of the IFCs might be important for
certain material classes, such as piezoelectrics, where the
treatment of long-range electrostatics is crucial for repro-
ducing the correct sound velocity [36]. On a different note,
our theory might also prove itself very helpful in establish-
ing higher-order multipolar generalizations [37] of the
Berry-phase theory of polarization [38]. Indeed, our
expressions for the dynamical quadrupole and flexoelectric
tensors can be regarded as the linear variation of the “bulk
quadrupolization” [39] with respect to a zone-center lattice
distortion or uniform strain, respectively. There are in-
triguing parallels to the theory of multipolar magnetic
orders [40,41] as well, which will certainly stimulate
further studies.
Second, the treatment of flexoelectric effects beyond the

clamped-ion level should be relatively straightforward by
following the same guidelines as we do here. Both the
“mixed” and “lattice-mediated” contributions involve first or
second derivatives of the polarization response to a phonon,
or the force-constant matrix, just like the electronic con-
tribution. These additional pieces involve similar formulas,
only with a slightly different combination of the basic
response functions (electric field, atomic displacement, or
uniform strain). Thus, the calculation of the full flexoelectric
tensor for an insulating crystal or nanostructure of arbitrary
symmetry looks now well within reach. We expect that, once
implemented, it will involve a computational effort that is
comparable to the calculation of the piezoelectric tensor.
Third, the method can be easily adapted to compute other

spatial dispersion effects, for example, the natural optical
rotation tensor. (The latter can be written as the first
gradient with respect to the wave vector of the dielectric
tensor.) First-principles calculations of natural gyrotropy
are starting to appear [42]. We expect that by bringing it
within the scopes of DFPT, the formalism that we present
here will greatly simplify the calculation of this interesting
quantity as well. For example, it may help clarify the
physical origin of the nonmagnetic circular dichroism that
has recently been observed in PbTiO3=SrTiO3 superlattices
[43,44]. In the context of ferroic materials, we also expect
our method to facilitate the development of first-principles-
based continuum models [45] and effective Hamiltonians
[46], where gradient-mediated couplings often play an
important role.
More generally, our work reveals a profound connection

between spatial dispersion and orbital magnetism that, in

our opinion, deserves further attention. Whenever the
polarization response to a perturbation is needed at first
order in the wave vector q, one of the contributions
necessarily involves the wave-function response to a
gradient of A, and hence, to a uniform magnetic field.
This contribution can be tentatively interpreted as a
“gyrotropic” response and is present only in certain crystal
classes; we are unable to discuss it here because of space
limitations, but we regard it as yet another interesting topic
for future studies. As a final note, the polarization response
to an inhomogeneous perturbation (including strain [47])
has received considerable attention in the context of
semiclassical wave-packet dynamics [48]. It is our hope
that the theory we develop here will help bring the
aforementioned results in closer contact with first-princi-
ples electronic structure theory and possibly help clarify the
microscopic physical nature of the effects described
in Ref. [47].
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APPENDIX A: RESPONSE TO THE
ELECTROMAGNETIC VECTOR POTENTIAL

IN THE LONG-WAVELENGTH LIMIT

The functions juAα
mk;γi are the q derivatives of the

functions juAα
mk;qi, which are defined as the solutions of

the Sternheimer equation, Eq. (30). In the following, we
proceed to explicitly demonstrate Eq. (32) by first review-
ing the coupling of a generic Hamiltonian to a vector
potential field and subsequently by performing the formal
expansion of Eq. (30) to first order in q.

1. Coupling to a vector potential field

The coupling of a generic Hamiltonian to a vector
potential field can be written as [28,49]

Ĥðr; r0Þ ¼ Ĥð0Þðr; r0ÞeiQ
R

r

r0 A·dl; ðA1Þ

where the line integral is assumed to be taken along the
straight path connecting r0 to r, Q is the particle charge
(Q ¼ −e for electrons), and we use atomic units; i.e., we
set ℏ ¼ c ¼ 1. The linear expansion of the above expres-
sion in powers of the vector potential components to first
order yields
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Ĥðr; r0Þ ≃ Ĥð0Þðr; r0Þ þ iQĤð0Þðr; r0Þ
Zr
r0

A · dl: ðA2Þ

We consider a monochromatic A field written as a real
constant times a complex phase of wave vector q,

AαðrÞ ¼ λαeiq·r: ðA3Þ

After taking the line integral, one obtains a closed expres-
sion for the first-order Hamiltonian in a coordinate repre-
sentation,

ĤAα
q ðr; r0Þ ¼ iQĤð0Þðr; r0Þðrα − r0αÞ

eiq·r − eiq·r
0

iq · ðr − r0Þ : ðA4Þ

Note that the first-order Hamiltonian is related to the
current-density operator as

Ĵαð−qÞ ¼ −ĤAα
q ; ðA5Þ

which stems from the thermodynamic relationship
JðrÞ ¼ −δE=δAðrÞ.
In the long-wavelength context of this work, it is useful

to expand the fraction on the right-hand side in powers
of q and to move the incommensurate phase factor to
the left,

eiq·r − eiq·r
0

iq · ðr − r0Þ ¼ eiq·r
X∞
n¼0

ð−iÞn
ðnþ 1Þ! ½q · ðr − r0Þ�n: ðA6Þ

The above expansion clarifies that the fraction simplifies to
unity in the q ¼ 0 limit, where the first-order Hamiltonian
reads as

ĤAα
q¼0 ¼ −iQ½Ĥð0Þ; rα�: ðA7Þ

This provides a first sanity check of the present formalism:
In the q ¼ 0 limit, the current-density operator as defined in
Eq. (A5) correctly reduces to the velocity operator times the
particle charge,

Ĵα ¼ Qv̂α; v̂α ¼ i½Ĥð0Þ; rα�: ðA8Þ
To make further progress towards a practical formalism,

it is useful to consider the cell-periodic part of the first-
order Hamiltonian in momentum space,

ĤAα
k;qðr; r0Þ ¼ e−iðkþqÞ·rĤAα

q ðr; r0Þeik·r0 : ðA9Þ
This is a self-adjoint operator at any q, and can be
conveniently written as

ĤAα
k;q ¼ −Q

X∞
n¼0

� X
β1;…;βn

qβ1 ;…; qβn
ðnþ 1Þ! Ĥαβ1;…;βn

	
; ðA10Þ

where the individual terms in the summation stem from the
k expansion of the unperturbed Hamiltonian,

Ĥαβ1;…;βn ¼
∂nþ1Ĥð0Þ

k

∂kα∂kβ1 ;…; ∂kβn
: ðA11Þ

Equation (A10) is the first-order perturbation associated
with a modulated vector potential field, which appears
in Eq. (30).

2. Long-wave expansion

By deriving both sides of the Sternheimer equation (30),
with respect to qγ , one obtains

ðĤð0Þ
k þ aP̂k − ϵð0ÞnkÞjuAα

nk;γi ¼ −ð∂γĤ
ð0Þ
k þ a∂γP̂kÞjuAα

nki − ∂γQ̂k∂αĤ
ð0Þ
k juð0Þnki −

1

2
Q̂k∂2

αγĤ
ð0Þ
k juð0Þnki: ðA12Þ

[We drop the superscript “(0)” on the ground-state Hamiltonian operator from now on, to simplify the notation.] One can
now use the zeroth-order result Eq. (31) to achieve the following expression (we also use ∂αQ̂k ¼ −∂αP̂k whenever
appropriate),

ðĤk þ aP̂k − ϵnkÞjuAα
nk;γi ¼

�
∂γĤk∂αQ̂k − a∂γP̂k∂αP̂k − ∂γQ̂k∂αĤk −

1

2
Q̂k∂α∂γĤk

�
juð0Þnki: ðA13Þ

It is convenient, at this point, to separately treat the contributions that are symmetric and antisymmetric under αγ exchange.

a. Symmetric part

We have

ðĤk þ aP̂k − ϵnkÞðjuAα
nk;γi þ juAγ

nk;αiÞ ¼ ð−a∂γP̂k∂αP̂k − a∂αP̂k∂γP̂k þ ∂γĤk∂αQ̂k þ ∂αĤk∂γQ̂k

− ∂γQ̂k∂αĤk − ∂αQ̂k∂γĤk − Q̂k∂α∂γĤkÞjuð0Þnki: ðA14Þ
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The large parentheses on the right-hand side contain a total of seven terms. The third to the seventh can be rewritten more
compactly by observing that ∂2

αγ½Q̂k; Ĥk� ¼ 0, leading to

ðĤk þ aP̂k − ϵnkÞðjuAα
nk;γi þ juAγ

nk;αiÞ ¼ ð−a∂γP̂k∂αP̂k − a∂αP̂k∂γP̂k − ½Ĥk; ∂2
αγQ̂k�Þjuð0Þnki: ðA15Þ

The solution is given by

juAα
nk;γi þ juAγ

nk;αi ¼ −∂2
αγQ̂kjuð0Þnki ¼ ∂2

αγP̂kjuð0Þnki: ðA16Þ
To justify the above derivation, observe that

∂2
αγðPPÞ ¼ ∂αP∂γPþ ∂γP∂αPþ ∂2

αγPPþ P∂2
αγP:

Using the idempotency of P, this immediately leads to

P∂2
αγPP ¼ −Pð∂γP∂αPþ ∂αP∂γPÞP:

Note that the response is purely “geometric,” i.e., given only in terms of the ground-state wave functions, despite the
response containing both valence- and conduction-band components, as the operator ∂2

αγP̂k generally has both inner and
cross-gap matrix elements.

b. Antisymmetric part

The antisymmetric part can be written as follows:

ðĤk þ aP̂k − ϵnkÞðjuAα
nk;γi − juAγ

nk;αiÞ ¼ ð−a∂γP̂k∂αP̂k þ a∂αP̂k∂γP̂k þ ∂γĤk∂αQ̂k

− ∂αĤk∂γQ̂k − ∂γQ̂k∂αĤk þ ∂αQ̂k∂γĤkÞjuð0Þnki: ðA17Þ

This can be expressed more compactly by using (anti)commutators,

ðĤk þ aP̂k − ϵnkÞðjuAα
nk;γi − juAγ

nk;αiÞ ¼ ð−a½∂γP̂k; ∂αP̂k� − f∂γĤk; ∂αP̂kg þ f∂αĤk; ∂γP̂kgÞjuð0Þnki: ðA18Þ

To recast the above equation into a more transparent form, it is useful to work out the following expression,

½H; ∂γP∂αP − ∂αP∂γP� ¼ ½H; ∂γP�∂αP − ½H; ∂αP�∂γP − ∂γP½∂αP;H� þ ∂αP½∂γP;H�
¼ −½∂γH;P�∂αPþ ½∂αH;P�∂γPþ ∂γP½P; ∂αH� − ∂αP½P; ∂γH�
¼ P∂γH∂αP − P∂αH∂γP − P∂γP∂αH þ P∂αP∂γH

¼ Pf∂γH; ∂αPg − Pf∂αH; ∂γPg; ðA19Þ

where the fact that the expression must be applied to a valence ket is used to go from the third to the fourth line. The
Sternheimer equation can then be rewritten as

ðĤk þ aP̂k − ϵnkÞðjuAα
nk;γi − juAγ

nk;αiÞ ¼ −ðĤk þ aP̂k − ϵnkÞ½∂γP̂k; ∂αP̂k�juð0Þnki
− Q̂kðf∂γĤk; ∂αP̂kg þ f∂αĤk; ∂γP̂kgÞjuð0Þnki;

and finally,

ðĤk þ aP̂k − ϵnkÞjuCGnk;γi ¼ −Q̂kðf∂γĤk; ∂αP̂kg − f∂αĤk; ∂γP̂kgÞjuð0Þnki; ðA20Þ

where we define

juCGnk;γi ¼ juAα
nk;γi − juAγ

nk;αi þ ½∂γP̂k; ∂αP̂k�juð0Þnki: ðA21Þ

By combining Eqs. (A16) and (A21), we recover Eq. (32).
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APPENDIX B: q DERIVATIVES OF
FIRST-ORDER HAMILTONIANS

1. First q derivative of atomic displacement
Hamiltonian

The first-order Hamiltonian with respect to an atomic
displacement consists of a local potential plus a nonlocal
separable contribution,

V
loc;τκβ
q ðGÞ ¼ −iðGβ þ qβÞ

1

Ω
e−iG·τκvlocκ ðGþ qÞ; ðB1Þ

V
sep;τκβ
k;q ðG;G0Þ ¼ −iðGβ þ qβ −G0

βÞ
1

Ω

X
μ

e−iðG−G0Þ·τκ

× eμκζμκðkþ qþGÞζ�μκðkþG0Þ: ðB2Þ
Note that the above formulas slightly differ from the
standard implementations of DFPT [22]. This is because
in formulating them we use a different convention [13] for
the sublattice-dependent phase factors. Such a difference is
rooted in our assumption of a displacement pattern of the
type eiqRlκ instead of the typical one (eiqRl ). This choice
leads to a much simpler and physically transparent treat-
ment of the long-wave expansion. At q ¼ 0, the present
theory reduces to the standard treatment.
By differentiating the above formulas, we arrive at the

following expressions for the first q gradients (at q ¼ 0) of
the perturbation, which are necessary for the dynamical
quadrupole calculations,

V
loc;τκβ
γ ðGÞ ¼ −i

1

Ω
e−iGτκ

�
δβγvlocκ ðGÞ þGβGγ

G
vlocκ ðGÞ0

�
;

ðB3Þ
V
sep;τκβ
k;γ ðG;G0Þ

¼ −i
1

Ω

X
μ

e−iðG−G0Þτκeμκ½δβγζμκðkþGÞζ�μκðkþG0Þ

þ ðGβ −G0
βÞζμκ;γðkþGÞζ�μκðkþG0Þ�; ðB4Þ

where G ¼ jGj, vlocκ ðGÞ0 is the first derivative of the
spherical atomic pseudopotential, and ζμκ;γðkþGÞ is the
q derivative along the γ direction of the separable nonlocal
projector.

2. Second q derivative of metric
perturbation Hamiltonian

The first-order Hamiltonian of the metric perturbation
is [26]

ĤðβÞ
k;q ¼ T̂ðβÞ

k;q þ V̂PSP;ðβÞ
k;q þ V̂H0;ðβÞ

q þ V̂XC0;ðβÞ
q þ V̂geom;ðβÞ

q ;

ðB5Þ

where the terms on the right-hand side correspond
to the kinetic (T̂), pseudopotential (PSP), Hartree (H0),
exchange-correlation (XC0), and geometric contributions
to the external potential. The pseudopotential term, in turn,
consists of a local plus a separable contribution,

VPSP;ðβÞ
k;q ðG;G0Þ ¼ V loc;ðβÞ

q ðG −G0Þ þ Vsep;ðβÞ
k;q ðG;G0Þ:

ðB6Þ

The explicit formulas for each of these terms are reported in
Ref. [26]. In the following, we list the formulas for the
second q gradients (at q ¼ 0) of these contributions
required in the calculation of the clamped-ion flexoelectric
tensor [see, e.g., Eq. (73)].
The kinetic contribution is

TðβÞ
k;γδðG;G0Þ ¼ −i

�
δγδðkβ þGβÞ þ δβγ

1

2
ðkδ þGδÞ

þ δβδ
1

2
ðkγ þGγÞ

�
δGG0 : ðB7Þ

The local part of the pseudopotential is

V loc;ðβÞ
γδ ðGÞ ¼ −i

1

Ω

X
κ

e−iGτκ

�
vlocκ ðGÞ0

G

�
δβδGγ þ δβγGδ þ δγδGβ −

GβGδGγ

G2

�
þ vlocκ ðGÞ00

G2
GβGδGγ

	
; ðB8Þ

with vlocκ ðGÞ00 being the second derivative of the spherical atomic pseudopotential.
The separable part of the pseudopotential is

Vsep;ðβÞ
k;γδ ðG;G0Þ ¼ −

i
Ω

X
μκ

eμκe−iðG−G0Þτκ
��

3

2
δβγζμκ;δðkþGÞ þ 3

2
δβδζμκ;γðkþGÞ þ ðkβ þ GβÞζμκ;δγðkþGÞ

�
ζ�μκðkþG0Þ

þ 1

2
δβδζμκðkþGÞζ�μκ;γðkþG0Þ þ ζμκ;δðkþGÞζ�μκ;γðkþG0Þðkβ þ G0

βÞ þ
1

2
δβγζμκðkþGÞζ�μκ;δðkþG0Þ

þ ζμκ;γðkþGÞζ�μκ;δðkþG0Þðkβ þG0
βÞ þ ζμκðkþGÞζ�μκ;δγðkþG0Þðkβ þ G0

βÞ
	
; ðB9Þ

with ζμκ;γδðkþGÞ being the second q derivative along the γ and δ directions of the separable nonlocal projector.
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The remaining terms [26] include the XC and geometric
contributions that vanish at second order in q and a Hartree
contribution whose second q gradient is

V̂H0;ðβÞ
δγ ðGÞ ¼ −i8π

nð0ÞðGÞ
G2

×

�
4GβGδGγ

G4
−
δβδGγ þ δβγGδ þ δδγGβ

G2

�
;

ðB10Þ

where nð0ÞðGÞ refers to the ground-state electron density.
It is useful at this point to perform a further rearrange-

ment of ĤðβÞ
k;γδ by defining

ĤðβδÞ
k;γ ¼ ĤðβÞ

k;γδ þ ĤðδÞ
k;βγ − ĤðγÞ

k;βδ: ðB11Þ

This allows us to write the flexoelectric tensor directly in
type-II form as

μIIαγ;βδ ¼
2

Ω
EE�αðβδÞ
γ ; ðB12Þ

where

EE�αðβδÞ
γ ¼ s

Z
BZ
½d3k�

X
m

EE�αðβδÞ
mk;γ

þ i
2

Z
Ω

Z
Kγðr; r0ÞnEαðrÞnηβδðr0Þd3rd3r0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Telst

ðB13Þ

and

EE�αðβδÞ
mk;γ ¼ ihuEαmkj∂γĤ

ð0Þ
k juηβδmki|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T1

þ ihuEαmkj∂γQ̂kĤ
ηβδ
k juð0Þmki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T2

þ ihuð0ÞmkjV̂Eα∂γQ̂kjuηβδmki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T3

þ 1

2
huEαmkjĤðβδÞ

k;γ juð0Þmki|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T4

þ ihiuAα
mk;γjuηβδmki|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T5

: ðB14Þ

APPENDIX C: TREATMENT OF THE
ELECTROSTATIC DIVERGENCE AT G = 0

The local potential diverges at G ¼ 0 because of the
Coulomb singularity [22]

vlocκ ðqÞ ∼ −
4π

q2
Zκ; ðC1Þ

where Zκ is the bare pseudopotential charge. This means
that the q derivatives of the local potential contribution to
the first-order Hamiltonians that we discuss in the previous

sections must be calculated with some care regarding the
G ¼ 0 component. To see this, it is useful to rewrite
Eq. (C1) as follows:

vlocκ ðqÞ ¼ FκðqÞ
q2

; ðC2Þ

where we introduce the auxiliary function

FκðqÞ ∼ −4πZκ þ
q2

2
F00
κ : ðC3Þ

Regarding the atomic displacement perturbation, the
above definitions lead to the following small-q expansion
of the local potential part at G ¼ 0,

V
loc;τκβ
q ðG ¼ 0Þ ∼ −

iqβ
Ω

�
−
4πZκ

q2
þ F00

κ

2

�
: ðC4Þ

Because of the assumption of short-circuit electrical boun-
dary conditions, we drop the divergent term. This leaves us
with a constant multiplied by qβ, which vanishes in the
q → 0 limit. The q derivative does not vanish,

V
loc;τκβ
γ ðG ¼ 0Þ → −

i
2Ω

F00
κ δβγ; ðC5Þ

and we should in principle take it into account in the
calculation of the quadrupolar tensor. However, in Eq. (56)
the operator Ĥ

τκβ
kγ appears only between a conduction-band

bra and a valence-band ket. By orthogonality, the above
constant contribution is irrelevant and can be safely
discarded.
Regarding the metric perturbation, recall that it vanishes

in the q → 0 limit, as the aforementioned divergence in the
local potential contribution exactly cancels with an oppo-
site divergence in the “H0” term [26]. Within the present
notation conventions, one has

V locþH0;ðβÞ
q ðG¼0Þ¼−

i
Ω
qβ
q2

�X
κ

FκðqÞ−4πΩnð0ÞðG¼0Þ
�

¼−
i
2Ω

qβ
X
κ

F00
κ þOðq3Þ; ðC6Þ

where in the last line we take into account that Fκðq ¼
0Þ ¼ 4πZκ [22], that nð0ÞðG ¼ 0Þ ¼ ½ðPκZκÞ=Ω�, and that
odd terms in the Taylor expansion of FκðqÞ vanish due to
the spherical symmetry of the local atomic potentials. The
first q derivative of the above yields a well-defined
constant,

V locþH0;ðβÞ
γ ðG ¼ 0Þ ¼ −

i
2Ω

δβγ
X
κ

F00
κ : ðC7Þ
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Recall that the first q derivative of the metric wave
perturbation coincides (modulo a factor of i) with the
uniform strain perturbation. Hence, we conclude that to
calculate the clamped-ion flexoelectric tensor, the G ¼ 0
component of the local potential of the first-order strain
Hamiltonian has to be corrected as

V loc;ηβδðG ¼ 0Þ ¼ V loc;ðβÞ
δ ðG ¼ 0Þ ¼ −

i
2Ω

δβδ
X
κ

FκðqÞ00:

ðC8Þ

This correction is important in the calculation of the
flexoelectric tensor, since the uniform strain operator in
Eq. (73) appears sandwiched between two unperturbed
valence states.
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