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Gates in error-prone quantum information processors are often modeled using sets of one- and two-qubit
process matrices, the standard model of quantum errors. However, the results of quantum circuits on real
processors often depend on additional external “context” variables. Such contexts may include the state of a
spectator qubit, the time of data collection, or the temperature of control electronics. In this article, we
demonstrate a suite of simple, widely applicable, and statistically rigorous methods for detecting context
dependence in quantum-circuit experiments. They can be used on any data that comprise two or more
“pools” of measurement results obtained by repeating the same set of quantum circuits in different contexts.
These tools may be integrated seamlessly into standard quantum device characterization techniques, like
randomized benchmarking or tomography. We experimentally demonstrate these methods by detecting and
quantifying crosstalk and drift on the publicly accessible 16-qubit ibmqx3.
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I. INTRODUCTION

Quantum characterization, verification, and validation
(QCVV) [1–21] tools are methods to probe the in situ
behavior of quantum information processing hardware.
Most QCVV protocols assume a “standard model” of errors
in which each imperfect quantum operation is represented
by a single, completely positive, trace-preserving linear map
on density matrices (i.e., a process matrix). Although this
model can describe many deviations from ideal behavior,
including coherent errors caused by a fixedHamiltonian and
stochastic errors caused by white noise fluctuations, there
are many other possible failure modes whose impacts on
both quantum error correction (QEC) and near-term quan-
tum information processing applications are not yet well
understood. Many of them manifest as a dependence of the
error process on some external variable, or context, that is not
supposed to affect qubit behavior [22]. For example, an error
rate might drift over time [4,23–25] or increase when a
nearby qubit is being measured or driven [7–9,26–28].
These effects are important in their own right. They might
contribute significantly to the device’s total observed error
rate [7–9], and they may have consequences for QEC
[26,29–33]. Context dependence is also important because
it can interfere with standard QCVV techniques such as

randomized benchmarking (RB) [5–21] or gate set tomog-
raphy (GST) [1–4] and potentially invalidate conclusions
drawn from them [25].
In this paper, we propose and demonstrate a practical,

statistically rigorous toolkit for detecting whether a quan-
tum circuit’s observable behavior depends on external
variables. The underlying statistical tasks here are old
and well studied [34–37], so we make no claims of
statistical novelty. Instead, our focus is on choosing and
harnessing established statistical techniques for detecting
context dependence in QCVV, using the type of data most
often found in quantum device characterization and circuit-
based experiments. Almost all such experiments generate
count data: the aggregated outcomes of N repetitions of
one or more quantum circuits that each begin with a state
preparation and end with a measurement.
Usually, all the measurement results for a single circuit

are collected into a single “pool.” This collection precludes
testing for variation, because a single pool of counts is
always perfectly consistent with a single underlying set of
probabilities for the observed outcomes. However, some
data have additional structure, such as time stamps, that
defines a natural division into two or more pools that are
each associated with a different “context.” Then, we can
look for significant variation in the circuit behavior
between contexts (Fig. 1). For example, flipping two coins
100 times and getting 49 heads for one coin and 55 for the
other is intuitively consistent with the claim that the coins
are identically biased; the variation is typical of random
finite-sample fluctuations. Observing instead 28 heads for
one coin and 72 heads for the other is strong evidence that
the coins actually have different biases. We can address this
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question formally using statistical hypothesis testing, a
standard framework for rigorously deciding if there is
sufficient evidence to reject a base assumption, known
as a null hypothesis. In the tools we propose, our null
hypothesis is that there is no context dependence, and we
seek statistically significant evidence in the data to the
contrary.
This paper is structured as follows. In Sec. II, we present

hypothesis-testing techniques for detecting context depend-
ence in count data from one or more circuits. In Sec. III, we
adapt these context dependence detection tools to the task
of context dependence quantification. In Sec. IV, we
simulate applying these techniques to detect drift, demon-
strating that these methods can clearly highlight context-
dependent errors. In Sec. V, we apply our techniques to drift
and crosstalk detection and quantification on the ibmqx3
[38], a publicly accessible superconducting quantum
processor. In Sec. VI, we discuss the relationship between
our tools and simultaneous RB [7], a popular crosstalk
quantification technique, and we conclude in Sec. VII.

II. DETECTING CONTEXT DEPENDENCE

A. Single-circuit data

First, we consider how to detect context dependence in a
single quantum circuit. Suppose this circuit has M ≥ 2
possible measurement outcomes, indexed by m ¼ 1;
2;…;M. In general, if a circuit has n qubits (and all n
qubits are read out at the end of the circuit), then M ¼ 2n.
Note that we could also choose to measure only a subset of
the qubits in the system or marginalize multiqubit data over
some of the qubits. Let this circuit be performed repeatedly
in each of C different contexts, indexed c ¼ 1; 2;…; C. For
example, the contexts might correspond to distinct time
intervals or to driving (or not driving) neighboring qubits
(see Fig. 1). For each context c, the circuit defines a
probability distribution over the possible measurement
results:

pc ¼ ðpc;1; pc;2;…;pc;MÞ: ð1Þ

These are the probabilities for obtaining each of the M
measurement outcomes, after averaging over any other
unaccounted-for contexts that might vary within a
c-indexed context. For example, time is a continuously
varying context variable, and a time period context is a
coarse-graining over time. Thus, in this example, each pc is
the probability distribution after this time averaging. An
experiment consists of running our circuit Nc times in each
context c and recording the total counts for each measure-
ment outcome m. This procedure effectively samples from
each of the pc distributions, producing measurement results
x ¼ fxcg. Here,

xc ¼ ðxc;1; xc;2;…; xc;MÞ ð2Þ

is a vector of positive integers summing to Nc, representing
the observed counts from Nc repeats of the circuit in
context c. In terms of the data, context independence holds
iff all of the data are drawn from the same underlying
probability distribution p0. To detect context dependence,
we therefore ask whether the measurement results in
different contexts are consistent with being drawn from
a single distribution. This is a hypothesis-testing problem:
We are looking for evidence to reject the null hypothesis
that the underlying distributions are context independent.
In general, hypothesis testing is the following procedure:
(1) Choose a statistic. This statistic is a function Λ from

the space of all possible experimental results to R.
(2) Choose a significance threshold level α ∈ ð0; 1Þ.

A popular choice is α ¼ 5%, corresponding to a
95% confidence.

(3) Collect data (x) and evaluate ΛðxÞ.
(4) Calculate the p value (p) of ΛðxÞ. This p value is the

probability of observing a value of Λ that is at least
as extreme as ΛðxÞ if the null hypothesis is true.
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FIG. 1. An illustration of how to detect and quantify context
dependence in a quantum information processor by repeatedly
performing a quantum circuit in two or more contexts. In this
simple example, a Bell state is prepared during two different time
periods (a.m./p.m.), to test for time variation, or while an adjacent
pair of qubits is or is not being driven, to test for crosstalk. The
measurement outcome frequencies for the two contexts are
compared to determine if the circuit behavior is the same across
contexts. If not, the change is quantified. Multiple test circuits
and a physical model of the device can sometimes enable
identification of the underlying cause and indicate the size
of the effect.
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(5) Reject the null hypothesis ifp < α. Here, rejecting the
null hypothesis means detecting context dependence.

Any procedure of this form ensures that the probability of
falsely detecting context dependence is at most α. Within
this constraint, it is desirable to choose a procedure—i.e., a
statistic—with high power to detect context dependence if
it is present. For general hypothesis testing, there is no
universally optimal statistic except for the simplest prob-
lems [35], but the log-likelihood ratio (LLR) statistic is
canonical and popular, and we find it to be convenient and
powerful.
For data x, a statistical model parameterized by θ ∈ H

for some parameter space H, and a null-hypothesis sub-
space H0 ⊂ H, the LLR is defined as

λ ≔ −2 log½Lðθ̂0Þ=Lðθ̂Þ�; ð3Þ

where LðθÞ ¼ PrðθjxÞ is the likelihood function, θ̂0 is the
maximum likelihood estimate of θ over the null-hypothesis
subspace H0, and θ̂ is the maximum likelihood estimate of
θ over the full parameter space H [34–36]. For our
problem, we have the following.
(1) H0: the null hypothesis that pc ¼ p0 for all c and

some p0.—The maximum likelihood estimate over
the null hypothesis space is p̂0 ¼ N−1ðx1; x2;…;
xMÞ, with xm ¼ P

c xc;m counts obtained by aggre-
gating over contexts, and N ¼ P

c Nc.
(2) H: the full parameter space of independent

pc.—The maximum likelihood estimate in the full
parameter space is p̂c ¼ xc=Nc.

Via basic multinomial statistics, the LLR is then

λ ¼ −2
XM
m¼1

�
xm log

�
xm
N

�
−
XC
c¼1

xc;m log

�
xc;m
Nc

��
: ð4Þ

To compute p values, we appeal to Wilks’ theorem [36].
It states that if the null hypothesis holds, as the number of
samples → ∞, then the LLR converges to a χ2k random
variable, where k ¼ l − l0 and l (respectively, l0) is the
number of free parameters in the full (respectively, null)
model [34–36]. Each probability vector contains M − 1
free parameters (M probabilities summing to 1), so l ¼
CðM − 1Þ and l0 ¼ ðM − 1Þ. IfNc ≫ 1, then under the null
hypothesis λ is approximately χ2k distributed, with

k ¼ ðC − 1ÞðM − 1Þ: ð5Þ

The p value of an observed λ is therefore approximated by

p ≈ 1 − FkðλÞ; ð6Þ

where Fk is the χ2k cumulative distribution function. For
prespecified α, we say that context dependence has been
detected at significance α if p < α. We call this simple

primitive the individual circuit test (ICT), because it applies
to data from a single circuit.
Here is a simple example of how the ICT can be used

to detect context dependence. Consider a one-qubit
circuit comprising the preparation of j0i, application of
Xπ=2 ¼ expð−iπσx=4Þ, and measurement of σz. It is per-
formed in two contexts: (1) while a neighbor qubit sits idle
and (2) while the neighbor is driven in some fashion. Now,
suppose the operations are perfect under context 1, but the
driving in context 2 causes the Xπ=2 gate to overrotate:
Xπ=2 → expð−i1.1πσx=4Þ. We choose a significance level
of 5% and simulate 200 repetitions of the circuit in each
context, observing 99 “0” outcomes in context 1 and 69 in
context 2. Putting these data into Eqs. (4)–(6) with C ¼ 2
and M ¼ 2, we find that the p value is p ≈ 0.1%. This p
value is easily significant at the 5% level (p < 5%), so
context dependence is detected in this simulated experi-
ment. We also simulate a scenario where driving does not
cause any change and this time obtain 108 “0” counts in
context 1 and 107 in context 2. Calculated in the same way,
the p value for these data is p ≈ 92%, so context inde-
pendence is not rejected. If we repeat this simulation many
times, in the latter case where there is no context depend-
ence, we expect to erroneously detect context dependence
in 5% of the trials.

B. Multicircuit data

Many experiments based on quantum circuits involve
collecting data from multiple distinct circuits, as is the
case for most QCVV techniques, including all RB proto-
cols [5–21], GST [1–4], and other characterization methods
[39,40]. We now extend the context dependence detection
method presented above to the multicircuit scenario.
Consider Q circuits indexed q ¼ 1; 2;…; Q, each with
M possible outcomes, indexed m ¼ 1; 2;…;M [41]. These
circuits are all implemented in each of C contexts, again
indexed by c for c ¼ 1; 2;…; C. Slightly generalizing the
notation of Eq. (1), let

pq;c ¼ ðpq;c;1; pq;c;2;…; pq;c;MÞ ð7Þ

denote the underlying probability distribution for circuit q
in context c. As before, a particular circuit is context
independent iff all pq;c ¼ pq;0 for some circuit-dependent
pq;0. All of the circuits are context independent if this holds
for all circuits q.
Consider data generated by Nq;c repeats of circuit q in

context c. Let xq;c;m denote count data for outcome m of
circuit q in context c, with the full set of data denoted by

x ¼ fxq;c ¼ ðxq;c;1; xq;c;2;…; xq;c;MÞg: ð8Þ

There are many ways to test for context dependence
with multicircuit data of this sort. Most obviously, we
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could apply the ICT defined above to the data from each
circuit, to separately test for context dependence in each
circuit. However, this means implementing Q statistical
hypothesis tests. If the null hypothesis is true, and we
naively implement Q independent hypothesis tests all at
some fixed significance α, then we expect approximately
αQ of the tests to falsely reject the null hypothesis just by
random chance. In fact, the probability of falsely rejecting
the null hypothesis in at least one test converges to 1 as Q
increases.
To keep the probability of false detection in one or

more tests—known as the familywise error rate (FWER)
[35,42]—to at most α, it is necessary to adjust the
significance of the individual tests. The simplest solution
is the generalized Bonferroni correction [35,42]: For any
tests implemented together, a FWER of at most α can be
obtained by setting the “local” significance level of test
i to αi ¼ αwi for any wi ≥ 0 satisfying

P
i wi ¼ 1.

Implementing all Q ICTs with each significance set to
α=Q is therefore sufficient to maintain a global significance
of α. However, the Bonferroni correction is unnecessarily
conservative, so we use a strictly more powerful correction.
Because the λq are independent under the null hypoth-

esis, where λq is the LLR for circuit q, we can implement
the ICTs with a Hochberg correction [42–44]. In this
setting, the Hochberg correction keeps the FWER to at
most α using the following procedure.
(1) Order the Q p values from smallest to largest:

pð1Þ; pð2Þ;…; pðQÞ.
(2) Find the largest integer r such that pðrÞ ≤ α=

ðQ − rþ 1Þ, denoting this integer by rmax.
(3) Reject the null hypothesis (context independence)

for all circuits with p values smaller than

pthreshold ¼ α=ðQ − rmax þ 1Þ: ð9Þ

Hereafter, we always use this multiple-test correction
procedure for the ICTs. Note that pthreshold is not a true
threshold for the statistical significance of a p value, in the
sense that it depends on the data. We therefore refer to it
instead as a “pseudothreshold.” Sometimes, it is convenient
to convert this to a pseudothreshold above which the LLR
of a circuit is significant. Inverting Eq. (6), this pseudo-
threshold is given by

λthreshold ¼ F−1
k ð1 − pthresholdÞ; ð10Þ

where k is the degrees of freedom per circuit, in Eq. (5),
and F−1

k is the inverse cumulative distribution function for
the χ2k distribution.
Controlling the FWER is not the only reasonable

desideratum when implementing multiple hypothesis tests:
A popular alternative is to control the false discovery rate
(FDR), which is the expected ratio of the number of falsely-
rejected null hypotheses to the total number of rejected null

hypotheses. The FDR can be controlled to at most α in the
ICTs using the Benjamini-Hochberg correction [45] (which
has a similar form to the Hochberg correction). Whether
controlling the FDR is preferable to controlling the FWER
is subjective: Controlling the FDR increases test power at
the cost of less certainty about the correctness of any
specific positive ICT. We do not pursue this strategy herein
(but our PYTHON implementation of these techniques [46]
includes this alternative as an option).
The ICTs are often not the most sensitive for deciding

whether there is context dependence in at least one circuit.
In particular, there are tests that are more sensitive to
context dependence that is distributed uniformly over all
the circuits. A complementary test statistic, powerful for
detecting uniformly distributed context dependence, is the
aggregate LLR

λagg ¼
XQ
q¼1

λq; ð11Þ

where, again, λq is the LLR for circuit q. This is the LLR
between the null hypothesis of context independence in all
circuits and the full context dependence model. That is, it is
the LLR between (1) the model defined by pq;c ¼ pq;0 for
some pq;0 and all q, and (2) the model in which all the pq;c

are independent. Therefore, when the null hypothesis
holds, λagg approximately follows a χ2kagg distribution with

kagg ¼ QðC − 1ÞðM − 1Þ: ð12Þ
For k ≫ 1, the χ2k distribution is approximately normal

with mean k and variance 1=ð2kÞ. Therefore, in the
common situations where Q ≫ 1, it is convenient and
intuitive to express the statistical significance of λagg by
giving the number of standard deviations (Nσ) by which
λagg exceeds it expected context-independent value. Nσ is
given by

N σ ¼
λagg − kaggffiffiffiffiffiffiffiffiffiffi

2kagg
p : ð13Þ

In our experience, the p value of the aggregate LLR is often
vanishingly small (see, e.g., Sec. IV), so N σ provides an
alternative measure of statistical significance that is on a
more convenient scale. It is sometimes useful to have a
threshold for α significance of theN σ, and this threshold is
given by

N σ;threshold ¼
F−1
kagg

ð1 − αÞ − kaggffiffiffiffiffiffiffiffiffiffi
2kagg

p : ð14Þ

When Q ≫ 1, this threshold is essentially identical to the
standard significance thresholds for standard deviations
above the mean with a normal distribution.
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Although the aggregate LLR test is often more sensitive,
the ICTs are useful, because they indicate which circuits
vary, which can constitute helpful diagnostic information,
as demonstrated later. We can strike a balance between
these tests by implementing the set of ICTs and the ag-
gregate test, with significance levels adjusted appropriately.
A reasonable strategy, which we adopt for the simulations
and experiments in this paper, is the following. For a user-
specified global significance α:
(1) Implement the aggregate test at significance level

α=2. If context dependence is detected, set β ¼ α;
otherwise, set β ¼ α=2.

(2) Implement the ICTs using a Hochberg correction at
a significance of β.

This multitest correction is based on the closed test
principle (a generalization of the Bonferroni correction),
and it controls the FWER to be at most α [47].
It is often useful to apply this entire procedure more

than once while still maintaining a global significance of α.
For example, if there are Call > 2 contexts in the data, we
could choose to implement a pairwise comparison between
multiple pairs of contexts (i.e., implementing this pro-
cedure more than once with C ¼ 2), instead of—or as well
as—implementing this procedure to jointly compare all
contexts (i.e., one application of this procedure with
C ¼ Call). To maintain the global significance at α, we
can perform a “top-level” Bonferroni correction, splitting α
over each implementation of the procedure specified
above. We use this strategy in Secs. IV and V, when
applying these methods to simulated and experimental data.

C. Choosing the circuits

The context dependence detection methods that we
propose in this section can be applied to data from almost
any set of circuits. They can be bolted onto almost any
device characterization protocol. However, if context
dependence detection is a high priority, it is often useful
to choose circuits that are sensitive to all the parameters that
might vary with the context. GST circuits [1–4] are one
reasonable choice, because they are informationally com-
plete for tomography of gates, state preparations, and
measurements (SPAM). If context dependence manifests
as an observable dependence of gate or SPAM process
matrices on the context, at least one GST circuit will be
sensitive to it. If the effects of context dependence on gate
behavior are small, then long-sequence GST (LSGST) can
be used to amplify those effects [1], making them easier to
detect. We use GST circuits in our examples below [using
LSGST sequences for simulated data, and shorter linear-
inversion GST (LGST) sequences [48] for experimental
data, due to experimental constraints]. We do note, how-
ever, that in certain circumstances it may be easier or more
desirable to run non-GST circuits, such as circuits pre-
scribed by any of a number of randomized benchmarking
protocols [5–21]. Additionally, it should be pointed out

that, as we wish to determine if underlying probability
distributions are identical or not, our empirical approx-
imations of these distributions will become more accurate
(and, hence, more sensitive to changes due to context
dependence) as the number of times each circuit is repeated
is increased, regardless of which circuits are used.
Using our tools on data from GST circuits does not

require implementing the tomographic reconstructions
of GST. Tomographic reconstructions using the data
from each context are, nevertheless, clearly possible with
GST data. This possibility naturally raises the question of
what our tools add that could not be achieved as easily
with tomography. Our tools have three distinct advantages
over tomography, which highlight how they complement
any tomographic data analysis. First, precise tomography
require large amounts of data and many individual circuits,
whereas detecting context dependence can often be
achieved using few circuits and/or less data. Second,
tomographic methods are based on fitting a model and
become unreliable if this model does not accurately
describe the system [25]. In contrast, these direct context
dependence detection tools require no model of the under-
lying operations (the gates and SPAM).

III. QUANTIFYING CONTEXT DEPENDENCE

The detection methods presented in the previous section
test whether or not there is statistically significant evidence
of context dependence; when used rigorously, they report
only “yes” or “no.” In general, the value of a test statistic
will not necessarily quantify the “strength” of a detected
effect. Neither the magnitude of the LLR for each circuit,
nor the aggregate LLR, nor the associated p values, nor the
aggregate N σ directly quantify the strength of context
dependence. Instead, they quantify our confidence that
context dependence exists. If there is any context depend-
ence in one or more circuits, then, as we take more data,
both λagg and N σ will increase without bound. A good
quantitative measure of context dependence should
describe the variations of an underlying gate or SPAM
error rate, but measuring the variation in error rates is the
domain of specific QCVV protocols (e.g., RB or GST). In
the very general framework of this paper, the most we can
do is to quantify the strength of each individual circuit’s
context dependence, which is equivalent to estimating how
much the circuit’s outcome probabilities change between
contexts, and there are many ways to do this quantification.

A. Jensen-Shannon divergence

The simplest way to quantify context dependence is to
rescale the per-circuit LLRs to

JSDq ¼
λq
2Nq

; ð15Þ
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where Nq ¼
P

c Nq;c. As suggested by this notation, JSDq

provides an estimate of the Jensen-Shannon divergence
(JSD) of the underlying probability distributions.
For probability distributions Pc over M events, with c ¼
1; 2;…; C, and some weightings πc with

P
cπc ¼ 1, the

JSD is defined by [49]

JSDfπcgðP1;…; PCÞ ¼ H

�XC
c¼1

πcPc

�
−
XC
c¼1

πcHðPcÞ;

where HðPÞ is the Shannon entropy of the probability
distribution P given by

HðPÞ ¼ −
XM
m¼1

PðmÞ logPðmÞ: ð16Þ

The JSDq quantity defined in Eq. (15) is, in fact, the JSD
(with a particular weighting) of the maximum likelihood
estimates of the pc, so we call JSDq the observed JSD. This
equivalence can be shown directly by letting PcðmÞ →
xc;m=Nc and taking πc ¼ Nc=N (where N ¼ P

c Nc), in
the definition of JSD.
The observed JSD is an estimate of the JSD of the

underlying probability distributions for circuit q. Even if
there is no context dependence, however, each JSDq will
almost always be nonzero due to ordinary finite-sample
fluctuations. Thus, JSDq is significantly different from zero
only if it is greater than

JSDthreshold ¼
λthreshold
2N

; ð17Þ

where λthreshold is the LLR pseudothreshold of Eq. (10).
Implicit in this relation is the fact that λq and JSDq are
entirely equivalent test statistics.

B. Total variation distance

JSD quantifies statistical distinguishability between
probability distributions and their average [49], so an
estimate of the underlying JSD is a well-motivated measure
of the context dependence of a circuit. However, there are
other metrics with other meanings. One commonly used in
quantum information is the total variation distance (TVD)
[50]. The TVD between two distributions P1 and P2 over
M events is

TVDðP1; P2Þ ¼
1

2

XM
m¼1

jP1ðmÞ − P2ðmÞj: ð18Þ

The observed TVD for circuit q (TVDq) is naturally
defined by

TVDq ¼
1

2

XM
m¼1

���� x1;mN1

−
x2;m
N2

����: ð19Þ

Here, the contexts are indexed “1” and “2,” because the
TVD is defined only between two contexts, i.e., when
C ¼ 2.
Even if there is no context dependence, observed TVDs

between two contexts are generally nonzero because of
finite-sample fluctuations. It is often useful to correct for
this result. Unlike the observed JSD, however, the observed
TVD is not simply related to the LLR, so there is no simple
pseudothreshold for TVDq. Instead, we introduce the
statistically significant total variation distance (SSTVD).
If statistically significant variation is detected for circuit
q using the ICTs, we report SSTVDq ¼ TVDq for that
circuit; when no statistically significant context dependence
is detected, the circuit has no SSTVD. That is,

SSTVDq ¼
�
TVDq if λq > λthreshold;

null else:
ð20Þ

Note that we do not define SSTVDq to be zero when
λq ≤ λthreshold. Just because we don’t detect context depend-
ence does not imply that no context dependence exists.
Formally speaking, not rejecting a null hypothesis in a
hypothesis test does not imply anything about whether that
null hypothesis is true. For example, one or more λq could
be just below the pseudothreshold at a global 5% signifi-
cance and above the pseudothreshold at a global signifi-
cance of 6%. Those circuits are, therefore, quite probably
context dependent, meaning that a SSTVDq of zero could
be misleading.
When analyzing data from many circuits (Q ≫ 1), it is

often useful to summarize any observed context depend-
ence with a single number. One such candidate is the
maximum SSTVD over all circuits,

max SSTVD ¼ max
q

½SSTVDq�; ð21Þ

and we use this statistic in our examples later. The
motivation for maxSSTVD is that it partially captures
worst-case context dependence. maxSSTVD can be con-
veniently related to the diamond distance between gates,
which is effectively a worst-case error rate; the diamond
distance between channels A and B is a tight upper bound
on the TVD (in circuit outcome probabilities, that is
induced by replacing one instance of A with B in any
circuit). (For further discussion of the diamond distance,
see, e.g., Refs. [51–55].) Therefore, if SPAM operations are
not context dependent, then the maximum true TVD over
tested circuits, divided by the number of gates in the
maximizing circuit, lower bounds the maximum diamond
distance between corresponding gates in the two contexts.
The maxSSTVD is an estimate of this maximal TVD and,
therefore, roughly lower bounds the worst diamond dis-
tance between contexts’ gate sets. (This link to the diamond
distance suggests an interesting alternative to maxSSTVD:
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maxq½SSTVDq=lðqÞ�, where lðqÞ is the length of circuit q.)
It is also important to note that the value of max SSTVD is,
in general, strongly dependent on the choice of circuits,
even when divided by the circuit length, as the most
context-dependent circuit might not be in the set of circuits
chosen.
There are some subtleties to SSTVD, which can

become important in slightly unusual circumstances.
Perhaps the most significant of these is that the
SSTVD of a circuit can sometimes significantly overesti-
mate the true TVD of the circuit. For example, consider a
situation whereby the TVD between contexts is the same
and fairly small for all circuits and context dependence is
detected in only some of the circuits (because the effect is
small, so the chance that it is detected in any particular
circuit is low). The circuits in which SSTVD is reported
as non-null must have an observed TVD large enough so
that the LLR test triggers, and the minimum such
observed TVD could be significantly larger than the true
TVD. If this is the case, any non-null SSTVD is a
significant overestimate of the true TVD. Subtleties of
this sort can be accounted for by looking at additional
properties of the observed TVD distribution. However,
this is not to suggest that looking at the full observed
TVD distribution is always preferable in practice: The
SSTVD is a convenient tool for highlighting the rough
size of any detected context dependence without requiring
subtle, case-specific analysis of a distribution.

IV. SIMULATED DRIFT DETECTION

In this section, we present a simulated example showing
how to use the tools presented above to detect slow drift.
This example uses data from GST circuits, but alternatives
such as RB circuits could equally be used. We consider
LSGST circuits [1] built from two gates: π=2 rotations
around σx and σy. Each LSGST circuit begins with one of
six short state-preparation sequences, followed by one of
six short “germ” sequences repeated OðKÞ times, and
concludes with one of six short premeasurement sequences.
These building blocks are chosen so that the collection of
LSGST circuits is both informationally complete as well as
amplificationally complete (they amplify sensitivity to all
possible errors) [1,40]. Here, K ranges from 0 to 256 with
logarithmic spacing, yielding 1405 unique quantum cir-
cuits. Below, the size ofK is referred to as the “core” circuit
length. The specific circuits used are given in the Appendix.
We simulate repeating these circuits N ¼ 100 times in

each of five consecutive time periods t ¼ 1; 2;…; 5 (the
contexts). In addition to small time-independent unitary
errors in the gates for the X and Y rotations [56],
we simulate slow drift by adding overrotations of
ðt − 1Þ × 10−3 rad in time periods t to both gates. We test
for drift (context dependence between time periods) using a
global significance level of α ¼ 5%.

There are five contexts (the five time periods), so there are
many ways to test for drift: We can implement the tests
introduced in Sec. II B on all the data (jointly comparing the
five contexts), and/or we can implement up to ten pairwise
comparisons between pairs of different time periods
(comparing pairs of contexts). We demonstrate all of these
analyses, resulting in 11 comparisons between contexts in
total. Therefore, to guarantee a global significance of 5%, we
perform each comparison between contexts at a significance
of ð5=11Þ% ≈ 0.45% (this is a Bonferroni correction), with
the aggregate LLR test and the ICTs performed for each
comparison using the particular multitest correction pro-
cedure specified earlier. [That is, each aggregate LLR test is
performed at ð5=22Þ% ≈ 0.23% significance, leaving at least
approximately 0.23% significance remaining for each col-
lection of ICTs; the ICTs are then performed using the
aforementioned Hochberg correction.] For the joint com-
parison of all five time periods, we find that the signed
standard deviation of the aggregate LLR N σ, defined in
Eq. (13), isN σ ≈ 21; the threshold for drift detection is only
N σ ≈ 2.9 [as given by Eq. (14) with α ≈ 0.23%]. Thus, we
detect drift with extremely high confidence. The ICTs test
also detects drift, finding 21 circuits to be significant.
To obtainmore detailed, diagnostic information,we turn to

the pairwise time period comparisons. These results are
summarized in Fig. 2. The upper triangle in the upper plot in
Fig. 2 shows N σ for each pairwise comparison. For the
longest time difference comparison,N σ ≈ 34 (the threshold
for drift detection is stillN σ ≈ 2.9). The lower triangle in the
upper plot in Fig. 2 shows the number of circuits that are
found to have statistically significant drift for each pairwise
comparison. If this is zero and the N σ is not statistically
significant, then drift is not detected for that pairwise
comparison; otherwise, it is. Therefore, none of the compar-
isons between neighboring time periods detect drift, but all
other comparisons do detect drift. Drift is thus detected
whenever the difference in the rotation angle between time
periods is at least 2 × 10−3 rad. As expected, the statistical
significance of the observed effect, as quantified by N σ,
increases with the time delay. Note that, while no drift is
detected between neighboring time periods, we know that
drift is present (because we designed the model). This drift
could have been made visible to our tools in either of two
ways. First, we could have included longer sequences that
would be more sensitive to small rotations. Alternatively, we
could simply have collected more data.
Figure 2 also demonstrates that these tools allow for a

rough diagnosis of the drift, without requiring computa-
tionally expensive exhaustive parameter estimation. The
lower plot in Fig. 2 shows the distribution of the per-circuit
observed JSDs, as defined in Eq. (15), versus the core
circuit length (see above), for the longest delay period t ¼ 1
versus t ¼ 5. This comparison shows that the magnitude
of the drift grows with the circuit length, implying that the
gates are drifting, rather than the SPAM. Note that the only
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circuits flagged by our tests as being context dependent at
5% global significance are those with an observed JSD
above the pseudothreshold for statistical significance, given
by Eq. (17) (there are 25 such circuits, as shown in the
upper plot, and all are of length 128 or longer). Looking,
however, at the trend in the observed JSD distribution for
all circuits provides additional, if less rigorous, evidence of
an increase in the underlying JSD with the circuit length (as
more circuits have larger observed JSD at longer circuit
length, even if most of those circuits’ JSDs are still below
the pseudothreshold) [57]. This evidence highlights the
utility of further data analysis, after context dependence has
been first detected with statistically rigorous hypothesis
testing.
Looking at the specific details of the circuits, we observe

that the largest observed JSDs are seen in circuits where the
same gate is repeated sequentially many times. This
observation strongly suggests that the gate rotation angles

are drifting rather than the rotation axes (which those
circuits would not amplify sensitivity to) or the stochastic
error rates (changes in which would manifest in all longer
sequences). This result is, of course, consistent with the
simulated error model. Jupyter notebooks that contain this
more detailed analysis, and which can be used to repeat and
extend these simulations, are included as Supplemental
Material [58].

V. EXPERIMENTAL DRIFT AND
CROSSTALK DETECTION

To further demonstrate the practical utility of our tools,
we applied them to detect and quantify drift and crosstalk in
the publicly accessible ibmqx3 [38,59,60]. The ibmqx3,
shown schematically in Fig. 3, is a 16-qubit superconduct-
ing device with connectivity on a 2 × 8 grid, resembling a
ladder. We ran circuits over fI;H;Sg gates on a single qubit
(Q15) to see whether

(I) the behavior of this qubit is affected by simulta-
neous CNOT gates applied to various “rungs” of the
“ladder” or

(II) the behavior of this qubit drifts in time.
To do this experiment, we ran the circuits of LGST [48]

over fI;H;Sg on Q15 in multiple contexts. LGST is the
simplest, least experimentally intensive form of GST,
requiring only 40 unique circuits for these gates. The exact
circuits are listed in the Appendix, and all the circuits are
depth 7 or less. For each rung, we compare the output of
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FIG. 2. An example using our techniques for drift detection on
simulated data. Data are obtained by repeating the same 1405
circuits 100 times in each of five time periods. The circuits
contain π=2 rotations around σx=y and are informationally
complete, meaning that they are collectively sensitive to drift
in every aspect of gates and SPAM. Drift is modeled as time-
dependent overrotations in both gates, by ðt − 1Þ × 10−3 rad in
time period t ¼ 1; 2;…; 5. Upper plot, upper triangle:N σ of total
model violation for pairwise comparisons between the five pools.
Upper plot, lower triangle: The number of circuits that are found
to contain statistically significant drift. Lower plot: A violin plot
of the estimated JSD for each circuit versus the core circuit length
for the t ¼ 1 to t ¼ 5 time period comparison (“core” circuit
length is defined in the main text). Any JSD above the pseudo-
threshold is significantly nonzero, at 5% global statistical signifi-
cance, implying that drift is rigorously detected in the associated
circuits. As discussed in the main text, by looking at which circuits
have a high JSD, it is possible to infer the form of the errors.

Maximum
SSTVD

Q0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q12 Q11 Q10 Q9Q15 Q14 Q13

8.2% 27.7% 12.9% 5.7% 2.9% 2.9% 2.3%

FIG. 3. Quantifying the effect of CNOT gates on the perfor-
mance of qubit Q15 in ibmqx3 [38]. Top: A schematic of ibmqx3
with Q15 highlighted. Circles indicate qubits, and arrows denote
CNOT gates, pointing from the control to the target. Bottom: The
effect of driving each of the seven “ladder-rung” CNOT gates on
short circuits run on qubit Q15, as quantified by maxSSTVD,
which is an empirical, total-variation-distance-based measure that
we propose for estimating worst-case context dependence over
circuits (see the main text). The maxSSTVD from driving each
CNOT is plotted immediately below the corresponding rung in the
schematic. The CNOT between qubits Q14 and Q3 has a large
effect on the behavior of circuits on Q15, which corresponds to
changing the outcome probabilities of a set of short circuits on
Q15 by 27.7% in the worst case. The circuits run onQ15 are those
of linear-inversion gate set tomography and are discussed in the
main text.

KENNETH RUDINGER et al. PHYS. REV. X 9, 021045 (2019)

021045-8



LGST circuits on Q15 in the following time-ordered
contexts.
(a) All other qubits idle.
(b) The CNOT on the rung is applied whenever a gate is

applied to Q15.
(c) All other qubits idle.
This experimental design is chosen to enable detection and
isolation of both drift and crosstalk. If no context depend-
ence is detected between (a) and (c), then we can safely rule
out drift. Any context dependence between (a) and (b) may
then be ascribed to crosstalk (modulo caveats discussed
later). Access constraints prohibit running all the circuits
for a rung in one submission. Therefore, for each rung, we
submit the circuits for each context [(a)–(c)] in sequential
batches. The delay between executed batches ranges from a
few seconds to several minutes, depending on machine
availability.
To implement the tests, we pick a global significance of

5%. To maintain this global significance level, a Bonferroni
correction is used (following the prescription at the end of
Sec. II B) to split this 5% evenly over the comparisons for
the seven rungs and the (a) to (b) and (a) to (c) comparisons
for each rung [we do not compare (b) to (c) so as to avoid
additional local significance dilution]. This correction
results in implementing each pairwise context comparison
at a significance of 5

14
%, noting that each pairwise

comparison itself contains 40 per-circuit comparisons
(the ICTs) and an aggregate comparison, as described
earlier. As with the simulated data, the ICTs are performed
with the Hochberg correction, as described in Sec. II B.
(The resulting data, along with the full analysis, are
provided in Supplemental Material [58].)
We detect no drift. That is, for all seven rungs, no change

is detected between any (a) and corresponding (c) context.
This result is interesting in its own right, but it is also
critical for the crosstalk detection, which is because it
implies that any variation between any (a) and (b) contexts
is probably not due to random drift—and, thus, if
differences are detected, that they are almost certainly
due to the CNOT gate on the rung in question.
Our results comparing contexts (a) and (b) for each rung

are summarized in Fig. 3, where we plot the maxSSTVD for
each rung [see Eq. (21)]. In all cases, the application of CNOT
gates on the other qubit pairs influences the behavior ofQ15

to a statistically significant degree, as the maxSSTVD is
nonzero [the SSTVD of a circuit is “null” if context
dependence is not detected for that circuit; see Eq. (20)].
The observed maximum SSTVD broadly decreases with the
connectivity graph distance between Q15 and the driven
rung. Thus, closer CNOT gates generally affectQ15more. For
the CNOT betweenQ3 andQ14, one of the two closest rungs
to Q15, we observe a maxSSTVD of around 28%, corre-
sponding to the gate sequence HSSSSH. For this circuit, out
of 1024 measurement results, just two “1” outcomes are
observed in context (a), while 286 “1” outcomes are

observed in context (b). That is, this result suggests that
applying the CNOT gate to this rung changes the outcome
probabilities of this circuit on Q15 by about 28%.
The obvious cause of changes from contexts (a) to (b) is

crosstalk, but there is an important caveat that needs to be
addressed before we can draw this conclusion. The circuits
onQ15 take longer when applying a CNOT to a rung [context
(b)] than when implemented in isolation [context (a) or (c)].
This difference is because CNOT gates take substantially
longer to implement than one-qubit gates on ibmqx3 [38],
and in context (b) a single CNOT is applied in parallel with
every gate acting on Q15. Thus, a change in the output
probabilities ofQ15 from context (a) to (b) could be just due
to the circuits taking longer, allowing for more decoherence
to build up on Q15.
This effect, however, is independent of the rung being

tested, and this independence allows us to bound this effect.
The maxSSTVDs between contexts (a) and (b) for the three
furthest rungs are all approximately equal (see Fig. 3) and
much lower than themaxSSTVDs for the other rungs. These
maxSSTVDs provide a rough baseline for the maximal
amount of the context dependence that can be attributed to
this timing difference; any excess in the maxSSTVD above
this level is almost certainly due to crosstalk.
To fully isolate the crosstalk caused by a CNOT from any

change in circuit performance caused by an increased
circuit duration, the time for each circuit layer should be
fixed for all contexts, which could be more easily incorpo-
rated into experiments with lower-level access to a device.
This desideratum is illustrative of the need to carefully
account for all “nuisance contexts” that may be uninten-
tionally or unavoidably changing with the context of
interest. These nuisance contexts should be removed if
possible or, as here, accounted for when not.

VI. DISCUSSION

To our knowledge, the tools we present and demonstrate
herein are the first designed for detecting and characterizing
generic context dependence in generic quantum circuits.
However, one particular important example of context
dependence is crosstalk, and there is already a widely used
tool for characterizing crosstalk: simultaneous randomized
benchmarking (SRB) [7,9]. For this reason, we now briefly
discuss the relationship between our tools and SRB. In
essence, SRB involves comparing a qubit’s RB error rates in
two contexts, corresponding to (1) leaving neighbor qubits
idle and (2) driving them. This comparison then provides a
quantification of crosstalk in terms of the increase in the RB
error rate caused by driving neighboring qubits.
Our methods complement those of SRB: Our tools are

not restricted to RB circuits, but, unlike SRB, they cannot
directly provide a “crosstalk error rate” for the gates.
Moreover, our methods cannot be applied directly to
SRB data, because SRB uses independently sampled
(and so almost certainly different) random sequences in
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each context. Our methods can, however, be used in
concert with the SRB analysis if SRB is modified slightly,
so that each random sequence appears in both the driven-
and undriven-neighbor(s) contexts. With data from circuits
of this sort, our tools complement the standard SRB
analysis; they provide statistically rigorous crosstalk detec-
tion, something not directly addressed by the SRB analysis.
Moreover, our tools allow for the testing of each individual
random SRB sequence for sensitivity to driving, which can
potentially help to identify the main sources of crosstalk
(particularly if using varied-sampling-distribution RB
methods such as those in Ref. [8]).

VII. CONCLUSIONS

Improving the performance of future quantum process-
ors will require quantifying, understanding, and eventually
mitigating a wide variety of context-dependent errors, such
as crosstalk [7–9] and drift [23]. The techniques presented
and demonstrated here are simple, general, and statistically
rigorous ways to detect and quantify context-dependent
errors, independent of their underlying physical causes.
These methods are also computationally lightweight and
can be applied to any collection of quantum circuits on any
number of qubits. We therefore recommend that almost all
device characterization protocols should be augmented
with these tools. They can even be applied to archived
data if any context-identifying information, such as time
stamps, was kept. We expect that these techniques will
contribute to the toolkit for calibrating and debugging next-
generation qubits. For easy use, they have been integrated
into (and documented in) the open-source PYGSTI software
package [46].
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APPENDIX: CIRCUIT DETAILS

In this Appendix, we describe the sets of quantum
circuits used in the simulations and experiments of the
main text. The circuits are from two forms of GST [1–4]:
LSGST [1] circuits are used for the simulations, while
LGST [48] circuits are used for the experiments on ibmqx3.
Below, we specify only the circuits used, not how this set of
circuits is chosen. For more information on how to choose
GST circuits, see Ref. [1] and the Jupyter notebooks
accompanying this paper [58].
Following the notation of Ref. [1], the idle gate and gates

corresponding to π=2 rotations around σx and σy are
denoted by Gi, Gx, and Gy, respectively. The Hadamard
and phase gates are denoted by Gh and Gs, respectively,
where the phase gate is the unitary that maps jxi → ixjxi
for x ¼ 0, 1. The null gate operation of “do nothing for no
time” is denoted by “fg.” Circuits are specified in operation
order, not matrix multiplication order. For example, the
sequence denoted GhGs means “perform a Hadamard gate,
followed by a phase gate”.
To succinctly list the circuits used in the simulations and

experiments, it is necessary to first review the structure of
GST circuits. Although not necessary, the GST circuits
herein fix all state preparations to the j0i state and all
measurements to be in the σz basis, so we specialize to that
case. All GST circuits contain one of several short gate
sequences at the beginning of the circuit, as well as another
sequence at the end, which is to achieve tomographic
completeness, by simulating informationally complete state
preparations and measurements. These short sequences
are referred to as fiducials. Given a gate set G, a set of
preparation fiducials F ðpÞ, and a set of measurement
fiducials F ðmÞ, the collection of LGST circuits is the set
of all circuits of the form

F; ∀ F ∈ F ðpÞ ∪ F ðmÞ;

FpFm; ∀ Fp ∈ F ðpÞ; ∀ Fm ∈ F ðmÞ;

FpGFm; ∀ Fp ∈ F ðpÞ; ∀ G ∈ G; ∀ Fm ∈ F ðmÞ:

Note that some circuits may appear more than once when
iterating over all three forms of circuit and all possible
combinations of gates, preparation fiducials, and measure-
ment fiducials. (And, naturally, a circuit is added to the list
of LGST circuits only once). From above, it follows that to
define a set of LGST circuits it is necessary only to specify
the sets G, F ðpÞ, and F ðmÞ. For the experiment run on
ibmqx3, we use the circuits of LGST with
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G ¼ fGi; Gh; Gsg;
F ðpÞ ¼ ffg; Gh; GhGs; GhGsGsg;
F ðmÞ ¼ ffg; Gh; GsGh; GhGsGhg:

In addition to the circuits of LGST, LSGST uses a further
collection of sequences constructed from powers of a set of
germs. Like the preparation and measurement fiducials, the
germs are short sequences of gates from G. Denote the germ
set by G, with the length of germ g denoted by lðgÞ. For
LSGST, we also need to choose a maximum “germ power”
Lmax ¼ 2k for some positive integer k. LSGST consists of
all the circuits of LGSTalong with all gate sequences of the
form

FpgbL=lðgÞcFm; ∀ g ∈ G; ∀ L ∈ f1; 2; 4;…; Lmaxg;

where, as above, Fp and Fm run over all preparation and
measurement fiducials, respectively. Again, these circuits
may not all be unique or unique from the set of LGST
circuits that they are combined with.
For the simulations presented in the main text to illustrate

drift detection, we use LSGST circuits with Lmax ¼ 256
and

G ¼ fGx;Gyg;
F ðpÞ ¼ F ðmÞ ¼ ffg; Gx; Gy; G2

x; G3
x; G3

yg;
G ¼ fGx;Gy; GxGy; G2

xGy; GxG2
y; G2

xGyGxG2
yg;

which results in 1405 circuits, as stated in the main text.
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