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A fluid is said to be scale invariant when its interaction and kinetic energies have the same scaling in a
dilation operation. In association with the more general conformal invariance, scale invariance provides a
dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and
its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-
dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a
classical field obeying the Gross-Pitaevskii equation, and thus possesses a dynamical symmetry described
by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we
show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies, and
interaction parameters by a scaling transform. Finally, we show that some specific initial shapes—
uniformly filled triangles or disks—may lead to a periodic evolution corresponding to a novel type of
breather for the two-dimensional Gross-Pitaevskii equation.
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I. INTRODUCTION

Symmetries play a central role in the investigation of a
physical system. Most often, they are at the origin of
conserved quantities, which considerably simplify the
study of the equilibrium states and the evolution of the
system. For example, spatial symmetries associated with
translation and rotation lead to the conservation of linear
and angular momentum. More generally, it is interesting to
determine the dynamical (or hidden) symmetries of the
system under study, which can lead to more subtle con-
served quantities. These symmetries are described by the
group of all transformations of space and time that leave the
action, therefore, the equations of motion, invariant.
A celebrated example is the 1=r potential in three dimen-
sions, where there exists a dynamical symmetry described
by the group Oð4Þ for the bounded orbits [1]. When treated
by classical mechanics, it leads to the conservation of the
Laplace-Runge-Lenz vector from which one deduces that
the bounded orbits are actually closed trajectories.
Among the systems that display rich dynamical

symmetries are the ones whose action is left invariant
by a dilation transformation of space and time. Such

scale-invariant systems were initially introduced in particle
physics to explain scaling laws in high-energy collisions
[2]. We consider here the nonrelativistic version of scale
invariance, which applies to the dynamics of a fluid of
particles. We consider the simultaneous change of length
and time coordinates of each particle according to the
scaling

r → r=λ; t → t=λ2: ð1Þ

In this dilation, the velocity of a particle is changed as
v → λv. Therefore, the kinetic energy of the fluid scales as
Ekin → λ2Ekin, which ensures that the corresponding part of
the action (∝

R
Ekindt) remains invariant in the transforma-

tion (1). If the interaction energy has the same scaling
Eint → λ2Eint, the total action of the fluid is invariant in the
dilation. The simplest example of such a fluid is a
collection of nonrelativistic particles, either noninteracting
(Eint ¼ 0) or with pairwise interactions described by a 1=r2

potential. A scale-invariant fluid possesses remarkably
simple thermodynamic properties: For example, its equa-
tion of state depends only on the ratio of chemical potential
to temperature instead of being an independent function of
these two variables.
Most physical systems exhibiting scale invariance also

possess a more general conformal invariance, where time and
space are modified by conformal transformations instead of
the simple dilations given in Eq. (1) [3]. In the nonrelativistic
domain, this conformal invariance exists for the Schrödinger
equation describing themotion of the two systemsmentioned
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above, free particles [4,5] and particles interactingwith a 1=r2

potential [6]. In both cases, the dynamical symmetry group
associated with this scale and conformal invariance is the
Lorentz group SO(2,1). This is also the case for the three-
dimensional pseudo-spin-1=2 Fermi gas in the unitary regime
(for a review, see, e.g., Ref. [7]). There, the scattering length
between the two components diverges, ensuring the required
disappearance of a length scale related to interactions. In
addition to the existence of a universal equation of state, this
dynamical symmetry leads to a vanishing bulk viscosity
[8,9] and also to general relations between the moments
of the total energy and those of the trapping energy in a
harmonic potential [10].
In this article, we consider another example of a scale-

and conformal-invariant fluid with the SO(2,1) dynamical
symmetry, the “weakly interacting” two-dimensional (2D)
Bose gas. The concept of “weak interaction” means in this
context that the state of the gas is well described by a
classical field ψðr; tÞ. This field is normalized to unity
(
R jψ j2d2r ¼ 1) so that the density of the gas reads
nðr; tÞ ¼ Njψðr; tÞj2 where N is the number of particles.
In the scaling of positions, the 2D matter-wave field
changes as ψðrÞ → λψðλrÞ, which guarantees that the norm
is preserved and that the dynamical part of the action
∝ iℏ

R
dt

R
d2rψ�∂tψ is invariant. The interaction energy

of the gas then reads for contact interaction

Eint ¼
N2ℏ2

2m
g̃
Z

jψðrÞj4d2r; ð2Þ

where m is the mass of a particle, and g̃ the dimensionless
parameter characterizing the strength of the interaction.
One can immediately check that Eint obeys the λ2 scaling
required for scale invariance, which can be viewed as a
consequence of the dimensionless character of g̃. The
classical field description used here is valid if one restricts
to the case of a small coupling strength g̃ ≪ 1 [11]. This
restriction is necessary because of the singularity of the
contact interaction ðℏ2=mÞg̃δðrÞ in 2D when it is treated at
the level of quantum field theory. Note that the condition
g̃ ≪ 1 does not constrain the relative values of the inter-
action and kinetic energies. Actually, in the following we
often consider situations where Eint ≫ Ekin (Thomas-Fermi
regime).
So far, the scale and conformal invariance of the weakly

interacting 2D Bose gas has been mainly exploited to
measure its equation of state [12,13]. Also, one of its
dynamical consequences in an isotropic 2D harmonic
potential of frequency ω has been explored: The frequency
of the breathing mode was predicted to be exactly equal to
2ω for any g̃ [14–16], as tested in Refs. [17,18]. Note that in
the presence of a harmonic potential, the whole system is
not scale invariant anymore, but it still possesses a
dynamical symmetry described by the group SO(2,1), as

shown in Ref. [15]. Recently, deviations from this pre-
diction for g̃≳ 1, an example of a quantum anomaly [19],
have been observed [20,21].
The purpose of our work is to go beyond static properties

of the weakly interacting 2D Bose gas and its single-mode
oscillation in a harmonic potential and to reveal more
general features associated with its dynamical symmetry.
To do so, we study the evolution of the gas in a 2D
harmonic potential of frequency ω, starting from a uni-
formly filled simple area (disk, triangle, or square). Here,
we use g̃ ≤ 0.16 so that the classical field description is
legitimate. We first check (Sec. II) the prediction from
Ref. [15] that Ekin þ Eint should have a periodic evolution
in the trap with the frequency 2ω. We then investigate the
transformations linking different solutions of the equations
of motion. These transformations are at the heart of the
dynamical symmetry group SO(2,1). In practice, we first
link the evolution of clouds with the same atom number and
homothetic initial wave functions in harmonic potentials
with different frequencies (Sec. III). Then, restricting to the
case where superfluid hydrodynamics is valid, we derive
and test a larger family of transformations that allows one to
connect the evolutions of two initial clouds of similar
shapes with different sizes, atoms numbers, trap frequen-
cies, and interaction strengths (Sec. IV). Finally, in Sec. V
we explore a property that goes beyond the symmetry
group of the system and that is specific to triangular and
disk-shaped distributions in the hydrodynamic limit: We
find numerically that these distributions evolve in a
periodic manner in the harmonic trap, and we confirm this
prediction over the accessible range for our experi-
ment (typically, two full periods of the trap 4π=ω).
These particular shapes can therefore be viewed as two-
dimensional breathers for the Gross-Pitaevskii (nonlinear
Schrödinger) equation in the hydrodynamic limit [22].
They also constitute a novel example of universal dynamics
in a quantum system prepared far from equilibrium
[23–25].

II. EVOLUTION OF POTENTIAL ENERGY

Our experiment starts with a 3D Bose-Einstein conden-
sate of 87Rb that we load around a single node of a vertical
(z) standing wave created with a laser of wavelength
532 nm. The confining potential along z is approximately
harmonic with a frequency ωz=ð2πÞ up to 4.9 kHz. The
interaction parameter is g̃ ¼ ffiffiffiffiffiffi

8π
p

as=lz, where as is the 3D
s-wave scattering length and lz ¼ ðℏ=mωzÞ1=2. The inter-
action energy per particle and the residual temperature are
both smaller than ℏωz so that the vertical degree of freedom
is effectively frozen [26]. The initial confinement in the
horizontal xy plane is ensured by “hard walls” made with a
light beam also at 532 nm. This beam is shaped using a
digital micromirror device (DMD), and a high-resolution
optical system images the DMD pattern onto the atomic
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plane [27], creating a box potential on the atoms. The cloud
fills uniformly this box potential, and it is evaporatively
cooled by adjusting the height of thewalls of the box. For all
data presented here, we keep the temperature low enough to
operate deep in the superfluid regime with T=Tc < 0.3,
where Tc is the critical temperature for the Berezinskii-
Kosterlitz-Thouless transition. At this stage, the atoms are
prepared in the F ¼ 1, mF ¼ 0 hyperfine (ground) state,
which is insensitive to magnetic field.
Once the gas reaches equilibrium in the 2D box, we

suddenly switch off the confinement in the xy plane and
simultaneously transfer the atoms to the field-sensitive state
F ¼ 1, mF ¼ −1 using two consecutive microwave tran-
sitions. Most of the experiments are performed in the
presence of a magnetic field that provides the internal state
F ¼ 1, mF ¼ −1 with an isotropic harmonic confinement
in the xy plane, with ω=2π around 19.5 Hz. We estimate the
anisotropy of the potential to be ≲2%. We let the cloud
evolve in the harmonic potential for an adjustable time
before making an in situmeasurement of the spatial density
nðrÞ ¼ NjψðrÞj2 by absorption imaging.
The measurement of nðrÞ gives access to both the

interaction energy (2) and the potential energy in the
harmonic trap

Epot ¼
N
2
mω2

Z
r2jψðrÞj2d2r: ð3Þ

Since the gas is an isolated system, we expect the total
energy Etot ¼ Ekin þ Eint þ Epot to be conserved during the
evolution, where the kinetic energy Ekin reads

Ekin ¼
Nℏ2

2m

Z
j∇ψ j2d2r: ð4Þ

The SO(2,1) symmetry for a 2D harmonically trapped
gas brings a remarkable result: Ekin þ Eint and Epot should
oscillate sinusoidally at frequency 2ω [15]. More precisely,
using the 2D Gross-Pitaevskii equation, one obtains the
relations

dEpot

dt
¼ −

dðEkin þ EintÞ
dt

¼ ωW; ð5Þ

dW
dt

¼ 2ωðEkin þ Eint − EpotÞ; ð6Þ

where we define W ¼ ωm
R
r · vnd2r and the velocity field

vðrÞ ¼ ðℏ=mÞIm½ψ�ðrÞ∇ψðrÞ�=jψðrÞj2. Initially, the gas is
prepared in a steady state in the box potential so that v ¼ 0;
hence, Wð0Þ is also null. Therefore, the potential energy
evolves as

EpotðtÞ ¼
1

2
Etot þ ΔE cosð2ωtÞ; ð7Þ

where ΔE ¼ 1
2
½Epotð0Þ − Ekinð0Þ − Eintð0Þ� can be positive

or negative. A similar result holds for the sum Ekin þ Eint
(with ΔE replaced by −ΔE) but not for the individual
energies Ekin or Eint.
We show in Fig. 1(a) the evolution of the potential

energy per particle for an initially uniformly filled
square. Although the density distribution is not periodic
[see Fig. 1(b)], the potential energy Epot evolves periodi-
cally and is well fitted by a cosine function with a period
that matches the 2ω prediction and the expected zero initial
phase. For a better adjustment of the data, we add a (small)
negative linear function to the fitting cosine. Its role is
likely to account for the residual evaporation rate of atoms
from the trap (approximately 0.1 s−1).
This simple dynamics can be viewed as a generalization

of the existence of the undamped breathing mode at
frequency 2ω that we mention in the Introduction
[14,15]. We emphasize that this result is a consequence
of the SO(2,1) symmetry and does not hold for the Gross-
Pitaevskii equation in 1D or 3D.
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FIG. 1. Time evolution of the potential energy per particle of a 2D
gas of 87Rb atoms in an isotropic harmonic potential of frequencyω
for a square of side length 27.6ð5Þ μm with 4.1ð2Þ × 104 atoms.
(a) Evolution of the potential energy per particle. Each point is an
average of seven to ten realizations, and the error bars indicate the
standard deviation of these different realizations. The frequency of
the trap is measured with the oscillation of the center of mass:
ω=2π ¼ 19.3ð1Þ Hz.The oscillations ofEpot are fittedwith a cosine
function and an additional linear slope (continuous line). This slope
is −0.25ð4Þ Hz=ms and accounts for the loss of particles from the
trap. The fitted frequency is 38.5(1) Hz, which is compatible with
ω=π, as predicted by the SO(2,1) symmetry of the gas. (b) Density
distribution of an initially uniform gas after the evolution in a
harmonic potential at timesωt ¼ 0, π, 2π, 3π, 4π, corresponding to
the first periods of the potential energy indicated by the labels from1
to 5. The horizontal black lines represent 10 μm.
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III. GENERAL SCALING LAWS

An important consequence of the dynamical symmetry
of the 2D Gross-Pitaevskii equation is the ability to link two
solutions ψ1;2 of this equation corresponding to homothetic
initial conditions: One can relate ψ1ðr; tÞ and ψ2ðr0; t0Þ,
provided they evolve with the same parameter g̃N and the
same trap frequency ω1 ¼ ω2. By using a simple scaling on
space and time, this link can be further extended to the
case ω1 ≠ ω2.
The general procedure is presented in the Appendix, and

we start this section by summarizing the main results.
Consider a solution of the Gross-Pitaevskii equation
ψ1ðr; tÞ for the harmonic potential of frequency ω1:

iℏ
∂ψ1

∂t ¼ −
ℏ2

2m
∇2ψ1 þ

ℏ2g̃N
m

jψ1j2ψ1 þ
1

2
mω2

1r
2ψ1: ð8Þ

Using scale and conformal invariance, we can construct a
solution ψ2ðr0; t0Þ of the Gross-Pitaevskii equation with the
frequency ω2 ¼ ζω1 using

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ; ð9Þ

where space is rescaled by r0 ¼ r=λðtÞ with

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ α2ζ2sin2ðω1tÞ

�
1=2

; ð10Þ

and the dimensionless parameter α is the homothetic
ratio between the initial states. The relation between the
times t and t0 in frames 1 and 2 is

tanðω2t0Þ ¼ ζα2 tanðω1tÞ; ð11Þ

and the multiplicative function f is

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2ℏλ

�
; ð12Þ

where _λ≡ ½ðdλÞ=ðdtÞ�. The two solutions ψ1;2ðtÞ corre-
spond to the evolution of two clouds with the same
parameter g̃1N1 ¼ g̃2N2. At t ¼ 0, these two wave func-
tions correspond to the ground states of the Gross-
Pitaevskii equation in the box potentials with characteristic
lengths L1;2, with L2 ¼ αL1. Both initial wave functions
ψ1;2ð0Þ can be chosen real, and the scale invariance of the
(time-independent) 2D Gross-Pitaevskii equation ensures
that they are homothetic: αψ2ðαr; 0Þ ¼ ψ1ðr; 0Þ. For exam-
ple, in the limit Eint ≫ Ekin, ψð0Þ corresponds to a uniform
density in the bulk and goes to zero at the edges on a scale
given by the healing length ξ≡ ½Nℏ2=ð2mEintÞ�1=2. For
two box potentials of homothetic shapes filled with the
same number of particles, the ratio ξ2=ξ1 is equal to the
ratio L2=L1.

We explore experimentally this mapping between two
evolutions in the particular case L1 ¼ L2 and ω1 → 0, i.e.,
α ¼ 1 and ζ → þ∞. We thus compare the evolution of
clouds with the same shape and the same size either in a
harmonic potential or in free (2D) space. The choice of the
initial shape is arbitrary; here we start from a uniform
triangle of side length 40.2ð3Þ μm with 3.9ð3Þ × 104 atoms
and let it evolve either in a harmonic potential of frequency
ω2=ð2πÞ ¼ 19.7ð2Þ Hz or without any potential (ω1 ¼ 0).
In both cases, we record images of the evolution, examples
of which are given in Figs. 2(a) and 2(b). These two
evolutions should be linked via Eq. (9). The relation (11)
between t and t0 reads

tanðω2t0Þ ¼ ω2t; ð13Þ

and the relation (10) becomes

λðtÞ ¼ ð1þ ω2
2t

2Þ1=2: ð14Þ

The relation (13) indicates that the scaling transformation
maps the first quarter of the oscillation period in the
harmonic trap ω2t0 ≤ π=2 onto the ballistic expansion from
t ¼ 0 to t ¼ ∞. In the absence of interactions, this result
has a simple physical interpretation: After the ballistic
expansion between t ¼ 0 to t ¼ ∞, the asymptotic position
distribution reveals the initial velocity distribution of the
gas, whereas the evolution in the harmonic trap during a
quarter of oscillation period exchanges initial positions and
initial velocities. We emphasize that the mapping (13) also
holds for an interacting system as a consequence of the
SO(2,1) symmetry underlying the 2D Gross-Pitaevskii
equation [28].
In order to reconstruct the scaling laws (13) and (14)

from the measured evolutions, we compare each image
n1ðr; tÞ for the free evolution with the set of images
n2ðr0; t0Þ obtained for the in-trap evolution. More precisely,
we start by defining the overlap O½n1; n2� between two
images in the following way:

(i) We introduce the scalar product ðn1jn2Þ between two
images

ðn1jn2Þ ¼
Z

n1ðrÞn2ðrÞd2r ð15Þ

and the norm of an image kn1k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1jn1Þ
p

.
(ii) In order to relate two images that differ by a spatial

scaling factor λ, we introduce the quantity

p½n1; n2; λ� ¼
ðnðλÞ1 jn2Þ
knðλÞ1 kkn2k

; ð16Þ

where nðλÞ1 ðrÞ ¼ λ2n1ðλrÞ is the image rescaled from
n1ðrÞ by the factor λ, with the same atom number:
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N1 ¼
R
n1ðrÞd2r ¼

R
nðλÞ1 ðrÞd2r. Note that the

definition of the norm given above entails knðλÞ1 k ¼
λkn1k. By construction, the quantity p½n1; n2; λ� is
always smaller or equal to 1, and it is equal to 1 only

when the image nðλÞ1 is identical to n2 up to a
multiplicative factor.

(iii) Finally, for a couple of images ðn1; n2Þ, we vary λ
and define their overlap as

O½n1; n2� ¼ max
λ

p½n1; n2; λ�: ð17Þ

In practice, for each image n1ðtÞ acquired at a given time t,
we determine the time t0opt where the overlap between n1ðtÞ
and n2ðt0Þ is optimal. We denote ΛðtÞ as the value of the
scaling parameter λ for which the valueO½n1ðtÞ; n2ðt0optÞ� is
reached (see the Supplemental Material [30] for more
details). Since the center of the images may drift during
the evolution, we also allow for a translation of n2 with
respect to n1 when looking for the optimum in Eqs. (16)
and (17).
The result of this mapping between the two evolutions is

shown in Figs. 2(c) and 2(d). In Fig. 2(c), we plot t0opt as a
function of t. The prediction (13) is shown as a continuous
line and is in good agreement with the data. In Fig. 2(d), we
show the variation of the corresponding optimal scaling
parameter ΛðtÞ. Here again, the prediction (14) drawn as a
continuous line is in good agreement with the data. The
overlap between the density distributions at the correspond-
ing times is shown in the inset of Fig. 2(d) and is always
around 0.95, confirming that these density distributions

have very similar shapes. Indeed, the overlap between two
images averaged over a few experimental realizations taken
in the same conditions ranges from 0.98 to 0.99 due to
experimental imperfections.
Finally, we note that here we connect solutions of the

Gross-Pitaevskii equation (8) with the same atom number
N1 ¼ N2. Actually, the results derived above also apply to
pairs of solutions with g̃1N1 ¼ g̃2N2, since only the product
g̃N enters in the Gross-Pitaevskii equation (8).

IV. SCALING LAWS IN THE
HYDRODYNAMIC REGIME

In the previous section, we link the evolution of two
clouds with the same atom number N (or the same g̃N). We
show now that it is also possible to link evolutions with
different N’s and g̃’s, provided we restrict to the so-called
hydrodynamic (or Thomas-Fermi) regime, where the heal-
ing length ξ is very small compared to the size of the gas.

A. General formulation

The Gross-Pitaevskii equation (8) can be equivalently
written in terms of the density and the velocity fields as

∂tnþ ∇ · ðnvÞ ¼ 0; ð18Þ

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2 þ PðnÞ

�
¼ 0; ð19Þ

where PðnÞ ¼ −ℏ2=2mð∇2
ffiffiffi
n

p Þ= ffiffiffi
n

p
is the so-called quan-

tum pressure. When the characteristic length scales over

(a) (b) (c) (d))()(

FIG. 2. Evolution of a gas with triangular shape [side length 40.2ð3Þ μm, 3.9ð3Þ × 104 atoms] for two different values of the harmonic
trapping frequency. (a),(b) Averaged images of the density distribution after a variable evolution time in the harmonic potential of
frequency ω1 ¼ 0 and ω2=2π ¼ 19.7ð2Þ Hz, respectively. The images are an average over five to ten realizations, and the horizontal
black lines represent 10 μm. Pairs of images with approximately corresponding evolution times are shown. (c) Optimal time t0optðtÞ for
which the overlap between images of the first and the second evolutions is maximum. (d) Optimal rescaling factor between the
corresponding images n1ðtÞ and n2ðt0optÞ. In the two graphs (c) and (d), the solid lines are the theoretical predictions given by Eqs. (13)
and (14). The inset of (d) presents the overlap between the corresponding images of the two series. In (c) and (d), the error bars indicate
the confidence intervals within 2 standard deviations of the fits used to reconstruct the scaling laws.
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which the density and velocity vary are much larger than
the healing length ξ, one can neglect the contribution of the
quantum pressure in Eq. (19):

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2

�
¼ 0: ð20Þ

This approximation corresponding to the Thomas-Fermi
limit leads to the regime of quantum hydrodynamics for the
evolution of the density n and the irrotational velocity
field v [31]. It enriches the dynamical symmetries of the
problem, as we see in the following. For our experimental
parameters, this approximation is legitimate since the
healing length is a fraction of a micrometer only, much
smaller than the characteristic size of our clouds (tens of
micrometers).
We consider two homothetic shapes, e.g., two boxlike

potentials with a square shape, with sizes L1;2 and filled
with N1;2 atoms. We assume that we start in both cases with
the ground state of the cloud in the corresponding shape so
that the initial velocity fields are zero. Note that contrary to
the case of Sec. III, the ratio between the healing lengths
ξ2=ξ1 is not anymore equal to L2=L1 so that the initial wave
functions are not exactly homothetic, but this mismatch
occurs only close to the edges over the scale of ξ1;2 ≪ L1;2.
As before, at time t ¼ 0we switch off the potential creating
the shape under study and switch on a harmonic potential
with frequency ω1;2. Our goal is to relate the two evolutions
with parameters ðg̃1N1; L1;ω1Þ and ðg̃2N2; L2;ω2Þ.
The general transformation involves three dimensionless

constant parameters μ, α, ζ:

g̃2N2 ¼ μ2g̃1N1; L2 ¼ αL1; ω2 ¼ ζω1; ð21Þ

and reads

g̃2n2ðr0; t0Þ ¼ λ2μ2g̃1n1ðr; tÞ; ð22Þ

v2ðr0; t0Þ ¼ λμv1ðr; tÞ − μ_λr ð23Þ

with _λ ¼ ½ðdλÞ=ðdtÞ�. The spatial variables are rescaled as
r0 ¼ r=λðtÞ with the function λ now given by

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ

�
ζα

μ

�
2

sin2ðω1tÞ
�
1=2

; ð24Þ

and the relation between the times t and t0 in frames 1
and 2 is

tanðω2t0Þ ¼
ζα2

μ
tanðω1tÞ: ð25Þ

With a calculation similar to that detailed in the Appendix,
one can readily show that if ðn1; v1Þ is a solution of the
hydrodynamic equations (18) and (20) for the frequency

ω1, then ðn2; v2Þ is a solution for the frequencyω2. If μ ¼ 1,
these equations also apply beyond the Thomas-Fermi limit,
as we show in Sec. III. More strikingly, they show that in
the quantum hydrodynamic regime, the evolution of any
cloud is captured by a universal dynamics that depends
only on its initial geometry.

B. Connecting evolutions with a fixed trap frequency,
a fixed size, and different g̃N

We present here the experimental investigation of the
scaling described above, focusing on the case L1 ¼ L2 and
ω1 ¼ ω2, i.e., α ¼ ζ ¼ 1. In other words, we compare the
evolution of two clouds with the same initial shape and
density distribution, different atom numbers, and different
interaction strengths in a given harmonic trap. For sim-
plicity, we consider the result of the evolution at times t and
t0 such that ω1t ¼ ω2t0 ¼ π=2, which satisfies the con-
straint (25). In this case, λðtÞ ¼ 1=μ so that the general
scaling (22) reads

g̃2n2ðμr; t0π=2Þ ¼ g̃1n1ðr; tπ=2Þ: ð26Þ

We start with a cloud in a uniform box potential with the
shape of an equilateral triangle of side length
L ¼ 38.2ð3Þ μm. At t ¼ 0, we transfer the atoms in the
harmonic trap of frequency ω=2π ¼ 19.6 Hz and remove
the box potential. At t ¼ π=ð2ωÞ, we image the cloud. We
perform this experiment for different values of g̃ (and
slightly different atom numbers) corresponding to the
product g̃N between 200 and 4000. This leads to a ratio
ξ=L always smaller than 0.03, ensuring that we stay in the
quantum hydrodynamic regime. The variation of g̃ is
achieved by changing the intensity I of the laser beams
creating the vertical confinement with g̃ ∝ I1=4. The values
of g̃ are obtained from the measurement of the vertical
frequency ωz (see Supplemental Material [30]).
We analyze the series of images using the same general

method as in Sec. III. We select arbitrarily one image as a
reference point (here, the one corresponding to g̃N ≈ 2000
shown as a red square on Fig. 3). Then, we calculate the
best overlap between this reference point and all other
images obtained for different g̃N’s, and extract an optimal
scaling parameter Λ. The results of this analysis are
displayed on Fig. 3. The inset shows that the overlap is
close to 1 for all values of g̃N, indicating that the clouds all
have the same shape, as expected from Eq. (26). On the
main graph of Fig. 3, we show the variations of Λ−2 with
g̃N. The scaling law (24) predicts that Λ−2 ¼ μ2 ∝ g̃N,
which is indicated by the solid line passing by the origin
and the reference point. Here again, this prediction is in
excellent agreement with the data, apart from the point for
the largest g̃N. We attribute this discrepancy to the fact that
the local defects of the vertical confinement play a more
significant role at larger powers of the vertical confining
laser beam.
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Interestingly, the shape for t0 ¼ π=ð2ωÞ, i.e., t ¼ ∞ for
an evolution without any trap, is close to a uniformly filled
triangle but inverted compared to the initial one (see insets
of Fig. 3). The emergence of such a simple form after time-
of-flight is reminiscent of the simple diamondlike shape
obtained for the 3D expansion of a uniform gas initially
confined in a cylindrical box [32]. Note that we also
observe such a diamondlike shape at t ¼ π=ð2ωÞ starting
from a square box, albeit with a nonuniform density (see
Supplemental Material [30]).

C. Connecting evolutions with a fixed trap frequency,
different sizes, and different g̃N

Finally, we compare the evolution of two clouds with
homothetic shapes and α, μ ≠ 1, ζ ¼ 1, which means
clouds with different initial sizes, different atom numbers,
and evolving in the same harmonic trap. We perform an
experiment where the initial shape is a square with a
uniform density. The first cloud has a side length
L1 ¼ 27.0ð5Þ μm, contains N1 ¼ 3.7ð3Þ × 104 atoms,
and its initial density distribution is shown on Fig. 4(a).
The second one has a side length L2 ¼ 36.8ð5Þ μm and
contains N2 ¼ 5.4ð3Þ × 104 atoms [Fig. 4(b)]. The ratio
ξ=L is around 0.01 for these two clouds. We let them evolve
in the same harmonic potential described above and with
the same interaction parameter g̃ and take pictures after

different evolution times. We expect that the two evolutions
n1ðr; tÞ of the first cloud and n2ðr0; t0Þ of the second cloud
are linked via Eqs. (22), (24), and (25), with parameters
α ¼ L2=L1 ¼ 1.36ð4Þ and μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2=N1

p ¼ 1.21ð8Þ. We
analyze the two series of images with the same procedure as
in Sec. III and determine the scaling laws that link the two
evolutions one to the other. The best overlaps between the
images of the first and second series are shown in Fig. 4(c).
They are all above 0.97, indicating that the two evolutions
are indeed similar. The relation between the time t0 of the
second frame and the corresponding time t of the first frame
is shown on Fig. 4(d), and the best scaling factor ΛðtÞ is
shown on Fig. 4(e). The solid lines show the theoretical
predictions (25) and (24), which are in very good agree-
ment with the experimental data.
With the three experiments described in Secs. III and IV,

the scaling laws (22)–(25) are tested independently for the
three parameters α, μ, and ζ, demonstrating that in the
quantum hydrodynamic regime, the evolution of a cloud
initially at rest depends only on its initial shape, up to
scaling laws on space, time, and atom density.

V. TWO-DIMENSIONAL BREATHERS

In Sec. II, we have shown that due to the SO(2,1)
symmetry, the evolution of the potential energy Epot is

FIG. 3. Scaling factor at ωt ¼ π=2 for different values of g̃N.
(a) Initial density distribution of the cloud. (b)–(d) Density
distributions of the cloud after an evolution during t ¼ π=ð2ωÞ
in the harmonic trap for different values of g̃N. For (a)–(d), the
horizontal black lines represent 10 μm. Main graph: Best scaling
factor Λ−2 as a function of g̃N. The red square corresponds to the
reference image and its ordinate is fixed to 1. The solid line
represents the prediction (26). The shaded area represents its
uncertainty due to the one in the atom number of the reference
point. The vertical error bars represent the precision at 2 standard
deviations of the fit that determines Λ−2. (e) Value of the overlap
between the density distributions and the reference point. The
error bars due to the fit are smaller than the black points.

(a) (d)

(e)

(b)

(c)

)
(

)
(

FIG. 4. Mapping between two clouds with the same shape,
different sizes, and different atom numbers. (a),(b) Initial density
distribution of the two clouds. The horizontal black lines represent
10 μm. (c) Best overlap between each image of the first series of
images and the images of the second one. (d) Optimal time t0opt of
the second evolution as a function of the time t of the first
evolution. (e) Optimal scaling factor ΛðtÞ between the first and
second evolutions. In (d) and (e), the solid lines are the predictions
(25) and (24) where the values of the parameters α and μ are
measured independently. The uncertainty of these values is
represented as a shaded area. In (d), this area is too narrow to
be discernable. In (c)–(e), the error bars indicate the confidence
intervals within 2 standard deviations of the fit that we use to
reconstruct the scaling laws. They are too small to be seen on (d).
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periodic with period T=2≡ π=ω for an arbitrary initial state
ψðr; 0Þ [see Eq. (7)]. Of course, the existence of this
periodicity does not put a strong constraint on the evolution
of ψðr; tÞ itself. Because of the nonlinear character of the
Gross-Pitaevskii equation, the evolution of ψ is not
expected to be periodic, as illustrated in Fig. 1(b) for a
square initial shape. When looking experimentally or
numerically at various initial shapes like uniformly filled
squares, pentagons, or hexagons, we indeed observe that
even though EpotðjT=2Þ ¼ Epotð0Þ for integer values of j,
the shapes nðrÞ ¼ NjψðrÞj2 at those times are notably
different from the initial ones. We find two exceptions to
this statement, which are the cases of an initial equilateral
triangle and a disk. This section is devoted to the study of
these very particular states that we call “breathers”.
In the present context of a fluid described by the Gross-

Pitaevskii equation, we define a breather as a wave function
ψðr; tÞ that undergoes a periodic evolution in an isotropic
harmonic trap of frequency ω (for a generalization to
different settings, see, e.g., Refs. [22,33]). According to
this definition, the simplest example of a breather is a
steady-state ψSðrÞ of the Gross-Pitaevskii equation, e.g.,
the ground state. Other breathers are obtained by super-
posing ψS with one eigenmode of the Bogoliubov–de
Gennes equations resulting from the linearization of the
Gross-Pitaeveskii equation around ψS. In principle (with
the exception of the breathing mode [15]), the population of
this mode should be vanishingly small to avoid damping
via nonlinear mixing. Extending this scheme to the super-
position of several modes in order to generate more
complex types of breathers seems difficult. Indeed, the

eigenmode frequencies are, in general, noncommensurable
with each other; therefore, the periodicity of the motion
cannot occur as soon as several modes are simultaneously
excited [34]. Note that for a negative interaction coefficient
g̃ in 1D, a bright soliton forms a stable steady state of the
Gross-Pitaevskii equation (even for ω → 0) and thus also
matches our definition. In that particular 1D case, a richer
configuration exhibiting explicitly the required time perio-
dicity is the Kuznetsov-Ma breather, which is obtained by
superposing a bright soliton and a constant background
(see, e.g., Ref. [37] and references therein).
Here, we are interested in 2D breathers that go well

beyond a single-mode excitation, and we start our study
with the uniform triangular shape. In this case, for experi-
ments performed with a gas in the Thomas-Fermi regime,
we find that the evolution of the shape is periodic with
period T=2 within the precision of the measurement. As an
illustration, we show in Fig. 5(a) four images taken
between t ¼ 0 and T=2. The scalar product ðnð0ÞjnðtÞÞ
between the initial distribution and the one measured at
times T=2, T, 3T=2, and 2T shown in Fig. 5(b) is indeed
very close to 1. We can reproduce the same result for
various initial atom numbers.
We did not find an analytical proof of this remarkable

result, but we can confirm it numerically by simulating the
evolution of a wave function ψðr; tÞ with the Gross-
Pitaevskii equation [38]. We show in Fig. 6(a) a few
snapshots of the calculated density distribution and in
Fig. 6(b) the evolution of the modulus of the (usual) scalar
product jhψð0ÞjψðtÞij between the wave functions at times
0 and t. The calculation is performed on a square grid of

(a) (c)

(d)(b)

)
(

)
(

FIG. 5. (a) Density distributions of an initially triangular-shaped cloud at t=T ¼ 0, t=T ¼ 0.08, t=T ≈ 1=4, and t=T ≈ 1=2. The first
and last distributions are close to each other. (b) Scalar product between the initial density distribution of a triangular-shaped cloud (red
square) and the density distributions during its evolution in the harmonic trap. The first point is fixed at 1. The dashed lines indicate
where t=T is a multiple of 1=2. The shape seems to be periodic of period T=2. (c) Density distributions of an initially disk-shaped cloud
at t=T ¼ 0, t=T ≈ 2=7, t=T ≈ 1, and t=T ≈ 2. The first two and the last distributions are close to each other. (d) Scalar product between
the initial density distribution of a disk-shaped cloud (red square) and the density distributions during its evolution in the harmonic trap.
The first point is fixed at 1. The dashed lines indicate where t=T is a multiple of 2=7. The shape seems to be periodic of period 2=7. In (a)
and (c), the horizontal black lines represent 10 μm. In (b) and (d), the black arrows indicate the point corresponding to density
distributions shown in (a) and (c), respectively. The error bars represent the statistical error of the measurement.
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size Ns × Ns with Ns ¼ 512. The initial wave function is
the ground state of a triangular box with the side length
Ns=2 centered on the grid, obtained by imaginary time
evolution for g̃N ¼ 25 600. Note that by contrast to the
“scalar product between images” introduced above, the
quantity jhψð0ÞjψðtÞij is also sensitive to phase gradients of
the wave functions. Its evolution shows clear revivals
approaching unity for t close to multiples of T=2.
We show in Fig. 7(a) the finite-size scaling analysis

of the value of the first maximum of this scalar product
occurring at tmax ≈ T=2 for increasing grid sizes
Ns ¼ 64;…; 1024. The product g̃N is adjusted such that
the healing length ξ ¼ ½Nℏ2=ð2mEintÞ�1=2 ¼ al, where l is
the grid spacing and a2 ¼ 0.5, 1, 2, 4, 8. The condition
a ≪ Ns ensures that ξ is much smaller than the size of the
triangle (Thomas-Fermi regime), while having a≳ 1 pro-
vides an accurate sampling of the edges of the cloud. The
overlap between jψð0Þi and jψðtmaxÞi increases with the
grid size and reaches 0.995 for the largest grid.
In the simulation, the trapping frequency ω is adjusted

such that jΔEj ≪ Etot in Eq. (7); the cloud then keeps an
approximately constant area over time, which is favorable
for the numerics. Note that this choice does not restrict the
generality of the result, since the scaling laws seen in
Sec. III allow one to connect the evolution of a given
ψðr; t ¼ 0Þ in traps with different frequencies. In particular,
if the evolution starting from ψðr; 0Þ in a trap of frequency
ω1 is periodic with period π=ω1, the evolution in another
trap with frequency ω2 will be periodic with period π=ω2

[see Eq. (11)].
Two simulations with the same ratio a=Ns ∝ ξ=L, where

L ¼ lNs=2 is the size of the initial cloud, describe the same

physical system with a better accuracy as a and Ns are
increased. For the results in Fig. 7(a), increasing the
number of pixels Ns for a fixed a=Ns makes the scalar
product closer to 1. If this result could be extended as such
to arbitrary large values of Ns, this would demonstrate that
the ground state of a triangular box evolves periodically in a
harmonic potential. However, a closer look at the results of
this finite-size scaling analysis seems to indicate that a
should either be kept constant or increased at a slower rate
than Ns to have the scalar product approaching 1 in an
optimal way. Of course this conjecture deduced from our
numerical analysis needs to be further explored with ana-
lytical tools, which is out of the scope of the present paper.

(a) (c)

(d)(b)

FIG. 6. (a) Calculated density distributions at times t=T ¼ 0, 1=8, 1=4, 1=2 and (b) calculated time evolution of jhψð0ÞjψðtÞij starting
from the ground state in a triangular box. The numerical integration of the Gross-Pitaevskii equation is performed on a 512 × 512 grid.
The triangle is centered on the grid, with a side length equal to half the grid size. We choose g̃N ¼ 25 600 corresponding to an initial
healing length ξ ≈ l, where l is the grid step. (c) Calculated density distributions at times t=T ¼ 0, 2=7, 1, 2 and (d) calculated time
evolution of jhψð0ÞjψðtÞij starting from the ground state in a disk-shaped box. The numerical integration of the Gross-Pitaevskii
equation is performed on a 512 × 512 grid. The disk is centered on the grid, with a diameter equal to half the size of the grid. We choose
g̃N ¼ 12 800 leading to an initial healing length ξ ≈ 2l, where l is the grid step. In (b) and (d), the black arrows indicate the times
corresponding to the snapshots presented in (a) and (c).

(a) (b)

FIG. 7. Finite-size scaling for the numerical simulations.
(a) Scalar product jhψð0ÞjψðT=2Þij for an initial triangular shape.
The size of the grid Ns and the sampling of the healing length
a≡ ξ=l are varied. The highest value is 0.9953 obtained for
Ns ¼ 1024, a ¼ 1. (b) Scalar product jhψð0Þjψð2TÞij for an
initial disk shape. The highest value is 0.9986 obtained for
Ns ¼ 1024, a ¼ 2.8. On both figures, the black dots indicate the
highest value of the scalar product for each line.

DYNAMICAL SYMMETRY AND BREATHERS … PHYS. REV. X 9, 021035 (2019)

021035-9



The requirement for the Thomas-Fermi regime
(ξ=L ≪ 1) is necessary for obtaining a periodic evolution
of the shape with period T=2. Indeed, in the ideal gas case
(g̃ ¼ 0), the evolution over T=2 corresponds to an inversion
of the initial shape with respect to the origin, i.e., a triangle
pointing upwards for the case of interest here [Fig. 5(a)].
One may then wonder about the existence of a periodicity T
for the triangular shape, irrespective of the product g̃N.
Indeed this periodicity holds in both limiting cases g̃ ¼ 0
(ideal gas) and g̃N large (Thomas-Fermi regime). However,
numerical simulations show unambiguously that the evo-
lution is not periodic in the intermediate case.
We also run the same simulations for other simple

regular polygons (square, pentagons, hexagon). We do
not observe a similar revival of the initial wave function
over the time period ð0; 5TÞ (see Supplemental Material
[30] for details).
Finally, we turn to the case of a disk-shaped initial cloud

[Fig. 5(c)]. The experiment is performed with a cloud
prepared such that jΔEj ≪ Etot in Eq. (7), so that the
potential energy is approximately constant over time.
In this particular case, the experimental result shown in
Fig. 5(d) seems to indicate a periodicity of approximately
2T=7 for the evolution of the overlap between nðr; 0Þ and
nðr; tÞ. To illustrate this, Fig. 5(c) displays four density
distributions at times between 0 and 2T. Let us assume that
this periodicity 2T=7 is exact when ΔE ¼ 0. For a disk-
shaped initial distribution with any value of ΔE, the
evolution cannot be 2T=7 periodic. Indeed, the potential
energy of the cloud is only T=2 periodic, which is not a
submultiple of 2T=7. However, all the disk-shaped clouds
should have a 2T periodicity, which is the least common
multiple of T=2 and 2T=7. As we show now, this 2T
periodicity is well supported by a numerical analysis.
We show in Fig. 6(c) snapshots of the calculated density

distribution and in Fig. 6(d) the time evolution of the
overlap jhψð0ÞjψðtÞij starting from the ground state in a
disk-shaped box potential centered on a 512 × 512 grid.
The disk diameter is chosen equal to half the grid size, and
the simulation is run for g̃N ¼ 12 800. This simulation
shows that the overlap between ψðr; 0Þ and ψðr; tÞ indeed
recovers values close to 1 at times close to multiples of
2T=7, as observed experimentally.
A closer inspection of Fig. 6(d) indicates that the time

evolution of the overlap is in good approximation periodic
with period 2T, with a symmetry around t ¼ T as well as
around t ¼ 2T. If the evolution is effectively periodic with
period 2T, the symmetry around these points is expected.
Indeed, the wave function is chosen real for t ¼ 0, and will
thus be real also at 2T (up to a global phase). Therefore, the
evolution must be symmetric around those points thanks to
time-reversal symmetry. On the other hand, this symmetry
does not show up around the other local maxima j2T=7
(j ¼ 1;…; 6), indicating that one does not expect a full
overlap with the initial state for those points.

In order to investigate further the revival around 2T, we
run a finite-size scaling analysis for the same grid sizes as
for the triangles and for a2 ¼ 1, 2, 4, 8, 16 [Fig. 7(b)]. We
find that the numerical results are compatible with a full
recovery of the initial wave function at time 2T, with a
scalar product between the wave functions at times 0 and
2T attaining a maximum of 0.9986 for the largest grid size
Ns ¼ 1024 and a2 ¼ 8. In this case, the optimal value of a
for a given Ns (marked with a dot in Fig. 7) increases with
Ns; note that the optimal ratio a=Ns ∝ ξ=L decreases when
Ns increases, which guarantees that the cloud remains in
the Thomas-Fermi regime.
To conclude this section, we emphasize that the phe-

nomenon described here is notably different from the
existence of a breathing mode at frequency 2ω [14,15]
that we mention in the Introduction and explore in Sec. II.
Here, we observe a periodic motion of the whole cloud not
just of the second moment hr2i of the position. We also note
that the observed phenomenon is a genuine nonlinear
effect, which cannot be captured by a linearization of
the motion of the cloud around an equilibrium position.
Indeed, the state of the gas at an intermediate time may
dramatically differ from the state at initial time or after a full
period both in terms of size and shape. A proper analysis of
these breathers may require a multimode approach, with the
observed phenomenon resulting from a mode synchroni-
zation effect via nonlinear couplings.

VI. SUMMARY AND OUTLOOK

In this paper, we investigate experimentally some
important consequences of the dynamical symmetries of
the two-dimensional Gross-Pitaevkii equation describing
the evolution of a weakly interacting Bose gas in a
harmonic potential. First, we show that the SO(2,1)
symmetry leads to a periodic evolution of the potential
energy and to scaling laws between the evolution of clouds
with the same atom number and the same interaction
parameter. Second, we show that in the quantum hydro-
dynamic regime, more symmetries allow one to describe
the evolution of the gas by a single universal function
irrespective of its size, atom number, trap frequency, and
interaction parameter g̃. This universal evolution depends
only on the initial shape and velocity field of the cloud.
Third, we identify two geometrical boxlike potentials,
equilateral triangle and disk, which lead to a periodic
motion of the wave function when one starts with a gas
uniformly filling these shapes and releases it in a harmonic
potential of frequency ω. The periods of these breathers are
π=ω and 4π=ω for the triangles and the disks, respectively.
This result is confirmed by a numerical simulation for a
cloud initially in the Thomas-Fermi regime of the boxlike
potential, giving an overlap between the initial state and the
state after one period larger than 0.995 and 0.998 for the
triangle and the disk, respectively.
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The existence of these breathers raises several interesting
questions. First, it is not immediate that their existence is a
direct consequence of the dynamical symmetries of the
system. If this is the case, such breathers could appear also
for other systems exhibiting the SO(2,1) symmetry, like a
three-dimensional unitary Fermi gas or a cloud of particles
with a 1=r2 interaction potential. Remarkably, the latter
case can be approached using classical (Newton) equations
of motion; a preliminary numerical analysis with up to 105

particles indicates that an initial triangular (resp. disk)
shape with uniform filling also leads to an approximate
periodic evolution in a harmonic potential with same period
T=2 (resp. 2T) as the solution of the Gross-Pitaevskii
equation. We also note that in the 1D case, the spectrum of
the Hamiltonian of a gas of particles interacting with a
repulsive 1=r2 potential is composed of evenly spaced
energy levels, ensuring a periodic evolution of the system
for any initial state [39,40].
The allowed shapes for such breathers is also an

intriguing question. In our exploration (both experimental
and numerical), we find this behavior only for triangles and
disks, but one cannot exclude that complex geometrical
figures can show a similar phenomenon. Another issue is
related with thermal effects. For all studies reported here,
we operate with a gas deeply in the degenerate regime,
which is well approximated by the zero-temperature Gross-
Pitaevskii formalism. A natural extension of our work is
therefore to study to which extent the present findings will
subsist in the presence of a significant nonsuperfluid
component. For our experimental setup, this will require
a significant increase in the vertical trapping frequency so
that the vertical degree of freedom remains frozen for the
thermal component of the gas.
Finally, we recall that the SO(2,1) symmetry is only an

approximation for the description of a two-dimensional
Bose gas. It is valid when the gas can be modeled by a
classical field analysis, hence, for a small interaction
parameter g̃ ≪ 1. For stronger interactions, one has to turn
to a quantum treatment of the fluid. This breaks the scale
invariance and the SO(2,1) symmetry that exist at the
classical field level, providing an example of a “quantum
anomaly” [19,41,42]. For example, the frequency of the
breathing mode of a gas in a harmonic potential then differs
from its classical value 2ω. It remains to be understood if a
similar quantum anomaly shows up for the breathers
described in this work.
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APPENDIX: SYMMETRY GROUPS OF THE
SCHRÖDINGER AND 2D GROSS-PITAEVSKII

EQUATIONS

For completeness, we summarize in this Appendix the
main properties of the transformations that leave invariant
the Schrödinger equation (i) for a free particle and (ii) for a
particle confined in a harmonic potential. The ensemble of
these transformations forms a group called the maximal
kinematical invariance group, which is parametrized in the
2D case by eight real numbers. In what follows, we are
interested only in the subgroup that is relevant for scale and
conformal invariance. For example, in the case of a free
particle, five parameters are related to space translations,
changes of Galilean frame, and rotations, which do not play
a role in our study. We are then left with three parameters
corresponding to time translations, dilations, and special
conformal transformations. These transformations also
leave the 2D Gross-Pitaevskii equation invariant. In the
following, we identify their generators and show that they
obey the SO(2,1) commutation algebra. We follow closely
the approach of Refs. [5,43], which was developed for the
Schrödinger equation describing the motion of a single
particle but also applies with little modifications to the
case of the nonlinear Gross-Pitaevskii equation. In this
Appendix, we set ℏ ¼ 1 to simplify the notations.

1. Free particles

Although we are interested ultimately in the case where
the particles evolve in a harmonic potential, we start by a
brief summary of the free-particle case, for which the
algebra is slightly simpler, while involving transformations
of a similar type. In Ref. [5], it was shown that in addition
to space translations, rotations, and Galilean transforma-
tions, the three following transformations leave invariant
the free-particle Schrödinger equation:

(i) The translations in time

r → r; t → tþ β; ðA1Þ
since the Hamiltonian has no explicit time
dependence.

(ii) The dilations

r → r=λ; t → t=λ2 ðA2Þ

already introduced in Eq. (1) of the main text.
(iii) The so-called “expansions”

r →
r

γtþ 1
; t →

t
γtþ 1

; ðA3Þ

which correspond to a special conformal transfor-
mation for the time.

The combination of these transformations forms a three-
parameter group with the most general transformation
written as
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r → gðr; tÞ≡ r
γtþ δ

; ðA4Þ

t → hðtÞ≡ αtþ β

γtþ δ
; ðA5Þ

with the constraint αδ − βγ ¼ 1. The dilation (A2) is
obtained by setting β ¼ γ ¼ 0, δ ¼ λ, and αδ ¼ 1.
Let us consider a function ψ1ðr; tÞ which is a solution of

the Gross-Pitaevskii equation in free space:

P0½ψ1; r; t� ¼ 0 ðA6Þ

with

P0½ψ ; r; t�≡ i
∂ψ
∂t þ

1

2m
∇2
rψ −

g̃N
m

jψ j2ψ : ðA7Þ

Starting from ψ1ðr; tÞ, we define the function ψ2ðr0; t0Þ as

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ ðA8Þ

with r0, t0 set as

r0 ¼ gðr; tÞ; t0 ¼ hðtÞ ðA9Þ

and

fðr; tÞ ¼ ðγtþ δÞ exp
�
−i

mγr2=2
γtþ δ

�
: ðA10Þ

With a tedious but straightforward calculation, one can
check that ψ2ðr0; t0Þ is also a solution of the Gross-
Pitaevskii equation

P0½ψ2; r0; t0� ¼ 0 ðA11Þ

for any value of the parameters α, β, γ, δ with the constraint
αδ − βγ ¼ 1. The group of transformations (A4) and (A5)
thus allows one to generate an infinite number of solutions
of the Gross-Pitaevskii equation. We could pursue this
analysis by determining the generators associated with the
action of these transformations on the wave functions
ψðr; tÞ, but we postpone it to the case of a harmonically
confined system which is more relevant for our physical
system. The two studies are anyway very similar, and the
symmetry groups of the two systems have the same Lie
algebra [5,43].

2. Particles in a harmonic trap

In the presence of an isotropic harmonic potential of
frequency ω, the general transformations on position and
time leaving invariant the Schrödinger equation are also
defined by a set of four numbers ðα; β; γ; δÞ with the
constraint αδ − βγ ¼ 1 [43]. Setting

η ¼ tanðωtÞ; η0 ¼ tanðωt0Þ; ðA12Þ

the change in position is

r → r0 ¼ gðr; tÞ≡ r
λðtÞ ðA13Þ

with

λðtÞ ¼ ½½α sinðωtÞ þ β cosðωtÞ�2
þ ½γ sinðωtÞ þ δ cosðωtÞ�2�1=2; ðA14Þ

while the transformation on time t → t0 ¼ hðtÞ reads

η0 ¼ αηþ β

γηþ δ
: ðA15Þ

Note that the time translations belong to this set of
transformations, as expected for a time-independent
problem. They are obtained by taking α ¼ δ ¼ cosðωt0Þ
and β ¼ −γ ¼ sinðωt0Þ.
We start with a solution ψ1 of the Gross-Pitaevskii

equation in the trap

Pω½ψ1; r; t� ¼ 0 ðA16Þ

with

Pω½ψ ; r; t� ¼ P0½ψ ; r; t� −
1

2
mω2r2ψ : ðA17Þ

Using this group of transformations, we can generate
another function ψ2ðr0; t0Þ satisfying

Pω½ψ2; r0; t0� ¼ 0 ðA18Þ

following the definitions (A8) and (A9) with now

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2λ

�
: ðA19Þ

The fact that ψ2 is a solution of the Gross-Pitaevskii
equation was proven for the noninteracting case in
Ref. [43], and one can check that the contribution of the
interaction term proportional to jψ j2ψ cancels in the 2D
case thanks to the scaling f ∝ λ.
In the main text, we use a specific version of the

transformation ðr; tÞ → ðr0; t0Þ that (i) maps the time
t ¼ 0 onto the time t0 ¼ 0, and (ii) is such that _λð0Þ ¼ 0
since we want to relate a real solution ψ1 onto another real
solution ψ2 (ψ1 and ψ2 are both ground-state wave
functions in a boxlike potential). These two conditions,
in association with αδ − βγ ¼ 1, impose β ¼ γ ¼ 0 and
δ ¼ 1=α, hence,
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λðtÞ ¼
�
α2sin2ðωtÞ þ 1

α2
cos2ðωtÞ

�
1=2

ðA20Þ

and

tanðωt0Þ ¼ α2 tanðωtÞ: ðA21Þ

Finally, we note that the simple dilation transformation
r0 ¼ r=

ffiffiffi
ζ

p
, t0 ¼ t=ζ allows one to relate a solution of the

Gross-Pitaevskii equation ψ1ðr; tÞ in a trap with frequency
ω1 to a solution

ψ2ðr0; t0Þ ¼
ffiffiffi
ζ

p
ψ1ðr; tÞ ðA22Þ

in a trap with frequency ω2 ¼ ζω1:

Pω1
½ψ1; r; t� ¼ 0 ⇒ Pω2

½ψ2; r0; t0� ¼ 0: ðA23Þ

We can thus combine this dilation with the transformation
(A20) and (A21) in order to obtain the transformation that
links two (initially real) solutions ψ1ðr; tÞ and ψ2ðr0; t0Þ of
the Gross-Pitaevskii equation for a given g̃N obtained in
harmonic traps with frequencies ω1;2 and starting with
homothetic initial conditions with characteristic lengths
L1;2. This transformation reads

r0 ¼ r
λðtÞ ; tanðω2t0Þ ¼ ζα2 tanðω1tÞ ðA24Þ

with

λðtÞ ¼
�
α2ζ2sin2ðω1tÞ þ

1

α2
cos2ðω1tÞ

�
1=2

ðA25Þ

and α ¼ L2=L1, ζ ¼ ω2=ω1. This transformation corre-
sponds to the scaling (10) used in the main text.

3. Generators and SO(2,1) symmetry

We now look for the infinitesimal generators of the
transformation ψ1 → ψ2 in the presence of a harmonic
potential (Appendix Sec. II) and show that they fulfill the
commutation algebra characteristic of the SO(2,1) group.
We focus here on the transformation (A13)–(A15) which
relates solutions of the Gross-Pitaevskii equation for
the same nonlinear coefficient g̃N and the same trap
frequency ω.
We first note that the set of four numbers ðα; β; γ; δÞ with

the constraint αδ − βγ ¼ 1 actually forms a set of three
independent parameters for the free-particle case
(Appendix Sec. I). To this set of numbers, we can associate
a matrix

M ¼
�
α β

γ δ

�
ðA26Þ

of the group SLð2; RÞ. In order to simplify our discussion,
we consider the following three subgroups of SLð2; RÞ,
each parametrized by a single parameter sj, j ¼ 1, 2, 3:

�
es1=2 0

0 e−s1=2

�
;

�
coshðs2=2Þ sinhðs2=2Þ
sinhðs2=2Þ coshðs2=2Þ

�
; ðA27Þ

and

�
cosðs3=2Þ − sinðs3=2Þ
sinðs3=2Þ cosðs3=2Þ

�
: ðA28Þ

We obtain three independent generators by considering a
small displacement from the unit matrix for each subgroup
(jsjj ≪ 1). In all three cases, we write the passage from ψ1

to ψ2 as

ψ2ðr; tÞ ≈ ½1̂ − isjL̂jðtÞ�ψ1ðr; tÞ; ðA29Þ

where we introduce the time-dependent generator L̂jðtÞ.
The goal is to determine explicitly these operators and their
commutation relation in order to check that they satisfy the
SO(2,1) algebra.
(a) Generator associated with s1. We have in this case

M ≈ 1̂þ s1
2
σ̂z; ðA30Þ

where the σ̂j, j ¼ x, y, z are the Pauli matrices. We
first get λðtÞ ¼ 1 − ðs1=2Þ cosð2ωtÞ so that

fðr;tÞ¼1−
s1
2
cosð2ωtÞ− is1

mωr2

2
sinð2ωtÞ; ðA31Þ

and the infinitesimal changes in r, t are

gðr;tÞ≈ r

�
1þs1

2
cosð2ωtÞ

�
; hðtÞ¼ tþ s1

2ω
sinð2ωtÞ:

ðA32Þ

These expressions allow one to determine the passage
from ψ1 to ψ2 as in Eq. (A29) with

L̂1ðtÞ ¼ −
i
2
cosð2ωtÞð1þ r · ∇Þ

þ 1

2ω
sinð2ωtÞðmω2r2 − i∂tÞ: ðA33Þ

(b) Generator associated with s2. We find

M ≈ 1̂þ s2
2
σ̂x: ðA34Þ

In this case, λðtÞ ¼ 1þ ðs2=2Þ sinð2ωtÞ, and
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fðr; tÞ¼ 1þ s2
2
sinð2ωtÞ− is2

mωr2

2
cosð2ωtÞ: ðA35Þ

It also provides the transformation of space and time
coordinates:

gðr; tÞ ≈ r

�
1 −

s2
2
sinð2ωtÞ

�
;

hðtÞ ¼ tþ s2
2ω

cosð2ωtÞ: ðA36Þ

This corresponds to a transformation similar to the one
considered above in Eq. (A32) with the time trans-
lation t → tþ π=ð4ωÞ. The associated operator for the
passage from ψ1 to ψ2 is thus

L̂2ðtÞ ¼
1

2ω
cosð2ωtÞðmω2r2 − i∂tÞ

þ i
2
sinð2ωtÞð1þ r · ∇Þ: ðA37Þ

(c) Generator associated with s3. Finally, we have for the
third case,

M ≈ 1̂ −
s3
2
iσ̂y: ðA38Þ

We simply have λðtÞ ¼ 1, fðr; tÞ ¼ 1, and this case
corresponds to the time translations mentioned above,
for which we have

gðr; tÞ ¼ r; hðtÞ ¼ t − s3=2ω: ðA39Þ

The operator L̂3ðtÞ is thus

L̂3ðtÞ ¼
i
2ω

∂t: ðA40Þ

From the expressions of the three generators L̂j, we
easily find the commutations relations valid at any time

½L̂1;L̂2�¼−iL̂3; ½L̂2;L̂3�¼ iL̂1; ½L̂3;L̂1�¼ iL̂2; ðA41Þ

which are characteristic of the Lorentz group SO(2,1). As
explained in Ref. [15], this set of commutation relations
allows one to construct, in particular, families of solutions
with an undamped breathing motion.
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