
 

Quantum FFLO State in Clean Layered Superconductors

Kok Wee Song and Alexei E. Koshelev
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue,

Lemont, Illinois 60639, USA

(Received 15 August 2018; revised manuscript received 19 February 2019; published 7 May 2019)

We investigate the influence of Landau quantization on the superconducting instability for a pure layered
superconductor in the magnetic field directed perpendicular to the layers. We demonstrate that the
quantization corrections to the Cooper-pairing kernel with finite Zeeman spin splitting promote
the formation of the nonuniform state in which the order parameter is periodically modulated along
the magnetic field, i.e., between the layers (Fulde-Ferrell-Larkin-Ovchinnikov [FFLO] state). The
conventional uniform state experiences such a quantization-induced FFLO instability at low temperatures
even in a common case of predominantly orbital suppression of superconductivity when the Zeeman spin
splitting is expected to have a relatively weak effect. The maximum relative FFLO temperature is given by
the ratio of the superconducting transition temperature and the Fermi energy. This maximum is realized
when the ratio of the spin-spitting energy and the Landau-level separation is half-integer. These results
imply that the FFLO states may exist not only in the Pauli-limited superconductors but also in very clean
materials with small Zeeman spin-splitting energy. We expect that the described quantization-promoted
FFLO instability is a general phenomenon, which may be found in materials with different electronic
spectra and order-parameter symmetries.
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I. INTRODUCTION

Superconductors exhibit a rich set of phenomena in a
magnetic field due to the interplay of the electron orbital
and spin degrees of freedoms. One of the most intriguing
phenomena due to the strong Zeeman spin-splitting effect
is the emergence of Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) states [1,2], in which the Cooper pairing occurs
with nonzero total momentum. In the resulted state, the
order parameter is modulated along the total momentum
direction. This modulation allows the system to regain a
part of the Zeeman energy at the expense of the kinetic
energy loss. Although the existence of such states in clean
Pauli-limited superconductors was theoretically predicted a
half-century ago, only recently indications of their exper-
imental realization have been reported in the organic and
heavy-fermion superconductors; see reviews [3,4].
In most materials, the orbital effect dominates, meaning

that it destroys superconductivity before reaching the strong
spin-splitting regime and FFLO states have no chance to
develop. The relative role of the spin and orbital pair-

breaking effect is standardly characterized by the Maki’s
parameter αM ¼ ffiffiffi

2
p

HO
C2=H

P
C2, where H

O
C2 and HP

C2 are the
upper critical fields for the orbital and spin pair-breaking
mechanism, respectively. The FFLO states may emerge only
if αM > 1. The orbital effect is weak or absent, and the
Zeeman effect dominates in special situations of either quasi-
one-dimensional materials or quasi-two-dimensional mate-
rials in the magnetic field applied parallel to the conducting
layers. Naturally, most experimental searches for the FFLO
states [3,4] as well as theoretical studies of them [5–10] have
been focused on these favorable cases.
Alternatively, the conditions for the FFLO instability in the

presence of the orbital effect have been investigated by
Gruenberg and Gunther [11] for a clean isotropic super-
conductor within the quasiclassical approach. In this case, the
emerging FFLO state is the Abrikosov vortex lattice with
additional periodic modulation of the order parameter along
the magnetic field. Such a state appears only for very large
Maki’s parameter αM > 1.8 corresponding to huge Zeeman
energy and/or very shallow band, conditions unlikely to be
realized in any isotropic single-band material [12]. Despite
this limitation, rich properties of the emerging modulated
vortex state have been theoretically investigated in detail
[13–17].
The most recent development in the field has been

motivated by the discovery of iron-based superconductors
[18]. These materials are characterized by several electron
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and hole bands with rather small Fermi energies which can
be tuned by doping or pressure. In addition, these com-
pounds have high transition temperatures and very high
upper critical fields HC2, up to 70 T, likely limited by the
paramagnetic effect. These properties make iron-based
superconductors plausible candidates for the realization
of the FFLO state, which motivated the generalization
of the theory of this state for multiple-band materials
[19–21].
Practically all investigations of the orbital-effect influ-

ence on the FFLO transition have been done so far within
the quasiclassical approximation. In pure materials, how-
ever, the superconducting instability in the magnetic field
may be influenced by the orbital quantization [22–27]. This
influence is most pronounced in superconductors with
shallow bands and high upper critical fields, i.e., for the
conditions also favoring the FFLO instability. It is not
widely recognized that the quantization actually may
profoundly promote this instability due to the one-dimen-
sional nature of the quasiparticle’s spectrum at the Landau
levels. Such quantization-induced FFLO states have been
recently demonstrated in a special situation motivated by
the physics of multiple-band iron-based superconductors,
when one of the shallow bands is close to the extreme
quantum limit so that the cyclotron frequency ωc near HC2
is comparable to the band’s Fermi energy ϵF [28].
In this paper, we investigate the impact of Landau

quantization on the FFLO instability in a generic and
common case of an s-wave single-band layered material in
the magnetic field applied perpendicular to the layers; see
Fig. 1. Evaluating the quantum-oscillating correction to the
Cooper-pairing kernel with the finite spin splitting, we
demonstrate, that, surprisingly, the quantum effects per-
sistently promote the FFLO states in pure materials even in
the limit of large Fermi energies, where the quasiclassical

approximation is supposed to work well. Even though the
quantum correction is smaller than the quasiclassical
pairing kernel in this limit, at low temperatures, it acquires
strong oscillating dependence on the FFLO modulation
wave vector. As a result, the optimal pairing in the low-
temperature limit typically occurs at a finite wave vector,
and the uniform-along-the-field state becomes unstable
below the FFLO temperature TFFLO. Because of the
quantization, the electronic spectrum is composed of
one-dimensional Landau-level branches depending on
the c-axis momentum. The immediate reason for the
emergence of the nonuniform state is the mismatch
between the c-axis Fermi momenta for the branches with
opposite spin orientation. One dimensionality of the spec-
trum further enhances the instability. Contrary to the case of
quasi-one-dimensional superconductors [6,9,10], the opti-
mal modulation vector is a result of an interplay between
multiple branches. As for the classical FFLO states, the
modulation allows the system to gain the Zeeman energy
exceeding the loss of the condensation energy caused by a
nonuniform order parameter.
The specific behavior is sensitive to the relation between

the spin-spitting energy 2μzH and the Landau-level
separation ℏωc, where μz is the band-electron magnetic
moment. The FFLO temperature has the oscillating
dependence on the field-independent ratio 2γz ¼
2μzH=ðℏωcÞ, and its maximal value is given by the
superconducting transition temperature squared divided
by the Fermi energy Tmax

FFLO ∼ T2
C=ϵF. This maximum is

achieved when the ratio of the spin-spitting energy and the
Landau-level separation is half-integer 2γz ¼ nþ 1

2
. On the

other hand, TFFLO vanishes, and the uniform state remains
stable down to zero temperature only in the exceptional
cases when this ratio is integer 2γz ¼ n. The modulation
wave vector of the emerging FFLO state continuously
grows from zero at the transition point to the low-temper-
ature value which is proportional to the ratio of the
cyclotron frequency and the interlayer hopping integral.
The modulation period remains much larger than the
interlayer separation. These results imply that the condi-
tions for the onset of the FFLO state are much milder than
generally anticipated. This state may actually appear in
materials with small Zeeman energy, and, correspondingly,
small Maki’s parameter. The only demanding requirement
is the material’s purity. The natural experimental indication
of the required purity level is noticeable quantum oscil-
lations in the normal state near the superconducting
instability.
We focus here on the case of the magnetic field applied

perpendicular to the layers along the c axis. In this case, γz
is a material’s parameter. It is important to note, however,
that this parameter can be effectively tuned by tilting the
magnetic field away from the c axis [29], because the
Zeeman energy is determined by the total magnetic field,
while the Landau-level separation is mostly determined by

FIG. 1. Schematic figure illustrating a layered superconductor
in the out-of-plane magnetic field, open Fermi surface, and the
emerging vortex state with interlayer Larkin-Ovchinnikov modu-
lation.
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the c-axis field component. Therefore, the FFLO-instability
temperature should have strongly oscillating dependence
on the tilting angle.
This paper is organized as follows: In Sec. II, we

describe our model of a layered superconductor and derive
the equation describing superconducting instability in the
out-of-plane magnetic field taking into account the quan-
tum contribution to the pairing kernel and assuming a
possibility of the FFLO modulation along the field. The
derivation details of the quantum correction to the kernel
are presented in the Appendix A. For completeness, we
derive in Appendix B the criterion for the emergence of the
FFLO state in the quasiclassical approximation general-
izing previous consideration [11] to the case of layered
superconductors. In Sec. III, based on the derived equa-
tions, we investigate the influence of the quantum con-
tributions to pairing on the interlayer FFLO transition using
both analytical estimates and numerical calculations for
representative parameters. In Appendix C, we consider
suppression of the quantum FFLO state by impurity
scattering. Finally, the summary and discussion are pre-
sented in Sec. IV.

II. SUPERCONDUCTING INSTABILITY IN A
LAYERED SUPERCONDUCTOR

We investigate the influence of the orbital-quantization
effects on the onset of superconductivity for layered
materials in the out-of-plane magnetic field. We use the
tight-binding model with the nearest-layer hopping term
described by the Hamiltonian

H¼
X
j

Z
d2r½c†jsðrÞðξðk̂Þδss0 −μzHσzss0 Þcjs0 ðrÞ

− tzc
†
jsðrÞcjþ1;sðrÞþH:c:−Uc†j↓ðrÞc†j↑ðrÞcj↓ðrÞcj↑ðrÞ�;

ð1Þ

where r ¼ ðx; yÞ is the in-plane coordinate, j is the layer
index, and s represents spin (summation over s and s0 is
assumed). Furthermore, tz is the interlayer hopping
energy, ξðk̂Þ ¼ k̂2=ð2mÞ − μ is the intralayer energy
dispersion with the band mass m, the Fermi energy μ,
and the momentum operator k̂ ¼ −i∇r − eA=c [30]. We
use the symmetric gauge for the vector potential
A ¼ ðH=2Þð−y; x; 0Þ. We also include in the model the
Zeeman spin splitting which is determined by the band
electron’s magnetic moment μz ¼ gμB=2, where μB is the
Bohr magneton and g is the g factor. The full three-
dimensional normal-state spectrum of the model is
ξ3Dðk; kzÞ ¼ ξðkÞ − 2tz cos kz. The corresponding open
Fermi surface for μ > 2tz is illustrated in Fig. 1.
To study the superconducting pairing instabilities for the

model in Eq. (1), we follow the standard approach and write
the linearized gap equation as

ΔjðrÞ ¼ UT
X
ωn

X
j0

Z
r0
Kωn

ðrj; r0j0ÞΔj0 ðr0Þ; ð2Þ

where ΔjðrÞ ¼ Uhcj↓ðrÞcj↑ðrÞi is the gap function, we use
the notation

R
r ¼

R
dr, ωn ¼ 2πTðnþ 1=2Þ are the

Matsubara frequencies, and the kernel

Kωn
ðrj; r0j0Þ ¼ Gþ

ωn
ðrj; r0j0ÞḠ−

ωn
ðr0j0; rjÞ ð3Þ

is determined by the one-particle Green’s functions
in the normal phase G�

ωn
ðrj; r0j0Þ, in which the superscripts

þ or − describe spin orientation, and the overbar of the
Green’s function represents the complex conjugate. These
functions can be presented in the form of expansion over
the exact Landau-level eigenstates as [31,32]

G�
ωn

¼
exp ði ½r×r0�z

2l2H
Þ

2πl2H

X∞
l¼0

�
e−x=2e−ikzðj−j0ÞLlðxÞ
iωn − ξ�ðlþ 1

2
; kzÞ

�
z

; ð4Þ

where h…iz ≡
R
π
−π …dkz=ð2πÞ, lH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=ðeHÞp
is the

magnetic length, x ¼ jr − r0j2=2l2H, and LlðxÞ are the
Laguerre polynomials. Furthermore,

ξ�

�
lþ 1

2
; kz

�
≡ ωc

�
lþ 1

2
� γz

�
− 2tz cos kz − μ ð5Þ

with ωc ¼ eH=ðmcÞ being the cyclotron frequency and
γz ¼ μzmc=e ¼ gm=4m0 being the reduced spin-splitting
parameter, where m0 is the free-electron mass. The elec-
tronic spectrum is composed of the one-dimensional
Landau-level branches; see Fig. 2. In the limit tz ≫ ωc,
roughly 4tz=ωc of these branches cross the Fermi level for
each spin orientation.
In finite out-of-plane magnetic field, the gap parameter

ΔjðrÞ in the form of the lowest Landau-level eigenfunction
typically yields the leading instability. In addition, in the
presence of the Zeeman splitting, the order parameter may
be periodically modulated between the layers, i.e., along

FIG. 2. Illustrative plot of the spin-split Landau-level branches
crossing the Fermi level. The plot also shows the relevant energy
scales and the optimal modulation wave vector Qop.
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the magnetic field [11]. Such a modulation is the realization
of the nonuniform FFLO state [1,2]. Therefore, we assume
the solution in the form

ΔjðrÞ ¼ Δ0 exp

�
−

r2

2l2H
þ iQzj

�
: ð6Þ

The solution with the modulation vector Qz giving the
maximal transition temperature TC2 is realized. Below this
instability temperature, one has to compose a proper
combination of the lowest-Landau-level wave functions
corresponding to the Abrikosov vortex lattice. The order
parameter with the phase modulation along the field
in Eq. (6) is usually called the Fulde-Ferrel state.
Alternatively, the state with the amplitude modulation
Δj ∝ cosðQzjÞ known as the Larkin-Ovchinnikov state
may emerge; see Fig. 1. We investigate only the instability
location here, which is identical for both of these states.

The gap function in Eq. (6) is the exact eigenfunction
of the kernel,

X
j0

Z
r0
Kωn

ðrj; r0j0ÞΔj0 ðr0Þ ¼ πνλωn;Qz
ΔjðrÞ;

where ν ¼ m=2π is the density of state per layer. This
solution allows us to reduce the gap equation, Eq. (2), to

Λ−1 ¼ 2πT Re
XΩ
ωn>0

λωn;Qz
; ð7Þ

where Λ ¼ νU is the coupling constant and Ω is the cutoff
energy.
Using the expansion of the one-particle Green’s function

over the exact Landau-level basis, Eq. (4), one can derive
the exact presentation for the kernel eigenvalue [23,28],

λωn;Qz
¼ −

1

2πωc

X
l1;l2

� ðl1 þ l2Þ!=ð2l1þl2l1!l2!Þ
ðiω̄n − l1 − 1

2
− γ̃z þ μ̃Þðiω̄n þ l2 þ 1

2
− γ̃z þ μ̃Þ

�
z

; ð8Þ

where we introduce the following notations:

μ̃ðkz; QzÞ ¼ μ̄þ 2t̄z cos kz cos
Qz

2
; ð9aÞ

γ̃zðkz; QzÞ ¼ γz − 2t̄z sin kz sin
Qz

2
: ð9bÞ

Here, all normalized quantities marked by bars are defined
as ā≡ a=ωc (with a ¼ ωn, μ, tz).
The Matsubara-frequency sums are logarithmically

divergent and have to be cut at ωn ∼ Ω. This divergence
can be eliminated using the zero-field gap equation giving

1

2
lnðT=TCÞ −ϒT þϒTC

− J ðH; T;QzÞ ¼ 0; ð10Þ

where ϒT ¼−
R∞
0 ½ðdsÞ=ðπsÞ�lntanhðπTsÞsinð2μsÞJ0ð4tzsÞ

[28], and the field-dependent part of the pairing-kernel
eigenvalue is

J ðH; T;QzÞ ¼ 2πT
XΩ
ωn>0

Re

�
λωn;Qz

−
1

2ωn

�
−ϒT; ð11Þ

with J ð0; T; 0Þ ¼ 0. Therefore, the UV cutoffs are explic-
itly removed, and the Matsubara-frequency sum on the left-
hand side in Eqs. (11) converges now in the limit of
Ω → ∞. We can represent the functions J in this limit
as [28]

J ðH; T;QzÞ ¼
1

4

X∞
m¼0

Xm
l¼0

m!

2mðm − lÞ!l!
�
T ðlþ γ̃z − μ̃Þ þ T ðm − l − γ̃z − μ̃Þ − 2T ðm

2
− μ̃Þ

mþ 1 − 2μ̃

�
z

−
1

2

�Z1=2
0

dz
T ðz−1

2
− μ̃0Þ

z − 2μ̃0
þ
X∞
m¼0

Z1=2
−1=2

dz

�
T ðmþz

2
− μ̃0Þ

mþ 1þ z − 2μ̃0
−

T ðm
2
− μ̃Þ

mþ 1 − 2μ̃

��
z

; ð12Þ

where μ̃0ðkzÞ ¼ μ̃ðkz; 0Þ ¼ μ̄þ 2t̄z cos kz and T ðxÞ≡
tanh½ωcðxþ 1=2Þ=2T�. We remind that the parameters μ̃
and γ̃z depend on kz and Qz; see Eqs. (9a) and (9b).
Different terms in the above sum describe the contributions
to pairing from two quasiparticle states with opposite spin
orientations located at the Landau-level branches with
indices l and m − l. The c-axis momenta of the pairing

states at these branches�kz þQz=2 are mismatched by the
modulation wave vector Qz. For the fixed magnetic field,
we have to obtain the transition temperature TC2ðH;QzÞ by
solving Eq. (10) and then find Qz which gives its
maximum.
We are mostly interested in the quasiclassical limit set by

the related conditions μ − 2tz ≫ ωc; TC that are satisfied in
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an overwhelming majority of materials. In this case, the
problem can be significantly simplified. First, in the limit
μ ≫ TC, we have −ϒT þϒTC

≈ 1
2
lnðT=TCÞ, meaning that

Eq. (10) simplifies as lnðT=TCÞ − J ðH; T;QzÞ ¼ 0.
Furthermore, in the limit μ − 2tz ≫ ωc, high Landau levels
l1, l2 ≫ 1 give the dominating contribution to the sum in
Eq. (8). Therefore, the main term is obtained by neglecting
discreteness of the spectrum and replacing the summation
over these indices by integration over in-plane energies of
the pairing states ϵ1;2 ¼ ωcðl1;2 þ 1=2Þ, which gives the
quasiclassical kernel J cl,

J clðH; T;QzÞ

¼ 2

Z∞
0

ds ln tanh

�
πT
ωc

s

�

× hexpð−μ̃s2Þ½μ̃s cosð2γ̃zsÞ þ γ̃z sinð2γ̃zsÞ�iz: ð13Þ

This contribution is the famous quasiclassical Werthamer-
Helfand-Hohenberg (WHH) result [33,34], which is widely
used to describe the temperature dependence of the upper
critical field in clean superconducting materials. This
quasiclassical term usually favors the uniform state Qz ¼
0 unless the Maki’s parameter set by the Zeeman energy is
anomalously large. We analyze this issue in Appendix B.
The discreteness of the Landau-level spectrum leads

to the quantum correction to the quasiclassical kernel

J qðH; T;QzÞ, which we derive in Appendix A. This
correction is the sum of terms that are (i) oscillating
functions of the in-plane energies of two pairing states
ϵ1;2 with the period equal to the cyclotron frequency ωc,
∝ exp½iðm1ϵ1 −m2ϵ2Þ=ωc� and (ii) rapidly decrease
with separation between the average in-plane energy
ðϵ1 þ ϵ2Þ=2 and the average in-plane Fermi energy for
the pairing states with the c-axis wave vectors�kz þQz=2.
Therefore, the sum over the two Landau-level indices in
Eq. (8) is replaced by the sum over two harmonic indices
m1;2, in which all terms have to be integrated over the two
energies and averaged over kz. This double sum can be
further split into two contributions with qualitatively differ-
ent behavior. The terms with mismatched harmonic indices
m1 ≠ m2 rapidly oscillate with the ratio μ=ωc but weakly
depend on the modulation wave vector Qz. On the other
hand, in the same-harmonic terms withm1 ¼ m2 the strong
magnetic oscillations cancel, but these terms have instead a
pronounced dependence on Qz with typical scale given by
average separation between Landau-level branches, as
illustrated in Fig. 2. This dependence appears because
the modulation partially compensates the momentum mis-
match at the branches caused by the spin splitting. This key
property is the origin of the effects discussed in this paper.
All contributions together can be presented in the following
concise form:

J qðH; T;QzÞ ¼
2π3=2T
ωc

X∞
k¼1

ð−1Þk cos ð2πkγzÞ
sinhð2π2kTωc

Þ

�
cos ð4πkt̄z sin kz sin Qz

2
Þ sin ½2πkμ̃ðkz; QzÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

tan ½2πμ̃ðkz; QzÞ�

�
z

: ð14Þ

Here, the oscillating part of the factor sinðkϕÞ= tanϕ with
ϕ ¼ 2πμ̃ðkz;QzÞ is coming from mismatched-harmonics
terms, while its average part equal to 1 for even k originates
from the same-harmonics terms. The oscillating contribu-
tion has a structure resembling other quantum-oscillation
quantities such as the de Haas–van Alphen oscillating
magnetization; see, e.g., Ref. [35]. Namely, it is the sum of
terms which are periodic functions of 1=H [since μ̃ðkz; QzÞ,
t̄z ∝ 1=H] and exponentially decay with the temperature
for T > ωc. Also, these terms contain the familiar factors
cos ð2πkγzÞ due to the spin splitting. The analogy, however,
is not complete because, in contrast to single-electron
normal-state quantities, the quantum pairing kernel is a
two-electron property. In particular, the same-harmonics
contribution to the pairing kernel does not have an
analogue in the quantum correction to the normal-state
magnetization.
Therefore, in the standard quasiclassical limit

μ − 2tz ≫ ωc, TC, the total pairing kernel can be split into
classical and quantum contributions J ðH; T;QzÞ≈
J clðH; T;QzÞ þ J qðH; T;QzÞ, and Eq. (10) for the upper
critical field HC2 can be approximated as

lnðT=TCÞ − J clðH; T;QzÞ − J qðH; T;QzÞ ¼ 0: ð15Þ

The quantum contribution is expected to be small in the
quasiclassical limit. We demonstrate, however, that, while
weakly influencing the absolute value of HC2, this correc-
tion strongly promotes the formation of the FFLO state at
low temperatures.

III. INTERLAYER FFLO TRANSITIONS

In this section, we address the problem of interlayer
FFLO instability. It is well established that within the
quasiclassical approximation, the FFLO state emerges only
when the Maki’s parameter of the material exceeds a certain
critical value. In particular, for an isotropic 3Dmaterial, this
value was evaluated as approximately 1.8 in Ref. [11]. For
completeness, in Appendix B we generalize this quasi-
classical consideration to the system we analyze here, a
quasi-two-dimensional layered superconductor in the mag-
netic field applied perpendicular to the layers. The Maki’s
parameter for this system is expressed via the electronic
parameters as
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αM ¼ πTCγz
μ

4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4t2z=μ2

p : ð16Þ

We can see that this parameter may be large only if the band
is not too deep and the spin-splitting factor is very large. We
find that in the open-Fermi-surface regime μ > 2tz, the
critical Maki’s parameter is approximately 4.76. This result
suggests that the formation of the FFLO state in layered
materials requires even higher Zeeman energy than in the
isotropic case.
We argue, however, that this established quasiclassical

picture is incomplete and provides only the correct criterion
for the FFLO instability if the temperature is not too low
T > ωc. The conditions for the FFLO instability at very
low temperatures dramatically change when the orbital-
quantization correction (J q) in the pairing kernel is taken
into account. To see this, we investigate the influence of this
correction on the onset of the FFLO state for the case when
the Zeeman spin-splitting parameter is not near the resonant
values. We start with approximate analytical analysis for
the common particular case ωc ≪ tz ≪ μ. The quantum
correction in Eq. (14) is a sum of the oscillating terms
exponentially decaying with the temperature. In the range
T ≳ ωc, the dominating contribution to J q is coming from
the first several terms. The first two terms can be evaluated
as (see Appendix A for details)

J ð1Þ
q ≈ −

ffiffiffiffiffiffi
2π

tz

s
T cos ð2πγzÞ
sinhð2π2Tωc

Þ
X
δt¼�1

cos ð2π μþ2δttz
ωc

− δtπ
4
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μþ 2δttz cos2
Qz
2

q ;

ð17aÞ

J ð2Þ
q ≈ 2π3=2

T cos ð4πγzÞ
sinhð4π2Tωc

Þ

"
1ffiffiffiffiffiffiffiffi
ωcμ

p J0

�
4π

2tz
ωc

sin
Qz

2

�

þ
X
δt¼�1

cos ð4π μþ2δttz
ωc

− δtπ
4
Þ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tzðμþ 2δttzcos2

Qz
2
Þ

q
#
; ð17bÞ

where J0ðxÞ is the Bessel function. We see that the first
term oscillates with the magnetic field in the same way as
the normal-state magnetization (de Haas–van Alphen
effect) and conductivity (Shubnikov–de Haas effect), and
the second term also has such a magnetic oscillating
contribution given by the second line in Eq. (17b) [36].
As we discuss in the previous section, such terms appear
from the oscillating contributions of the two pairing
electronic states with opposite spins, which have mis-
matched periodicities in the in-plane energy dependence.
In addition, the second term J ð2Þ

q has a qualitatively
different contribution described by the first line in
Eq. (17b) that does not oscillate with ðμ� 2tzÞ=ωc but
has a pronounced oscillating dependence on Qz. It orig-
inates from the same-harmonics contributions of the two
pairing electronic states also discussed in the previous

section. This crucial part of the kernel is essentially a two-
particle property which does not have analogues in single-
electron normal properties. For large spin splitting between
the Landau-level branches, the pairing at finite Qz allows
the system to mitigate this split. This enhancement of
pairing is quantitatively described by this contribution,
which dominates the Qz dependence of the total quantum
correction at temperatures T ≳ ωc. Moreover, at low
temperatures this enhancement occurs to be much stronger
than the suppression of the quasiclassical kernel with Qz,
Eq. (13), in the usual regime of the dominating orbital
effect.
Stability of the uniform state is determined by the

second derivative of J q with respect to Qz at Qz ¼ 0,
J 00

q ≡ ∂2J q=∂Q2
z jQz¼0,

J 00
q ≈ −π3=2T

cos ð4πγzÞ
sinhð4π2Tωc

Þ
1ffiffiffiffiffiffiffiffi
ωcμ

p
�
4π

tz
ωc

�
2

: ð18Þ

It is positive for the spin-splitting factors in the range
j2γz − n=2j < 1=4 with n ¼ 1; 2…, meaning that the
quantum correction strongly favors the modulated state
within this range. Adding the quasiclassical term J 00

cl ≈
−t2z=ðωcμÞ valid in the limit γz ≪

ffiffiffiffiffiffiffiffiffiffiffi
μ=ωc

p
, we obtain the

total second derivative

J 00 ≈ −
t2z
ωcμ

�
1þ 4π3=2 cos ð4πγzÞ

4π2T
ωc

sinhð4π2Tωc
Þ

ffiffiffiffiffiffi
μ

ωc

r �

≈ −
t2z
ωcμ

�
1þ cos ð4πγzÞ

16
ffiffiffi
π

p
C3=2
E μ2T=T3

C

sinh ð4CEμT=T2
CÞ

�
; ð19Þ

where in the second line, assuming T ≪ TC, we substitute
the low-temperature limit for ωc at the upper critical field
for tz ≪ μ, ωc ≈ π2T2

C=ðCEμÞ with CE ≈ expð0.5772Þ ≈
1.781 being the exponential of the Euler-Mascheroni
constant. We can see that the quantum correction exponen-
tially decays above the temperature scale Tq ¼ ωc=4π2 ¼
0.14T2

C=μ. However, at T ∼ Tq it is already larger than the
quasiclassical term by the factor μ=TC ≫ 1. In the case
cos ð4πγzÞ < 0, this property allows us to evaluate the
FFLO-instability temperature from the equation J 00 ¼ 0
with logarithmic accuracy,

TFFLO ≈
T2
C

4CEμ
ln

�
j cos ð4πγzÞj

Cμμ

TC

�
; ð20Þ

where Cμ is a numerical factor of approximately 100–150.
This estimate is valid until the expression under the
logarithm is large, i.e., it breaks near the points
j2γz − n=2j ¼ 1=4 where cos ð4πγzÞ vanishes. For spin-
splitting factors outside the ranges j2γz − n=2j < 1=4, the
system may still have the FFLO instability, but it realizes at
temperatures much smaller than Tq, meaning that its
evaluation requires accounting for multiple terms in the
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sum in Eq. (14) and lacks a simple description. In addition,
even though the uniform state becomes unstable, the
transition to the modulated state takes place at a noticeable
fraction of the zero-field transition temperature only if the
ratio TC=μ is not too small.
At temperatures smaller than TFFLO, the Qz dependence

of the pairing kernel is dominated by the quantum term,
Eq. (17b), and the optimal modulation vector has to be
close to its maximum. As the first minimum of the Bessel
function J0ðxÞ is located at xmin ¼ 3.832, the optimal Qz
can be evaluated as

Qop ≈ 3.832ωc=ð4πtzÞ ≈ 0.305ωc=tz: ð21Þ

This wave vector is close to the average separation between
the neighboring opposite-spin Landau-level branches near
kz ¼ π=2; see Fig. 2. Note that, in contrast to minimum
spacing between the branches, the average separation does
not depend on γz. Weak dependence of the modulation
wave vector on the spin splitting is an unusual feature
distinguishing our state from conventional FFLO states. We
remind that the above result is obtained under the
assumption ωc ≪ tz, meaning that the modulation period
in this regime is much larger than the distance between the
layers. Strictly speaking, the result in Eq. (21) is derived
assuming that the Qz dependence is mostly determined by
the term J ð2Þ

q in Eq. (17b), which is justified for T ≳ Tq=2.
For lower temperatures, higher-k terms in Eq. (14) become
important, which may influence the value of Qop. Further
numerical checks, however, show that Eq. (21) gives a good
approximation for Qop within a rather wide tempera-
ture range.
To support and verify these analytical results, we proceed

with the discussion of the numerically computed phase
diagrams. We remind that the transition temperature TC2 at
fixed H and Qz can be computed using the exact equation,
Eq. (10), with the exact result for the kernel J ðH; T;QzÞ,
Eq. (12). In the quasiclassical limit, μ − 2tz ≫ TC, ωc;
however, the calculations are much easier with the approxi-
mate equation, Eq. (15), in which the classical and quantum
contributions to the kernel are given by Eqs. (13), and (14),
respectively. The modulation vector maximizing TC2 has to
be selected. Figure 3 shows the representative upper critical
field lines at low temperatures for the spin-splitting factor
γz ¼ 0.3, two Fermi energies μ ¼ 10TC and 20TC, and two
hopping energies tz ¼ 2TC and 4TC. This choice of
electronic parameters corresponds to small values of the
Maki’s parameter. From Eq. (16), we estimate αM ∼ 0.2 for
μ ¼ 10TC and αM ∼ 0.1 for μ ¼ 20TC. Nevertheless, in all
shown cases the FFLO instability develops below the
critical temperature TFFLO. For μ ¼ 10TC, this critical
temperature is slightly above 0.1TC and for μ ¼ 20TC it
is slightly above 0.05TC, in accidental agreement with a
simple estimate TFFLO=TC ∼ TC=μ. At somewhat lower
temperature of approximately 0.5TFFLO, the oscillatory

upturn of HC2ðTÞ develops. The optimal modulation wave
vector Qop continuously increases below TFFLO. Figure 4
shows the field dependences of Qop for μ ¼ 10TC, two
values of tz, 2TC and 4TC, and several values of the spin-
splitting parameter located near the optimal values 0.25 and
0.75, including γz ¼ 0.3 used in Fig. 3. The last points at
these curves are typically at temperatures 0.005TC and
0.01TC for tz ¼ 2TC and 4TC, respectively. We see that the
modulation wave vector sharply increases below TFFLO and
at low temperatures it starts to approximately follow the
linear dependence on the magnetic field predicted by
Eq. (21). The value of Qop in this regime weakly depends
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FIG. 3. Examples of the temperature dependences of the upper
critical field for the spin-splitting factor γz ¼ 0.3, two Fermi
energies μ ¼ 10TC (upper part) and 20TC (lower part), and two
hopping energies tz ¼ 2TC and 4TC. The boundaries are color
coded by the optimal modulation wave vector Qop. The arrows
mark the location of the FFLO transition temperature TFFLO. The
orange dash-dot lines show quasiclassical results.

0.55 0.60 0.65 0.70
0.00

0.02

0.04

0.06

0.08

0.10

z 
= 

0.
8

z 
= 

0.
8

0.
7 0.
2

0.
2

0.
7

0.
3

0.
3

0.305ωc /tz

Q
op

H (cmTC /e)

μ = 10TC
tz = 2TC

tz = 4TC

FIG. 4. The field dependences of the optimal modulation wave
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The dashed lines show the expected low-temperature behavior,
Eq. (21).
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on the spin-splitting parameter which determines only the
field range where such a behavior is realized.
The analytical estimate for the instability temperature in

Eq. (20) is valid only for the Zeeman spin-splitting
parameters within certain ranges j2γz − n=2j < 1=4.
Outside these ranges, no simple analytical results are
available. The lower panel of Fig. 5 shows the numerically
computed γz dependence of the FFLO-instability temper-
ature. We see that this dependence is oscillatory with the
slowly decaying amplitude. As follows from Eq. (19),
TFFLO ∝ ωc suggesting that this slow decay is caused by an
overall suppression of ωc ∝ HC2ðTFFLOÞ with γz. Such a
suppression is indeed seen in the upper panel of Fig. 5,
which presents the γz dependence of the cyclotron fre-
quency at the instability point. We note that the ratio
TFFLO=ωc displays much better γz periodicity with slightly
increasing amplitude (not shown). The dependence
TFFLOðγzÞ within the ranges j2γz − n=2j < 1=4 is in excel-
lent agreement with the evaluation based on the analytical
result, Eq. (19). When γz is shifted outside this range, the
instability temperature sharply drops and moves in the
region of oscillatory HC2ðTÞ behavior. Nevertheless, we

see that the instability is always present unless 2γz exactly
equals an integer. Therefore, both analytical and numerical
analyses of this section consistently demonstrate that the
quantum-oscillation contribution to the Cooper pairing
favors the FFLO instability, especially in the case of strong
spin splitting between the Landau-level branches. Our
theory provides a quantitative description of this instability.

IV. SUMMARY AND DISCUSSION

In this paper, we investigate the FFLO instabilities in a
clean single-band layered superconductor in the out-of-
plane magnetic field taking into account the orbital-
quantization effects. The quasiclassical analysis predicts
the emergence of the FFLO state only at very large Maki’s
parameters αM > 4.76. We find, however, that the quantum
effects promote the formation of this state at low temper-
ature even in the range of parameters where the quasi-
classical approximation is expected to work well. Contrary
to the quasiclassical predictions, the FFLO state in a clean
system can emerge even in the weak-Zeeman-effect regime
(αM ≪ 4.76). The instability of the uniform state is caused
by the mismatch between the c-axis Fermi momenta for the
one-dimensional Landau-level branches with opposite spin
orientation. Correspondingly, the optimal modulation vec-
tor at low temperatures is given by the typical separation
between the branches. The condensation-energy loss in the
modulated state is compensated by the higher gain in the
Zeeman energy. Therefore, this state is expected to have
higher electronic spin polarization in comparison with the
uniform state. Note that in the case of a very strong Zeeman
effect, the FFLO state may emerge via the first-order phase
transition [14,16]. In our case of weak Zeeman energy, the
transition is known to be continuous in the quasiclassical
regime, and incorporating the quantization corrections will
not change this scenario because the quantum correction to
the quartic coefficient in the Ginzburg-Landau expansion is
small and cannot change its sign.
We mostly focus on the typical situation when

many Landau-level branches cross the Fermi level near
the upper critical field, which also may realize in
materials with different electronic spectra. In layered
superconductors, this situation corresponds to the condition
4tz ≫ ωc ∼ T2

C=μ. We note, however, that some key results
also hold for extremely anisotropic layered materials, in
which the miniband width 4tz is comparable to or smaller
than the cyclotron frequency ωc. In particular, the results
for the classical and quantum contributions to the pairing
kernel, Eqs. (13) and (14), are valid for arbitrary tz within
the open-Fermi-surface regime. More importantly, the
crucial contribution to the quantum kernel given by the
first term in Eq. (17b) remains valid for tz < ωc. As a
consequence, the FFLO instability persists for arbitrarily
small interlayer hopping, and the instability temperature for
the case cos ð4πγzÞ < 0 can be still estimated from Eq. (20).
The nature of the FFLO state developing at low

FIG. 5. The lower panel shows the dependence of the FFLO
onset temperature TFFLO on the spin-splitting factor γz. The
parameters in this plot are tz=μ ¼ 0.2 and μ=TC ¼ 10. In contrast
to the quasiclassical case, the FFLO states emerge at finite TFFLO
even when the γz is very small. Furthermore, TFFLOðγzÞ oscillates
and its maxima are located at 2γz ¼ nþ 1=2 corresponding to the
largest minimum separation between the opposite-spin Landau
levels, as illustrated in the inset for γz ¼ 0.25. Open squares show
analytical estimates using Eq. (19). The upper panel shows the γz
dependence of the cyclotron frequency at the upper critical field
for T ¼ TFFLO. We omit the points at the resonances
(2γz ¼ 1; 2;…), where the spin degeneracy of the Landau levels
is restored; see inset for γz ¼ 0.5. The FFLO transition is absent at
these points.
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temperatures, however, changes qualitatively when 4tz
becomes comparable with ωc. In this regime, only a
few Landau-level branches cross the Fermi level.
Correspondingly, the optimal modulation emerges as the
result of competition between a few favorable wave vectors
connecting the Fermi wave vectors of the opposite-spin
branches. In this case, the low-temperature modulation
period is expected to be comparable with the interlayer
spacing and will have complicated magnetic field
dependence.
The most demanding requirement for the observation of

the quantum FFLO instability is the material’s purity. The
impurity scattering has detrimental effects on the quantum
contributions, and strong disorder restores the quasiclass-
ical behavior. As we demonstrate in Appendix A, within the
simplest lifetime approximation, the impurity scattering
leads to appearance of the additional “Dingle factors”
exp½−2πkΓ=ωc� in the sum for the quantum correction in
Eq. (14). Here, the impurity broadening Γ is related to the
scattering time as Γ ¼ 1=2τ. In addition to the reduction of
the Landau-quantization corrections, the impurity factors
make the sum in Eq. (14) convergent in the zero-temper-
ature limit for an arbitrary modulation wave vector.
In Appendix C, we consider suppression of the FFLO
instability by impurities. We evaluate the critical
impurity broadening Γcr above which the FFLO state is
suppressed, Γcr ¼ ðωc=4πÞ ln ð4π3=2j cos ð4πγzÞj

ffiffiffiffiffiffiffiffiffiffiffi
μ=ωc

p Þ
for cos ð4πγzÞ < 0. We also illustrate the evolution of
superconducting instability boundaries with increasing Γ.
In our consideration, we assume fixed chemical potential

and neglect its quantum magnetic oscillation δμðHÞ, which
should be present if the system is not coupled to a charge
reservoir. In layered metals in the limit 4tz=ωc ≫ 1, the
low-temperature oscillating amplitude of δμðHÞ scales as
ωc

ffiffiffiffiffiffiffiffiffiffiffi
ωc=tz

p
[38]. To check if these chemical-potential

oscillations have a noticeable influence on our results,
we compute δμðHÞ=ωc using the precise formula provided
in Ref. [38]. We find that for the parameters μ=TC ¼ 10 and
tz=TC ¼ 2 in Fig. 3, the maximum amplitude of δμðHÞ=ωc
is only approximately 0.01 near the FFLO transition.
Moreover, even for the points with small TFFLO near the
resonance spin splittings in Fig. 5, δμðHÞ=ωc does not
exceed 0.05. We conclude that the oscillating contribution
to the chemical potential has a minor influence on the
FFLO instability in the studied parameter range.
The FFLO transition temperature (TFFLO) is an oscillat-

ing function of the spin-splitting parameter γz ¼ μzH=ωc. It
has maxima at 2γz ¼ nþ 1

2
corresponding to the largest

splitting between the Landau levels with opposite spin
orientations, which is the least favorable situation for the
uniform state. On the other hand, the uniform state remains
stable down to zero temperature at the resonances 2γz ¼ n
corresponding to spin-degenerate Landau levels. As we
point out in the Introduction, the effective γz can be tuned
by tilting the magnetic field [29], and we expect that TFFLO

will also be an oscillating function of the tilting angle. This
consideration is very general, meaning that, in principle,
such a quantum FFLO instability may appear in any layered
superconducting material provided it can be prepared
sufficiently pure. Moreover, we believe that specific
assumptions for the electronic spectrum and s-wave sym-
metry of the order parameter made in derivation are not
really essential, and we expect that the predicted promotion
of the FFLO state by the quantization is a general
phenomenon which also takes place in more complicated
situations. We note, however, that in a typical good metal
with very large Fermi energy μ > 100TC, the FFLO
transition temperature becomes vanishingly small, and,
correspondingly, purity requirements may be unrealistic.
Therefore, the best materials for observation of the pre-
dicted behavior are superconductors with strong pairing
and not-too-deep bands so that μ=TC < 30 and μ=ωc < 50.
Clearly, the predicted quantum effects become more
pronounced with decreasing these ratios.
Among the known materials, the possible candidates

for the predicted behavior may be found in organic
and iron-based superconductors. Consider, e.g., the
well-studied organic superconducting material
κ-ðBEDT-TTFÞ2CuðNCSÞ2 with TC ¼ 10.4 K [4,39,40]
and HC2ð0Þ ≈ 7 T [41]. As other organic materials, it
can be made exceptionally clean so that the quantum
oscillations may be observed even inside the superconduct-
ing state [42]. In addition, strong experimental support for
the classical FFLO state caused by the large Zeeman energy
already exists for the magnetic field oriented along the
layers [4], and this state may realize only if impurity
scattering is very weak. The band structure of this material
is composed of one holelike corrugated cylindrical Fermi
surface and two electronlike Fermi planar sheets. The
Landau-quantization effect is relevant only for the holelike
Fermi surface which is characterized by the effective mass
of approximately 3.2me [43] and interlayer hopping energy
tz ≈ 0.04 meV [44]. The ratio μ=ωc is equal to the ratio
of the de Haas–van Alphen frequency 599T andHC2 giving
approximately 86. With above effective mass, this yields
ωc ≈ 0.25 meV, μ ≈ 22 meV, and μ=TC ¼ 25. The spin-
splitting parameter γz ¼ 1.3 is extracted using the
“spin-zero” effect in the de Haas–van Alphen oscillations
[43], and it is actually close to the optimal value of 1.25 for
the quantum FFLO scenario. The pairing in this and similar
molecular crystals may be mediated by spin fluctuations
leading to the d-wave symmetry of the order parameter
[37,45]. Several materials properties are consistent with the
d-wave symmetry including NMR [46], low-temperature
behavior of the London penetration depth [47,48] and
specific heat [49], dependences of specific heat [50],
and thermal conductivity [51] on the magnetic field
direction. The consideration of this paper can be
straightforwardly generalized to the d-wave case, and we
expect a very similar behavior. The instability temperature
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for this material can be estimated from Eq. (20) as
TFFLO ∼ 0.045TC ∼ 0.45K. From the material’s parame-
ters, we estimate 4tz=ωc ≈ 0.7, meaning that the Fermi
level typically crosses only one Landau-level branch for
every spin direction. In this case, one can expect a large
modulation wave vector which is determined by the two
Fermi momenta of the opposite-spin branches. We can
conclude that this organic superconductor has almost ideal
electronic parameters and is a very feasible candidate for
the realization of the quantum FFLO state. It is, however, a
challenge to demonstrate it experimentally. An additional
complicating factor is that the transition may not be
described by the mean-field theory due to strong quantum
fluctuations [52] which may smear the static configuration.
The described FFLO instability actually enhances these
fluctuations due to the reduction of the vortex-lattice tilt
stiffness.
High values of transition temperatures and upper critical

fields as well as small Fermi energies make iron-based
superconductors natural candidates for observing the pre-
dicted phenomenon. The weak impurity scattering limit
probably cannot be achieved in compounds obtained by
doping from nonsuperconducting parent materials.
Fortunately, there are also several stoichiometric com-
pounds, such as FeSe, LiFeAs, and CaKFe4As4, which,
at least in principle, can be made pure. For example, the
compound FeSe has a transition temperature of approx-
imately 8 K [53] and a rather high low-temperature upper
critical field of approximately 17 T [54,55]. The material
can be made clean allowing for the observation of quantum
oscillations down to fields of approximately 20 T [55,56],
only slightly above Hc2. Its band structure is composed of
hole and electron pockets with very small Fermi surfaces.
An analysis of the Shubnikov–de Haas oscillations [55]
gives the smallest Fermi energy for the electron and hole
bands of only 3.9 and 5.4 meV, respectively, and ARPES
measurements [55,57] are consistent with these estimates.
This means that the ratios ϵF=ωc are in the range of 4–6,
clearly indicating the relevance of quantum effects.

Moreover, experimental indications of a possible phase
transition inside the superconducting state have been
reported recently. It was demonstrated that the diagonal
and Hall thermal conductivities have kinklike features near
the magnetic field H� ∼ 15 T at T < 1.5 K below HC2ðTÞ
[54,58]. It is feasible that this transition corresponds to the
quantization-induced FFLO state with modulation along
the magnetic field. Even if this interpretation is correct, the
simple model used in this paper probably does not
quantitatively describe this transition because it is likely
influenced by multiple-band effects.
We conclude that the generally accepted picture of the

true superconducting ground state in high magnetic fields is
incomplete for clean materials. The quantization effects
promote the formation of the FFLO state in which the order
parameter is periodically modulated along the magnetic
field. Such a state may actually realize in several existing
pure materials, even though a direct experimental proof for
it may be quite challenging.
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APPENDIX A: DERIVATION OF THE
OSCILLATING CORRECTION TO

THE PAIRING KERNEL EIGENVALUE J

The starting point of the derivation is the exact result for
the eigenvalue λωn;Qz

, Eq. (8), which we rewrite in real
variables as

λωn;Qz
¼ −

ωc

2π

X∞
l1;l2¼0

ðl1 þ l2Þ!
2l1þl2l1!l2!

�
1

½iðωn þ ζωΓÞ − ξþðl1 þ 1
2
; kz þQz=2Þ�½iðωn þ ζωΓÞ þ ξ−ðl2 þ 1

2
; kz −Qz=2Þ�

�
z

ðA1Þ

with ζω ¼ signðωnÞ and ξ�ðlþ 1
2
; kzÞ≡ ωcðlþ 1

2
� γzÞ −

2tz cos kz − μ being the quasiparticle energies in a finite
out-of-plane magnetic field. While in most parts of the
paper we consider clean case, here we also include a finite
broadening Γ related to the scattering time by nonmagnetic
impurities as Γ ¼ 1=2τ. We use the simplest lifetime
approximation neglecting the vertex impurity corrections

in the pairing kernel, which is justified at high magnetic
fields for Γ < ωc [23,59,60]. This simple model is suffi-
cient for us to understand the qualitative behavior of the
impurities effects. We expect that a more accurate treatment
will not change the qualitative features of the result. The
initial steps of derivation are similar to ones in Refs. [11,60].
In the quasiclassical limit μ ≫ ωc, the main contribution is
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coming from large Landau-level indices lα ≫ 1. In this limit, using the Stirling formula x! ≈
ffiffiffiffiffiffi
2π

p
xxþ1=2 expð−xÞ, the

combinatorial factor can be approximated as

ðl1 þ l2Þ!
2l1þl2l1!l2!

≈
exp ½−ðl1 − l2Þ2=4l1�ffiffiffiffiffiffiffiffi

πl1

p :

Using also the Poisson summation formula
P∞

l¼0 fðlþ 1
2
Þ ¼ R

∞
0 dxfðxÞP∞

m¼−∞ð−1Þm exp ð2πimxÞ, we obtain an
approximate presentation for λωn;Qz

,

λωn;Qz
¼

X∞
m1;m2¼−∞

λm1m2

ωn;Qz
;

λm1m2

ωn;Qz
≈ −ð−1Þm1þm2

ωc

2π3=2

Z∞
0

dx1ffiffiffiffiffi
x1

p
Z∞
0

dx2

�
exp ½2πiðm1x1 −m2x2Þ − ðx1 − x2Þ2=4x1�

½iðωn þ ζωΓÞ − ξþðx1; kz þ Qz
2
Þ�½iðωn þ ζωΓÞ þ ξ−ðx2; kz − Qz

2
Þ�

�
z

: ðA2Þ

Here, the variables x1;2 are reduced in-plane energies ϵ1;2 of the pairing states x1;2 ¼ ϵ1;2=ωc. The terms with nonzero mα

give the oscillating contributions to the kernel with respect to these energies due to the discrete spectrum of the two pairing
electronic states in the magnetic field. Making the variable change ϵ ¼ ωcðx1 þ x2Þ=2 and ϵ− ¼ ωcðx2 − x1Þ, we obtain

λm1m2

ωn;Qz
≈
ð−1Þm1þm2

2π3=2
ffiffiffiffiffiffi
ωc

p
Z∞
−∞

dϵ−

Z∞
jϵ−j=2

dϵffiffiffi
ϵ

p
�
exp ½2πiðm1 −m2Þϵ=ωc − πiðm1 þm2Þϵ−=ωc − ϵ2−=4ωcϵ�

½ϵ − μðkz;QzÞ�2 þ ½ωn þ ζωΓ − i ϵ−
2
− iωcγ̃zðkz; QzÞ�2

�
z

;

where μðkz; QzÞ≡ μþ 2tz cos kz cosðQz=2Þ is the average in-plane Fermi energy for two pairing states with c-axis
wave vectors �kz þQz=2m, and γ̃zðkz; QzÞ is defined in Eq. (9b). Further derivation steps deviate from Refs. [11,60]
and lead to somewhat more physically transparent presentation for the kernel eigenvalue. Assuming
μðkz; QzÞ ≫ ωn; ðϵ−=2Þ;ωcγz; 2tz sin kz sinðQz=2Þ, we can approximately integrate over the mean in-plane energy ϵ,

λm1m2

ωn;Qz
≈
ð−1Þm1þm2

2
ffiffiffiffiffiffiffiffi
πωc

p

×
Z∞
−∞

dϵ−

*
exp

n
2πiðm1 −m2Þ μðkz;QzÞ

ωc
− πiðm1 þm2Þ ϵ−

ωc
− ϵ2−=4

ωcμðkz;QzÞ −
2πjm1−m2j

ωc

h
jωnj þ Γ − iζω

	
ϵ−
2
þ ωcγ̃zðkz; QzÞ


io
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðkz; QzÞ

p ½jωnj þ Γ − iζωðϵ−2 þ ωcγ̃zðkz; QzÞÞ�

+
z

with ζω ≡ signðωnÞ. We use the presentation

1

jωnj þ Γ − iζω½ϵ−2 þ ωcγ̃zðkz; QzÞ�
¼

Z∞
0

2ds
ωc

exp

"
−
2
	
jωnj þ Γ − iζω

	
ϵ−
2
þ ωcγ̃zðkz;QzÞ




s

ωc

#
;

which allows us to integrate over ϵ−,

λm1m2

ωn;Qz
≈ 2ð−1Þm1þm2

Z∞
0

ds
ωc

�
exp

��
2πiðm1 −m2Þ − ½πðm1 þm2 − ζωjm1 −m2jÞ − sζω�2

�
μ̃ðkz; QzÞ

− ðπjm1 −m2j þ sÞ 2ðjωnj þ ΓÞ
ωc

þ ðπjm1 −m2j þ sÞ2iζωγ̃zðkz; QzÞ
��

z

with μ̃ðkz; QzÞ≡ μðkz; QzÞ=ωc; see Eq. (9a). In the next step, we perform summation over the Matsubara frequencies
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πT
X∞

ωn¼−∞
λm1m2

ωn;Qz
≈ ð−1Þm1þm2

Z∞
0

ds
X

ζω¼�1

×

�
πT expfð2πiðm1 −m2Þ− ½πðm1 þm2 − ζωjm1 −m2jÞ− sζω�2Þμ̃ðkz;QzÞ þ 2ðπjm1 −m2j þ sÞ½iζωγ̃zðkz;QzÞ− Γ

ωc
�g

ωc sinh ððπjm1 −m2j þ sÞ 2πTωc
Þ

�
z

:

ðA3Þ

In the sum over m1 and m2, it is convenient to introduce new summation indices k ¼ m1 −m2 and
r ¼ ζωfm2 þ ½ðk − ζωjkjÞ=2�g, which leads to the following presentation for J≡ πT

P∞
ωn¼−∞ λωn;Qz

:

J ≈
X∞

r;k¼−∞
Jrk; ðA4Þ

Jrk ≈ ð−1Þk πT
ωc

Z∞
0

ds
�
exp f½2πik − ð2πr − sÞ2�μ̃ðkz; QzÞg cos ½2ðπjkj þ sÞγ̃zðkz; QzÞ�

sinh ððπjkj þ sÞ 2πTωc
Þ exp

�
−2ðπjkj þ sÞ Γ

ωc

��
z

: ðA5Þ

We remind again that the parameters μ̃ðkz; QzÞ and γ̃zðkz;QzÞ are defined in Eqs. (9a) and (9b). As we consider the regime
μ̃ðkz; QzÞ ≫ 1, the terms with r < 0 are exponentially small and can be neglected. For further transformations, we split
J ¼ Jqc þ JIq þ JIIq with

Jqc ¼ J00; JIq ¼
X∞
r¼1

Jr0; JIIq ¼ 2
X∞
k¼1

X∞
r¼0

Jrk:

Here, the first term is the conventional quasiclassical result. It contains a logarithmic divergence which can be eliminated by
subtracting its value at zero magnetic field and Qz ¼ 0 leading to Eq. (13). The other two terms give a quantum-oscillation
correction to the kernel eigenvalue. In these terms, we can approximately perform s integration in Eq. (A5) assuming
js − 2πrj ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωc=μðkz; QzÞ
p

≪ 1, which allows us to keep s dependence only in the first exponential factor. For the term JIq,
this gives

JIq ≈
2π3=2T
ωc

X∞
r¼1

�cos ð4πrγzÞ cos ð4πr 2tz
ωc
sin kz sin

Qz
2
Þ expð−4πrΓ=ωcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

sinh ð4π2rT=ωcÞ

�
z

; ðA6Þ

where we also substitute cos ½4πrγ̃zðkz; QzÞ� → cos ð4πrγzÞ cosf4πr½ð2tzÞ=ðωcÞ� sin kz sin½ðQzÞ=2�g. This quantity repre-
sents the contribution to the kernel originating from the oscillating components of the two pairing electronic states with the
same periodicity, i.e., from terms with m1 ¼ m2 in Eq. (A2). We note that JIq monotonically decreases with μ̃ðkz; QzÞ,
meaning that it does not contain terms periodically varying with the large ratio μ=ωc that are typical for quantum-oscillating
corrections to normal-state quantities. Other contributions to the pairing kernel considered below do contain such terms. On
the other hand, this kernel contribution has a pronounced oscillating dependence on the modulation wave vector Qz. The
latter property is very crucial for the consideration of the FFLO instability.
For the term JIIQ , we note that the s integral for the r ¼ 0 term is from 0, and it is approximately 2 times smaller than for

the r ≠ 0 terms for which we can extend the lower integration limit to −∞, i.e.,

JIIq ≈
4π3=2T
ωc

X∞
k¼1

X∞
r¼0

ð−1Þk
�
cos ½2πkμ̃ðkz; QzÞ� cos ½2πðkþ 2rÞγ̃zðkz; QzÞ� exp½−2πðkþ 2rÞΓ=ωc�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

sinh ½ðkþ 2rÞ 2π2Tωc
�

�
z

−
2π3=2T
ωc

X∞
k¼1

ð−1Þk
�
cos ½2πkμ̃ðkz; QzÞ� cos ½2πkγ̃zðkz; QzÞ� expð−2πkΓ=ωcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

sinh ðk 2π2T
ωc

Þ

�
z

:

We see that, in contrast to JIq, Eq. (A6), this contribution is composed of terms proportional to cos ½2πkμ̃ðkz; QzÞ� that
oscillate with the ratio μ=ωc. We can reduce the double summation in the first line to a single sum using
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X∞
k¼1

X∞
r¼0

ð−1Þk cosðkxÞgðkþ 2rÞ ¼
X∞
j¼1

Xj

n¼1

½cosð2nxÞgð2jÞ − cos ½ð2n − 1Þx�gð2j − 1Þ�

¼
X∞
j¼1

�
sin ½ð2jþ 1Þx� − sin x

2 sin x
gð2jÞ − sin ð2jxÞ

2 sin x
gð2j − 1Þ

�

¼ 1

2

X∞
j¼1

ð−1Þj½sin ðjxÞ cot xþ cos ðjxÞ�gðjÞ − 1

2

X∞
j¼1

gð2jÞ;

with x ¼ 2πμ̃ðkz; QzÞ and gðjÞ ¼ cos ½2πjγ̃zðkz; QzÞ� exp½−2πjΓ=ωc�= sinh ð2π2jT=ωcÞ, which leads to the presentation

JIIq ≈
2π3=2T
ωc

X∞
j¼1

ð−1Þj
�
sin ½2πjμ̃ðkz; QzÞ� cos ½2πjγ̃zðkz; QzÞ� expð−2πjΓ=ωcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

tan ½2πμ̃ðkz; QzÞ� sinh ð2π2jT=ωcÞ

�
z

−
2π3=2T
ωc

X∞
j¼1

�
cos ½4πjγ̃zðkz; QzÞ� expð−4πjΓ=ωcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

sinh ð4π2jT=ωcÞ

�
z

: ðA7Þ

We can see that the second term exactly cancels JIq, Eq. (A6), meaning that the first line gives the final result for the
full quantum correction to the pairing kernel J q ¼ JIq þ JIIq ,

J qðH; T;QzÞ ≈
2π3=2T
ωc

X∞
j¼1

ð−1Þj cos ½2πjγ̃zðkz; QzÞ� expð−2πjΓ=ωcÞ
sinh ð2π2jT=ωcÞ

�
sin ½2πjμ̃ðkz;QzÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃ðkz; QzÞ
p

tan ½2πμ̃ðkz; QzÞ�

�
z

: ðA8Þ

In the clean case, Γ ¼ 0, this gives Eq. (14) of the
main text. We note that the oscillating factor
sin ½2πjμ̃ðkz; QzÞ�= tan ½2πμ̃ðkz; QzÞ� in this result contain-
ing the large parameter μ̃ðkz; QzÞ has zero average over the
period for odd j, while for even j its average equals to 1.
The oscillating part of this factor for all j originates from
JIIq , and the average part for even j originates from JIq.
Figure 6 compares the Qz dependence of the exact total
kernel eigenvalue J given by Eq. (12), with the

quasiclassical result from Eq. (13) and with the more
accurate approximation which also takes into account
the oscillating correction, Eq. (14). We can see that this
correction accurately reproduces the oscillating behavior. A
small difference with the exact result is present only in the
smooth part and is obviously related to the inaccuracy of
the quasiclassical contribution of the order of ωc=μ.
Further simplification can be achieved in the common

limit ωc ≪ tz. In this limit, as usual in the physics of
quantum-oscillating corrections, the dominating contribu-
tions are coming from the extremal cross sections of the
Fermi surface. We demonstrate this for the first two terms in
the sum giving the quantum correction in Eq. (14). These
terms provide the main contribution to the total sum almost
everywhere except very low temperatures T < ωc=4π2.
The first term k ¼ 1, we rewrite as

J ð1Þ
q ¼−π3=2T

cosð2πγzÞexpð−2πΓ=ωcÞ
sinhð2π2T=ωcÞ

×
Zπ
−π

dkz
2π

P
δQ¼�1cosf2π½ μωc

þ 2tz
ωc
cosðkz−δQ

Qz
2
Þ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωcðμþ2tz coskzcos
Qz
2
Þ

q :

In the limit ωc ≪ tz, the dominating contributions to
the kz integration for the two rapidly oscillating terms in
the nominator are coming from the regions near
kz − δQQz=2 ¼ 0 and π, where we can expand

0.0 0.2 0.4 0.6 0.8 1.0

-2.68

-2.66

-2.64

-2.62

-2.60

z=0.3, tz=0.13 h

T=0.01 h, c=0.1 h

 Exact
 Approx.
Quasicl.

Qz

FIG. 6. Comparison of the representative Qz dependence of the
exact total kernel eigenvalue J , Eq. (12), with quasiclassical
formula, Eq. (13), and with the approximation which accounts for
the oscillating correction, Eq. (14), to the quasiclassical result.
The used parameters are shown in the plot.
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cos ðkz − δQQz=2Þ ≈�½1 − ðkz − δQQz=2Þ2=2�. Also, we can neglect the kz dependence in the denominator substituting
cos kz → � cosðQz=2Þ. These approximations give

J ð1Þ
q ≈ −

ffiffiffi
π

p
T
cos ð2πγzÞ expð−2πΓ=ωcÞ

sinh ð2π2T=ωcÞ
X
δt¼�1

Zπ
−π

dkz
cos ½2π μ

ωc
þ 2πδt

2tz
ωc
ð1 − k2z=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωcðμþ 2δttzcos2
Qz
2
Þ

q :

Using
R∞
−∞ cosða� bx2Þdx ¼ ffiffiffiffiffiffiffiffi

π=b
p

cos ða� π=4Þ, we can approximately perform the kz integration giving Eq. (17).
For the similar evaluation of the second term in Eq. (14), we represent it in the form

J ð2Þ
q ¼ π3=2T

cos ð4πγzÞ expð−4πΓ=ωcÞ
sinh ð4π2T=ωcÞ

Zπ
−π

dkz
2π

2 cos ð4π 2tz
ωc
sin kz sin

Qz
2
Þ þP

δQ¼�1 cos f4π½ μωc
þ 2tz

ωc
cos ðkz − δQ

Qz
2
Þ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωcðμþ 2tz cos kz cos
Qz
2
Þ

q :

The qualitative difference from J ð1Þ
q is the presence

of the first term in the nominator, which gives the
rapidly oscillating with Qz contribution. In the limit
tz ≪ μ, we can neglect the kz-dependent term in the
denominator allowing us to compute this contribution
using

R
π
−π½ðdxÞ=ð2πÞ� cos ða sin xÞ ¼ J0ðxÞ with J0ðxÞ

being the Bessel function. The last two terms can be
evaluated similarly to J ð1Þ

q leading to the result in
Eq. (17b). The first term in this result, having strong
oscillating dependence on Qz, originates from the kernel
part given by Eq. (A6) describing the oscillating contri-
butions of the two pairing states with the same periodicity.

APPENDIX B: CRITICAL MAKI’S
PARAMETER OF LAYERED

SUPERCONDUCTORS WITHIN
QUASICLASSICAL APPROXIMATION

In this Appendix, we investigate the onset of the
interlayer FFLO state in the magnetic field applied
perpendicular to the layers for the quasiclassical case.
This problem provides a natural reference for the case in
which the quantum effects are taken into account. Note that
in most theoretical papers, only the case of the magnetic
field applied along the layers has been considered because
orbital effects are weak in this geometry which is favorable
for the FFLOmodulation. For isotropic materials with large
Zeeman effect, a similar problem of the FFLO state along
the magnetic field was considered in the seminal paper of
Gruenberg and Gunther [14]. It was demonstrated that the
FFLO modulation appears when the Maki’s parameter
exceeds 1.8. Surprisingly, this consideration was never

generalized to the case of layered superconductors with
open Fermi surfaces.
Our consideration is based on the result for the field-

dependent pairing kernel Eq. (13). To investigate super-
conducting instability at zero temperature, we approximate
tanh x ≈ x. The single-band HC2 equation lnðT=TCÞ ¼
J ðH; T;QzÞ can be transformed into the following form
using the substitution z ¼ ffiffiffī

μ
p

s;¯

Rðωc; QzÞ≡ ln
πTCffiffiffiffiffiffiffiffi
μωc

p þ 2

Zπ
−π

dkz
2π

Z∞
0

dze−βQz
2

ln z

× ½βQz cosð2γQzÞ þ γQ sinð2γQzÞ� ¼ 0 ðB1Þ
with Qz-dependent parameters

βQðkz; QzÞ ¼
μ̃

μ̄
¼ 1þ 2

tz
μ
cos kz cos

Qz

2
;

γQðkz; QzÞ ¼
γ̃zffiffiffī
μ

p ¼ γz − 2ðtz=ωcÞ sin kz sin Qz
2ffiffiffiffiffiffiffiffiffiffiffi

μ=ωc

p :

This equation determines the reduced upper critical field
ωc=TC ¼ eHC2=ðcmTCÞ as a function of the modulation
wave vector Qz and the reduced electronic parameters
μ=TC, tz=μ, and γz. The value of Qz giving the largest HC2
is realized. For the uniform case, the value ω�

c≡ωcðQz¼0Þ
is determined by a simpler equation

ln
�

πTcffiffiffiffiffiffiffiffi
μω�

c
p

�
þ fR ¼ 0; ðB2Þ

fR

�
aγ;

tz
μ

�
¼ 2

Z∞
0

dz expð−z2Þ ln z
�
I0

�
2
tz
μ
z2
�
aγ sinð2aγzÞ þ

�
I0

�
2
tz
μ
z2
�
− 2

tz
μ
I1

�
2
tz
μ
z2
��

z cosð2aγzÞ
�
; ðB3Þ
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where aγ ≡ γz
ffiffiffiffiffiffiffiffiffiffiffi
ω�
c=μ

p
, and InðxÞ is the modified Bessel

function.
Figure 7 shows representative Qz dependences of HC2

for tz=μ ¼ 0.2, μ=TC ¼ 5, and different γz. We can see that
for small γz, the maximum HC2 is located at Qz ¼ 0. When
γz exceeds the critical value γCz , the maximum of HC2
moves to finite Qz. For large γz, the maximum is realized
at Qz ¼ π.
The critical spin splitting γCz can be expressed via the

Maki’s parameter αM ¼ ffiffiffi
2

p
HO

C2=H
P
C2, where

HP
C2 ¼

πTCffiffiffi
2

p
CEμz

¼ πcTCmffiffiffi
2

p
CEeγz

ðB4Þ

is the Pauli-limiting field at T ¼ 0, and HO
C2 is the orbital

upper critical field at T ¼ 0. In our case, we can obtain it
from Eq. (B2) with γz ¼ 0,

HO
C2 ¼

π2cT2
Cm

CEeμ
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4t2z=μ2

p : ðB5Þ

Combining these results for the critical fields, we obtain the
presentation of the Maki’s parameter via the electronic
parameters given by Eq. (16) of the main text. We also
derive the presentation

αM ¼ aγe−fR
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4t2z=μ2

p ; ðB6Þ

which is convenient for the numerical evaluation of the
critical Maki’s parameter.
We proceed with calculation of the critical spin splitting

γCz as a function of the parameters μ=TC and tz=μ and relate
it with the critical Maki’s parameter using Eq. (16). At
γz ¼ γCz , the second derivative d2ωc=dQ2

z jQz¼0 vanishes,
which coincides with the condition

R00 ≡ ∂2Rðω�
c; 0Þ

∂Q2
z

¼ 0: ðB7Þ

From Eq. (B1) in the limit μ ≫ ωc, we derive the
presentation

R00 ¼ −
2tz
ωc

Z∞
0

dz
z
exp ð−z2Þ cos ð2aγsÞI1

�
2
tz
μ
z2
�
: ðB8Þ

In the limit tz ≪ μ, the second derivativeR00 changes sign at
aγ ¼ aCγ ≈ 0.9241. This means that γCz scales as

ffiffiffiffiffiffiffiffiffiffiffi
μ=ω�

c

p
.

From Eq. (B3), we evaluate fCR ¼ fRðaCγ ; 0Þ ≈ −1.8922
and ω�

c ¼ π2 expð2fCRÞT2
C=μ giving γCz ≈ 0.758μ=TC.

Substituting the evaluated parameters into Eq. (B6), we
find the critical Maki’s parameter αC ≈ 4.761 in the
limit tz ≪ μ.
At finite tz, we find the dependence aCγ ðtz=μÞ by

numerically solving equation R00 ¼ 0 using the presentation
in Eq. (B8), then compute the function fR½aCγ ðtz=μÞ; tz=μ�,
Eq. (B3), and, finally, evaluate the critical Maki’s parameter
from Eq. (B6). In Fig. 8, we plot the resulting dependence
of the critical Maki’s parameter αC on μ=tz. We can see that
αC has a sharp increase at the neck-interruption transition
tz ¼ μ=2 and monotonically decreases with μ=tz approach-
ing the value 1.8 for the isotropic case.

APPENDIX C: SUPPRESSION OF THE FFLO
STATE BY IMPURITY SCATTERING

In this Appendix, we investigate the influence of the
impurity scattering on the FFLO transition. The quantum
correction to the pairing kernel J qðH; T;QzÞ taking into
account impurity broadening Γ is derived in Appendix A
and it is given by Eq. (A8). Impurities lead to the
appearance of the “Dingle factors” expð−2πjΓ=ωcÞ, well
known in the theory of quantum oscillations [37]. We
consider here the case of relatively weak impurity

FIG. 8. The dependence of the critical Maki’s parameter αC on
μ=tz. Note that at negative μ this parameter approaches the known
value for the isotropic case αC ≈ 1.8 [14].
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z = z
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tz / = 0.2, / TC = 5
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The onset of FFLO

FIG. 7. The dependence HC2 on Qz for single-band layered
superconductor with different γz. The parameters that are used in
the plot are tz=μ ¼ 0.3. For γz < γCz , the maximumHC2 is always
at Qz ¼ 0. If γz > γCz , the maximum HC2 moves to finite Qz.
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scatteringΓ < ωc and neglect the scattering correction to the
quasiclassical kernel Eq. (13). This correction provides only
a small and smooth contribution, which do not influence the
location of the FFLO transition. In addition, it is not captured
correctly by the used lifetime approximation.
The impurity factors suppress the higher-order terms in

the sum for J qðH; T;QzÞ in the same way as the temper-
ature. At noticeable scattering, the main contribution is
given by the two low-order terms Eqs. (17a) and (17b),
where the first and second terms acquire the factors
expð−2πΓ=ωcÞ and expð−4πΓ=ωcÞ, respectively. One
can straightforwardly generalize the criterion for the
FFLO transition following from Eq. (19) to the case of
the finite scattering rate. Adding the factor expð−4πΓ=ωcÞ
to Eq. (18), we obtain the following equation for the FFLO
temperature in the case cos ð4πγzÞ < 0 and tz ≪ μ,

4π3=2j cos ð4πγzÞj exp
�
−
4πΓ
ωc

� 4π2TFFLO
ωc

sinhð4π2TFFLO
ωc

Þ

ffiffiffiffiffiffi
μ

ωc

r
¼ 1:

ðC1Þ

In particular, this equation gives the critical scattering
broadening Γcr completely eliminating the FFLO state

Γcr ¼
ωc

4π
ln
�
4π3=2j cos ð4πγzÞj

ffiffiffiffiffiffi
μ

ωc

r �

≈
πT2

C

4CEμ
ln

�
4

ffiffiffiffiffiffiffiffi
πCE

p j cos ð4πγzÞj
μ

TC

�
: ðC2Þ

One can see that a small numerical factor 1=4π in the ratio
Γcr=ωc is partially compensated by the large logarithm. In
the regime cos ð4πγzÞ > 0, the FFLO state is suppressed by
much smaller scattering broadening.
Figure 9 shows the evolution of the instability boundary

with increasing scattering broadening Γ for one of the
parameter sets used in Fig. 3, μ ¼ 10TC, tz ¼ 2TC, and
γz ¼ 0.3. One can see that the impurities scattering reduces
the FFLO transition temperature, and at Γ=TC ¼ 0.2, the
FFLO state is completely suppressed. This is consistent
with Eq. (C2) giving Γ ≈ 0.19TC ≈ 0.35ωc for μ ¼ 10TC
and γz ¼ 0.3. It is well known that impurity scattering
increases the upper critical field within the quasiclassical
approximation. We see that suppression of the quantum
term has the opposite effect: The pronounced low-temper-
ature upturn of the instability curve existing in the clean
case rapidly diminishes with increasing scattering. On the
other hand, we can observe that the absence of this upturn
does not exclude the FFLO instability. For example, for
Γ=TC ¼ 0.15, the FFLO state still exists, even though the
shape of the upper-critical-field curve does not suggest any
anomalies.
Figure 10 shows the dependences of the FFLO transition

temperature on the impurity broadening. The lines show

plots computed using Eq. (C1) for γz ¼ 0.3 and two values
of μ=TC, 10 and 20. We remind that this equation is valid in
the limit tz ≪ μ. The solid symbols show the transition
points obtained from the computed instability boundaries
shown in Fig. 9. One can see that the two calculations
give consistent results. A small deviation is caused by
correction from the finite value of tz ¼ 0.2μ. As expected,
the critical impurity broadening decreases with increasing
the ratio μ=TC.
We can conclude that the fragile quantum FFLO state is

destroyed by a quite small impurity broadening. This is the
most obvious reason why such a state is difficult to realize
in existing superconducting materials.

FIG. 10. The representative dependences of the FFLO-
instability temperature on the scattering broadening Γ. The solid
lines are obtained from Eq. (C1) valid in the limit tz ≪ μ. The
solid symbols are the transition points for plots in Fig. 9.

FIG. 9. Evolution of the upper critical field line with increasing
the impurity broadening Γ. The plots are vertically displaced for
clarity [the left-axis (right-axis) labels correspond to the upper
(lower) curve]. The used electronic parameters are shown in the
plot. Arrows mark the locations of the FFLO transitions. For
these parameters, at Γ ¼ 0.2TC the FFLO state is destroyed.
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