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Using molecular dynamics simulations and theoretical analysis of velocity-autocorrelation functions, we
study ion transport mechanisms in typical room-temperature ionic liquids. We show that ions may reside in
two states: free and bound with an interstate exchange. We investigate quantitatively the exchange process
and reveal new qualitative features of this process. To this end, we propose a dynamic criterion for free and
bound ions based on the ion trajectory density and demonstrate that this criterion is consistent with a static
one based on interionic distances. Analyzing the trajectories of individual cations and anions, we estimate
the time that ions spend in bound “clustered states” and when they move quasifreely. Using this method, we
evaluate the average portion of “free” ions as approximately 15%–25%, increasing with temperature in the
range of 300–600 K. The ion diffusion coefficients and conductivities as a function of the temperature
calculated from the velocity and electrical-current autocorrelation functions reproduce the reported
experimental data very well. The experimental data for the direct-current conductivity (constant ionic
current) is in good agreement with theoretical predictions of the Nernst-Einstein equation based on the
concentrations and diffusion coefficients of free ions obtained in our simulations. In analogy with electronic
semiconductors, we scrutinize an “ionic semiconductor” model for ionic liquids, with valence and
conduction “bands” for ions separated by an energy gap. The obtained band gap for the ionic liquid is
small, around 26 meV, allowing for easy interchange between the two dynamic states. Moreover, we
discuss the underscreening paradox in the context of the amount of free charge carriers, showing that the
obtained results do not yet approve its simplistic resolution.
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I. INTRODUCTION AND BACKGROUND

A. Ionic liquids: Dense, strongly correlated
room-temperature plasmas

The rediscovery of room-temperature ionic liquids
(RTILs) was a revolution in chemistry [1]. RTILs, sol-
vent-free electrolytes, are almost universal solvents for
synthesis and catalysis [1]. In the past, we could “count”
solvents, but for RTILs there are practically an unlimited
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number of them. Easily mixablewith each other, “cocktails”
of RTILs offer additional variety of “designer solvents”
[2,3]. As electrolytes, RTILs are interesting for electro-
catalysis [4–6]: They sustain higher applied voltages than
aqueous electrolytes, with their ions not taking part in
electrochemical reactions, which can speed up electrocata-
lytic reactions of the solutes. For the same reason, together
with nonvolatility and endurance of higher temperatures,
these electrolytes seem promising in various energy devices,
from supercapacitors to fuel cells and batteries [4–6]. For
theorists, RTILs are a unique state of matter: dense room-
temperature strongly Coulomb-correlated ionic plasmas.
Since ions in RTILs are packed at liquid density, one

expects excluded volume effects to be important. The
renowned manifestation of such effects is in the properties
of the electrical double layer (EDL) at electrodes: Instead
of the standard Gouy-Chapman U shape of capacitance-
voltage curves, “bell” and “double-hump-camel” shapes
appear [7,8]. The decreasing branches of capacitance
emerge due to a restriction on the increase of the local ionic
concentration in response to electrode charging: At large
electrode polarizations, the thickness of the EDL grows, and
the capacitance, which is roughly inversely proportional to
it, decreases [9]. At small polarizations, the EDL could first
compress if the effective distance to the “center of mass” of
the countercharge reduces; this behavior delivers a camel-
shaped capacitance. A source of such a compression may be
filling the natural voids in RTILs [8] or reorientation of
charge heads and neutral tails of ions [10]. Estimates,
however, show that the volume fraction of voids in RTILs
comprises just a few percent [11,12]. So, what else can stand
behind the countercharge compression? To understand this
effect, we need to explore in detail the ion association and
dynamics in RTILs.

B. Screening puzzle and ion-clustering concept

Onemay have expected that the high ion density in RTILs
would result in a short-range screening of an external electric
field. However, a few experiments recently seemed to show
the opposite [13]. Using surface force apparatus, the
Israelachvili groupmeasured forces between a chargedmica
surface and gold electrode separated by RTILs. A striking
result was reported: At large distances between the surfaces,
the force seemed to obey the law, valid for two overlapping
EDLs, but with an extraordinary long decay length, earlier
observed only for very dilute electrolytes. Consequently, a
conjecture [14] was raised that pure RTILs are effectively
dilute electrolytes, in which most of the ions are bound into
neutral clusters (ion pairs or larger aggregates) with only a
minute number of ions participating in screening.
Once adopting this picture, the rest is straightforward:

(i) Clusters of ions are majorly neutral and have internal
polarizability that provides dielectric screening to free ions;
(ii) as, hypothetically, only free ions contribute to the
formation of EDLs, if their number is small, extra-long

screening lengths would emerge. Initially, this conjecture
met resistance [15]. But later, Perkin and co-workers
obtained similar results, measuring the structural forces
between mica surfaces [16]. Gebbie et al. then published
aminireviewabout this phenomenon [17]. Perkin’s group put
these findings in a broader picture of nonmonotonic depend-
ence of the screening length on the electrolyte concentration
[18]. Indeed, in dilute ionic solutions, most ions are free and
contribute to screening; thus, the increase of ion concen-
tration makes the Debye length shorter, but with further
increase of concentration, more ions get bound into pairs and
larger clusters, and thus stop contributing to screening. Such
ion pairing or clustering concepts in electrolytes were
developed from old to modern times [19–21].
But is it true thatmost ions inRTILs are clustered?Various

estimates [20,22,23] suggested that the expected degree of
clustering is not enough to explain the observations by
Gebbie et al. [14] in such a simple way. However, before
looking for alternative explanations, it is necessary to identify
whether we can speak about two states of ions, what is the
exchange or balance between them, and how they contribute
to conductance of RTILs, as well as to the EDL formation.
The cluster concept in RTILs is actually not new. Hu and

Margulis [24] exploited the idea of long-living clusters of
ions for the interpretation of the so-called “red-edge effect”
(REE) in the fluorescence of the organic probe 2-amino-7-
nitrofluorene dissolved in 1-butyl-3-methylimidazolium
hexafluorophosphate (½Bmim�½PF6�). They focused on
establishing the relation between REE and dynamic hetero-
geneity in RTILs, which is crucial for the data interpretation
[25]. Analyzing the van Hove self-diffusion correlation
function [32], they found that most ions diffuse much
slower than expected from the Gaussian diffusion but some
diffuse faster. It was also found that there is a poor
correlation between the motions of the two kinds of ions,
whereas within each kind the correlations are strong.
Next, in some protic RTILs using electrospray ionization

mass spectrometry (ESI-MS), Kennedy and Drummond
[33] observed the formation of aggregates of ions, the size
of which depends on the nature of the cation and anion.
They proposed that RTILs with strong tendency for ion
clustering can be classified as “poor ionic liquids,” in
analogy with weak electrolytes. Generally, ESI-MS has
been the principal technique to corroborate the ion cluster
model, in which the bulk structure is depicted as a sea of
polydisperse aggregates [34,35].
Thus, there is strong experimental evidence in favor of the

existence of clustering inRTILs,which supports the two-state
model for such liquids, but there is no unified view on the
scale of this effect, which may vary from liquid to liquid [36].

C. Nature of compacity, and overscreening vs
underscreening

Independent of data interpretation, the work by Gebbie
et al. had an immediate effect. The interpretation of
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compacity, γ, defined initially as the ratio of the average
concentration of ions to their maximal local concentration,
was reconsidered and the mean-field theory of EDL was
modified [23,41]. Instead, it was considered as a ratio of the
number of free charge carriers to the total number of ions.
For given environmental conditions, the bulk value of γ can
be considered as a set parameter for each RTIL. However,
near the interface, across the EDL, the concentration of
charge carriers may vary. Indeed, in the inhomogeneous
electric field, the balance from the clustered state to the free
state of ions shifts in favor of the free state [23].
Recently, Gavish et al. [42] and Rotenberg et al. [43]

suggested alternative theoretical explanations of the under-
screening effect. Their argumentswere based, respectively, on
the phenomenological density-functional approach and the
mean-spherical approximation. At high electrolyte concen-
trations, these authors have demonstrated the emergence (at
the interface [42] and in the bulk [43]) of self-assembled
structures manifested in an extended oscillating internal
domain in the spatial ion-ion correlation functions and long
monotonous tail beyond the oscillation range. But the tail did
not come out as long as seen in the experiments. The
emergence of oscillations in charge-density correlation func-
tions was first predicted by Kirkwood [44] and has been
reestablished and further explored by other authors within
different models and theoretical techniques [45–47]. In a very
recent paper, Kjellander [48] has reported a detailed analysis
of the emergence of renormalized and oscillating mode
screening, discussing the “transient associations of each ion
with several ions of opposite charge.”He speculates about the
possibility of the emergenceof very longdecay lengths caused
by the effect of ion pairing. In another recent paper, Ciach [49]
presented a density-functional linear response theory for an

ionic liquid or concentrated ionic solution in a structureless
solvent near a charged wall, which shows the emergence of
decaying oscillatory profiles of the potential and charge-
density distributions, and the potentiality of an emergence of
long decay ranges, which has not been yet explored.
Here we wish to stress that the crossover between oscillat-

ing and monotonic patterns of ionic correlation functions can
be considered as a manifestation of the clustered and free-ion
assemblies (cf. similar ideas of Kjellander [48]). Indeed,
clusters imply oscillations of charge density in them and free
ions contribute to “tails.” Similarly, estimating the portion of
ions contained in the former and in the latter could give
independent evidence of the degree of clustering in RTILs.
The ion pairing and clustering plays an important role in

the conductivity of RTILs, which roughly obeys the Nernst-
Einstein relationship with the measured diffusion coeffi-
cient. The deviations from it lead to smaller conductivities
attributed to correlations and ion pairing [50]. This inter-
pretation has been debated, with some authors suggesting
that the concept of ion pairing and clustering in RTILs is
not required [51,52] but some supporting it [53]. There
have been investigations into the properties of ion pairs in
RTILs [54], but we are not aware of any reports estimating
the fraction of ions in a state that contribute to conductivity.
This is the gap we aim to bridge in the present study.

D. Key questions to answer

The key questions that we attempt to answer in this work
are as follows:

(i) Is the idealized picture of two states for ions
physically justified and does an unambiguous def-
inition of such states exist?

FIG. 1. Molecular dynamics simulation of bulk RTIL [Bmim][TFSI]. (a) Snapshot of MD simulation (red and blue colors indicate
cations and anions, respectively). Molecular structures of cation Bmimþ (b) and anion TFSI− (c). The numbers near atoms denote the
partial charges on each atom in the all-atom model of ions used for MD modeling (unit: elementary charge). The solid red circle with the
sign “þ” represents the cation center (i.e., the mass center of the ring), and the solid blue circle with the sign “−” indicates anion center
(i.e., the mass center of the whole anion).
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(ii) What is the fraction of “free” and “bound” ions, and
what is their role in electric conductance and
screening?

(iii) How can the interstate exchange kinetics be quanti-
fied, and what is the energy difference (“band gap”)
between the free and bound states?

In order to test the validity of the two-state concept, we
address these questions as well as a few accompanied ones
related to the mechanisms of ionic diffusion and conduct-
ance in RTILs. In so doing, we exploit MD simulations
which allow us to trace the trajectories of individual ions, as
well as to obtain the statistical characteristics of their
motions such as self-diffusion coefficients, conductivities,
and the like, and to investigate their temperature depend-
ence. As a typical example of a RTIL, 1-n-butyl-3-methyl-
imidazolium bis(trifluoromethanesulfonyl)imide ([Bmim]
[TFSI]) is chosen for study in the first place, but two other
RTILs are also considered for comparison to test the
universality of the conclusions. We use detailed molecular
models for these liquids (for [Bmim][TFSI], see Fig. 1),
which help make a direct comparison of the simulation
results with the experimental data. We perform MD simu-
lations of bulkRTILs at different temperatures and extract all
necessary information to quantify the ionic transport and
interstates exchange kinetics. Such study allows us to
evaluate the viability of the two-state concept. Using a set
of somewhat complementary methods, we not only validate
this concept but also reveal new qualitative features of the
two-state dynamics. Namely, we demonstrate (i) the non-
Poissonian nature of the interstate exchange process and
(ii) “dynamic decoupling” for the in-state molecular
motion—the statistical independence of time-correlation
functions in each state (more details are given below).
The results for RTIL [Bmim][TFSI] are presented in the
main text, and similar results for another twoRTILsare shown
in the Supplemental Material [108]. We also test the sensi-
tivity of results to the size of the system. The details of the
computational and analytical methods are presented in
Appendixes A–D.

II. RESULTS AND DISCUSSION

Generally, there may be two alternative definitions of the
free and bound states—a kinetic one and a static one. The
former definition refers to the ability of ions to participate in
electrical direct-current (dc) conductivity of RTILs. The latter
definition is associated with the equilibrium properties of the
liquid, such as the distance between the positive and negative
ions in a pair or cluster.

A. Kinetic criterion: Trajectory-density analysis

First, we analyze the motion of individual cations
and anions in the RTILs’ crowded environment, which
will provide important information on the structure and

dynamics of the liquid [55]. In Figs. 2(a) and 2(b),
respectively, the trajectory of the center of one cation and
anion,which is arbitrarily chosen, is displayed. It can be seen
that an ion moves for a while reentrantly in anticorrelated
fashion in a confined volume and then “speeds up,” under-
going correlated persistent motion outside that volume to
later get trapped in a new domain. This motion is seen from
denser trajectory clouds connected by sparse ones. The box-
counting method [56] is adopted to obtain the local
trajectory density (LTD). Specifically, we first focus on
one selected ion (cation or anion) and get all of its trajectory
points [Figs. 2(a) and 2(b)]. Then, we compute the LTD via
the box-counting method [Figs. 2(c) and 2(d)], dividing the
simulation cell into elementary cubicleswith a size of 0.3 nm
(in Appendix B, we provide a justification of this method
and show the negligible effect of the trajectory length on
LTD). To differentiate the ion states, we conventionally

FIG. 2. Two states of ion dynamics revealed by ion trajectories
based on MD simulations of [Bmim][TFSI]. Trajectories of
arbitrarily chosen cation (a) and anion (b) and the contour
map of trajectory density of the cation (c) and anion (d).
(e) The percentage of free ion (γ, given in percentage) as a
function of the temperature (lines are guides for the eye). (f) Plot
for the percentage of free ions based on Eq. (1) (lines represent
the linear fit). Gray, green, and red colors in (c),(d) represent
small, middle, and high densities.
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assume an ion to be in a “free state”when its LTD is smaller
than the average density of all trajectories, otherwise, it is
considered to be in a bound state.
The percentage of free ions γ is computed as a fraction of

time spent by each cation or anion in thus-defined free
state, which we then average separately over all cations and
all anions. As one can see from Fig. 2(e), the free-ion
percentage increases with the temperature. Moreover,
these values for cations and anions are very close to each
other, with minor differences only at T > 450 K [57].
Considering the portions of free cations and anions to be
roughly the same, these portions can be described by the
following equation (see Appendix C):

γ ¼ n
ntot=2

¼ 1

1þ 1
2
ζe

Eg
kBT

−ΔSex
kB

; ð1Þ

where n is the number density of free cations or anions
ðn ¼ nþ ≈ n−Þ, and ntot is the total number density of ions
including free ions and bound ions, Eg is the energy gap
between the free and bound states, ΔSex is the correspond-
ing change of the excess entropy, and kB and T are,
respectively, the Boltzmann constant and temperature.
Equation (1) with the constant ζ ¼ 1 has been derived in
Ref. [41] using some simplifying assumptions. Generally, ζ
depends on the properties of the ions and neutral clusters in
a RTIL; a more detailed explanation of the meaning of
Eq. (1) along with the derivation generalizing the approach
of Ref. [41] is given in Appendix C.
Now we rewrite Eq. (1) as ln ½ð1=γÞ − 1� ¼ fln ζ−

½ln 2þ ðΔSex=kBÞ�g þ ðEg=kBTÞ and plot the simulated
values of ln½ð1=γÞ − 1� vs ð1=TÞ. Since the (possible)
dependence on the temperature of ln ζ is logarithmically
weak, it may be treated with good accuracy as a constant for
the addressed temperature interval. Therefore, the gap
energy can be estimated from the slope of the dependence
ln ½ð1=γÞ − 1� vs ð1=TÞ, which is shown in Fig. 2(f), giving
Eg ¼ 2.5 kJmol−1 (0.026 eV) for cations and Eg ¼
2.6 kJmol−1 (0.027 eV) for anions; that is, these quantities
are equal within the accuracy of the measurements. To
estimate the entropy change ΔSex, one needs some addi-
tional assumptions (see more details in Appendix C).

B. Static criterion: Structural analysis of ion pairing

The above concepts of free and bound state ions rise
from the analysis of temporal trajectory by tracing each ion.
That approach does not specify how the ions are associated
with each other. We may try another approach based on the
conventional definition of ion pairing. Considering that in
RTILs neighboring cations and anions strongly attract each
other, the association among them could be described in
terms of ion pairing [54,58]. This concept has been clearly
justified in electrolytic solutions, but in dense ionic
systems, such as RTILs, it is hard to distinguish “who is

paired with whom” and whether pairs are not just parts of
bigger clusters. Nevertheless, let us define the cation and
anion as an ion pair when their ion centers are within a
certain distance from each other, taking such a distance to
be the sum of the radii of the oppositely charged ions.
Using the free-volume method [59], the free volume of the
anion and the effective free volume of the cation are
computed. We call the latter “effective” because we
represent the cation only by its ring with two associated
methyl groups that together contain most of the charge
distribution. Representing ions as spheres [59], their
effective radii can be found: 0.286 nm for the cation and
0.326 nm for the anion in line with the literature [60,61]. It
should not be surprising that the effective cation radius
appears smaller than the anion’s radius; as long as it is used
for the purpose of estimation of the distance of the closest
approach of the cation and anion in a pair, it makes
sense.
Each ion can form only one ion pair with a counterion,

the two behaving as a quasisolvent molecule if the cation-
anion distance is no more than 0.612 nm; ions that are not
involved in ion pairing are considered free. With this
approach, the percentage of free ions is computed. The
results show similar trends to those quantified via trajectory
analysis (see the Supplemental Material [108], Fig. S1).
In brief, the criteria based on trajectory density and ion

pairing analyses arrive at the same conclusions; i.e., the free
ions are the minority (within about 15%–25%) of all ions in
RTILs, their percentage increasing with the temperature.
We like to note that while we use the free-volume

method to find the ion radii, we cannot apply another
widely used method of hydrodynamic radius, since the
latter would depend on such effects as dielectric friction,
electrostriction, and electroviscosity [62,63], and the theory
that accounts for all these effects in RTILs is presently
lacking.

C. Ion kinetics in RTILs in terms of the two-state model

Considering the conclusions made in the previous two
subsections as well as evidence that ions may successively
reside in two states—free and bound—with rather different
kinetics, we need to adopt an appropriate method to
describe such systems. In the literature, they are called
“systems with chemical exchange” [64–66]. Prominent
examples are aqueous solutions of proteins where water
molecules or magnetic active ions can be in two dynamical
states—in a free state of the bulk of the solvent and in a
bound state adsorbed on a protein surface [67,68]. The
overall molecular kinetics in systems with interstate
exchange is determined by the molecular motion in the
free or bound state and the kinetics of the exchange process.
The former is characterized by time-correlation functions,
which describe the individual kinetics of a particle averaged
over an appropriate ensemble. The latter is characterized by
the so-called survival probability functions [53,69–71],
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cðtÞ ¼ hhð0ÞhðtÞi
hhð0Þhð0Þi ; ð2Þ

where hðtÞ is the population variable defined as unity if the
ion continuously remains in the same state during the time
duration t, and zero otherwise. Based on the trajectories
used for analyzing the free-ion percentage, the survival
probability functions are computed and compared with the
exponential and biexponential fittings in Fig. 3(a) and in
Fig. S2 of the Supplemental Material [108].
If it follows the Poissonian exchange process, the

survival probability function should be exponential [72],
that is, cðtÞ ¼ e−t=τ (here, τ is the mean residence time), as
shown by blue dashed lines in Fig. 3(a) and in Fig. S2 of the
Supplemental Material [108], respectively, for cations and
anions. The distinct deviation of MD-obtained cðtÞ from
the exponential relaxation indicates the presence of
memory effects in the exchange process [73]. Therefore,
the exchange processes between two states are not
Poissonian and memory effects seem to be important.
This is an interesting result, since in previous studies of
the exchange kinetics in other systems, such processes have
been assumed Poissonian, and moreover, their Poissonian
nature has not even been questioned [64–66]. Herein, we
analyze the kinetics of the system with non-Poissonian
exchange process, including memory effects described by
the memory function [74] (see Appendix D for details).
Specifically, the observed survival probability function
would be described by the biexponential function
cðtÞ ¼ ae−t=τf þ be−t=τs , where aþ b ¼ 1 and τf and τs
denote, respectively, the relaxation times for the fast and

slow parts of the process. Shown as green dotted lines in
Fig. 3(a) and in Fig. S2 of the Supplemental Material [108],
the biexponential functions are found to fit quite well the
survival probability functions calculated from MD simu-
lations. Note that the above biexponential dependence is
obtained by a direct fitting to the simulation data, which
alone cannot rationalize the exact nature of the processes
behind the two relaxation times.
Another important function describing the exchange

kinetics is gðtÞ ¼ −dcðtÞ=dt so that gðtÞdt gives the
probability for an ion to remain in an initial state (the
state at t ¼ 0) up to the time t and pass to another state
within the time interval dt. The mean residence time then
reads

τ ¼
Z∞

0

tgðtÞdt ¼
Z∞

0

cðtÞdt ¼ c̃ð0Þ; ð3Þ

where c̃ð0Þ ¼ c̃ðs ¼ 0Þ is the according Laplace transform
of cðtÞ (see Appendix D for details).
The mean residence times computed by Eq. (3) decrease

with increasing temperature and are close for cations and
anions [Fig. 3(b)]. The latter has important physical
consequences. It means that ions leave the bound states
in cation-anion pairs, and the remaining clusters stay
neutral. Those will not contribute to direct-current conduc-
tivity. Minor disparity in dissociation of clusters will not be
seen in conductivity, because if even charged, their number
will be very small, as well as they will diffuse much slower
than the individual free ions.

FIG. 3. The kinetics of exchange process for ions in [Bmim][TFSI]. (a) The survival probability functions of cations in free (top panel)
and bound (bottom panel) states. Red solid lines are obtained from MD trajectories by Eq. (2); blue dashed and green dotted lines
represent the exponential and biexponential fittings, respectively, and biexponential rather than exponential fitting describes cðtÞ
reasonably well. The exponential function is cðtÞ ¼ e−t=τ, where τ is the mean residence time; the biexponential function is
cðtÞ ¼ ae−t=τf þ be−t=τs , where aþ b ¼ 1 and τf and τs denote, respectively, the fast and slow relaxation times (see Table S1 in the
Supplemental Material [108] for details). (b) The mean residence time of cations and anions in free (top panel) and bound (bottom panel)
states calculated by Eq. (3).
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To quantify the kinetics of ions in the RTIL, we apply
now the general theory of time-correlation functions and
kinetic coefficients for the systems with interstate
exchange. First, we consider the velocity autocorrelation
function (VACF),

KvðtÞ ¼
hv⃗ð0Þ · v⃗ðtÞi
hv⃗ð0Þ · v⃗ð0Þi ; ð4Þ

where v⃗ð0Þ and v⃗ðtÞ are the ion velocities at the initial
instant and time t, respectively, and then the diffusion
coefficient is obtained as

D ¼ kBT
m

Z∞

0

KvðtÞdt; ð5Þ

where m is the mass of an ion. The averaging in Eq. (4) is
performed over an equilibrium ensemble. In equilibrium,
with the exchange between two states (free and bound),
dynamical balance is held.
As the average times spent by an ion in free and bound

states (i.e., the mean residence times) are τ1 and τ2,
respectively, the probabilities pi (i ¼ 1, 2) of belonging
to either the free (1) or bound (2) state are related to the
residence times as pi ¼ τi=ðτ1 þ τ2Þ. Hence, the free-ion
percentage reads

γ ¼ τ1
ðτ1 þ τ2Þ

; ð6Þ

which is a natural kinetic definition of γ. Moreover, using
MD-obtained data for τ1 and τ2 shown in Fig. 3(b), we can
evaluate γ via Eq. (6) and get values very close to those
computed by means of the trajectory-density method. The
overall comparisons between the trajectory-density method,
ion-pairing method, and the kinetic definition of γ can be
found in Fig. S1 of the Supplemental Material [108].
If the dynamics in both states does not depend on each

other (although the dynamics in either state may be
complicated and non-Markovian), the total VACF KvðtÞ
may be expressed in terms of partial VACFs for free and

bound states Kð1Þ
v ðtÞ and Kð2Þ

v ðtÞ and the functions cðtÞ and
gðtÞ. Simpler expressions may be derived, however, not for
the functions themselves but for their Laplace transforms

K̃v and K̃ðiÞ
v ðsÞ (see Appendix D for details):

K̃vðsÞ¼
ðG̃1þsC̃1Þðp1þp2g̃2ÞþðG̃2þsC̃2Þðp2þp1g̃1Þ

c̃1ðp1þp2g̃2Þþ c̃2ðp2þp1g̃1Þ
;

ð7Þ

where the relations between pi and τi are given above, c̃i ¼
c̃iðsÞ and g̃i ¼ g̃iðsÞ ¼ 1 − sc̃iðsÞ are, respectively, the
Laplace transforms of the functions ciðtÞ and giðtÞ, while
C̃i ¼ C̃iðsÞ and G̃i ¼ G̃iðsÞ are the Laplace transforms of

the products C̃iðsÞ ¼
R∞
0 ciðtÞe−stdt

R
t
0ðt − τÞKðiÞ

v ðτÞdτ and

G̃iðsÞ¼
R
∞
0 giðtÞe−stdt

R
t
0ðt−τÞKðiÞ

v ðτÞdτ. Based on Eqs. (5)
and (7), the diffusion coefficient can be expressed as

D ¼ kBT
m

½G̃1ð0Þ þ G̃2ð0Þ�
τ1 þ τ2

; ð8Þ

where G̃ið0Þ ¼
R
∞
0 ciðtÞdt

R
t
0 K

ðiÞ
v ðτÞdτ.

For the Poissonian process with the exponential survival
function ciðtÞ ¼ e−t=τi , where τi are the relaxation times for
ions in the free (i ¼ 1) and bound (i ¼ 2) states, the above
expressions reduce to formulas available in the literature
[75] (see Appendix D for details). For the observed
biexponential survival functions ciðtÞ ¼ aie−t=τf;iþ
bie−t=τs;i , where ai þ bi ¼ 1, and τf;i and τs;i denote,
respectively, the fast and slow relaxation times for the free
and bound states, the above functions read

c̃iðsÞ ¼ aiðsþ τ−1f;iÞ−1 þ biðsþ τ−1s;i Þ−1;
g̃iðsÞ ¼ aiτ−1f;iðsþ τ−1f;iÞ−1 þ biτ−1s;i ðsþ τ−1s;i Þ−1;

C̃iðsÞ ¼ ai
K̃ðiÞ

v ðsþ τ−1f;iÞ
ðsþ τ−1f;iÞ2

þ bi
K̃ðiÞ

v ðsþ τ−1s;i Þ
ðsþ τ−1s;i Þ2

;

G̃iðsÞ ¼ ai
K̃ðiÞ

v ðsþ τ−1f;iÞ
τf;iðsþ τ−1f;iÞ2

þ bi
K̃ðiÞ

v ðsþ τ−1s;i Þ
τs;iðsþ τ−1s;i Þ2

ð9Þ

with the respective mean residence times τi ¼ aiτf;i þ
biτs;i.

D. Velocity autocorrelation functions
and diffusion coefficients

To characterize the ion dynamics in the free and bound
states, the VACFs and diffusion coefficients are computed
for each state and compared with those based on the whole
trajectory analysis.
Indeed, the diffusion coefficients obtained from the

VACF as well as from the mean square displacement
(MSD) have statistical nature (as they explicitly contain
an ensemble average in their definitions) and are defined
only for an ensemble. The same is true for the exchange
process. The mean residence time τi quantifies the prob-
ability of ions to remain in one state. The trajectory points
for an ion in either state (free or bound) include fragments,
where an ion resides in a certain state during time t
significantly longer than the mean residence time, t ≫ τi
(see Fig. 3). The portion of such fragments decreases with t
growing. Hence, conceptually, there is no problem to
measure the diffusion coefficient and VACF for either state
just using such long intervals of trajectories, where an ion
resides in the same state as long as needed for the
measurements. To obtain good statistics, an averaging of
the results over many runs is a must.
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We illustrate this approach by a representative example
considering the cation or anion diffusion in the bound state
for T ¼ 300 K. The mean residence time for this state is
about 50 ps [see the bottom of Fig. 3(b)]. To obtain an
accurate diffusion coefficient, one needs to integrate
the VACF over about 100 ps [see Fig. S3(a) in the
Supplemental Material [108] ]. As it follows from the
survival probability which quantifies the fraction of ions
that do not change their state during the time interval t, the
fraction of fragments with length exceeding t ¼ 100 ps is
about 12% [Fig. 3(a)]. This is sufficient for accurate
calculations of the diffusion coefficient in the bound state.
For other cases, the corresponding fraction of ions may be
larger or smaller, but it is still large enough to perform
accurate calculations for both the VACFs and diffusion
coefficients.
In order to compute the diffusion coefficients in the free

or bound state, we first compute the VACFs separately for
ions staying all the time in the free and bound states. Each
ion trajectory contains shorter and longer fragments that
can be attributed to one of the two states [defined in the
survival probability function by Eq. (2)], some of which
may be as short as 8-ps intervals, whereas others are as long
as 120-ps intervals. The statistics of these states are
quantified by the survival probability function [Fig. 3(a)
and Fig. S2 in the Supplemental Material [108] ]. When we
average the VACFs over all such events, the short-living

ones may not contribute to the VACF values at longer
times. Roughly speaking, almost all ions in the free state at
t ¼ 0 contribute to the initial part of the VACF of free ions.
At longer time, fewer ions remain in the free state and
contribute to the VACF. In all our simulations of the VACF
for free or bound ions, however, we always have enough
free or bound ions to describe the asymptotic decay of the
VACF to zero.
The VACF profiles in Fig. 4(a) show damped oscillations

less pronounced as the temperature increases. But for
cations [Fig. 4(a), top panel], the VACFs exhibit an
intermediate negative asymptotic plateau, which may be
attributed to backscattering due to cation oscillations within
an ion “cage” built by other ions in the bound state. With
the temperature increasing, the backscattering is weaker,
probably due to easier escape of the cations from the cage.
Similar trends hold for the VACFs of the free and bound
ions, but the latter ion exhibits, as expected, more pro-
nounced oscillatory motions.
The diffusion coefficients of ions in different dynamic

states are given by Eq. (5). Using the method proposed in
Ref. [77], technically, the diffusion coefficient is first
calculated by integrating the VACF over the time as in
Eq. (5), and then the diffusion coefficients of ions in
different dynamic states are obtained by averaging the
“plateau” of the diffusion-time curves (see Fig. S3 in the
Supplemental Material [108]). The results are shown in

FIG. 4. Impact of the temperature on the ion kinetics in RTIL [Bmim][TFSI]. (a) VACFs of cations (top panel) and anions (bottom
panel) at indicated temperatures. (b) Diffusion coefficients of cations (top panel) and anions (bottom panel) as a function of the
temperature shown in Arrhenius coordinates. Red solid, green dotted, and blue dashed lines represent free ions, overall ions, and bound
ions, respectively. Magenta circles in (b) represent experimental data from Ref. [76].
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Fig. 4(b)—top panel for cations and bottom panel for
anions. We find that the overall diffusion coefficients of
ions calculated using the entire ion trajectories agree very
well with experimental data [76]; ions in the free state
diffuse much faster than in the bound state, and with
increasing temperature, such a deviation becomes more
distinct [Fig. 4(b)], which is compatible with a quasielastic
neutron-scattering study [78]. The values of the overall
diffusion coefficients calculated through the simulated
VACFs are very close as those we obtain based on MSD
[79] (shown in Fig. S4 of the Supplemental Material [108]);
similar to Ref. [77], we check that the size of the simulation
system that we use is large enough to have a negligible
effect on those values (see Fig. 8 and discussion in
Appendix A).
The significant enhancement of the diffusion of the free

ions as compared to the bound ions is accompanied by

the backscattering that is particularly pronounced at
lower temperatures as seen in their VACFs [Fig. 4(a)].
The enhanced free-ion diffusion may be attributed to
more salient motions of ions through virtual voids or
channels [80].
Diffusion coefficients as a function of the temperature

in Fig. 4(b) are fitted to Arrhenius equation D ¼
D0 expð−Ea=kBTÞ resulting in an activation energy Ea

of approximately 21 kJmol−1 (0.22 eV) for free ions, larger
than that for bound ions of approximately 18 kJmol−1
(0.18 eV) (see Table I). This difference can be understood
considering that individual ions in a clustered state oscillate
in a cage, and each elementary step of their motion requires
less reorganization of the environment, resulting in lower
activation energy as compared to the motion of free ions.
But the motions of ions in a clustered state are anticorre-
lated, indicating that the presence of confining potential
makes diffusion less effective: It makes the preexponential
factor much smaller, which wins over the minor decrease of
the activation energy.
To compare the simulation results with the theoretical

expression in Eq. (7), we adopt the frequency-dependent
VACF, i.e., its Fourier component [expressed through the
Laplace transform as K̂vðωÞ¼2ReK̃vðs¼ jωÞ, j ¼ ffiffiffiffiffiffi−1p

].
Calculations of K̂vðωÞ prescribed by Eq. (7) require

K̂ð1Þ
v ðωÞ and K̂ð2Þ

v ðωÞ obtained separately from the simu-

lations of Kð1Þ
v ðtÞ and Kð2Þ

v ðtÞ by collecting the trajectories
of the two states as well as one parameter of ion percentage
[i.e., p1 and p2 ¼ 1 − p1; see Fig. 2(e)] and three

TABLE I. Arrhenius equation fitting of diffusion coefficients
with different states.

Free state Overall state Bound state

Ion D0 Ea D0 Ea D0 Ea

Cation 4.57 20.79 1.07 19.77 0.43 18.00
Anion 5.27 22.29 1.07 20.54 0.47 18.67

Note: The term “overall” means that the diffusion coefficients are
calculated using entire ion trajectories, andD0 is a fitting constant
physically corresponding to the hypothetical diffusion coefficient
at infinitely high temperature. Unit of D0: 10−7 m2=s. Unit of
Ea: kJ=mol.

FIG. 5. Two-state theory of VACFs of cations in RTIL [Bmim][TFSI]. (a) Comparison of the Fourier transforms K̂vðωÞ of VACFs
obtained in MD simulations and that for the two-state model based on Eq. (7), where K̂vðωÞ ¼ 2ReK̃vðs ¼ jωÞ. (b) VACFs in the time
domain for cations as a linear combination of those of free and bound cations based on Eq. (10) as obtained for the same data as in (a).
The statistical coefficient of determination is 0.994, 0.979, and 0.971 for 300, 450, and 600 K, respectively.
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parameters for the free and bound states [i.e., ai, τf;i, and
τs;i, i ¼ 1, 2; see Fig. 3(b)] entering Eqs. (7) and (9) using
the trajectory analysis (see Appendix D for more details).
Shown in Fig. 5(a), the spectra of the function K̂vðωÞ based
on Eq. (7) are very close to the ones calculated directly
from MD simulations.
We now introduce the notion of correlation times

[74,75,84,85]. A correlation time of dynamical variable
quantifies the time interval during which self-correlations
of this variable die out. It is defined through the time
integral of its correlation function [see Eq. (D6)]. For

instance, the velocity-correlation time τðiÞv is related to the

diffusion coefficient as τðiÞv ¼ mDi=kBT ¼ R
∞
0 KðiÞ

v ðtÞdt
[see Eq. (5)]. From the physical meaning of the veloc-

ity-correlation time, it follows that for time t ≫ τðiÞv , the

velocity-correlation function is negligibly small, KðiÞ
v ðtÞ ≪

1. As it comes out from our simulations, the VACFs die
out faster than the transitions between the states take
place, and the analysis of MD simulation in this work

gives that τð1Þv ≪ τ1 and τð2Þv ≪ τ2.
Under these conditions, Eq. (7) significantly simplifies,

yielding (Appendix D)

KvðtÞ ¼ p1K
ð1Þ
v ðtÞ þ p2K

ð2Þ
v ðtÞ: ð10Þ

Equation (8) for the diffusion coefficient is simplified
according to D ¼ p1D1 þ p2D2. Hence, the VACFs or
diffusion coefficients of the ions in RTILs could be
expressed as a linear combination (with the corresponding
weights) of the VACFs or diffusion coefficients of each
state. Such an approximation is verified in Fig. 5(b) for the
VACFs of cations (similar results for anions are shown in
the Supplemental Material [108], Fig. S5).
The above analysis for VACFs supports the conjecture that

themolecular kinetics in RTILsmay be understood in terms of
a two-state model with interstate exchange.Moreover, one can
also conclude that the “dynamic decoupling” for the in-state

molecular motion is observed in the sense that the time-
correlation functions in the free and bound states are
statistically independent. Indeed, as it follows from Eq. (10),
the total time-correlation function may be expressed as a
weighted sum of two independent functions—one for the free
motion and another for the bound one.

E. Conductivity of RTILs

Similar to the diffusion coefficient in Eq. (5), the
conductivity of RTILs can be calculated from the time
integral of the electric current autocorrelation function
(ECACF); see Appendix E. The MD-obtained ECACFs
decay quickly, within a few picoseconds, to zero [Fig. 6(a)],
and the conductivity spectrum shows a higher peak shifting
toward low frequency as the temperature increases
[Fig. 6(b)]. More details for all studied temperatures are
presented in Fig. S6 of the Supplemental Material [108].
Integrating the ECACF over time (Fig. S7 in the

Supplemental Material [108]), one obtains the molar
electrical conductivity Λ, which may be compared with
the experimental data for [Bmim][TFSI] in Ref. [86]. Since
only free ions participate in dc electrical current (bound
ions in neutral clusters cannot carry a charge), one obtains
(see Appendix E for details)

Λ ¼ NA

kBT
ðpþq2þDþ þ p−q2−D−Þ þ Λcross; ð11Þ

where NA is Avogadro's number, pþ and p− are, respec-
tively, the fractions of cations and anions in the free state,
qþ and q− are their charges, Dþ and D− are their diffusion
coefficients, and Λcross quantifies cross-correlations in
the motion of different free ions. We argue that the
cross-correlation term is small and hence may be neglected
(Appendix E). As a result, we arrive at a modified Nernst-
Einstein equation based exclusively on the free ions:

ΛNE;modified ¼
NA

kBT
ðpþq2þDþ þ p−q2−D−Þ: ð12Þ

FIG. 6. The impact of the temperature on (a) the ECACF and (b) spectrum of frequency-dependent electrical conductivity. The data are
obtained from MD simulations of RTIL [Bmim][TFSI].
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In Fig. 7, we compare the experimental conductivity for
[Bmim][TFSI] from Ref. [86] with that computed from the
time integral of the ECACF and from the modified Nernst-
Einstein equation (12) based on free ions. Here we use the
values pi obtained in the trajectory analysis, as well as the
quantities found by the ion-pairing method. Figure 7
demonstrates excellent agreement (except for the last point
of 600 K, which is, actually, not a measured but theoretical
value from a model with parameters fit to experimental data
[86]) between the experimental data and results from the
modified Nernst-Einstein equation based on the free ions as
well as from ECACFs. Note that the conductivity obtained
from the time integration of the ECACF contains the cross-
correlation term Λcross[see Eqs. (11) and (E2) as well as the
discussion in Appendix E]. Therefore, Fig. 7 indicates that
good agreement between Eq. (12) and simulations can be
achieved, suggesting that the cross term is indeed small and
may be neglected with good accuracy. Finally, Fig. 7 also
illustrates the consistency between evaluating the free-ion
fraction through the trajectory-density and ion-pairing
analyses.
The conclusion that the Nernst-Einstein equation should

include only free ions could rationalize the findings of
several research groups that the straightforward application
of the Nernst-Einstein overestimates the RTIL conductivity
[50,58,87,88]. Indeed, the use of the diffusion coefficients
of the overall ions in Fig. 4(b), which account for all ion
states, yields the conductivity that significantly exceeds
the experimental value (black circles vs blue dots in
Fig. 7) [89].

F. Are the studied effects universal for other RTILs?

To test the universality of the above phenomena, we
performMDsimulations of another twoRTILswith adifferent
cationor anion (i.e., [Emim][TFSI] and ½Bmim�½PF6�). Similar
free-ion percentages by the trajectory-density and ion-pairing
methods as well as the kinetic definition by Eq. (6) are
observed for these two RTILs (Fig. S8 of the Supplemental
Material [108]). Moreover, the same conclusion on conduc-
tivity drawn from [Bmim][TFSI] holds as well; that is, MD-
computed conductivities by Eq. (12) for [Emim][TFSI] and
½Bmim�½PF6� are well in accord with the experimental data in
Refs. [76,91], respectively (Fig. S9 of the Supplemental
Material [108]).

III. CONCLUDING REMARKS

A. Mechanisms of ion transport in RTILs

There were different ideas about the mechanisms of ion
transport in RTILs. One of the scenarios was proposed by
Abbot [92,93] who assumed that in such a concentrated
ionic systems, only a hole mechanism of transport would
be feasible. The findings presented above cannot directly
prove or disprove that hypothesis, as looking at any
individual trajectory, we cannot tell how each elementary
step of ion transfer proceeds. Another related and often
discussed scenario is a “quasi-Grotthuss” relay mechanism
in which in each elementary act, an ion does not move far
but shifts slightly, kicking another one to continue the
motion and so on. Whereas this mechanism is not excluded
for ions inside the clusters, our free ions seem to be able to
move over considerable distances, as we can see it from
their individual trajectories.

B. “Ionic semiconductor” concept

As is typical in condensed matter physics, in complex
cases, people indulge in the language of “collective”
phenomena. It is thus tempting to treat RTILs as an “ionic
semiconductor” in which in the ground-state ions populate
the ionic “valence” (or “excitonic”) band, but they can be
excited into a “conductance” band [94]. The band-gap
energy that we obtain in the fits of Fig. 2(f) is, however,
rather small Eg ¼ 0.026 eV (i.e., approximately 1kBT at
room temperature).
An ionic semiconductor analogy for RTILs was raised in

Ref. [7] and in the context of discussion of the results of
Ref. [13]; our findings show that such a concept makes
sense as an approximation to a complex problem. A similar
idea was debated in the 1970s–1980s in an interpretation of
ion transport in superionic conductors—single-charge-
carrier solid electrolytes [95,96]. For instance, in Ag4RbI5
the conducting ions are silver cations, the rest of the ions
forming a solid lattice in which Agþ ions move. But the
latter are speculated to occupy two states: a ground
immobile state in the crystal unit cells and an excited
“conduction-band” state in which they move collectively.

FIG. 7. The molar electrical conductivity Λ of RTIL [Bmim]
[TFSI] as a function of temperature. Red squares show the values
calculated from the MD-simulated electric current autocorrelation
function [Fig. 6(a)].Blue dots are experimental data fromRef. [86].
Black circles display the values computed via original Nernst-
Einstein equation (see Ref. [50]) with the overall diffusion
coefficients of cations and anions [shown in Fig. 4(b)]. Purple
stars are based on Eq. (12) (modified Nernst-Einstein equation),
with the free-ion percentage evaluated by the trajectory-density
method, while the green diamonds are the results of application of
the ion-pairing method.
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The band gap between them determines the activation
energy of conductance that has a clear Arrhenius depend-
ence in a wide range of temperatures with small activation
energy of 0.069 eV [97]. Of course, RTILs are much more
complex systems than crystalline superionics: There is no
lattice in RTILs, both ions are capable of moving, but the
picture of long trajectories in the motion of free ions does
not contradict the ionic semiconductor concept. Although
we trace the path of an individual ion, its trajectory is a part
of a cooperative motion of all ions, reflecting collective ion
dynamics of the entire RTIL.
More experiments are needed to verify this concept.

Measurements of the Hall effect come to mind first.
However, the latter are difficult from an experimental point
of view [98,99], as well as they are not straightforward in
interpretation [100,101].

C. Free and bound ions and the structure of EDL

If the exchange between the conduction and valence
bands is much faster than the RC time of charging the
double layers, which is practically always the case, it would
be legitimate to speak about the average concentration of
mobile charge carriers that contribute to the EDL forma-
tion. But if even only 15% of ions are, on average, free and
give the major contribution to the EDL, it is already a
concentrated ionic system. The spatial structure of the EDL
if described in all its complexity will presumably contain
an oscillating (“overscreening”) part and the exponential
tail (“underscreening”) part; furthermore, bound ions will
contribute not only to the effective dielectric constant of
the system but also to the oscillating spatial potential and
charge distributions. A recent study of the temperature
dependence of the differential capacitance found the shape
of the capacitance curve changes as if ion pairs and clusters
were breaking up with increasing temperature [41]; this
agrees with the findings of the present work.

D. Underscreening paradox

So far, the observations of massive underscreening in
RTILs have been at least partially related with the ultralow
concentration of free ions. Such low concentrations, how-
ever, are not approved by the findings of this paper, which
reveal much larger concentrations compatible with the
experimentally observed conductivities. Hence, the under-
screening paradox remains unresolved and more work is
needed to rationalize this effect. However, independent
from the question of underscreening, our study provides
insight into the nature of ion dynamics and conductivity
in RTILs.
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APPENDIX A: MOLECULAR DYNAMICS
SIMULATIONS

As shown in Fig. 1, MD simulation of RTIL [Bmim]
[TFSI] is performed using a customized MD code
GROMACS [102]. The force fields of [Bmim][TFSI] are
adopted from Ref. [103] by Borodin, neglecting their
polarizability. It is worth mentioning that although these
force fields are developed accounting for ion polarization,
Borodin and co-workers [104] have also shown that the
nonpolarizable version of these force fields could repro-
duce the bulk properties of RTILs as good as the polar-
izable one. A three-dimensional periodic cubic simulation
system consisting of 300 ion pairs is simulated, with the
temperature maintained in the interval of 300–600 K (in
steps of 50 K) using the Nose-Hoover thermostat with a
relaxation time of 0.2 ps. The Parrinello-Rahman barostat is
taken to maintain a pressure of 1 bar with a relaxation time
of 2 ps in the isothermal-isobaric (N-P-T) ensemble. The
nonbonded interactions with repulsion and dispersion are
computed using the Buckingham potential. The electro-
static interactions are computed using the particle mesh
Ewald method. To compute the interactions in the recip-
rocal space, a fast-Fourier-transformation grid spacing of
0.12 nm and cubic interpolation for charge distribution are
used. A cutoff distance of 1.2 nm is used in the calculation
of electrostatic interactions in real space. The simulation
box is initially equilibrated for 10 ns in the N-P-T
ensemble followed by a canonical ensemble (N-V-T) for
a 10-ns production run for trajectory analysis. To ensure the
accuracy of the simulation results, each case is repeated
three times with different initial configurations.
Additional MD simulations containing, respectively,

150 and 600 ion pairs of RTIL [Bmim][TFSI] together
with those having 300 ion pairs throughout this study
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are performed to test whether the simulation box size
affects the results. As shown in Fig. 8 and Fig. S10 in
the Supplemental Material [108], it can be found that
the simulation box size has ignorable influence on the
results. Moreover, to evaluate the possible universality
of the conclusions obtained from the modeling of
RTIL [Bmim][TFSI], another two RTILs ([Emim][TFSI]
and ½Bmim�½PF6�) are investigated with the same MD-
simulation setup where [Emim][TFSI] has the same force

fields as [Bmim][TFSI] fromRef. [103], but for ½Bmim�½PF6�
different force fields are adopted from Ref. [53].

APPENDIX B: THE BOX-COUNTING METHOD

The LTD is defined by the number of trajectory points of
an ion (cation or anion) in the cubicle (a unit element of a
space grid) divided by its volume. In this respect, two
questions can arise: (i) What is the optimal size of the
cubicle lcub? (ii) Does the trajectory density depend on the
trajectory length?
From the visual analysis of the ions’ trajectories

[Figs. 2(a) and 2(b) in the main text], we see that the
tumbling motion alternates with the motion resembling
longer flights. With the box-counting method, we wish to
discriminate these two kinds of motions, that is, to locate
the areas of tumbling and the areas of flights. To locate the
tumbling areas, one should take lcub being roughly the same
size as the tumbling area—this will yield a high density of
trajectory points there. To distinguish the tumbling areas
from the flight areas, lcub should be smaller than the
characteristic length of the flight Lflight: Figure 9 shows
the size distribution of different clusters of the ion trajectory
cloud [Figs. 2(a) and 2(b)] in the bound state. One can see
that the size of the area associated with the tumbling
motions (the “cloud size”) for the most trajectories is
centered at around 0.3 nm. Therefore, we adopt 0.3 nm
as the optimal cubicle size for the box-counting method.
Should, generally, (and if “yes”—when) the LTD depend

on the trajectory length? To answer this question, we use
the two-state model discussed in the main text, focusing on
the LTD of tumbling motion that corresponds to the bound
ions. Let Δt be the time interval between successive
points of a trajectory, and then τ2=Δt is the number of
trajectory points corresponding to the average residence
time τ2 of an ion in the bound state (see the main text
for the definitions). The average LTD of the tumbling
motion is, if we do not take into account reentrant

trajectories, estimated as ρð0Þtum ¼ ðτ2=ΔtÞ=δVbound, where
δVbound ¼ ð4π=3ÞðD2τ2Þ3=2 is the average volume of the
trajectory cloud associated with a bound ion, D2 is the
diffusion coefficient, and the quantity of dimensionality of

FIG. 8. The influence of MD simulation box size on (a) the
free-ion percentage, (b) diffusion coefficient of ions in the free
state, (c) diffusion coefficient of ions in the overall state,
(d) diffusion coefficient of ions in the bound state, and (e) RTIL
conductivity.

FIG. 9. For small enough cubicles, the distribution of sizes of the tumbling areas as obtained in the box-counting method weakly
depends on the cubicle size lcub∶ (a) 0.2 nm, (b) 0.3 nm, and (c) 0.4 nm.
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length
ffiffiffiffiffiffiffiffiffiffi
D2τ2

p
estimates the average size of such a cloud.

However, if the diffusive trajectory returns and gets back to
a point inside the volume δVbound, the LTD will be larger:
It will double by one return, triple for two returns, etc.
Let PkðtÞ denote the probability of exactly k returns to this
volume if the length of the trajectory is t (for the simplicity of
notations, we use the continuum time here). Then we obtain
for the total LTD of the tumbling motion

ρtum ¼ ρð0ÞtumP0ðtÞ þ ρð0ÞtumP1ðtÞ þ 2ρð0ÞtumP2ðtÞ þ…

¼ ρð0Þtum

�
P0ðtÞ þ

Xkmax

k¼1

kPkðtÞ
�
; ðB1Þ

where kmax is the number ofmaximal possible returns during
the time t. We analyze the case of long enough trajectories
when kmax ≫ 1. In this case, it is reasonable to consider a
simplified average model of an ion motion comprised of a
series of alternating tumbling and free states, with the
duration of all tumbling states τ2 and of all free states τ1.
The term “return” still needs some quantification.

Suppose an ion starts a tumbling motion near the origin
within the volume δVbound. If after a sequence of meander-
ing between the tumbling and free states, its trajectory ends
somewhere inside the above volume δVbound, we call this
event a return. If this return happens just after the first free
state, which follows the initial tumbling state, we call this a
“first return.” According to our simplified model, the first
return happens after the time equal to τ ¼ τ1 þ τ2. Then the
minimal time for the second return will be 2τ and for the kth
return kτ. Hence, the estimate of the maximal number of
returns reads kmax ¼ t=τ (of course, the integer part of the
quantity is implied).
Let us introduce FðtÞ as the probability of the first return

to the origin at time t (see Ref. [105]). Accounting for that
function, one can generally write nonlinear integral rela-
tionships between the P0ðtÞ and PkðtÞ functions:

P1ðtÞ ¼
Zt

0

P0ðt − t1ÞFðt1Þdt1 ðB2Þ

and

PkðtÞ¼
Zt

0

P0ðt− t1Þdtk…
Zt2
0

P0ðt2− t1ÞFðt1Þdt1: ðB3Þ

First, we define the Laplace transform, with the Laplace
transform parameter s having dimensionality of inverse
time as Eq. (B4)

Φ̃ðsÞ ¼
Z∞

0

ΦðtÞe−stdt: ðB4Þ

Since P1ðtÞ and PkðtÞ are convolution integrals, the
Laplace transforms of these functions are related alge-
braically: P̃1ðsÞ ¼ P̃0ðsÞF̃ðsÞ and P̃kðsÞ ¼ P̃0ðsÞ½F̃ðsÞ�k.
Hence, the Laplace transform of the LTD in Eq. (B1) reads

ρ̃tumðsÞ ¼ ρð0ÞtumP̃0ðsÞ
�
1þ

Xkmax

k¼1

k½F̃ðsÞ�k
�

¼ ρð0ÞtumP̃0ðsÞ
�
1þ F̃ðsÞ

½1 − F̃ðsÞ�2
�
; ðB5Þ

where we assume that kmax is large enough so that one
can neglect the term with the factor ½F̃ðsÞ�kmax [note that
F̃ðsÞ < 1; see Ref. [105] ].
To understand the behavior of ρtumðtÞ at t → ∞, we need

to explore the behavior of ρ̃tumðsÞ for s → 0. Following
Ref. [105] but restoring the dimensional format of the
expression for FðtÞ, we get F̃ðsÞ ¼ R − ð1 − RÞ2τ1=20 s1=2=
ð4πÞ. Here the constant R is the probability of returning to
the origin in infinite time, and the constant τ0 has the
dimensionality of time. This characteristic time is related to
the diffusion process; for the lattice model with discrete
time, it corresponds to the time between the elementary acts
of ion transfer [106].
In 1D and 2D, the probability of a diffusion trajectory

to return to the starting point in infinite time is 1 (i.e.,
R ¼ 1), which is also called as the “return theorem”
[105]. In contrast, for 3D diffusion this probability is less
than 1 (i.e., R < 1) [105]. A specific value of R depends
on the lattice type for diffusion on a lattice or specific
features of the off-lattice diffusion, but generally, R is
around 0.5.
Using now P̃0ðsÞ ¼ ð1 − RÞ=sþ ð1 − RÞ2τ1=20 =ð4πs1=2Þ

following from the relation P0ðtÞ ¼ 1 − R
t
0 FðtÞdt, we

obtain from Eq. (B5) the small-s asymptotic expansion
of ρ̃tumðsÞ:

ρ̃tumðsÞ ¼ ρð0Þtum

��
1þ R2

1−R

�
1

s
þRðR− 2Þ

4π

�
τ0
s

�
1=2

þ…

�
:

ðB6Þ

The inverse Laplace transform of Eq. (B6) yields the large
time behavior of the LTD:

ρtumðtÞ¼ ρð0Þtum

��
1þ R2

1−R

�
−Rð2−RÞ

4π3=2

�
τ0
t

�
1=2

�
: ðB7Þ

For the case of no reentrant trajectories (i.e., when R ¼ 0),

Eq. (B7) gives an obvious result: ρtumðtÞ ¼ ρð0Þtum. In order to
measure the actual value of R for the studied system,
one needs to collect statistics for the reentrant trajectories.
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But for a conservative estimate of the effect of the trajectory
length on the LTD, we can just rewrite Eq. (B7) as

ρtum ¼ ρð0Þtum

�
1þ R2

1 − R

��
1 − fðRÞ

�
τ0
t

�
1=2

�
; ðB8Þ

where the factor

fðRÞ ¼ Rð2 − RÞ
4π3=2

=

�
1þ R2

1 − R

�
ðB9Þ

quantifies the relative impact of the trajectory length t on
the LTD.
The maximal impact would be, of course, when fðRÞ

attains its maximum. The rhs of Eq. (B9) reaches maximum
at R ¼ 0.441, with fð0.441Þ ¼ 0.023. For this case,
Eq. (B8) reads

ρtum ¼ ρð0Þtum1.348

�
1 − 0.023ffiffiffiffiffiffiffiffi

t=τ0
p

�
: ðB10Þ

Equation (B10) gives a conservative estimate of the
largest possible effect of simulation time t on the LTD.
Equations (B8) and (B10) quantify the “trajectory

length” as t=τ0. But what could be the value of τ0 for
our off-lattice model, if for the lattice model it equals the
time between the successive elementary acts of ion trans-
fer? We believe that the most conservative estimate would
be τ0 ¼ τ ¼ τ1 þ τ2, which is the largest characteristic
timescale related to the diffusive motion in our system.
Equation (B10) suggests that for sufficiently long tra-

jectories, when t=τ ≫ 1, the impact of the trajectory length
on the LTD is negligible. In our MD simulation, the
trajectory length is 10 ns, whereas τ is computed to be
always smaller (or significantly smaller) than 100 ps
[see Fig. 3(b)], and we indeed see the independence of

the LTD on the trajectory length. The direct evidence is as
follows.
Since LTD has a statistical nature, the only meaningful

way to check such a dependence is to analyze some average
characteristics of the LTD. For instance, it may be the
relative fraction of domains with a high trajectory density
(e.g., larger than the average density) or the relative fraction
of domains with a small trajectory density (e.g., smaller
than the average density). The latter quantity is nothing but
the percentage of free ions γ. Hence, we can now check the
effect of the trajectory length on γ.
Simulations are done for three different temperatures for

the system of 300 ion pairs with the trajectory length up to
100 ns. The free-ion percentage γ is computed at different
trajectory lengths (Fig. 10), showing that γ varies little with
the trajectory length and thus demonstrating the independ-
ence of the LTD on the trajectory length.

APPENDIX C: EQUILIBRIUM FRACTION
OF FREE IONS

We adopt the standard free-energy functional [84] for a
field-free system, with the density of positive nþðr⃗Þ,
negative n−ðr⃗Þ ions, and neutral clusters n0ðr⃗Þ supple-
mented by the conditions of local electroneutrality nþðr⃗Þ ¼
n−ðr⃗Þ and space-uniform packing fraction ηðr⃗Þ ¼ η0,

nþvþ þ n−v− þ n0v0 ¼ η0; ðC1Þ

where nþ þ n− is the number density of free ions (cations
and anions), and vþ, v−, and v0 are, respectively, the
molecular volume of a cation and anion, and a volume of an
average neutral cluster. With these two constraints, the free
energy of the system Fðnþ; n−; n0Þ reads

βF¼
Z

dr⃗nþ½lnðΓ3þZþnþÞ−1�þ
Z

dr⃗n−½lnðΓ3−Z−n−Þ−1�

þ
Z

dr⃗n0½lnðΓ3
0Z0n0Þ−1�þβ

Z
dr⃗fexðnþ;n−;n0Þ

þλ1

Z
dr⃗ðnþ−n−Þþλ2

Z
dr⃗ðnþvþþn−vþ

þn0v0−η0Þ; ðC2Þ

where β ¼ ðkBTÞ−1, fexðnþ; n−; n0Þ is the nonideal (excess)
part of the free energy, λ1 and λ2 are the Lagrange multi-
pliers, Γþ, Γ−, and Γ0 are, respectively, the thermal Broglie
wavelengths of the positive ions, negative ions, and neutral
aggregates treated as single composite particles, andZþ,Z−,
and Z0 are the according internal partition functions asso-
ciated with these particles, which are comprised of many
different atoms (see, e.g., Fig. 1).
The minimization of Eq. (C2) with respect to the

concentrations nþðr⃗Þ, n−ðr⃗Þ, and n0ðr⃗Þ, which may be
written as δFðnþ; n−; n0Þ=δnþ ¼ δFðnþ; n−; n0Þ=δn− ¼
δFðnþ; n−; n0Þ=δn0 ¼ 0, yields

FIG. 10. Free-ion percentage γ of (a) cations and (b) anions in
[Bmim][TFSI] at 300, 450, and 600 K for different trajectory
lengths. Dots for each temperature represent the average values
for different running times of the MD simulation. The lines are a
guide to the eye. One can clearly see a lack of dependence of γ on
the trajectory length for t ≥ 2 ns (very tiny deviations from a
constant γ have a statistical nature).
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lnðΓ3þZþnþÞ þ βμþ þ λ1 þ λ2vþ ¼ 0;

lnðΓ3−Z−n−Þ þ βμ− − λ1 þ λ2v− ¼ 0;

lnðΓ3
0Z0n0Þ þ βμ0 þ λ2v0 ¼ 0; ðC3Þ

where μα ¼ ∂fex=∂nα is the excess part of the chemical
potential and α ¼ þ, 0, −. Solving the above Eq. (C3)
together with the above two constraints, we obtain

nþ ¼ 1

ζ
nθ0e

−ðμf−θμ0Þ=kBT; ðC4Þ

where ζ¼½ðΓ3þZþΓ3−Z−Þ1=2=ðΓ3
0Z0Þθ�, θ¼ðvþþv−Þ=2v0,

and μf ¼ ðμþ þ μ−Þ=2. From Eq. (C4) follows the fraction
of the free ions

γ ¼ nþ þ n−
nþ þ n− þ n0

¼
�
1þ 1

2
ζn1−θ0 eðμf−θμ0Þ=kBT

�−1
: ðC5Þ

Now we apply the general thermodynamic relation for the
chemical potential (actually, to its excess part),

μ ¼ u − Tsþ vδp; ðC6Þ
where u and s are, respectively, the excess part of the
internal energy and entropy per particle, v is the system
volume per particle, and δp is the nonideal part of pressure.
If for a moment we use an extreme simplification of a
“lattice model,” in which a site can be occupied by a cation,
anion, or a cluster, then vþ ¼ v− ¼ v0. In this case, θ ¼ 1
and we obtain a simpler relation, as obtained in Ref. [41]

γ ¼ 1

1þ 1
2
ζeðEg−TΔSexÞ=kBT ; ðC7Þ

with Eg ¼ 1
2
½ðuþ − u0Þ þ ðu− − u0Þ� being the energy gap

between the free and bound states, that is, the change of the
internal energy per emerging free ion. ΔSex¼ 1

2
½ðsþ−s0Þþ

ðs−−s0Þ� is the according change of entropy.
To compute the partition functions Zα with α ¼ �, 0,

that are needed to obtain ζ, one has to exploit some models,
which is an interesting problem by itself but is beyond the
scope of the present study. In the lattice model of Ref. [41],
ζ was taken to be 1 (i.e., ζ ¼ 1).
Equation (C7) may be written in the form

ln ½ð1=γÞ − 1� ¼ fln ζ − ½ln 2 þ ðΔSex=kBÞ�g þ ðEg=kBTÞ
used in the main text, which allows us to find Eg from the
slope of the dependence of ln ½ð1=γÞ − 1� on ð1=TÞ. Using
ζ ¼ 1, as in the lattice model of Ref. [41], one can find
ΔSex from the intercept of the above dependence. ΔSex
occurs to be slightly negative for this model for both cations
and anions. This result seemingly indicates the deficiency
of the lattice model to quantify the entropy change between
the free and bound states, which is not surprising and
related to the difficulty of lattice theories to describe the
entropy of liquids [85].

For the general case of arbitrary volumes of the ions and
clusters, Eq. (C5) may be recast into the form

ln

�
1

γ
− 1

�
¼

�
ln ζ þ ð1 − θÞ ln n0 −

�
ln 2þ ΔSex

kB

��

þ Eg

kBT
; ðC8Þ

where ΔSex ¼ 1
2
½ðsþ − θs0Þ þ ðs− − θs0Þ� and Eg ¼

1
2
½ðuþ − θu0Þ þ ðu− − θu0Þ�. Because of the logarithmi-

cally weak dependence of the quantity in the square
brackets of the right-hand side of Eq. (C8) on temperature,
one can treat this as a constant and find the value of Eg from
the slope of the dependence of ln½ð1=γÞ − 1� vs ð1=TÞ.
Moreover, without loss of generality, one can choose
u0 ¼ 0 that is to consider the excess internal energy of
neutral clusters as zero. Then, Eg ¼ 1

2
ðuþ þ u−Þ − u0 is

again the energy gap between the free and bound states of
the ions. Therefore, the lattice model from Ref. [41]
with θ ¼ 1 yields the same result for the energy gap
between the free and bound states as a more general model.

APPENDIX D: TIME-CORRELATION
FUNCTIONS FOR TWO-STATE SYSTEM

WITH EXCHANGE

The general theory of time-correlation functions for
multistate systems with exchange has been developed
in Ref. [75]. Here we briefly outline the derivation for a
case of an exchange process, which is not necessarily
Poissonian, with the according adaptation of the theory to
the two-state RTILs.
Consider a system where ions can successively belong to

two states with different kinetic behaviors. In equilibrium
systems, a dynamical balance between these two states is
held. The exchange kinetic is quantified by the survival
probability function cðtÞ¼ ½hhð0ÞhðtÞi=hhð0Þhð0Þi�, where
hðtÞ is the indicator of the presence of a particle in the same
state without interstate transition (see the main text). cðtÞ
quantifies the probability of remaining at time t in the
same state (without leaving it) as at initial time t ¼ 0. We
also introduce the related function gðtÞ ¼ −dcðtÞ=dt;
the quantity gðtÞdt gives the probability of a particle to
remain up to time t in the same state as in time t ¼ 0
and then leave this state during a (small) time interval
(t, tþ dt). For a Poissonian process, cðtÞ ¼ e−t=τ, where τ
is the mean residence time in the state; in this case,
dc=dt ¼ −cðtÞ=τ. If cðtÞ is not exponential, the process
is not Poissonian, and the memory effect may be described
by the memory function. Specifically, an approach to
describe the memory effect in two-state kinetics is related
to the Fokker-Planck equation with a fractional time
derivative [73]. It predicts a stretched exponent for the
function cðtÞ, i.e., cðtÞ ¼ e−tα , where α is the exponent of
the fractional derivative [73]. We wish to stress, however,
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that our results for cðtÞ may be much better fitted by the
double exponent rather than by a stretched exponent;
moreover, the numerical solution of the Fokker-Planck
equation with a fractional derivative does not demonstrate a
stretched exponent [107].
In what follows, we derive time-correlation functions for

a system with the interstate exchange for non-Poissonian
processes. Consider a dynamic variable AðtÞ which is a
unitary quantity, i.e., AAþ ¼ 1, where Aþ is the Hermitian
conjugate of A. An example of such a quantity may be

AðtÞ ¼ eik⃗·r⃗ðtÞ, where k⃗ is the wave vector and r⃗ðtÞ is a
particle radius vector. Let ΦðtÞ ¼ hAþð0ÞAðtÞi be the total
time-correlation function for that quantity, while ΦijðtÞ is
the partial correlation function associated with the ions
located at state i at time t ¼ 0 and occupying state j at later
time t. Then one can write

ΦðtÞ ¼ p1½Φ11ðtÞ þΦ12ðtÞ� þ p2½Φ21ðtÞ þΦ22ðtÞ�: ðD1Þ
To computeΦijðtÞ, we use the survival probability function
and its derivative and additionally assume that the dynam-
ics in the successive states is independent. At the same
time, the dynamics in either state may be non-Markovian,
as well as the transition process itself may also possess
memory.

Introduce now function ΦðnÞ
11 ðtÞ, which is similar to

Φ11ðtÞ but with the additional condition that an ion was
in state 1 at t ¼ 0 and having underwent after that n ¼ 2k
successive interstate transitions, returns at time tn < t back
to the same state

ΦðnÞ
11 ðtÞ ¼

Zt

0

c1ðt− tnÞdtn
Ztn
0

g2ðtn− tn−1Þdtn−1;…;

×
Zt2
0

g1ðt1Þdt1hAþð0ÞAðt1ÞAþðt1ÞAðt2ÞAþðt2Þ;…;

×AþðtnÞAðtÞi; ðD2Þ

where in the second line of Eq. (D2) we write hAþð0ÞAðtÞi
using the property AþA ¼ 1. We also average over all
possible transition instants at t1; t2;…; tn with the proba-
bility of changing the state g1ðt1Þ; ...; g2ðtn − tn−1Þ and
remain in the final state c1ðt − tnÞ. Since the dynamics in
the successive states is independent, we can perform an
independent average for all states and then write

hAþð0ÞAðt1ÞAþðt1ÞAðt2ÞAþðt2Þ;…; AþðtnÞAðtÞi
¼ hAþð0ÞAðt1ÞihAþðt1ÞAðt2Þi;…; hAþðtnÞAðtÞi
¼ ϕ1ðt1Þϕ2ðt2 − t1Þ;…;ϕ1ðt − tnÞ; ðD3Þ

with ϕ1ðtÞ and ϕ2ðtÞ being the partial time-correlation
functions for the first and second states, that is, ϕiðtÞ ¼
hAþð0ÞAðtÞi describes the time correlation function for a
molecule that resides in the state i ði ¼ 1; 2Þ during the
time interval ½0; t�. One can notice that the right-hand
side of Eq. (D2) is a convolution of the function
Φ00

1ðtÞ ¼ ϕ1ðtÞc1ðtÞ and functions Φ0
1ðtÞ ¼ ϕ1ðtÞg1ðtÞ and

Φ0
2ðtÞ ¼ ϕ2ðtÞg2ðtÞ.
Now we find the Laplace transform [as defined in

Eq. (B4)] of the correlation function. With the properties
of the Laplace transform, Eqs. (D2) and (D3) yield

Φ̃ðnÞ
11 ðsÞ ¼ Φ̃00

1ðsÞ½Φ̃0
1ðsÞΦ̃00

2ðsÞ�n=2: ðD4Þ
Summing over all n ¼ 2k, from k ¼ 0 to k ¼ ∞, we

obtain Φ̃11ðsÞ ¼ Φ̃00
1ðsÞ½1 − Φ̃0

1ðsÞΦ̃0
2ðsÞ�−1 and, similarly,

Φ̃12ðsÞ ¼ Φ̃00
2ðsÞΦ̃0

1ðsÞ½1 − Φ̃0
1ðsÞΦ̃0

2ðsÞ�−1. The functions
Φ̃22ðsÞ and Φ̃21ðsÞ may be obtained from the above ones
using the interchange of the indexes, 1 ↔ 2. Hence,
Eq. (D1) finally yields

Φ̃ðsÞ ¼ ðp1Φ̃00
1 þ p2Φ̃00

2Þ þ ðp1Φ̃00
2Φ̃0

1 þ p2Φ̃00
1Φ̃0

2Þ
1 − Φ̃0

1Φ̃0
2

: ðD5Þ

When the exchange process is Poissonian with c1ðtÞ ¼
e−t=τ1 and c2ðtÞ ¼ e−t=τ2 , Eq. (D5) can be reduced to the
previously known result [75],

Φ̃ðsÞ ¼ p1ϕ̃1ðsþ τ−11 Þ þ p2ϕ̃2ðsþ τ−12 Þ þ 2p1p2τ
−1
ex ϕ̃1ðsþ τ−11 Þϕ̃2ðsþ τ−12 Þ

1 − p1p2τ
−2
ex ϕ̃1ðsþ τ−11 Þϕ̃2ðsþ τ−12 Þ ;

where τ−1ex ¼ τ−11 þ τ−12 .
A correlation time of a dynamical variable is defined

through the time integral of its correlation function:

τð1ÞA ¼
Z∞

0

ϕ1ðtÞdt ¼ ϕ̃1ðs ¼ 0Þ: ðD6Þ

This quantity characterizes the time when correlations
between the initial value of the variable A and its value

at time t become negligible, that is, ϕ1ðtÞ ≈ 0 if t ≫ τð1ÞA .
For the Laplace transform, one can use the estimate

ϕ̃1ðsÞ ∼ τð1ÞA . The mean residence time τi ¼
R∞
0 ciðtÞdt that

describes the characteristic time of the variation of the
survival probability function may be also used to estimate
gi, that is, gi ¼ −dci=dt ∼ ci=τi.

Consider the case of slow exchange, τðiÞA ≪ τi. In this case,

while the correlation functionϕiðtÞ decays to zero for t > τðiÞA ,
the function ciðtÞ does not noticeably change, justifying the
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approximations Φ̃00
i ðsÞ¼

R∞
0 ϕiðtÞciðtÞe−stdt≈

R∞
0 ϕiðtÞ×

e−stdt¼ ϕ̃iðsÞ and Φ̃0
iðsÞ ¼

R∞
0 ϕiðtÞgiðtÞe−stdt∼R

∞
0 ϕiðtÞðci=τiÞe−stdt ∼ ϕ̃iðsÞ=τi ∼ τðiÞA =τi ≪ 1.
Substituting these approximations into Eq. (D5), we obtain for
the case of slow exchange,

Φ̃ðsÞ ¼ p1ϕ̃1ðsÞ þ p2ϕ̃2ðsÞ;
ΦðtÞ ¼ p1ϕ1ðtÞ þ p2ϕ2ðtÞ: ðD7Þ

To utilize the above theory for the VACF, we use the
relations between the VACF KvðtÞ as introduced in
the main text, with the self-part of the intermediate
scattering function [74,84]. It is defined as Fsðk⃗; tÞ ¼
hAþð0ÞAðtÞi, with AðtÞ ¼ eik⃗·r⃗ðtÞ, where r⃗ðtÞ is a particle
radius vector and k⃗ is the wave vector [74,84]. Namely,

Fsðk⃗; tÞ ¼ 1 − 1

3
k⃗2

Zt

0

ðt − τÞKvðτÞdτ þOðk4Þ; ðD8Þ

and the inverse relation for the according Laplace
transforms:

K̃vðsÞ ¼ lim
k→0

3

�
s
k2

− s2

k2
F̃sðk⃗; sÞ

�
: ðD9Þ

Using the Laplace transform of the first relation in
Eq. (D8), one can express F̃sðk⃗; sÞ in terms of the
Laplace transform of the velocity-correlation function
and then find the according Laplace transforms of the
functions Φ̃0

iðtÞ and Φ̃00
i ðtÞ. Using these functions in

Eq. (D5), one obtains the Laplace transform of F̃sðk⃗; sÞ ¼
Φ̃ðsÞ for the system with exchange. Substituting the results
into Eq. (D9), one arrives after some algebra at Eq. (7). For

the case of slow exchange τðiÞA ≪ τi, one obtains Eq. (10)
from Eqs. (D7) and (D9).

APPENDIX E: CONDUCTIVITY COMPUTATION

The linear response theory relates the specific direct-
current conductivity (σ) and the autocorrelation function of
an electric current J⃗ðtÞ ¼ P

mqmv⃗mðtÞ, where qm and v⃗mðtÞ
are the charge and velocity of themth particle, respectively,
through the Green-Kubo relation [84,88]

σ ¼ 1

3VkBT

Z∞

0

hJ⃗ð0Þ · J⃗ðtÞidt; ðE1Þ

where V is the system volume, and the averaging is
performed for the equilibrium system without external
electric field; σ is related to the molar conductivity Λ as
σ ¼ ntotΛ=NA, where ntot is the total number density of
ions and NA is Avogadro's number. With the above

expression for the electric current, one can recast
Eq. (E1) into the form

σ ¼ 1

3VkBT

� X
m∈free

q2m

Z∞

0

hv⃗mð0Þ · v⃗mðtÞidt

þ
X
m≠m0

X
m;m0∈free

qmqm0

Z∞

0

hv⃗mð0Þ · v⃗m0 ðtÞidt
�
; ðE2Þ

where the summation is to be performed over the free-ions
only. The first term in the brackets in Eq. (E2) corresponds
to the diffusion of free ions (cations and anions); see
Eqs. (4) and (5). Hence,

σ ¼ Nþ
V

q2þ
kBT

Dþ þ N−
V

q2−
kBT

D− þ σcross; ðE3Þ

where Nþ and N− are respectively the numbers of free
cations and free anions in the system, and σcross refers to the
cross-correlation velocity terms. Taking into account that
n� ¼ N�=V ¼ p�ntot as defined in the main text, pþ and
p− are, respectively, the fractions of cations and anions in
the free state, we arrive at

Λ ¼ Λþ þ Λ− þ Λcross ¼ ΛNE;modified þ Λcross ðE4Þ
with Λ� ¼ NAp�q2�D�=kBT, and Λcross is the cross-
correlation term that appears to be small when we compare
the result with simulations.
The smallness of the cross term may be explained as

follows: The dynamics of the ith ion in dense RTILs is
determined by interactions with many other particles,
where most of them are neutral ion pairs or clusters.
Hence, the influence of the ith free ion on the jth one is
relatively small, which results in a small correlation
function hv⃗ið0Þ · v⃗jðtÞi. Moreover, two other effects make
this term even smaller: the depletion of ion concentration
for the case of ions of the same charge, and the fast
recombination of closely located ions of the opposite sign
that reduces the number of free ions.
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